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Preface to the Series

The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven
National Laboratory. It is funded by the "Rikagaku Kenkyusho" (RIKEN, The Institute of
Physical and Chemical Research) of Japan. The Memorandum of Understanding between RIKEN
and BNL, initiated in 1997, has been renewed in 2002 and again in 2007. The Center is dedicated
to the study of strong interactions, including spin physics, lattice QCD, and RHIC physics
through the nurturing of a new generation of young physicists.

The RBRC has both a theory and experimental component. The RBRC Theory Group
and the RBRC Experimental Group consists of a total of 25-30 researchers. Positions include the
following: full time RBRC Fellow, half-time RHIC Physics Fellow, and full-time, post-doctoral
Research Associate. The RHIC Physics Fellows hold joint appointments with RBRC and other
institutions and have tenure track positions at their respective universities or BNL. To date,
RBRC has --50 graduates of which 14 theorists and 6 experimenters have attained tenure
positions at major institutions worldwide.

Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at
RBRC. These appointments are joint positions of RBRC and RIKEN and include the following
positions in theory and experiment: RSP Researchers, RSP Research Associates, and Young
Researchers, who are mentored by senior RBRC Scientists. A number of RIKEN Jr. Research
Associates and Visiting Scientists also contribute to the physics program at the Center.

RBRC has an active workshop program on strong interaction physics with each workshop
focused on a specific physics problem. In most cases all the talks are made available on the RBRC
website. In addition, highlights to each speaker's presentation are collected to form proceedings
which can therefore be made available within a short time after the workshop. To date there are
ninety seven proceeding volumes available.

A 10 teraflops RBRC QCDOC computer funded by RIKEN, Japan, was unveiled at a
dedication ceremony at BNL on May 26, 2005. This supercomputer was designed and built by
individuals from Columbia University, IBM, BNL, RBRC, and the University of Edinburgh, with
the U.S. D.O.E. Office of Science providing infrastructure support at BNL. Physics results were
reported at the RBRC QCDOC Symposium following the dedication. QCDSP, a 0.6 teraflops
parallel processor, dedicated to lattice QCD, was begun at the Center on February 19, 1998, was
completed on August 28,1998, and was decommissioned in 2006. It was awarded the Gordon Bell
Prize for price performance in 1998.

N. P. Samios, Director
March 2010

*Work performed under the auspices ofD.S.D.D.E. Contract No. DE-AC02-98CHI0886.
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Introduction

A two-day workshop on "The Physics of Wand Z Bosons'' Was held at the RIKEN
BNL Research Center at Brookhaven National Laboratory on June 24-25, 2010.

With the recent release of the first measurement of W bosons in proton-proton
collisions at RHIC and the first observation of W events at the LHC, the workshop
was a timely opportunity to bring together experts from both the high energy
particle and nuclear physics communities to share their ideas and expertise on the
physics of Wand Z bosons, with the aim of fully exploring the potential of the
W/Z physics programs at RHIC and the LHC.

The focus was on the production and measurement of W/Z bosons in both
polarized and unpolarized proton-proton collisions, and the role of W/ Z
production in probing the parton flavor and helicity structure of the colliding
proton and in the search for new physics. There were lively discussions about the
potential and future prospects of W/Z programs at RHIC, Tevatron, and the LHC.

Organizers: S. Dawson, K. Okada, P. Patwa, J. Qiu and B. Surrow





First Measurement of W+/W- Boson Production at STAR in Polarized pp
Collisions at RHIC

Jan Balewski (For the STAR Collaboration)
Massachusetts Institute of Technology

balewski@mit.edu

The STAR experiment has acquired its first set of W -boson events from collisions of longitu
dinally polarized protons at VS = 500 GeV. The STAR Electromagnetic Calorimeter triggered
on electrons/positrons from the weak decay of the III and provided the energy of the lepton, while
the STAR Time Projection Chamber allowed reconstruction of the lepton track and its charge
sign. The QeD physics background was suppressed by isolation cuts around a candidate lepton
track as well as vetoing on transverse energy opposite in azimuth. In the standard model leading
order W± production is through u+d --+ W+ and d+u -+ W-. These interactions are ideal tools
to study the spin-flavor structure of the proton, because the spin-dependent W production cross
section ~a == a(pp) - a(*pp) depends strongly on the polarization of the quark and anti-quark
in the proton, with p(*P) representing a proton with its spin aligned with (against) its momen
tum. \Ve will present the status ofthe STAR measurement of AL = D..a j(a(pp) + a(pp)) for
mid-rapidity charge separated W+ and W-.

1



*AR Simulated W-+e+v event at STAR
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*AR p+p~ W~e+v events selection
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*AR j Reconstructed Jacobian Peak for W+, W- I
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*AR AL for Ws measured in Run 9

0"+ - 0"_

0"+ + 0"_

STAR Preliminary Run 9

A L

J
~~~~~~~tm~~ ~

,.. -- ..........
_. -... -.F.:.:;.:,:;.-:w-

STAR Preliminary Rung \jS=500 GeV

p+p --) W± --) e± + v

e;>25GeV0.4

AL

0'1

0.2

0 ..... cr.
AL=0'. + cr.

AL(W+) = -0.33 ± 0.10(stat.) ± O.04(syst.)

AL(W-) = 0.18 ± O.19(stat.) ~g:gj(syst.)

Jan Balewski, MIT 5

Summary
(for mid rapidity leptons)

• Al(yV+) negative, as predicted, -3 sigma <0

• Al(yV-) central value positive, as expected

• systematic errors of AL under control

• TPC charge separation works up to ET-SO GeV
21
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First Observations at PHENIX of VV Production from Polarized pp Collisions at RHIC

Dave Kawall, RIKEN-BNL Research Center and University of Massachusetts Amherst

on behalf of the PHENIX Collaboration

•~
t

/
!

/
1

ct

The evidence for pp ~ Ht + X --+ e + X' in polarized pp collisions at VB == 500 GeV in
the PHENIX detector at RHIC is presented. The physics importance, analysis strategy, and
preliminary results on the single longitudinal, parity-violating spin asymmetry Arr

+ are also

presented.

D. Kawall TV and Z Workshop, BNL. June 2-1-25 2010



Motivation for Spin Physics with Vlls at RHIC

® Key measurement of spin program: flavor separated, polarized PDFs 6D,(x) and 6rl(~r)

$ Semi-inclusive polarized DIS experiments (SMC, HERMES, COMPASS) have made such measurements

@ STAR and PHENIX can do it exploiting maximal-parity violation in W production in polarized pp collisions

Measurements made at high scale O\1a/ > 6000 GeV2 )

No uncertainty from fragmentation (couplings of VV well known)I no higher twist effects

0.04
-

xAu xi\d _.. 0.04

@l Unpol. PDFs known to about 10~;Q

@l Theoretical uncertainties small
(NLO+resummation)

• Robust extraction of 6u(x) and t6.d(x)

f) Can also measure ratio u(x)jd(x)

-<= D. de Florian, R. Sassot, M. Stratmann,
and W. Vogelsang, Phys. Rev. Lett.
101, 072001 (2008)
( At Q2 = 10 GeV2 )
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PHENIX Central Arm Spectrometers
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• Detect high E e± in central arms of PHENIX

4ft Acceptance of each arm: rapidity /17j < 0.35
(70 < e < 110), 6.¢==1r/2

e Vertex cut: Izl < 30 cm

~ Tracking: Charged tracks measured i
Drift Chamber (DC) and Pad Charr

ber(PCl)

* J13 .dl ==- 0.78 Tesla-meters

D. Kawall rv and Z Workshop. BNL June 24-25 2010



Comparison of Data with Background Estimation
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To determine background under signal region (30-50 GeV) :

• Take measured nO + r spectrum x conversion prob + accidental matching track ® ac-
ceptance

~ Add charged hadrons (NLO) 0 detector response (GEANT) + e± from FONLL c/b decays

~ Normalize h± component so total background matches data in range 10-20 GeV

8 Black histogram: background estimate; largest component from 11"0 + r, h± slightly less

D, Kawall n' and Z Vv'orkshop, BNL, June 24-25 2010



Parity-Violating Single Spin Asymmetry ",4L (tfp ---+ "VV+ -4 e")

~ Preliminary result, using PE = 0.38 ± 0.04 and Pv = 0.40 ± 0.04 (SP/P = 9.2S~)

e Raw asymmetry in background region (12-20 GeVIc) consistent with 0 : E~~~d = 0.035 ± 0.047

~ Raw asymmetry in signal region (30-50 GeV/c) inconsistent with 0 : E;~~?al = -0.29 ± 0.11

e A L = ~ X Eraw X D, correct for dilution of A L by Z and QeD background (D = 1.11 ± 0.04)
r-~cc~--_cc~c_---~~-~c_~'~_C_-' .~.~ ..~

I AL(jJp -+ W+ -+ e+) = - 0.83 ± 0.31
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Summary and Outlook

@ Developed analysis techniques to isolate lV ---+ e signal above backgrounds

• Clear evidence for W"± ---+ e± at 1171 < 0.35 in PHENIX central arms

• Preliminary determination of single-spin parity-violating asymmetry:
Arl(pp ~ lV+ ---+ e! ) == - 0.83 ± 0.31

$ Analysis underway for cross-section estimates, final Ar7
± determinations

e Upgrades will help refine analysis, add acceptance and new physics channels:

Si Barrel vertex detectors in PHENIX central arms

Muon arms: RPCs + muon trigger upgrade: W ---+ f.-l signal 1.2 < l17ftl < 2.2

• (-AD getting closer to design luminosity at yI506 GeV, ~ 40% polarization

e Will need 300+ pb-1 integrated luminosity, 60% polarization to meet goals of program

D. Kawall TV and Z Workshop, BNL June 24-25 2010
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ResBos and RhicBos
QT resummation for (un)polarized EW boson production

Pavel Nadolsky

Southern Methodist University

June 24, 2010

Pavel Nadolsky (SMU) W/Z workshop, BNL 06/24/10 1
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Objectives of the talk

An overview of physics in

• ResBos: Resummation for electroweak Bosons and their
decays in unpolarized pp or pp collisions

• RhicBos = ResBos adapted to compute longitudinal
single-spin and double-spin asymmetries in leptonic decays
of r*, ~ Z in pp collisions

• Single-spin asymmetries in hadronic decays of W· bosons -0

useful measurement complementary to the leptonic mode

. Interruptions and questions are welcome'

Pavel Nddolsky (SMU) W/Zworkshop,BNL 06/24/10 2



Today's focus is on...

.-
Vi

• unpolarized parton
distributions:

• longitudinally polarized
parton distributions:

• unpolarized cross sections:

• single-spin cross sections
<#- 0 if V - A interaction):

• single-spin asymmetry as
a function of W boson rapidity

y:

fajp(x, Q) - f:/p+(x, Q) + f:;~+(x, Q)

llfajp(x, Q) f:/p+(x, Q) - <:Ur, Q)

(J = ~ [(J(P->p) + (J(P+-p)]

f:,. L (J = ~ [(J (p->p) - (J(p+-P)]

dllLajdy
AL(y) - d(Jjdy

Pavel Nadolsky(SMU)W/ZWorkshop, BNL 06/24/10 3



Two classes of subprocesses with W bosons

-,
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11·

1: Resonant (s-channel) W boson production

• dominant parity-violating process
at Q ~ AIHl

II Leptonic decays: Br(W ~ eVe) ~ 10.8% 
RhicBos

• Hadronic decays: Br(W ~ hadrons) ~ 67%
I--"

0"1

d I etc.

9

d d
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Hl

u 11

w

d

2: Non-resonant scattering into a dijet final state,
mediated by -r, W, Z, and g, and interference terms
u. . d u I U U I • U U U

Pavel Nadolsky (SMU) 'W/Z workshop, BNL 06/24/10 4
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Data-driven search for resonant VV ~ jet + jet contributions

AL(y) is most accessible in the signal region:

Q == M~v ± 10 - 15 GeV, PTj 2: 25 GeV, IYIj - Y2j! ;S 1

The measurement can be based. on the following strategy:

1. Discard events with gluon-Iike jets (wide. large multiplicity) to
the best of ones ability

2. Precisely measure the smooth background
outside of the signal region

3. Use this measurement to predict and subtract the
background inside the signal region

4. Look for a large .44L (y) at y > +1
(driven by a large ilu(x)j'u(x) ot » ~ 1)

5. Measure moderate AL(y) at y < -1
to constrain fj.d(x ) / d(x) at x < 0.1

Pavel Nadolsky (SMU) W/Z workshop, BNL 06/24/10 3"]



Precision determination of MW
from observables at hadron colliders

Alessandro Vicini
Dipartimento di Fisica, Universita degli Studi di Milano and INFN, Sezione di Milano,

Via Celoria 16, 20133 Milano (Italy)

Abstract

The measurement of ~1W will probably reach the 15 MeV level at the Tevatron. The
measurement of this pseudo-observable heavily involves theoretical ingredients. In order
to attempt an estimate of the final theoretical systematic uncertainty, one needs a classi
fication of the impact of different classes of radiative corrections in terms of shifts of the
final value of M\V.

Once known higher order effects have been estimated and possibly included in the data
analysis, it will be possible, by comparing the predictions of different codes, to study the
remaining sources of theoretical uncertainty and to obtain a final theoretical systematic
error on 1''''1\\1.

Fixed order calculations provide the first basic estimates of the relevant cross sections,
but a realistic simulation shows which effects survive after e.g. the convolution with
multiple gluou/photon emission and with the smearing of lepton momenta. or the lepton
photon recombination.

In this talk I will describe a simple procedure to perform a template fit of theoretical
distributions, treated as pseudo-data, deriving a classification of the impact of M\V of
different classes of radiative corrections. This procedure will be applied to study: i) change
of E\iV input scheme, use of factorized expressions, E\V higher orders; ii) QeD corrections
by different codes; iii) combination of QCD+E\V corrections; iv) PDF uncertainties.

19



The template fitting procedure
A distribution computed with a given set of radiative corrections and with a given

value M\Vo is treated as a set of pseudo-data. The templates are prepared in Born
approximation, using 100 values of MWi Each template is compared to the pseudo-data
and a distance is measured.

Nbins

X
2

= ""'1. Z::
j=l

( Ojata _ o~empl=i) 2

(a1ata) 2
i = 1~ ... , IVtempl (1)

The template that minimizes the distance is considered as the preferred one and the
value of I'vlW, used to generate it, is the measured M\~T.

The difference I'v1W-MWo represents the shift induced on the measurement of the VV
mass by including that specific set of radiative corrections

The distributions used in the evaluation of XT in general do not have the same nor
malization. It is also possible to compare distributions that have been normalized to their
respective cross-sections, to appreciate the role of the shape differences.

2.5

2

1.5
'"

..............

................" ...
............. ..... ~.~~ -,

nominal MVil=80.398 GeV
Tevatron
pp-? H!± -? fW,.

1M
10M

100 M
340 M

templates with 1B events

0.5 +------..----,.-----.......--,---,----"---..,----j

80.38 80.385 80.39 80.395 80.4 80.405 80.41 80.415 80.42

Alvl/ (GeV)

Figure 1: Pseudodata in Born approximation, fitted with Born templates. The nominal
M\iV value used to generated the pseudodata is found from the fitting procedure, with
increasing accuracy depending on the number of events in the pseudodata sample. The
~X2 = 1 rule, valid in this exercise, determines the uncertainty in the fitting procedure
associated to the extraction of a preferred value of M\\1.
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Effect of higher order corrections in the 0:(0) input scheme

nominal MW=80.398 GeV
bare cuts
Tevatron
pp -+ W+ -+ f.l+1JJ.!

1.4

1.2

0.8
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0.4

0.2

o
80.3

i&f0) O(a) FSR-PS
!f ~(O) exp FSR-PS
i! !a(O) exact O(a)
!i J a(O) best
if i
fit
iff
!f I
:;I
:: i
if!
if J

:= f
:If
if I
:: f

\.J)
80.304 80.308 80.312 80.316 80.32 80.324 80.328

1Y1w (GeV)

Figure 2: Impact of different higher order corrections, all evaluated in the 0:(0) input
scheme, on the extraction of a preferred MW value.

The templates used to evaluate the effects in fig.2 have been prepared using HORACE,
Born approximation, a(O) input scheme, 10 billions of events, 80.248 :s: ~,",,1lV :s: 80.348
GeV.
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Effect of different EW input scheme choices

1.4

1.2

0.8

0.6

0.4

0.2

o
80.3

acp scheme I
0:(0) 0(0:)

(XcI' scheme II
cxc" exp
cx(O) exp

nominal M\V=80.398 GeV
bare cuts
Tevatron
pp ---+ vV+ ---+ M+Vt-t

80.304 80.308 80.312 80.31G 80.32 80.324 80.328

Mw (GeV)

Figure 3: Impact of different E\V input scheme choices on the extraction of a preferred
MW value, in different perturbative approximations.

The templates used to evaluate the effects in fig.3 have been prepared using HORACE,
Born approximation, 0(0) input scheme, 10 billions of events, 80.248 ::; 2\1~'V ::; 80.348
GeV.
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Effect of different methods to include multiple gluon radiation

30 ,-------,.--.......,---..,.------r---,

25

2Q

60 70

mlf (GoV)

so 100

Figure 4: Transverse mass distribution obtained with different code that share NLO-QCD
accuracy but include multiple gluon radiation with different approaches: analytical re
summation (Resbos) or QeD Parton Shower with different ordering algorithms (HER\VIG
vs PYTHIA)

3"
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POllHEG+P'ffHIl\"
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(GoV)
~

Figure 5: Same as in fig.4, for the transverse lepton distribution.

The templates used to evaluate the effects in fig.4,5 have been prepared using Resbos,
best approximation, 0:(0) input scheme, 1 billion of events, 80.348 S lHTV S 80.448 GeV.

The effect of the corrections is very stable in the case of the transverse mass distribution
(.6.MlV = +18 MeV) for both PO\VHEG+HERWOG and PO\VHEG+PYTHIA. In the
case of the lepton transverse momentum distribution, the fitting procedure is much more
sensitive to the QeD details of the different approximations) both for their impact on the
normalization and on the shape of the distribution.
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Effect of the combination of EvV and QeD corrections

The QeD and E\V corrections to different distributions can be combined, up to terms of
0(0:0:8 ) and of terms of O(CY~), according to the following recipes.

(2)

(
1 + [rc,]MC@NL~- [rc,]HERWIG PS) x {[~~] } ... (3)

[dO LOIN LO EW BERM IG PS

80.480.38

! additive

/ factorized

/,/

"

80.34 80.36

1'v1w (GeV)

80.32

o
80.3

1.2

1.4

'"C'-l'g 0.8;><
I

C'l

0.6;><

0.4

0.2

Figure 6: Preferred M\V value obtained in the two approximations of eq.2 and of eq.3

The templates used to evaluate the effects in fig.6 have been prepared using Resbos,
best approximation, 0;(0) input scheme, 1 billion of events, 80.219 ~ AHV ::; 80.419 GeV.
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Wand ZPhysics from HERA

David South (Technische Universitat Dortmund)
on behalf of the Hi and ZEUS Collaborations

The Physics of Wand Z Bosons June 24 - 25 2010 BROOKHAVEN/ / NATIONAL LABORATORY

Outline:
Introduction to HERA, Hi and ZEUS·
High Q2 Measurements of Neutral and Charge Current
Combined Hi and ZEUS measurements and QCDjEW fits
Rare processes at HERA involving Wand Z Bosons
Summary



Efectroweak Physics at HERA
Inclusive measurements
electroweak effects at Q2~Mw,z

HERA

QeD and electroweak fits to the HERA data
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Measurements with Wand Z bosons at HERA are within reach!

DavidSouth, W/Z Physics from HERA, The Physics of W/Z Bosons, BNL, June 24-252010 ~ ;~~~I~.li~~~e IJnj'\'Br$iti5~



HERA II Polarisation Asymmetry in NC
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• A e'p
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Form polarisation asymmetry from HERA II Neutral Current measurements

- clear observation of parity violation of NC electroweak exchange

Nicely illustrates the properties of the different polarisation and lepton charge data

Well described by the SM prediction

David South, W/Z Physics from HERA, The Physics of W/Z Bosons, BNL, June 24-25 2010 ~ ~~;~~I!,~~~e Ulll\",~rSlt~t



Charged Current Cross Section vs. Polarisation

e+p~yX

• H1 HERA I
o H1 HERA II (prel.)
f::,. ZEUS 06·07 (prel.)
A ZEUS HERA I

e'p ~vX
• H1 HERA I
o H1 HERA II (prel.)
... ZEUS 98·06
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HERA Charged Current e'p Scattering
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Data exhibit linear dependence of average polarisation and
HERA I and II measurements agree with the SM prediction

Measurements
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using various

polarisation values
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Impact of HERA Data at the LHC
W+, Z rapidities (at 14 TeV!) after Voica Radescu, andAmanda Cooper-Ssrkar

Prior to any HERA data Only ZEUS data Separate HI and ZEUS HERAPDF 1.0
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Experimental uncertainty at central rapidities using combined HERA data-1%1
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Impressive precision on the low x sea and gluon of the HERAPDF 1.0 is relevant forW,l
production at the LHC

Inclusion of HERA data shows the tremendous improvement on the predictions for Wand l
production at the central rapidity

DavidSouth, W/Z Physics from HERA, The Physics of W/Z Bosons, BNL, June 24-25 2010 ~ ~";~;;;~~~eo,,,v8rs,""



Hl+ZEUS Isolated Leptons: Results

• H1+ZEUS (0.98 fb")
SM

E2J SM Signal

J!J
e 50
~
W
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10

• H1.j.ZEUS(0.98 lb")
_SM
[22J SMSignal

Jacobian
...-- peak

J!J
c
Q)

Iii 102

• H1.j.ZEUS(0.98 lb")
_8M
EZJ SM Signal

V.J
o Hl+ZEUS Data SM SM OtherSM

1994-2007 e±p 0.98 fb- 1 Expectation Signal Processes

Electron Total 61 69.2 ± 8.2 48.3 ± 7.4 20.9 ± 3.2

pI> 25GeV 16 13.0 ± 1.7 10.0 ± 1.6 3.1 ± 0.7

Muon Total 20 18.6 ± 2.7 16.4 ± 2.6 2.2 ± 0.5

pI> 25GeV 13 11.0 ± 1.6 9.8 ± 1.6 1.2 ± 0.3

Combined Total 81 87.8 ± 11.0 64.7 ± 9.9 23.1 ± 3.3

Pi > 25 GeV 29 24.0 ± 3.2 19.7 ± 3.1 4.3 ± 0.8

Good overall
agreement
with the
Standard Model

SM expectation
dominated W
production
~ Cross section

Measured: 1.06 ±O.16 (stat.) ± 0.07 (sys.) pb SM: 1.26 ± 0.19 pb from EPVEC NLO
DavidSouth, WjZ Physics from HERA, The Physics of WjZ Bosons, BNL, June 24-25 2010 @:. tu ~~';";~:~~~ecni""'"itat
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Measurement of W boson mass at D0

w
....... Junjie Zhu

University of Michigan

The Physics of Wand Z Bosons

June 24, 2010
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Mw can be increased by up to 250 MeV in MSSM

A precise measurement of Mw can be used to make
indirect constraints on MH and possible new physics

2010-06-24 Junjie Zhu
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W~ev

Measurement strategy

Z~ee

.,

• Three observables: PT(e),PT(v) (inferred from missing transverse
energy), transverse mass MT2=(ETe+ETv)2_1 P;e+PTv 12

• Develop a parameterized Me simulation with parameters
determined from the collider data (mainly Z~ee events)

• Generate Me templates with different input Mw, compare with data
distributions and extract Mw

• Z ~ee events are used to set the absolute electron energy scale, so
we are effectively measuring Mw/Mz
2010-06-24 Junjie Zhu
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Calibration results .,

I 0.4 < 1111 < 0.8 (R:o.7) J
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Z invariant mass (Mee ) , 18k W transverse mass (MT) , SOOk
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M z = 91.185 ± 0.033 (stat)GeV M w = 80.401 ± 0.023 (stat) GeV

(WA M z=91.188 ± 0.002 GeV)

PRL 103, 141801 (2009)

2010-06-24 Junjie Zhu



Uncertainties
....,

.'·'II:+I..'§I...... ~......-...

w
0\

a(Tnltv) l'v'1eV~

Source TnT PT ItT

Electron energy calibration I:34 :34 34
Electron resolution model 2 2 3
Electron energy offset 4 6 7
Electron energy loss model 4 4 4
Recoil model 16 12 20 I
Electron efficiencies 5 6 5
Backgrounds 2 5 4
'ExperiInelltal Subtotal :35 :37 41

P~F 19 11 14 f
QED 7 7 9
Boson ]JT 2 5 2 .
Productioll Stlbtotal 12 14 17
'Total Systclnatic :37,1 0 44
Statistical 2:3 27 23
Total 44 48 50

2010-06-24 Junjie Zhu
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Measurement of the W Boson Mass at CDF
Ashutosh Kotwal
Duke University

We present a techniques used for precise measurements of the W boson
mass at the CDF experiment at Fermilab. We present the results and the
prospects for future improvements at Fermilab and the LHC.

Riken Brookhaven Research Center Workshop
June 24-25,2010
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Outline of CDF Analysis
Energy scale measurements drive the W mass measurement

• Tracker Calibration

- alignment of the central drift chamber (COT with ~2400 cells) using
cosrmc rays

- COT momentum scale and tracker non-linearity constrained using
J/lIJ -----. J.l J.l and Y ------'J.l fJ mass fits

• Confirmed using Z -~ J.l J.l mass fit

• EM Calorimeter Calibration

- COT momentum scale transferred to EM calorimeter using a fit to the peak
of the E/p spectrum, around E/p ~ 1

- Calorimeter energy scale confirmed using Z -.ee mass fit

• Tracker and EM Calorimeter resolutions

• Hadronic recoil modelling

- Characterized using PT-balance in Z ----....11 events



Internal Alignment of COT

• Use a clean sample of~200kcosmic rays for cell-by-cell internal
alignment

VJ
\0

• Fit COT hits on both
sides simultaneously
to a single helix
(A.Kotwal, H. Gerberich
and C. Hays, NIMA 506,
110 (2003))

- Time of incidence is a
floated parameter

• Same technique being
used on ATLAS and
eMS
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..0.001

-0.002

Tracking Momentum Calibration

• Set using JI'V -.. JJIJ and Y-.. JJJJ resonances
- Consistent within total uncertainties

• Use II'V to study and calibrate non-linear response of tracker

• Systematics-dominated, improved detector modelling required

I
-1 COF II JL dt~ 200pb·

1

CDF II L dt z 200 pb

Scale correction =(-1.64±O.01start0.06slope)x10-3

JI'¥ mass independent OfPT(IJ)

~ * •. .•
-t-- ·

-0.003
0

J/lP~~l~ data
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q.1

<1/P!;> (GeV' )

011
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z~ll Mass Cross-checks

• Z boson mass fits consistent with tracking and E/p-based calibrations
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Summary

• The Wboson mass is a very interesting parameter to measure with. . . .
mcreasmg precision

• CDP Run 2 W mass result with 200 pb' data:

- Mw == 80413 ± 48 MeV

• DO Run 2 W mass result with 1 fb' data:

- Mw == 80401 ± 43 MeV

• Most systematics limited by statistics of control samples

- CDP and DO are both working on c>Mw < .25 MeV measurements

from ~ 2 fb' (CDF) and ~ 4 fb' (DO)

• Learning as we go: Tevatron~ LHC may produce bMw r-.I 5-10 MeV



Monte Carlo modelling issues
for W measurements

Jan Stark
Laboratoire de Physique Subatomique et de Cosmcloqle

Grenoble, France
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The physics of Wand Z bosons
RIKEN BNL Research Centre Workshop, June 24-25,2010
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Context
Most of the comments in this talk are based on experience from the 00 1 tb' measurement
of the W boson mass. A complete overview of this analysis was described in Junjie Zhu's talk
earlier today. Here we provide more details on the use of simulations in this measurement.

CDF Run 011 • 80.436 ± 0.081

DO Run I --+--t 80.4781:0.083

CDF Run II -.-.... 80.4131:0.048

Tevatron 2007 ....-.-. 80.432 ± 0.039

DO Run II ~ 80.402 ± 0.043

Tevatron 2009 ......... 80.420 ± 0.031

LEP2 OV~;-r\)gl~ "'-1f?-~ 80.376 :: 0,033

World average ..... 80.3991: 0.023
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But many of the techniques and strategies discussed
here also apply to many other Wand Z measurements ...
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The physics of Wand Z bosons, Brookhaven, June 24-25, 2010
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Reminder: signature in the detector,
requirements on precision

Isolated, high PT leptons,
missing transverse momentum in W's

Z events provide critical
control sample

Of .~

L

In a nutshell, measure two objects in the detector:
- Lepton (in principle e or J1; e in our analysis),

need energy measurement with 0.2 per-mil precision (11)
- Hadronic recoil, need - 1% precision !

_._--~-

Jan Stark The physics of Wand Z bosons, Brookhaven, June 24-25, 2010



Measurement strategy

Validated in
liMe closure test"

v

+
Parameterised detector model

l ~i ,

W mass templates

+
- calorimeter energy scale backgrounds

data____ -:
binned likelihood fit

- recoil

W mass is extracted from transverse mass, transverse momentum and
transverse missing momentum:
Need Monte Carlo simulation to predict shapes of these observables for
given mass hypothesis

NLO event generator: 00 uses ResBos [Balazs, Yuan; Phys ReV
056, 5558] + Photos {Barbiero, Was; Comp Phys Com 79, 291] for
W/Z production and decay

Detector calibration

q

ii'

+:>.
0'\

!
Wmass

Jan Stark The physics of Wand Z bosons, Brookhaven, June 24-25, 2010
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"First principles" vs. "parameterised"
simulations

We all like "first principles" simulations, i.e. simulations where everything is based on
a formal theory that predicts everything.

Examples: - A gauge theory used to simulate some e+ e --+ X collision.

- A simulation based on the known laws of the interactions between
high-energy particles and matter, as well as a model of the 00 detector
geometry is used to predict the electron energy response in 00.

But what to do when the "first principles" cannot be made precise/complete enough?

Examples: - Tricky mathematical issues in QeD description of p' p+/- --+ X .

- Response to hadrons not simulated quite right in detector simulation.

Here "parameterised" simulations can be very powerful, because they have simple "knobs"
that we can turn to adjust things.

Examples: - Non-perturbative form factors to be determined from collider data.
- Simple parameterisation of hadron energy response, to be fit to control

sample from collider data.

In practice, the trick is to combine the two approaches. In the 00 m(W) measurement
we have a parameterised simulation with many parameterisations derived from first-principles simulations.

Jan Stark The physics ofW and Z bosons, Brookhaven, June 24-25, 2010



Model of W production and decay
Tool IProcess QeD E\~,7

RESBOS

\VGRAD

ZGRAD

PHOTOS

w.z
Bi

Z

NLO
LO
LO

complete 0(0), Matrix Element. ~ 1 photon
complete O(Q): Matrix EleulCut: ::; 1 photon
QED FSR; < 2 photons

.,J:::..
00

Our main generator is "ResBos+Photos". The NLO QeD in ResBos allows us to get
a reasonable description of the PT of the vector bosons. The two leading EWK effects

are the first FSR photon and the second FSR photon. Photos gives us a reasonable
model for both.

We use W/ZGRAD to get a feeling for the effect of the
full EWK corrections.
The final "QED" uncertainty we quote is 7/7/9 MeV (mT,PT,MET).

This is the sum of different effects; the two main ones are:

- Effect of full EWK corrections, from comparison of W/ZGRAD
in "FSR only" and in "full EWK" modes (5/5/5 MeV).

- Very simple estimate of "quality of FSR model", from comparison
of W/ZGRAD in FSR-only mode vs Photos (5/5/5 MeV).

Jan Stark The physics of Wand Z bosons, Brookhaven, June 24-25, 2010
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Theoretical issues in Monte Carlo modelling
for WIZ production

[ Physics of Wand Z bosons - workshop @ RIKEN BNL research center]

Jan Winter a

- Fermilab-

I give an overview of how vector boson production is
processed in Monte Carlo event generators. In a high
energy hadron collider environment this is always affected by QeD radia
tion. Parton showers can capture the leading effects of soft and collinear
emissions, but fail to sufficiently describe hard jets associated with the
vector boson. One therefore has to improve parton-shower approaches to

gain a good understanding of V+n jets - a major background to all new
physics searches. I briefly review tree-level matrix-element plus parton
shower merging and NLO calculations as means to predict V+n jet pro

duction. I compare both types of calculations and discuss their results.

a Sherpa authors: J. Archibald, T. Gleisberg, S. Hache, H. Hoeth, F. Krauss, M. Schonherr, F. Siegert,

S. Schumann, J. Winter and K. Zapp http://www.sherpa-mc.de/
Jan Winter BNL. June 24, 2010 - p.1
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Monte Carlo modelling of a (high-PT) event

:> Factorization approach: divide jet simulation into different phases

.. Perturbative Phases: [parton jets}

Hard process/interaction (hard jet production)
exact matrix elements IM/ 2

QeD bremsstrahlung (soft/coli multiple emissions)
initial- and final-state parton showering

Multiple/Secondary interactions
modelling the underlying event
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:> predictions at hadron level - comparable to experimental data if corrected for detector effects

Jan Winter BNl, June 24, 2010 - p_2
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Comparison with CDF data: W+jets production
[T. AALTONEN ET AL., PRD 77 (2008) 011108]

.. Monte Carlos need to be validated and tuned against most recent Tevatron data.

.. Sherpa vs1.1.3 predictions normalized to total inclusive cross section. Two choices of PDFs.

.. Tree-level ME+PS can reproduce W+>=n jet xsecs to 20% after applying overall K factor.
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Comparison with CDF data: Z+jets production
ME&TS :: COMIX + CSS [1. AALTONEN ET AL., PRL 100 (2008) 102001]

Jj Sherpa vsl.l [CKKW] (left) compared with Sherpa vs1.2 [ME&TS] (right) .

..., Examples of jet observables: new approach better describes the data.

.. Sherpa predictions multiplied by constant K factor, normalized to first-jet bin xsec.
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Z+jets production @ Tevatron Run2 energies
ME&TS :: COMIX + CSS [HaCHE, KRAUSS, SCHUMANN, SIEGERT, JHEP 05 (2009) 053]

.., Merging systematics of total cross section (LO) has improved: flO"tot/O"tot < ±3%

.. Differential k T jet rates in Qcut = Qjet variation @ hadron level. Note N m a x = .5.

.. Qcut variation now within ±10%. Note J.L~ == M;e and 66 GeV < Ms; < 116 GeV.
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Recent comparison of LHe predictions for W+3jets
[HaCHE, HUSTON, MAITRE, WINTER, ZANDERIGHI; LH09 PROCEED.: ARXIV:1 003.1241J

.. between BLACKHAT [BERGER ET AL.], ROCKET [ELLIS, MELNIKOV, ZANDERIGHI] and SHERPA [GLEISBERG ET AL.]

"II rather different scale choices at NLO yield> 20% deviations ... impact on BSM searches!

.II SHERPA'S ME&TS merging in good agreement with NLO once rescaled to NLO xsec
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Precision Electroweak Physics
at Hadron Colliders

Physics of
Drell-Yan, Wand Z Bosons
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W-boson physics

OW-boson production and decay at hadron collider

8 How to measure W-boson mass and width?

8 High order radiative corrections:

n:' QeD (NLO, NNLO, Resummation)

~ EW (QED-like, NLO)

e ResBos and ResBos-A



W-boson production at hadron colliders
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W-boson production at hadron colliders

w

V1
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PDFs: probability of

finding a "parton"

inside the hadron
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Jet
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q~

underlying events

(from proton remnants)

ISRandFSR:

colored) initial and

final states

can radiate gluons



Fixed order pQCD prediction
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Prospects and Future of the
STAR W Program

Joe Seele (MIT) for the*AR Collaboration

The STAR experiment is planning a number of upgrades
and measurements that will constrain the polarized
anti-quark distributions in a polarized proton. The
Forward GEM Tracker will add charged particle tracking
in the forward rapidity allowing for charge sign
identification and background rejection in the forward
rapidity region.
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Charge sign reconstruction efficiency
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Prospects of the Forward W Measurement in
Polarized pp Collisions at

the RHIC-PHENIX Experiment

RIKEN Nishina Center for Accelerator-Based Science,
Wako, Saitama 351-0198, Japan

Fukao, Yoshinori

RHIC-PHENIX experiment aim to measure AL in W -+ m process and
impose significant constraint on polarized anti-quark PDF with 500 GeV
polarized pp collisions. One of the major upgrade work is the development
of new W trigger system, which consists of MuTRG and RPC. We
completed MuTRG and RPC3 North installation and will finish RPC3
South installation during 2010 shutdown period. The commissioning of the
W trigger system was performed with beam and cosmic ray, and final
performance evaluation of full-chain trigger system is ongoing. In addition
to the trigger development, new hadron absorber, which provide powerful
background rejection, is in-manufacture and will be installed in 2010.
Offline analysis and simulation for W signal extraction are also in progress
towards coming physics run in 2011 and future.
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Components of W trigger
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RPC Module Performance
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> Offline background evaluation using Run 2009 data and
simulation study to optimize event selection is ongoing.

> New Forward VTX detector will be installed and improve SIB.



AN of VV Production in Polarized p.p Collisions

Zhong- Eo Kang
RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA

Much of the predictive power of perturbative Quantum Chrornodynamics (QeD) is contained in
factorization theorems. They normally include two assertions: a physical quantity can be factorized
into perturbatively calculable short-distance hard parts convoluted with nonperturbative long-distance
distribution functions; the unizJcTsahty of the nonperturhative functions. Predictions follow when
processes with different hard scatterings but the same distribution functions are compared.

The phenomenon of single transverse-spin asymmetry (SSA), AN == (a(5_d - a(-81..))/(a(81..) +
a(-5J.) ) , defined as the ratio of the difference and the sum of the cross sections when the spin vector
S1.. is flipped, was first observed in the hadronic A0 production at Fermilab in 1976. Large SSAs, as
large as 30%, have been consistently observed in various experiments involving one polarized hadron
at different collision energies.

One of the approach to describe the observed SSAs in QeD is so-called Transverse Momentum
Dependent (TIvID) factorization approach, which factorizes a(81..) in terms of the TMD patton distri
butions and attributes the SSAs to the nonvanishing Sivers function, the spin dependent part of TI\'ID
parton distribution. One of the most non-trivial feature is that the Sivers function could be process
dependent (non-universal). It was predicted by Collins around. 2002 on the ba ..sis of time-reversal and
parity arguments that the quark Sivers function in semi-inclusive deep inelastic scattering (SlDlS)
and in Drell-Yan process (DY) have the same functional form but an opposite sign, a time-reversal
modified universality.

The experimental check of this time-reversal modified universality of the Sivers function would
provide a critical test ofthe TMD factorization approach and our current understanding of the SSAs.
Recently, the quark Sivers function has been extracted from data of SlDlS experiments by Anselmiuo
ct. ol. Future measurements of the SSAs in DY production have been planned. In this talk, we present
the SSAs of inclusive single lepton production from the decay of HI bosons, and show that the lepton
SSAH is significant and measurable for a good range of lepton rapidity at RHIC. We find that the lepton
SSA:-:: are sharply peaked at transverse momentum PT rv lvlw /2 with TV mass lvlw. This is because
the most TV bosons at RfllC have or <.< lvlw. On the other hand, leptons from heavy quarkonium
decay and other potential backgrounds are unlikely to be peaked at the PT ~ Mw /2. Since the W
production and DY share the same Sivers function, we argue that the SSA of inclusive high PT leptons
at RHTe if, an excellent observable for testing the time-reversal modified universality.
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on-universality of the Sivers function

-f-()Co-(x.

m

m Different gauge link for gauge-invariant TMD distribution in SIDIS and

DY J' i· -P ']. ',. . (:,1 ~ ey 1I~71L) .':/- -s i kj~ ·Y ..:_ .~I---:'" - I ' . r ,; -- , rs -:::1('- ,/ /1 (L. k : . k/) --~-'-') -- (, '», :,1.1"/ (0 .0,) I Gauge link ~"ll i u . Y-l ) II). S). i / . ~- . (. 'i"........) .:J \... I· '. . ~- 'J ; ,u • - •
~/l I ~. '.

: q)~ ( { +OC, O}, OJJ<I> ~J_ (+-x, {yJ_, OJ_} )<I>n ({+ex: , y-}, Y~L)

<p~J{-ex., OJ, O~)<p~~ (-x, {y~, O-l})<pn ( {-CX', y-}, Y-L)
..L

-....)
.+;.

Wilson Loop - exp [-ig .h d.a':"r.;J Area is NOT zero

-- x

m For a fixed spin state:

SIDIS -+ -+

fqjhi (x, kl-' S) =I fqjhl (x, kl-' S)

June 25,2010 Zhongbo Kang, RBRC



Time-reversal modified universality of the Sivers function

-......l
Vl

II Relation between Sivers functions in SIDIS and DY
From P and T invartance:

~TDIS -:-' D''" .-+

j' c.,-~ ', .. " (x' k , C,~) -,~ f ,I _. ir k - Q)qlll, .~ -1-' '<. --, qlh' \'(J~ _L; !J

• Spin-averaged parton distribution function is universal

From definition:

!qjhT (x, k J : 8) =!qjh(X, kd + ~,6.N !qjhT (x: kL) 8· j5 X kl
If§ One can derive:

!\ IV fSIDIS (. fro ) ..- i\ lVfDY (,y. J~ )
Ll. ,J q / IL -, •.C. fL -..L ~- - L-\ q / h ,-.-0; 1!_L

Most critical test for TMD approach to SSA

June 25, 2010 Zhongbo Kang, RBRC



Intuitive understanding of the sign change

111I Difference between initial and final state interactions

j
=I
!
!

:';.·~.;;i;~;~';;;

~
:

-......l
0\

pI" + P ~ [r* ~ R+ R~- ] + X

DY: repulsive

f+p' ~R+7T+X

SIDIS: attractive

;'\ J.Vf·S~D}S ('I" 1.~ i ) = ..~ /\ JV f·DY.~ (x': k I )
L.l q/h, .1/~"'-,-_ Ll -l qf h. ".---L

II Sign change:
w !t=:\cr of TMD factorization

m Test of current understanding of SSA

June 25, 2010 Zhongbo Kang, RBRC



SSA of lepton from W decay: rapidity dependence

IJ SSA of inclusive lepton is still sufficient for measurement:

<t.Z 0.1. I

ir,~',kd,'5

<t.Z 0.04 r'-------------,

..0.03 "I!! 1., Pr! " "!!! " 111 II 1" 1111' p'!l' .,t,! " I" "I

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Y

-.....)
-.....)

f.!- (e-)
0.08

PT=41GeV

0.06

0.04

0.02

0.. .J

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

Y

0.03

0.02

0.01

o

-0.01

-0.02

\.>~

~+ (e+)J
,,/

p~;;41GeV

• Good flavor separation:
ill 11-(e-) at central-forward rapidity is sensitive to d Sivers function

m 1J+(e+) at forward is sensitive to u Sivers function, at backward is sensitive to
d-bar Sivers function

June 25,2010 Zhongbo Kang, RBRC



SSA of lepton from \N decay: PT dependence

II PT behavior of SSA of leptons:

4~! I

20 30 40 50 60 70

PT

!~

f ~nV=-1.2

..... ~..~ ~ ..

o r·.....~.~.~.:.:.:.:.~.~.~.: ---J--------~
.....- ]

0.03

0.02

0.01

-0.01

Z
<t.

o,, ! , I ! " ! I , " ! ! ! J ! , ! , , ! I I " ! ! ! II I , ! , ( ! ! ! J II ! ! ! [ ! ,

y=1.2

PT
30 35 40 45 50 55 60 65 70

0.05

0.04

0.03

0.02

0.01

<t.Z 0.06 r'-------:------------

-......l
00

w inherit the key features of VV asymmtry

m sharply peeked around pT tVMw/ 2, should help control the potential background

June 25,2010 Zhongbo Kang, RBRC
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Ulrich Baur

Precision Measurement of the lV Mass and New

Physics

1. Why?

2. ~V Mass: Status and Measurement Techniques

3. Status of Theory Calculations for W / Z Production

4. Conclusions

Ulrich Baur

State University of New York at Buffalo

The Physics of Vv' and Z Bosons, BNL 06/25/10
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11- Why? I
• The LHC is a discovery machine. Why should we measure the lV

mass, and more generally, do precision physics at such a facility?

• After all a precise measurement of M yv in a hadron collider environ

ment is no walk in the park (see talks by Ashutosh Kotwal, Junjie

Zhu)

• more bluntly:
"I rather commit suicide than measure Mw at the LHC"(Guido Altare11i

at an early LHCC meeting)

Ulrich Baur The Physics of Wand Z Bosons, BNL 06/25/10
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• Which measurements are of interest?

~ mt, Nlw and sin' Ovv

-+ make it possible to constrain the mass of the SM Higgs boson:

winter 2010: M H < 155 GeV (95% CL)

one-loop corrections to Mw and sin2 Ow depend logarithmically

onMH

~ thus providing a consistency check on the SM (once a Higgs boson

candidate has been observed)

-+ may give hints ofnew physics, or provide constraints on new physics

models

new particles contribute to the one-loop corrections

Ulrich Bam The Physics of Wand Z Bosons, BNL 06/25110



Data in better agreement with SUSY models than SM

but this is not surprising as SUSY models have more free parameters

200190180170
mt [GeV]

160150140

80.60
uncertainties 68% CL:

80.50

80.30 r;..:.'... . ..... .: .....;.

80.20

>(])
~

S 80.40
:2

300

MH [GeV]

250200

-----------,20
Theory uncertainty

- Fit includIng theory errors

150100

CMSSM: Constrained MSSM
NUHMI: a common SUSY-breaking contribution to the Higgs masses is

allowed to be non-universal

10

'" 12
::j

00
tv

Ulrich Baur The Physics of Wand Z Bosons, BNL 06125/10



Wand Z Production has been observed at the LHC

W--+ev candidate
--------------------------------+-......r.--------

.:..1.
~~
:'~,
~1t ,

~.
".

....

• •,..

\-~--*"" ..ll"t..",.

eMSExperiment at LHe,CERN
Run 133874, Event 21466935
lumi section: 301
Sat Apr 242010, 05:19:21 CEST

ElectronPT= 35.6GeVlc
MET := 36.9GeV
Mr = 71.1 GeV/c2

•,
t •

... ~.l .•. , ...•
~.~ ,.

~,~~~~;~

00
VJ

Ulrich Baur The Physics of Wand Z Bosons, BNL 06125110
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Ulrich Baur

14 - Conclusions I
• l\IIw , together with mtop, make it possible to constrain the Higgs bo

son mass

• need bMw == 0(10 MeV) to match anticipated precision for mtop

• sensitive to new physics via loop corrections

• measuring l\!I~~/ at the LHC is non-trivial and may require special

runs (deuterium, helium) and/or special detector configurations (re

verse magentic field)

• EW radiative corrections affect the MT line shape and thus the W

mass extracted from data

• need better understanding how to combine calculations of QeD and

EW corrections into one unified generator

The Physics of W- and Z Bosons, BNL 06/25/10
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UTLINE

~Motivations

~l$Cross-Sectionsat 7 TeV and expected event

.Yield

~~ Asymmetry Measurements

~~w.mass prospects

~:~ First W results from ATLAS
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UMMARY

~, LHC will offer unprecedented number
Ior a variety of studies:

~~ Detector Commissioning

~~FrecisionElectroweakFhysics

~~. Backgrounds for 'new' physies

~~..Just..gettingstarted but



The Physics of 117 and Z Bosons
RIKEN BNL Research Center Workshop

June 24/25, 2010

Current Status and Prospects for lV and
Z Cross Section Measurements at CJ\1S

Carsten Magass1

(for the CI'v1S Collaboration)

III. Physikalisclles Institut A
RWTH Aachen

D-52056 Aachen (Germany)

Abstract:

Current status and prospects for HI and Z cross section measurements at eMS are
presented. Events have been selected in electron and muon channels, and candidate
l'V and Z decays have been examined. The measurements or the cross sections are
in progress, and details of lepton identification, missing energy measurement, and
event selection are described. Furthermore, prospects for future measurements are
presented, like the measurement of the Z boson rapidity distribution and the muon
charge asymmetry in TV decays. Finally, selected studies of IV!Z boson production
in association with jets are discussed.

G~vlS Physics Results Webpage:
https://twiki.cern.ch/twiki/bin/view/CMS/PublicPhysicsResults

Imagass@physik.rwth-aachen.de
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CMS Performance Roadmap

•500k•5Dk•5000•500

Cer-stenMngoss :;: June 25, Z010 ::: W/Z@ BNL - B ~

1 nb' 10 nb-I 100 nb-1

• •5000 50k

I .Candidateh\.l1M'ji@@l1nWi'1&'F •

j ~'f==T-~---J oow/Gw'(40I7JniJl1F~
:r ~---- f i data-driVehl'ltet~

'I J J' ooz/cri.<5Wg?'iif~

1.~;;;i ..-'::.~ systematil3~
dominates Ow

RW1H

W.~ ev/~v •

5 50
Z ~ ee/llfJ. •

5
In readout (%) ~
96.2
93.l
99.,2 (E6-:;;99.3~~, EE="93.g%)
99,8
99.? (HB=:OO,0%, HE:=l00,a·~'t<

HF=99.fK:J, HO=96_9<!,::'}
29.3

~~.~ I

Ccrsten Mll9G$S ',:; JIJf'e25, 2010 ',:: WIZ e BNL

eMS Preliminary

w~ /l V: Candidate Event

RW1H -9-

w ~ /l V : Selection

Selection'
1 Muon with Pr) 25 GeV in 11]1 (2,
jSQlated(tracker),
muonfired trigger

~-~
muo( ~._._.}._~F=PVT

hadf~~~/

hleutr'ino escapes
-" observe missing energy in

rrcnsverse plane (MET) 20 " 00 3"'00120140160 1'j) >00

Reconstruct : --_~ Mr (GeV/c 2
)

Transverse mass m; == ~21trPf.(l-cos,drp)

Ctlrst<1:r. MQ90S~ :"; June 25, 2010 W!2'2 ~NL

w~ Jl v : Data - Monte Carlo Comparison w ~ JlV : Matrix Method

Contributions from QCD processes difficult to predict
-7 Estimate from data using the Matrix MethodEWKCross sections:

MCFM NLO using
MSTW06 NLO PDF

Variable 2

Signal
{isoicted murms)

QeDBackground
(l,lSlAillyrot Isclcted)

CQrst~Mogasz

,-
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fT:R~-~-'J CMSExp@nment at LHC.CERN

1.¥.·.••;.~.·••..•...•...••.?•....1(•.•..•.•./•.•...f.'..J.n.1Rim133374.e",,",21_935
~~~f~ ~~::~~~~'~~'92'em

8ectronPT:::;35.6~VIc.

M£T"".36.9GeV
II,h=71.1 ~V/(~

W -7 e V : Candidate Event

Very good agreement '

MUO~~~fO!~~:-=---...)~.•1l
~~:~~~e~~~~·o~ all ~ ~

~ ,I'" ~~..~
,., ,

~ I

.0.2 -t,"H .0.1 .(J,e .. a.os •.1 a.iS 0.2

Transverse impact parameter "i;;l.
RWIH " . Co~nMo9'lS:; ." JuntZ5.Z0lO ::. W/Z@BNL -13 - ~

W -7 e v : Selection W -7 e V : Data - Monte Carlo Comparison

Selection:
single electron trigger fired, 1 Electron with PT > 30 GeVin I'll < 2.5,
identified via track matched to ECalcluster (GaussianSum filter)
and cuts on shape variables, veto on further electrons with PT > 20 GeV

RWIH CorrtenMogc;s:i

Extract QeD background
from dot!?,

W -7 e V: Template Method Electron Performance (1)

MET sensitive to everything (real objects. noise) in the detector

~ Use Z events as templates U to estimate MET in W events

$0.06 Me .ft.
- ~e~o~: ~~~;i:ctron in ~ 000 jJ ~ JUR".,,·
- :ake different kinematics ~ 0..04 !\ MET from W 7 ev

Into account. . 'B 0.031 ) eeereetee MET4: :fromZ~ee
002 I

-7> Good description of MET 0.01 10 TeV

I\J 10 20 70 00 90 100
i!rIGeV)

RWIH W/Z@BNL - 17-

Gaussian Sum Filter
makes use of high granular tracking
Detectors (track seeding)

Level 1 trigger efficiency
L1candidate found offline?

Nommo.i trlg9~r threshold: 2 GeV
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z ~ J.l J.l : Candidate EventElectron Performance (2)
--------,---------------.-------

Isolation variables nicely
described by Monte Carlo j

RWIH CcestenMo9'JSs .: June 25, "2.010 :.~ W/Z@ B1\Jl -zo-

z ~ u J..l : Selection z ~ J.l J.l : Data - Monte Carlo Comparison

Muon

A
Z decays provide such
samples used for muon ~
(and electron) efficiency;;
mecsurements • ,2

«: f~~~·rrillMeasure efficiencies from data~ CMS P'rullmlnl'l)' 2DI. •

~ 1........"":.,;;;H.. uSingTa9-and-Probe Method

~ ![].. ~:::.
~ QCD
~10·r

r j

l°l ~
1Q"~ "good" Muon

r
Q Tracker -==~:i.;.if

Muondetector -Statistical precision
-0.5'70 with 100 pb-I

Selection:
2 Muons with PT> 20 GeV In 11]1 < 2,
isolated (tracker), opposite charge,
>= 1 Muon fired trigger

RW1H UJrst~n Mo90SS ::; Jut'le 2~, 2010 :: W/Z e 6N1.. -Zl- RWIH

Carster1MogoS5

z ~ e e : Selection

Efficiencies again via
Tag-and-Probe Method

Eff rcrencres
e.,~ tz ->'Vl00~OJ

~, - 90 ';'0 ,
[ ct 0 <" 1 • ( .: - (1 ~ <.,~r )

=82 Q,c

t
Acceptance 40!~

Ldt_10pb-'

Selection,
single electron trigger fired, 2 Electrons with PT> 20 GeV [TIl < 2.5,
identified via track matched to ECalcluster (GaussianSum Filter)
and cuts on shape variables

f:lectronsPr""" 34.0, 3191;reV/(
trw.mess c:91.2Gr:V/cl

z ~ e e : Candidate Event ...
_,_-.......... .~.~_ .... ._......__..... ~_...___ .... _.... .._'__ ....._,... ,__• ~.~_...__.J" ....
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this is just the beginning

Z -7 e e : Data - Monte Carlo Comparison

Carsten Magas.<;

Z -7 e e : Rapidity

Cros~-~:~::n-:~-i:~~~:~---- --- ~w~:c

of Z Bosonrapidity y ~ !In E + P,
2 E-p,

-? Constrain PDFuncertainties

·25 -""r:>tenMQ~ :;: JoJnC 25, 2010 ::: W/Z@ Bt\l

Muon Charge Asymmetry A('!) ~ ~~:: _-:::~~::~~~ :~~:~ :'::; Wand Z with Jets

Gar'StenMagass JIJt"\e 25. 2010 W/Z@ BNi

MuonpsatJdorapidity
Matrix method for QeD Dominant systematic uncertainties
Background estimatian due to efficiency measurements~i

R'IlIH Cllrstt::n Mcgass :': June 25, ZOlO ;",: W/Z@ BNL - 27 - ~:~

Important channels:
- test QeD
- background for searches
- Jet Energy Scale

(Z + Jets)

W/Z + Jets analyses need
estimates of :
- Jet Energy Scale
- QCDbackground
- top background (!)

;(w IZ ~(~; + 1)Jet;r ""
(J(W I Z + 7\" ]et;,) "" a,

-28-

Z + Jets: Tool for New Physics
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z (~ ee, JlJl) + bb : Outlook

U1r.litel'l Mu~s ;;: Jorw: 25, 2010 :" WIZ@ BI\!L
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-) fake MET

Tag the noisy events
and apply cleanup:
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Presented a robust program
fer start-up @ eMS

Summary

A'~;I;~'~~~/~;c I~~';e Wandk~
Z events essential

understand detector
- measure efficiencies
- test data-driven methods
- cross-check lumlnositv

I}\;AtU)~? @[jj}~~'t~ ®If'~g~

QQu~~;W~;£1
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Very good agreement between
Data and Monte Carlo
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Colliders

FrankPetriello

University ofWisconsin, Madison
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pp ~ (Z,I'*)+X at Y=Q

~ ~Z production known
through NNLO in pQCD

~ Residual theoretical
uncertainties from scale
variations <1% on inclusive
quantities

f "Gold-plated" observables
suited to high-precision
measurements
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a
N Measure leptons, ndtW/Z, with cuts

.tA.. .~..... . ~ imposed :$SPil1YG.o.·..••·rrel£ltiollsbetween
E X .(X~ production, decay

with spin correlations,

11(1 < 2.5, liT > 20 GeV;

11(1 < 2.5, liT > 20 GeV.

PI' > 20 GeV .

Pr > 40 Ge\T .

Tevatron LHe

LO NLO !\:lCi(jNLO LO NLO 1IC·.~!iNLO

~
Cut 1 0.409 O.:l85 0.:383 0.524 0.477

Cut 1. no spin 0.413 0.394 0.:394 0..553 0.510

Cut 2 O.~j56 O.:~40 0.336 0.0':)8 0.129
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