A 3-dimensional theory of free electron lasers

S.D. Webb, G. Wang, V.N. Litvinenko

Presented at the 32nd International Free Electron Laser Conference
Malmo City, Sweden
August 23-27, 2010

Collider-Accelerator Department
Brookhaven National Laboratory

U.S. Department of Energy
DOE Office of Science

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
A 3-DIMENSIONAL THEORY OF FREE ELECTRON LASERS

Stephen D. Webb*, Gang Wang †, Vladimir N. Litvinenko‡
Brookhaven National Laboratory (BNL) Collider-Accelerator Department

Abstract

In this paper, we present an analytical three-dimensional theory of free electron lasers. Under several assumptions, we arrive at an integral equation similar to earlier work carried out by Ching, Kim and Xie, but using a formulation better suited for the initial value problem of Coherent Electron Cooling. We use this model in later papers to obtain analytical results for gain guiding, as well as to develop a complete model of Coherent Electron Cooling.

INTRODUCTION

Existing work on the analytical three-dimensional theory of FELs ([11], [2] and citations therein) provide a number of useful results, and cover transverse modes and dispersion relations thoroughly. However, these approaches lack several features useful for applications to Coherent Electron Cooling (CeC) [3]. Specifically, existing theory for the initial signal considers an infinite electron beam and provides an initial value problem for the FEL [4]. It is therefore desirable to develop a three-dimensional theory of FELs which can be readily generalized to the case of the infinite beam, and which quickly reduces to the one-dimensional theory in [2].

We treat the transverse dynamics of the electron beam as a parameter whose dynamics are dictated by the Maxwell equations. The beam is assumed to have no transverse velocity spread, and the only magnetic field present is assumed to be a helical wiggler field. Operating in a transverse Fourier space, we obtain an integral equation in which the kernel is the Fourier transform of the transverse beam profile. A mode expansion obtains dispersion relations for each transverse mode as a function of their eigenvalue. For an infinite beam, the Fourier transform is a delta function, and results in an equation similar to the one-dimensional theory presented in [2]. Some specific applications of this theory are discussed in another conference proceeding.

EQUATIONS OF MOTION

To develop this model, we employ the Maxwell-Vlasov coupled equations to obtain a linearized equation of motion for the current density, which is directly related to the phase space distribution.

* swebb@bnl.gov, Department of Physics & Astronomy, Stony Brook University
† gwang@bnl.gov
‡ vl@bnl.gov

Vlasov Equation

The equations of motion as a function of z are given by

$$\frac{dH}{dz} = \frac{1}{c} \left\{ -\frac{1}{p_0} \left(\frac{e}{c} \right)^2 \vec{A}_w \cdot \vec{A}_\perp + e \frac{\partial A_z}{\partial t} \right\}$$ \hspace{0.5cm} (1a)

$$\frac{dt}{dz} = \frac{1}{c} \left\{ 1 + \frac{1}{2} \left(\frac{e}{c} \right)^2 \left(\vec{A}_w^2 + 2 \vec{A}_w \cdot \vec{A}_\perp + m^2 c^2 \right) \right\}$$ \hspace{0.5cm} (1b)

Defining $\mathcal{H} = \mathcal{E} + \mathcal{E}_0$ where \mathcal{E}_0 is the nominal energy of the electron beam, and linearizing the phase space density $f = f_0 + f_1$ where f_1 is small gives the linearized Vlasov equation:

$$\frac{\partial f_1}{\partial z} + \frac{1}{c} \left\{ 1 + \frac{1}{2} \left(\frac{e}{c} \right)^2 \left(K^2 + 1 \right) \left(1 - \frac{2 \mathcal{E}}{\mathcal{E}_0} \right) \right\} \frac{\partial f_1}{\partial t}$$

$$+ \left\{ \frac{1}{\mathcal{E}_0} \left(\frac{e}{c} \right)^2 \vec{A}_w \cdot \frac{\partial \vec{A}}{\partial t} + e \mathcal{E}_z \right\} \frac{\partial f_0}{\partial \mathcal{E}} = 0$$ \hspace{0.5cm} (2)

It is now necessary to solve for the vector potential and space charge fields to obtain the full equations of motion.

Maxwell Equations

The transverse Maxwell equations in Fourier space are given by

$$\left(-k_\perp^2 + \partial_z^2 - \frac{1}{c^2} \partial^2 \right) \vec{A}_\perp = \frac{4\pi}{c} j \perp$$ \hspace{0.5cm} (3)

The transverse current is related to the longitudinal current by assuming that the transverse velocity is given by $\vec{v}_\perp = K/\gamma_0 (\cos k w \hat{e}_x - \sin k w \hat{e}_y)$ for all electrons. This allows the solution in Fourier space of the potential \vec{A}_w, \vec{A}_\perp to be

$$\vec{A}_\perp - \vec{A}_\perp |_{z=0} = -e k_\perp^2 c^2 / 2 \nu \omega \gamma_0 \int_{-\infty}^{\infty} j_z dz'$$

(4)

where the Fourier transform on the current density is defined by

$$j_z = \frac{1}{\sqrt{2\pi}} \int d\nu \, d^2 k_{\perp} e^{i k_{\perp} \cdot \vec{r}_z} e^{i \nu \omega_\gamma (z/c - t)} e^{i k_{\perp} \cdot \vec{r}}$$

(5)

Space charge is accounted for by the Maxwell equation

$$\partial_t \mathcal{E}_z = -\frac{4\pi}{c} j_z$$ \hspace{0.5cm} (6)

Applying the identical Fourier transform on j_z to \mathcal{E}_z gives the space charge equation

$$\vec{E}_z = -\frac{4\pi}{c \nu \omega} \vec{j}_z$$ \hspace{0.5cm} (7)

These two results may now be inserted into the full coupled Maxwell-Vlasov equation.
Maxwell-Vlasov Equation

At this point we are able to write down the full Maxwell-Vlasov equation under the assumption that \(\hat{f}_1 = n_0 F(\mathcal{E}) G(\hat{r}_\perp) \) where the normalization is such that integrating over energy and the transverse coordinates gives the longitudinal density \(n_0 \). Under this assumption, the Maxwell-Vlasov equation takes the form of an integral equation given by equation 8 where \(\mathcal{U}_0 \) is related to initial seeding, and

\[
\hat{f}_1 = e^{i\phi_0 z} \hat{f}_1 |_0 + \int_0^z d\hat{z}' e^{i\phi_0 (\hat{z}' - z)} \int d^2 \hat{q} e^{i(s^2 - k^2) |z'|} = \frac{\nu \omega r (2 e)}{\varepsilon_0} \left(\mathcal{U}_0 - \frac{i \pi K}{\nu \omega r} \int_0^z \hat{j}_z d\hat{z}' \right) + \frac{4 \pi e \alpha}{e \nu \omega r} j_z \left[n_0 \frac{d\mathcal{F}}{d\mathcal{E}} \tilde{G}(k_\perp - q) \right]
\]

which is examined in greater detail in [6], where \(\tilde{C}_{3D} = \tilde{C} + \tilde{k}_\perp^2 \). It is studies of this particular model that are required for the solutions presented in GANG’S PAPER, and further discussion is left there.

FINITE BEAM

For the case of finite beam, solution can best be achieved by solving the eigenmode problem for the transverse beam profile, searching for a solution of the integral equation

\[
\psi_n(k) = \omega_n \int d^2 q e(k^2 - q^2) z \tilde{G}(k - q) \psi_n(q)
\]

In this case, it is convenient to expand the solutions for this equation as

\[
\tilde{j}_z = \sum_n a_n e^{-i k_\perp^2 z} \phi_n(k_\perp)
\]

where \(\phi_n \) is an eigenmode of the \(\tilde{C} \) kernel. Here the \(a_n \) is in general a function of \(\tilde{z}, \tilde{C} \), and \(k_\perp \). In this case, a differential equation is obtained for the coefficients of \(\phi_n \) in terms of the eigenvalues of the mode. In this case, the integral equations of motion become

\[
a'_\ell - i Q_{m,\ell} a_m = \int d^2 \hat{k}_\perp e^{i(\hat{C} + \hat{k}_\perp^2) \hat{z}} \hat{f}_0 |_0 \phi_\ell(\hat{k}_\perp) - \ldots
\]

where

\[
\frac{1}{\omega_\ell} \left\{ \int d^2 \hat{k}_\perp \mathcal{U}_0(\hat{k}_\perp) \phi_\ell(\hat{k}_\perp) + a_n \ldots + i \tilde{A}_\ell^2 [a'_\ell - i Q_{m,\ell} a_m] \right\}
\]

which has an exponential or faster drop-off for large \(q \), then these terms will generally be fairly small, as the integrand is close to zero for \(q < 1 \) and drops off exponentially outside that range. This lends itself to a perturbative expansion in the \(Q \) matrix to get at least the first order coupling between modes.

The integral equation can be solved by use of a Laplace transform. Applying the Laplace transform in \(\hat{z} \) gives the equation for the Laplace transformed \(A_\ell \) to be

\[
\left(s - \tilde{D}/\omega_\ell (1 + i \tilde{A}_p^2) \delta_{\ell,m} - \left(1 + i \tilde{A}_p^2/\omega_\ell \right) Q_{m,\ell} \right) A_m = \left(1 + i \tilde{A}_p^2/\omega_\ell \right) a_\ell(0) + \tilde{F}_\ell + \tilde{U}_0
\]

\[
|\tilde{C}_{3D} = \tilde{C} + \tilde{k}_\perp^2 |\tilde{C}_{3D} + \tilde{E} |\tilde{D} = \int d\tilde{E} = s + i \tilde{C}_{3D} + \tilde{E}
\]

\[
(11)
\]

\[
(10)
\]
where a quantity G^ℓ is the initial condition quantity integrated with the ℓth eigenmode.

The equations of motion for each mode behaves like a one-dimensional growth with the root equation being modified by appropriate factors of ω^ℓ. The real part of the roots are a monotonically decreasing function of ω^ℓ, so that the minimal value of ω^ℓ dominates. Such a solution would tend to maximize the integral

$$\int d^2 \hat{q} d^2 \hat{k}_\perp \Phi_\ell(\hat{k}_\perp) \tilde{G}(\hat{k}_\perp - \hat{q}) \Phi_\ell(\hat{q})$$

for a variational approximation on the maximal mode for a trial solution Φ_ℓ. This provides some possible insight into approximation schemes where analytical solutions for the eigenvalue equation are not available.

REFERENCES

