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Abstract

In this paper, we present an analytical three-dimensional
theory of free electron lasers. Under several assumptions,
we arrive at an integral equation similar to earlier work car-
ried out by Ching, Kim and Xie, but using a formulation
better suited for the initial value problem of Coherent Elec-
tron Cooling. We use this model in later papers to obtain
analytical results for gain guiding, as well as to develop a
complete model of Coherent Electron Cooling.

INTRODUCTION

Existing work on the analytical three-dimensional theory
of FELs ([1], [2] and citations therein) provide a number of
useful results, and cover transverse modes and dispersion
relations thoroughly. However, these approaches lack sev-
eral features useful for applications to Coherent Electron
Cooling (CeC) [3]. Specifically, existing theory for the ini-
tial signal considers an infinite electron beam and provides
an initial value problem for the FEL [4]. It is therefore de-
sirable to develop a three-dimensional theory of the FEL
process that is compatible with this work. With the ex-
isting formalism in [4] in mind, we develop here a three-
dimensional theory of FELs which can be readily gener-
alized to the case of the infinite beam, and which quickly
reduces to the one-dimensional theory in [2].

We treat the transverse dynamics of the electron beam as
a parameter whose dynamics are dictated by the Maxwell
equations. The beam is assumed to have no transverse
velocity spread, and the only magnetic field present is
assumed to be an helical wiggler field. Operating in a
transverse Fourier space, we obtain an integral equation
in which the kernel is the Fourier transform of the trans-
verse beam profile. A mode expansion obtains dispersion
relations for each transverse mode as a function of their
eigenvalue. For an infinite beam, the Fourier transform is a
delta function, and results in an equation similar to the one-
dimensional theory presented in [2]. Some specific appli-
cations of this theory are discussed in another conference
proceeding.

EQUATIONS OF MOTION

To develop this model, we employ the Maxwell-Vlasov
coupled equations to obtain a linearized equation of motion
for the current density, which is directly related to the phase
space distribution.

∗ swebb@bnl.gov, Department of Physics & Astronomy, Stony Brook
University

† gawang@bnl.gov
‡ vl@bnl.gov

Vlasov Equation

The equations of motion as a function of z are given by
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Defining H = E + E0 where E0 is the nominal energy of
the electron beam, and linearizing the phase space density
f = f0 + f1 where f1 is small gives the linearized Vlasov
equation:
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It is now necessary to solve for the vector potential and
space charge fields to obtain the full equations of motion.

Maxwell Equations

The transverse Maxwell equations in Fourier space are
given by (
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The transverse current is related to the longitudinal cur-
rent by assuming that the transverse velocity is given by
�v⊥ = K/γ0(cos kwzêx−sin kwzêy) for all electrons. This
allows the solution in Fourier space of the potential �Aw · �A⊥
to be
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where the Fourier transform on the current density is de-
fined by
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Space charge is accounted for by the Maxwell equation

∂tEz = −4π
c
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Applying the identical Fourier transform on jz to Ez gives
the space charge equation

Ẽz = − 4πı
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These two results may now be inserted into the full coupled
Maxwell-Vlasov equation.
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Maxwell-Vlasov Equation

At this point we are able to write down the full
Maxwell-Vlasov equation under the assumption that f0 =
n0F (E)G(�r⊥) where the normalization is such that inte-
grating over energy and the transverse coordinates gives
the longitudinal density n0. Under this assumption, the
Maxwell-Vlasov equation takes the form of an integral
equation given by equation 8 where U0 is related to initial
seeding, and
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Introducing normalized coordinates simplifies the equa-
tion as
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′′ + ıΛ̂2

pj̃z

}
dF̂
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At this point, the problem is solving the integral equation
in the transverse Fourier space. For a finite beam size,
a mode expansion similar to the methods in [1] can be
employed, while for an infinite beam direct solution by
Laplace transform is possible, and is the method of choice
in GANG’SPAPER. I highlight both results briefly below.

INFINITE BEAM LIMIT

The limit of an infinite, homogeneous beam is useful for
applications to the theory of CeC, as analytical results exist
in the modulator [4] and the kicker [5]. In the limit of an
infinite, homogeneous beam, G̃(k̂⊥ − q̂) = δ(k̂⊥ − q̂) and
the integral equation becomes a simple differential equa-
tion in j̃z . In this case, solution may be carried out by
Laplace transform, as in [2], but with the identification that
Ĉ �→ Ĉ + k̂2

⊥. We therefore see that, for an infinite beam,
finite transverse size is directly equivalent to a detuning.

The explicit equation of motion for j̃z , solved through
Laplace transform, is given by
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which is examined in greater detail in [6], where Ĉ3D =
Ĉ + k̂2

⊥. It is studies of this particular model that are re-
quired for the solutions presented in GANG’SPAPER, and
further discussion is left there.

FINITE BEAM

For the case of finite beam, solution can best be achieved
by solving the eigenmode problem for the transverse beam
profile, searching for a solution of the integral equation
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In this case, it is convenient to expand the solutions for the
current equation as
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where φn is an eigenmode of the G̃ kernel. Here the an

are in general a function of ẑ, Ĉ, and k̂⊥. In this case, a
differential equation is obtained for the coefficients of φn

in terms of the eigenvalues of the mode. In this case, the
integral equations of motion become
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d2k̂⊥Û0(k̂⊥)φ�(k̂⊥) + an . . .

+ıΛ̂2
p [a′� − ıQm,�am]

}

where Qm,� =
∫
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has an exponential or faster drop-off for large q, then these
terms will generally be fairly small, as the integrand is close
to zero for q < 1 and drops off exponentially outside that
range. This lends itself to a perturbative expansion in the
Q matrix to get at least the first order coupling between
modes.

The integral equation can be solved by use of a Laplace
transform. Applying the Laplace transform in ẑ gives the
equation for the Laplace transformedA� to be[(
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where a quantity G� is the initial condition quantity inte-
grated with the �th eigenmode.

The equations of motion for each mode behaves like a
one-dimensional growth with the root equation being mod-
ified by appropriate factors of ω�. The real part of the roots
are a monotonically decreasing function of ω �, so that the
minimal value of ω� dominates. Such a solution would tend
to maximize the integral∫

d2q̂ d2k̂⊥ Φ�(k̂⊥)G̃(k̂⊥ − q̂)Φ�(q̂)

for a variational approximation on the maximal mode for a
trial solution Φ�. This provides some possible insight into
approximation schemes where analytical solutions for the
eigenvalue equation are not available.
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