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GLUON EVOLUTION AND SATURATION PROCEEDINGS∗

L. D. MCLERRAN

Brookhaven National Laboratory and Riken Brookhaven Center,
Physics Dept.

Upton, NY 11973

Almost 40 years ago, Gribov and colleagues at the Leningrad Nuclear Physics
Institute developed the ideas that led to the Dokhsitzer-Gribov-Altarelli-Parisi the
Baltisky-Fadin-Kuraev-Lipatov equations. These equations describe the evolution
of the distributions for quarks and gluon inside a hadron to increased resolution
scale of a probe or to smaller values of the fractional momentum of a hadronic
constituent. I motivate and discuss the generalization required of these equations
needed for high energy processes when the density of constituents is large. This
leads to a theory of saturation realized by the Color Glass Condensate

1. Introduction

About 40 years ago, Gribov and colleagues at the Leningrad Nuclear
Physics Institute developed ideas that led to equations that describe the
change in quark and gluon distribtutions in hadrons as a function of both
the resolution size of an electromagnetic probe 1 2 3 4 5 6 and as a func-
tion of the fractional momentum of the parton in a hadron 7 8. These
developments led to a revolutionary change in our understanding of strong
interaction physics and provided a foundation within QCD for ideas origi-
nally developed by Bjorken 9.

These ideas are manifest in the space-time diagram for hadronic pro-
cesses developed by Gribov and by Bjorken, as shown in Fig. 1. The red
line on this diagram shows a hadronic constituent in the initial state succes-
sively radiating and then absorbing quanta in the final state. The position
of emission in the figure corresponds to the distance either before or after
the collision when the quanta is radiated. The time is of order the distance
away from the collision where the radiation takes place, and we are looking
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in the laboratory frame where the initial hadron has high energy. Where
the initial state and final state hadron meet, the collision takes place. This
picture formed the framework of our modern understanding of pp, pA, and
AA collisions 10.

Figure 1. The space-time diagram that describes the evolution of a hadronic
wavefunction.

A difficulty with the evolution equations is that they predict a rapid
growth as an inverse power of the fractional momentum of the gluon dis-
tribution function. This growth if uncontrolled can lead to violations of
unitatrity in high energy collisions. This was recognized by Leonid Gribov
(Volodya Gribov’s son,) Levin and Ryskin 11, and by Mueller and Qiu 12

who argued that the growth should slow at fixed probe resolution scale.
Together with Raju Venugopalan, we argued that to understand such sat-
uration of the gluon density, one needed to replace the idea of a gluon
density as an incoherent distribution by the idea of a classical gluon field
13 14. This idea leads to renormalization group equations that are gener-
alizations of those envisioned by Gribov. These equations can include the
effect of the high density of gluons, and do not violate s-channel unitarity
15 16 17 18 19 20. The region where the gluon density is large is where the
classical field nature of the gluon density is important. The high gluon
density provides a natural infrared cutoff in the theory, and makes possible
a number of computations of processes that were infrared divergent in the
ordinary parton model.

A momentum scale, the saturation momentum, characterizes this mat-
ter. The saturation momentum grows at high energies, and the strong
coupling constant ultimately becomes small when evaluated at the satu-
ration momentum scale. A novel space-time picture of the early stages of
hadron-hadron collsions has emerged 21 22 23 24 25 26. The high density
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matter inside a hadronic wave function is called the Color Glass Conden-
sate, and the high density highly coherent matter produced in hadronic
collisions is called the Glasma.

It is the purpose of this lecture to motivate and provide an intuitive
motivation for the Color Glass Condensate and the Glasma.

2. Some Qualitative Features of Parton Evolution

We begin by introducing the parton transverse momentum and rapidity
distribution df/dyd2pT , where y = ln(1/x) and x is the parton momentum
as a fraction of the hadron momentum in a frame where a hadron has a
very high energy. The parton distribution function is

xG(x,Q2) =
∫ Q2

d2pT
df

dyd2pT
(1)

There is need for an upper limit on this integration since the integral would
weakly diverge if the limit was taken to infinity. The value of Q2 can be
thought of as a resolution scale and we are counting all partons whose size
r ∼ 1/pT is r < 1/Q.

The DGLAP evolution equation describes the change in the parton dis-
tribution as one changes the resolution scale. Since the integral for G(x,Q2)
is mildly divergent, we see that the hadron has more and more smaller con-
stituents. This means that the density of partons in a hadron ρ = G/πR2

times the typical area of a constituent, 1/Q2 shrinks to zero ρ/Q2 → 0 as
Q2 →∞. The evolution in Q2 takes one into a short distance dilute limit.

The evolution of the gluon density in y = ln(1/x) at fixed Q2 is given by
the BFKL equation. The gluon density grows like 1/xδ where δ ∼ 0.2− 0.3
at accessible energies. Evolution at fixed Q2 corresponds to evolution at
fixed parton size. Evolution in y takes one to the high parton density limit.
For fixed Q2 we shall soon see that the BFKL evolution equation breaks
down, and the rapid growth is tempered. A figure illustrating the behaviour
of the gluon distribution function in the ln(1/x)− ln(Q2) plane is shown in
Fig. 2. The red line in the diagram corresponds to the point when evolving
in ln(x) at fixed values of ln(Q2) where the gluon density stops growing
rapidly. This line is called the saturation boundary.

The growth of the gluon density is seen experimentally. In Fig. 3, the
gluon and quark densities are shown. One sees that gluons dominate the
density of particles inside a hadron for x ≤ 10−2. The density also is rapidly
growing with decreasing x. Surely when the density of gluons becomes very
large, one can use weak coupling methods to describe the gluons. This is
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Figure 2. The gluon density in the ln(x)− ln(Q2) plane.

because of asymptotic freedom and that the typical separation between
gluons is very small. This does not mean the system is perturbative. The
high density of gluons can act coherently and generate large interactions.
A simple example of coherence turning intrinsically weak interactions into
strong forces is gravity. This is because classical fields can add together with
the same sign, and because the interaction is long range so that interactions
are enhanced due to coherent forces of many nucleons.

3. Saturation of the Gluon Density

To understand how the gluon density might saturate, imagine that the
gluons are hard spheres with a size of order r ∼ 1/pT . A hadron has a very
slowly growing size as energy increases so we will treat the hadron size as
fixed. On the other hand, as we go to higher energy, we can probe smaller
values of xmin ∼ ΛQCD/E. If we start with a low density of gluons of size
r0 at some energy, the hadronic disk begins to become closely packed with
gluons of this size as the energy increases. This continues until the gluons
are so closely packed that they repel, and begin to act as hard spheres. This
is the density dρ

dyd2pT d2rT
∼ 1/αS . At this density scale their intrinsic weak

interaction strength ∼ αS is compensated by their high density ∼ 1/αS .
What happens as we go to yet higher energy? We can still pack in
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Figure 3. The distributions of quarks and gluons as a function of x.

Figure 4. Saturation of the gluon density.

more gluons but they have to have smaller size, r << r0 so that they
can fit in the cracks between the gluons of size r0. This means that the
gluon density can grow forever, so long as it is associated with smaller
and smaller gluons. There is a characteristic momentum scale which at any
energy scale separates the highly coherent gluons from those that are not so
coherent. This is the saturation scale Qsat. Our considerations argue that
the saturation momentum can grow forever. When it is Qsat >> ΛQCD we
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can use weak coupling methods.
An essential ingredient in this description is Gribov’s space-time picture

shown in Fig. 5. The smallest x gluon emitted is the lowest on on this figure.
Because the phase space density of gluons is so large, we are justified in
thinking about this gluon as a classical field. It has however been produced
by gluons at much larger ln(x′/x) ∼ 1/αS . This gluon has its evolution
Lorentz time dilated. This means that the produced gluon field is static.
It also has a deeper consequence: The different configurations that yield
the gluon field will not quantum mechanically interfere. They are a glass,
similar to spin glasses of condensed matter physics

Fast moving 
partons 

from 
projectile 

Target Rest Frame 

Classical field is 
static (during 
collision time) 

Figure 5. The space time diagram showing how the glassy nature of the Color
Glass Condensate arises

We therefore call this high density ensemble of gluons the Color Glass
Condensate. Color is because it is made of colored gluons. Glass because
the field describing it are static and because of its relationship to spin
glasses. Condensate because the phase space density of gluons is very high,
the gluons are highly coherent, and this high density arises spontaneously.

4. The Renormalization Group Formalism for the CGC

The Color Glass Condensate is described by both gluon fields and sources
for them. It has a path integral representation:

Z =
∫

Λ

[dA][dρ] exp{iS[A, ρ]− F [ρ]} (2)
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The Yang-Mills action is in the presence of a source,

Jµ = δµ+ρ(xT , y) (3)

The space-time rapidity is y = ln(x−0 /x
−), where x− = (t− z)/

√
2. By the

uncertainty principle y ∼ ln(1/x), where x is the fractional momentum of a
constituent. The scale Λ is a separation scale that separates the gluon de-
grees of freedom between dynamical fields and sources. Its presence leads to
renormalization group equations that determine the distribution of gluonic
sources, F [ρ].

To leading order at weak coupling, the gluon field is determined by the
classical field equations. Once this is done, one then integrates over the
incoherent distribution of the sources. Of course there are fluctuations in
the gluon field, and if we were to try to compute quantities with longitudinal
momentum much less that the cutoff Λ, we would generate large terms
proportional to αS ln(Λ/p+). To deal with such quantities, we need to
shift the scale Λ to be closer to p+. This is done by renormalization group
methods and leads to the JIMWLK evolution equations15 16 17 18 19 20.
When computed on correlation functions, these equations are equivalent to
the Balitsky-Kovchegov equations 27 28. The derivation of the JIMWLK
equation requires an analytic computation to all orders in the background
classical gluon field for an arbitrary light cone source.

We can understand generic features of the JIMWLK equations. They
are for the source functional

Z0 = e−F [ρ] (4)

They are of the form of a a Euclidean Hamiltonian evolution equation

d

dy
Z0 = −H[d/dρ, ρ] Z0 (5)

For strong and intermediate strength fields, corresponding to the saturation
limit, H is second order in d/dρ. The Hamiltonian H has no potential, only
a non-linear kinetic energy term. It therefore describes non-linear quantum
diffusion. Recall that the ordinary linear diffusion equation is

d

dt
ψ = −p

2

2
ψ (6)

It has a solution

ψ ∼ e−x2/2t (7)

The wavefunction spreads as time goes to infinity, and the exponential
behaviour is universal. It is therefore natural to expect that the solution
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to the JIMWLK equations will allow the saturation momentum to grow
forever as y →∞, and that its solution will be universal. This means that
the Color Glass Condensate is universal and is such is fundamental.

5. The Nature of the Color Glass Condensate Fields

At high hadron p+ , x− is a small co-ordinate and x+ is big. The compo-
nents of the gluonic classical fields have the properties that F i+ is big, F i−

is small, and F ij is of order one. Concentrating on the large components
of fields, we conclude therefore that E ⊥ B ⊥ ẑ. The fields are therefore
simply Lorentz boosted Coulomb fields. Their distribution in color, polar-
ization and on the two dimensional sheet corresponding to the hadron are
what is determined by the theory of the Color Glass Condensate. Note that
the density of gluons per unit area up to the saturation momentum is given
by dimensional grounds as

1
πR2

dN

dy
∼ 1
αS

Q2
sat (8)

It is useful to determine the light cone gauge vector potential. We
require a vector potential that gives F ij and F i− zero everywhere and F i+

a delta function of x− and an arbitrary function of xT , independent of x+.
A gauge field that is a two dimensional (in transverse coordinates) gauge
transform of vacuum will give zero Fµν If we make the vector potential
different gauge transforms of vacuum with a discontinuity at x− = 0, this
will give the desired form for Fµν . We have therefore

Aj = θ(−x−)
1
i
U1∇j

TU
†
1 + θ(x−)

1
i
U1∇j

TU
†
1 (9)

(In practice, it is sometimes necessary to spread the source out a bit in x−,
in a manner prescribed by the renormalization group equations.) Notice
that although the field strength Fµν is confined to the sheet at x− = 0,
the Wigner distribution function corresponding to the gluon distribution
function

W ij(X, p) =
∫

dx−d2xT eip·x < Ai(X − x/2)Aj(X + x/2) > (10)

is spread out with a distance scale of order 1/p+ for components with
momentum p+. The Wigner distribution is however not positive definite,
and should not be expected to be so because we are measuring spatial
distributions on the size scale of quantum fluctuations.
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6. The Glasma

The collision of two sheets of Colored Glass produce color electric and
magnetic fields with very different properties than those in the initial sheets.
These fields are produced in the time it takes the sheets to pass through
one another, which is a very short time t ∼ e−κ/αS/Qsat, compared to
the natural time scale for the classical fields produced after the collision
t ∼ 1/Qsat.

Figure 6. The space time diagram showing the fields before and after the collision
of two sheets of Colored Glass.

In Fig. 6, the fields are shown on a light cone diagram. In the backward
light cone there is a gauge we can choose where the fields are zero. On the
side lightcones, we choose the fields A1 and A2 two be two different pure
gauge transforms of vacuum. These choices give the proper field charge
density on the sheets at x± = 0 for t < 0. In the forward light cone, we
could try to make the charge density on the sheets be the correct value by
choosing the field in the forward light cone to be A1 + A2. This is in fact
correct very close to the forward lightcone as can be seen by inspecting
the Yang-Mills field equations. The field A1 + A2 is however not a gauge
transform of vacuum, so the fields will evolve in the forward light cone.
One has produced a distribution of colored fields.

The terms in the Yang Mills equations ~A· ~E and ~A· ~B produce sources of
colored electric and magnetic charge. There are delta function contributions
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arising from terms like Ai · Ej and Ai · Bj for i 6= j. This means that in
the collision the sheets are dusted with equal and opposite charge densities
of colored electric and colored magnetic charges. Immediately after the
collision, lines of longitudinal color electric and magnetic flux are produced.
This is shown in Fig. 7

Figure 7. The formation of longitudinal color electric and color magnetic flux
lines during the collision of two sheets of Colored Glass

The transverse density of these flux tubes is 1/Q2
sat, and the typical

strength of the fields is A ∼ Qsat/gS , so they are highly coherent. there is
both color electric and color magnetic field, so there is a large topological
charge density ~E · ~B. The fields evolve and decay according to the classical
Yang-Mills equations. Unlike the case where there is pair production needed
for the decay of an electric flux tube, because there is both a color electric
and a color magnetic field, the Yang-Mills equation allow for the classical
decay.

7. Phenomenology of the Color Glass Condensate and the
Glasma

There are now a wide variety of phenomenon described by the Color Glass
Condensate and the Glasma. The Color Glass Condensate provides a
good description of deep inelastic scattering and diffraction in electron-
proton collisions at HERA for small values of x. It has provided a good
phenomenological description of heavy ion collisions and dAu collisions at
the RHIC accelerator. An excellent rveiew of the situation is provided at
www.bnl.gov/riken/glasma (to be published in a special edition of Nuclear
Physics A). An even better summary of the current situation is provided in
the presentation of J. P. Blaizot. Of course at the LHC, the ideas of gluon
saturation can and will be tested in pp, pA and AA collisions. At the LHC,
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x values are very small and the saturation momentum large enough so that
computations should become precise. There is also the possibility to test
these ideas in the collisions of electrons from nuclei at an electron-heavy
ion collider such as eRHIC.
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