BROOKHFEVEN

NATIONAL LABORATORY

BNL-94051-2010-CP

The physics of FEL in an infinite electron beam

G. Wang, V.N. Litvinenko, S.D. Webb

Presented at the 32" International Free Electron Laser Conference
Malmo City, Sweden
August 23-27, 2010

Collider-Accelerator Department

Brookhaven National Laboratory

U.S. Department of Energy
DOE Office of Science

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others
to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before
publication, it may not be cited or reproduced without the author’s permission.



DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.



THE PHYSICS OF FEL IN AN INFINITE ELECTRON BEAM*
G. Wang®, V. N. Litvinenko, S. D. Webb, BNL, Upton, NY 11973, U.S.A.

Abstract

We solve linearized Vlasov-Maxwell FEL equations for
a 3-D perturbation in the infinite electron beam with
Lorentzian  energy  distributions using  paraxial
approximation. We present analytical solutions for various
initial perturbations and discuss the effect of optical
guiding in such system.

INTRODUCTION

Developing complete theoretical model of Coherent
electron Cooling (CeC) [1] is important for gaining
insights into the physics of the processes, studying the
scaling law and benchmarking simulation codes. Deriving
analytical formula under certain assumptions is one of the
key-stone in this process. For instance, the modulation
process can be described by a close form solution
obtained for an infinite electron beam with kappa-2
velocity distribution [2]. This solution is applicable to an
realistic case when the transverse Debye radii are much
smaller than the transverse size of electron beam.

In this work, we try to derive an analytical 3-D solution
for the FEL amplification process under assumption of
infinitely wide electron beam. 1D FEL theories has been
applied to the amplification process in CeC, naturally
assuming an infinite electron beam and longitudinally
propagating radiation fields, i.e. k, =0 [3]. While 1D
FEL theory provides closed-form analytical solutions for
certain energy distributions, the diffraction effects are
ignored. Hence, the transverse profile of the amplified
modulation can not be obtained. In present day analytical
3D FEL theory, applied to specific spatial profiles of
electron beam [4-6], the solutions are usually expanded
into infinite number of modes determined by specific
boundary conditions. In the high gain limit, the transverse
profile of the electron modulation is determined by the
mode with largest growth rate. However, for FEL with
nominal or relatively short length, transient effect may not
be ignored and thus presents difficulties in analytical
evaluation of the amplification.

In order to incorporate the diffraction effects into
analytical solution capable of describing the transient
effect, we investigate the FEL amplification process for
an infinite electron beam. The results derived under this
assumption are applicable if the electron beam size is
much larger than that of the amplified current modulation.
Similarly to 1D FEL model, we assume the unperturbed
electron spatial density is a constant and electrons are
moving along their trajectory determined by the undulator
field with no transverse dynamic effects from the
radiation field or space charge. However, we allow the
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radiation to propagate with an angle with respect to the
longitudinal direction, i.e. K, # 0. Starting from the self-

consistent paraxial field equation, we arrive to a third
order ordinary differential equation (ODE). Analytical
solutions are obtained for various initial conditions and
the effect of optical guiding is discussed.

EQUATION OF MOTION

We use standard assumptions that the amplitude of the
radiation field varies slowly with respect to the undulator
period and that fast oscillation terms can be dropped. The
paraxial equation on the amplitude of the radiation field is
[4] S
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where E(z,r,,C) is the complex amplitude of the
radiation field, » is the radiation frequency, C is the
detuning, g, is the nominal electron energy, P is the
electron energy deviation, ¢, is the electron deflection
angle, F(P) is the energy distribution function and j,(r, )

is the transverse spatial distribution of the unperturbed
electron beam. Assuming j (r )=j, , the Fourier

transformation of eq. (1) with respect to transverse spatial
coordinates X and Y yields
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Inserting the definition
R(zk,,C)=e? E(z,k,,C), ©)

into eq. (2), we get the following:
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Using normalized variables defined in [4] and [7], eq. (4)
becomes
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A b is the space charge parameter defined as
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and IE(FA’) is the energy distribution function satisfying

0

[F(P)=1-

In order to proceed further, we assume Lorentzian energy
distribution, i.e.
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Inserting eq. (6) into eq. (5) results in the following:
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It has been demonstrated that integro-differential equation
with the form of (7) can be reduced to a third-order ODE
(see Chapter 6.3.3 and 6.3.4 of [7]). Eq. (7) is transformed
into
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The solution of (8) is the sum of three eigen-modes, i.e.
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where the eigen-value A, are determined by
A2+ 2(i(§3d + d)&z + [Azp + (i(f3d + d)z}l —i=o0 (1)

and A(é,@) are determined by initial conditions at the

FEL entrance. From eq. (3) and eq. (10), the complex
amplitude of the radiation field is given by

E(i, k\i,é)= efﬂziziA (é, k\l)gln(ésd)f .

The slowly varying radiation field amplitude is related to
the current modulation via [4]
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In the transverse wave vector domain, their relation is as
follows
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Inserting eq. (12) into (14) leads to
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From eq. (13) to eq. (15), the coefficients A can be
explicitly written as the following matrix form

- (1)

-1

A 1 1 1 E
Al=l A 2, A I
A, ﬂq(ﬂl—"zi) /12(}“2_”%) ﬂe(ﬂe_"zi) §I

(6)
where E(o,é,@), J*l(o,é,ﬁ )and 0 3 (0 éK )are initial
conditions defined by a specific problem. In the following

section, we will carry out calculations for excitation by
external field with various pulse profiles.

EXCITATION WITH EXTERNAL FIELD
If the initial seeding of FEL is solely from external
field, the coefficients A can be derived from eq. (16) as
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where i, j,k =1,2,3and Eijk is the Levi-Civita symbol. For

simplicity, we assume the transverse profile of the
external field is Gaussian:
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where & | is a parameter describing the transverse range
of the external field, F,(C)is a function describing the

(18)

frequency content of the external field and Eini is a
parameter determining the strength of the excitation.



Instantaneous Pulse
For an instantaneous excitation at the FEL entrance
2 =0 described by Dirac delta-function s(t), F,(C) is

just a constant independent of C . Without loss of
generality, we assume

F,(C)-1. (19)
Thus the external field is written as
Eext (ki ): Eini exp(_ kié\-i )’ (20)
and the coefficients A is
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The current density modulation is given by the inverse
Fourier transformation of (23) with respect to k_, K, and
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changing in eq. (24) the integration variable from C to
C,, and integrating over k, and K gives:
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As seen from eq. (26), the longitudinal evolution of the
current density is identical to that in the 1D FEL theory,
while the transverse evolution is described by a Gaussian
function.

Gaussian Pulse

Consider an excitation of Gaussian pulse with finite
duration, i.e.

F(C)=e. (28)
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Figure 1 Amplitude of current density modulation at
7 =6 a) surface plot of density as a function of the radius
and time for 5 =1, (b) contour plot of (a); (c) surface

plot for 5 =2; (d) contour plot of (c). By technical
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Inserting (17), (18) and (28) into eq. (15) and conducting
the inverse Fourier transformation results in
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In general, the integral in (30) should be evaluated
numerically. Fig.1 shows two distributions obtained by
numerical integration of eq. (29) for 5 =1and 5, =2
for initial Gaussian pulse withs, =0.1. While the initial
spot sizes differ by a factor of two, after six gain lengths
the sizes become essentially identical. This is clear

indication that the FEL system works in the diffraction
dominated regime.

Monochromatic Wave

In case of a monochromatic wave at the FEL resonant
frequency:
F.(¢)=5(C). (31)

and eq. (15), (16), (17) and (31) give:
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Figure 2. Profiles of current density for the
monochromatic wave. They are normalized to their value
at t =0. (a) profiles for 5 =1 at various locations along

FEL, (b) profiles 7 =15 for various initial sizes, & .
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Figure 3. Transverse rms size of the density modulation
and radiation power along the length of FEL. Only the
growing mode is taken into account. (a) the rms size of
the density modulation and the radiated power for 5 =1.

(b) asymptotic dependence of the rms size of density
modulation for initial size 5, =0.3;
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where |2L - hZXZ +|25 and we assume G =g, =&, for
simplicity.

Fig. 2 shows results of numerical integration of eq.
(32) for various Z and &, . Fig. 2 (a) suggests that the
transverse size keeps growing along the FEL. In order to
investigate the nature of this growth, we studied the
dependence of the transverse rms spread of the density
modulation and that of the radiation power as function of
the length along the FEL. As shown in fig.3 (b), the rms
size of the density modulation grows near-linearly during
few tens of the gain length (i.e. in a case of any practical

FEL). This dependence would switch into one~ z%% inan
extremely large Z ~ 100, but this unphysical area is off
interest.

DISCUSSION

Because the amplification of the plane wave in an FEL
with infinitely wide beam depends on its propagation
angle via changing the detuning from the FEL resonance
(9): C,, =C, —k?. One can expect that this will confine

effective amplification to a narrow cone alone that axis of
the FEL and, therefore, some optical guiding of the
optical beam. Our numerical studies and analytical
estimates showed that in a typical FEL this effect results
in near-linear RMS size grows. Even though the growth
of the transverse beam size is smaller than in free space
case, the optical guiding FEL effect by an infinite electron
beam is much smaller and is different from that that by a
beam with finite size.

SUMMARY

We obtained results resembling some aspects of the 1D
theory, especially for the longitudinal dynamics.
However, we successfully incorporated diffraction into
the evolution of the transverse density modulation profile,
which is of critical importance for studying the transverse
coherence of the electron beam in CeC. For few selected
initial conditions, the spatial domain solutions were
expressed through 1D or 2D integrals, which can be
readily numerically integrated.

We showed that while FEL dispersion provides for
some optical guiding, it is very different from that
provided by the finite size electron beams.
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