
 
 

                                                                                                              

 

BNL-94295-2010-CP 
 
 
 
 
 

Strongly Interacting Matter Matter at Very High 
Energy Density: 3 Lectures in Zakopane 

 
 

Larry McLerran 
 
 

Presented at the 50th Crakow School of Theoretical Physics 
Zakopane, Poland 
June 9 to 19, 2010 

 
 

October 2010 
 
 
 
 

Physics Department/Nuclear Theory Group/Office of Science 
 

Brookhaven National Laboratory 
 
 
 
 
 

U.S. Department of Energy 
Office of Science, Nuclear Physics 

 
 
 
Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under 
Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the 
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, 
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others 
to do so, for United States Government purposes. 
 
This preprint is intended for publication in a journal or proceedings.  Since changes may be made before 
publication, it may not be cited or reproduced without the author’s permission. 



 
 

                                                                                                              

 

DISCLAIMER 
 

This report was prepared as an account of work sponsored by an agency of the 
United States Government.  Neither the United States Government nor any 
agency thereof, nor any of their employees, nor any of their contractors, 
subcontractors, or their employees, makes any warranty, express or implied, or 
assumes any legal liability or responsibility for the accuracy, completeness, or any 
third party’s use or the results of such use of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe privately owned 
rights. Reference herein to any specific commercial product, process, or service 
by trade name, trademark, manufacturer, or otherwise, does not necessarily 
constitute or imply its endorsement, recommendation, or favoring by the United 
States Government or any agency thereof or its contractors or subcontractors.  
The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Strongly Interacting Matter Matter at Very High Energy
Density: 3 Lectures in Zakopane∗

Larry McLerran

Brookhaven National Laboratory and Riken Brookhaven Center
Physics Dept. PO Box 5000

Upton, NY, 99673, USA

and

These lectures concern the properties of strongly interacting matter at
very high energy density. I begin with the Color Glass Condensate and the
Glasma, matter that controls the earliest times in hadronic collisions. I then
describe the Quark Gluon Plasma, matter produced from the thermalized
remnants of the Glasma. Finally, I describe high density baryonic matter, in
particular Quarkyonic matter. The discussion will be intuitive and based
on simple structural aspects of QCD. There will be some discussion of
experimental tests of these ideas.

1. Introduction

These lectures concern the properties of strongly interacting matter at
high energy density. Such matter occurs in a number of contexts. The
high density partonic matter that controls the early stages of hadronic col-
lisions at very high energies is largely made of very coherent gluonic fields.
In a single hadron, such matter forms the small x part of a wavefunction,
a Color Glass Condensate. After a collision of two hadrons, this matter
almost instantaneously is transformed into longitudinal color electric and
color magnetic fields. The ensemble of these fields in their early time evo-
lution is called the Glasma. The decay products of these fields thermalize
and form a high temperature gas of quarks and gluons, the Quark Gluon
Plasma. In collisions at lower energy, and perhaps in naturally occurring
objects such as neutron stars, there is high baryon density matter at low
temperature. This is Quarkyonic matter.

∗ Presented at the 50’th Crakow School of Theoretical Physics, Zakopane, Poland, June
2010
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There is a very well developed literature concerning these various forms
of matter. It is not the purpose of these lectures to provide a comprehen-
sive review. I will concentrate on motivating and describing such matter
from simple intuitive physical pictures and from simple structural aspects
of QCD. I will attempt at various places to relate what is conjectured or
understood about such matter to experimental results from accelerator ex-
periments.

2. Lecture I: The Color Glass Condensate and the Glasma

The parton distributions of gluons, valence quarks and sea quarks can
be measured for some momentum scale less than a resolution scale Q as
a function of their fractional momentum x of a high energy hadron. The
lowest value of x accessible for a fixed hadron energy E is typically xmin ∼
ΛQCD/Ehadron. The small x limit is therefore the high energy limit.

It is remarkable that as x is decreased, as we go to the high energy limit,
that the gluon density dominates the constituents of a hadron for x ≤ 10−1.
The various distributions are shown as a function of x in Fig. 1. The gluon
density rises like a power of x like x−δ, δ ∼ .2− .3 at accessible energies The

Fig. 1. The parton distribution as a function of x.

area of a hadron grows slowly with energies. Cross sections grow roughly as
ln2(1/x) for small x. This means that the rapidly growing gluon distribution
results in a high density system of gluons. At high density, the gluons have
small separation and by asymptotic freedom, the intrinsic strength of their
interaction must be weak.

A small intrinsic interaction strength does not mean that interactions
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are weak. Consider gravity: The interactions between single protons is very
weak, but the force of gravity is long range, and the protons in the earth
act coherently, that is always with the same sign. This results in a large
force of gravity. This can also happen for the gluons inside a hadron, if their
interactions are coherent.

To understand how this might happen, suppose we consider gluons of a
fixed size r0 ∼ 1/pT where pT is its transverse momentum. We assume that
at high energy, the gluons have been Lorentz contracted into a thin sheet,
so we need only consider the distribution of gluons in the transverse plane.
If we start with a low density of gluons at some energy, and then evolve
to higher energy, the density of gluons increases. When the density is of
order one gluon per size of the gluon, the interaction remains weak because
of asymptotic freedom. When the density is of order 1/αS , the coherent
interactions are strong, and adding another gluon to the system is resisted
by a force of order 1. The gluons act as hard spheres. One can add no more
gluons to the system of this size. It is however possible to add in smaller
gluons, in the space between the closely packed gluons of size r0. This is
shown in Fig. 2

Fig. 2. Increasing the gluon density in a saturated hadron when going to higher
energy.

The physical picture we derive means that below a certain momentum
scale, the saturation scale Qsat, the gluon density is saturated and above
this scale it is diffuse. The saturation momentum scale grows with energy
and need not itself saturate[1]-[4].

The high phase space density of gluons, dN/dyd2pTd
2rT ∼ 1/αS sug-

gests that one can describe the gluons as a classical field. A phase space
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density has a quantum mechanical interpretation as density of occupation
of quantum mechanical states. When the occupation number is large, one
is in the classical limit.

One can imagine this high density gluon field generated from higher
momentum partons. We introduce the idea of sources corresponding to high
x partons and fields as low x partons. Because the high x parton sources are
fast moving, their evolution in time is Lorentz time dilated. The gluon field
produced by these sources is therefore static and evolves slowly compared to
its natural time scale of evolution. This ultimately means that the different
configurations of sources are summed over incoherently, as in a spin glass.

We call this high energy density configuration of colored fields a Color
Glass Condensate. The word color is because the gluons that make it are
colored. The word condensate is used because the phase space density of
gluons is large, and because this density is generated spontaneously. The
word glass is used because the typical time scale of evolution of the classical
fields is short compared to the Lorentz time dilated scales associated with
the sources of color.

There is an elaborate literature on the Color Glass Condensate and an
excellent review is by Iancu and Venugopalan[5]. Evolution of the CGC
to small values of x is understood, as well as many relationships between
deep inelastic scattering, deep inelastic diffraction and high energy nucleus-
nucleus, proton-nucleus and proton-proton scattering. The CGC is a univer-
sal form of matter in the high energy limit. The theoretical ideas underlying
the CGC are largely unchallenged as a description of the high energy limit
of QCD, but the issue of when the approximation appropriate for the high
energy limit are valid remains contentious.

In the description of high energy hadron hadron collisions, we consider
the collision of two sheets of CGC as shown in Fig. 3. The color electric and
color magnetic fields of the CGC are visualized as sheets of Lenard-Wiechart
potentials. These are classical gluon fields whose polarization and color are
random, with an intensity distribution determined by the underlying theory
of the CGC.

Upon collision of these sheets, the sheets become charged with color
magnetic and color electric charge distributions of equal magnitude but
opposite sign locally in the transverse plane of the sheets[6]-[13]. In the
high energy limit sources of color electric and color magnetic field must be
treated on an equal footing because of the self duality of QCD. This induced
charge density produces longitudinal color electric and color magnetic fields
between the two sheets. These fields are longitudinally boost invariant and
therefore have the correct structure to account for Bjorken’s initial condi-
tions in heavy ion collisions[14]. The typical transverse length scale over
which the flux tubes vary is 1/Qsat. The initial density of produced gluons
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Fig. 3. The collision of two sheets of CGC.

is on dimensional grounds

1
πR2

dN

dy
∼ Q2

sat

αS
(1)

Because there are both color electric and color magnetic fields, there is a
topological charge density of maximal strength induced FFD ∼ Q2

sat/αS

Fig. 4. Glasma flux tube produces after the collision.
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The decay of products of the Glasma is what presumably makes a ther-
malized Quark Gluon Plasma. It is not clear how this thermalization takes
place. It is quite likely that in the decay of these fields, a turbulent fluid
arises, and perhaps this fluid can generate an expansion dynamics similar
to that of a thermalized QGP for at least some time[15].

2.1. The CGC and Electron-Hadron Scattering

If the only momentum scale that controls high energy scattering is the
saturation momentum, then there will be scaling[16]. In particular, the
cross section for deep inelastic scattering will be a function

σγ∗p ∼ F (Q2/Q2
sat) (2)

rather than a function of Q2 and x independently. The x dependence
of the saturation momentum may be determined empirically as Q2

sat ∼
Q2

0/x
δ where δ = 0.2 − 0.3, which is consistent with analysis of evolution

equations[17]-[26]. The scaling relationship can be derived from the classi-
cal theory for Q2 ≤ Q2

sat. It can further be shown to extend over a much
larger range of Q2[27]. For large values of Q2 this scaling is a consequence
of the linear evolution equations, but the global structure is determined by
the physics of saturation. Such a simple scaling relationship describes deep
inelastic scattering data for x ≤ 10−2.

Using evolution equations for the CGC including the effects of run-
ning coupling constant[28]-[29], one can compute deep inelastic scatter-
ing structure functions at small x[30]. This involves very few parameters,
and provides comprehensive description of deep inelastic scattering data at
x ≤ 10−2. The description of F2 in deep inelastic scattering is shown in
Fig. 6. It should be noted that in the CGC description of deep inelastic
scattering, the gluon distribution function is the Fock space distribution of
gluons inside a hadron. It can never become negative. In the description of
the F2 data, the gluon distribution function is not becoming small at small
Q2 as is the case in some linear evolution fits. This is intuitively reasonable
since we have no reason to expect that the Fock space distribtuion of gluons
in a hadron should become small at small Q2.

The Color Glass Condensate description may also be applied to diffrac-
tive deep inelastic scattering, and with the same parameters that describe
deep inelastic scattering does an excellent job of describing the data. In
addition, there are measurements of the longitudinal structure function, a
quantity directly proportional to the gluon density. Conventional descrip-
tions that use linear DGLAP evolution equations are somewhat challenged
by this data, but the CGC description naturally fits the data.
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Fig. 5. The geometric scaling in deep inelastic scattering.

To summarize, the CGC description of deep inelastic scattering at small
x naturally describes F2, FL and diffractive data. It is a successful phe-
nomenology Why is the CGC therefore not accepted as the standard de-
scription? The problem is that the linear evolution DGLAP descriptions
describe F2 adequately, except in the region where the perturbative compu-
tations most probably breaks down. They do not do a very good job on the
low Q2 FL data, but this is where there is a fair uncertainty in the data. The
diffractive data is naturally described in the CGC framework, but there are
other successful models. Ultimately, there is no consensus within the deep
inelastic scattering community that the CGC is needed in order to describe
the data.

2.2. The CGC and Heavy Ion Collisions
2.2.1. Multiplcities in RHIC Nulcear Collsions

One of the early successes of the CGC was the description of multiplic-
ity distributions in deep inelastic scattering[31]-[33]. Recall that the phase
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Fig. 6. The CGC description of F2 data in deep inelastic scattering.

space distribution of gluons up to the saturation momentum is of order
Q2

sat/αS(Qsat). We will assume that the distribution of initially produced
gluons is proportional to this distribution of gluons in the hadron wavefunc-
tions of the colliding nuclei and further,that the multiplicity of produced
gluon is proportional to the final state distribution of pions. We get

1
σ

dN

dy
∼ 1
αS(Qsat)

Q2
sat ∼ A1/3x−δ (3)
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Here σ is the area of overlap of the two nuclei in the collision and A the
number of nucleons that participate in the collision. σ Q2

sat ∼ A at low ener-
gies assumes no shadowing of nucleon parton distributions and is consistent
with information concerning deep inelastic scattering on nuclear targets. In
the collisions of nuclei one can directly measure the number of nucleonic
participants in the collisions, a number that varies with the centrality of
the collision. One can then compare the central region multiplicity with
the number of participants so determined. Such a comparison is shown
in[34]-[35] Fig. 7 . The saturation description of Kharzeev and Nardi pro-
vides a good description of the centrality dependence of the collisions[31].
It also does well with the energy dependence. Refinements of this descrip-
tion can provide a good description of the rapidity distribution of produced
particles[33].

Fig. 7. The multiplicity as a function of the number of nucleon participants in
heavy ion collisions.

2.2.2. Limiting Fragmentation

A general feature of high energy hadronic scattering is limiting fragmen-
tation. If one measures the distribution of particles as a function of rapidity
up to some fixed rapidity from the rapidity of one of the colliding particles,
then the distribution is independent of collision energy. The region over
which this scaling occurs increases as the energy of the colliding particles
increases. Such scaling is shown in Fig. 8. Such limiting fragmentation
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Fig. 8. Limiting fragmentation in RHIC nuclear collisions.

is natural in the CGC approach. For example in Fig. 8, we see that the
region of limiting fragmentation increases as beam energy increases[35]. If
we think of the region where there is limiting fragmentation as sources for
fields at small more central rapidities, then we see that going to higher ener-
gies corresponds to treating a larger region as sources. In a renormalization
group language, this simply means that one is integrating out fluctuations
at less central rapidities, to generate an effective theory for the particles at
more central rapidity. A quantitative description of limiting fragmentation
within the theory of the CGC is found in Ref. [36].

2.2.3. Single Particle Distributions in dAu Collisions

Some of the early predictions of the CGC were generic features of the sin-
gle particle inclusive distributions seen in hadron-nucleus collisions. There
are two competing effects. The first is multiple scattering of a hadron as it
traverses a nucleus. This effect is included n the CGC gluon distributions
as an enhancment of the gluon distribution for pT at transverse momentum
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of the order of the saturation momentum, with a corresponding depletion
at smaller momentum. There is little effect at high pT . The other effect
is that in the evolution of the gluon distribution to small x, the saturation
momentum acts as a cutoff in the bremstrahlung like integrals that gener-
ate such small x gluons. Nuclei have a larger saturation momentum than
do hadrons, so the small x gluon distribution for nuclei will be suppressed
relative to that for hadrons. Put another way, this effect will generate a sup-
pression for more central collisions. The sum of these effects is shown in Fig.
9[37]-[42]. The different curves correspond to different rapidities of the pro-
duced particle, beginning with the top curve being near the fragmentation
region of the nucleus. As one evolve further in rapidity, the enhancement at
intermediate transverse momentum disappears and is replaced by a smooth
curve with an overall suppression of produced particles.

1 

1 

1 100 

Fig. 9. The ratio of particles emitted in dA and AA collisions to that in proton due
to CGC effects.

The pattern of suppression suggested by the Color Glass Condensate
was first seen in dAu collisions in the Brahms collaboration[43], and later
confirmed by the other experiments [34],[35],[44]. The Brahms experiments
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demonstrated that in the nuclear target fragmentation region that at inter-
mediate pT there was en enhancement in RdA as a function of centrality, but
in the deuteron fragmentation region, there was a depletion as a function
of centrality. The CGC provided the only model that predicted such an
effect, and it remains the only theory that can quantitatively explain the
suppression seen in the deuteron fragmentation region.

2.2.4. Heavy Quark and JΨ Production

If the saturation momentum is small compared to a quark mass, it can
be treated as very heavy. It should have perturbative incoherent production
cross sections. If the saturation momentum is large compared to a quark
mass, the quarks should be thought of as light mass. Cross sections for
production should be coherent, and for example in pA collisions, scale as
A2/3. In the deuteron fragmentation region of dAu collisions we would ex-
pect suppression of heavy quark and charmonium cross sections relative to
the nuclear fragmentation region. In Fig. 10, the ratio of central to periph-
eral cross sections for J/Ψ production is shown as a function of centrality
and rapidity. Note the strong suppression in the forward region for central
collisions, as expected from the CGC. Precise computations are difficult for
the charm quark since its mass is close to the saturation momentum. Such
computations are in agreement with the data at forward rapidity[45]-[47].

2.2.5. Two Particle Correlations

The Glasma flux tubes induced by the collision of two hadrons will gen-
erate long range correlations in rapidity. In heavy ion collisions, this may
be seen in forward backward correlations, as measured in STAR. The cor-
relation increases in strength with higher energy collisions or more central
collisions. This is expected in the CGC-Glasma description because for
more central collisions the saturation momentum is bigger, so that the sys-
tem is more correlated. (The coupling becoming weaker means the system
is more classical, and therefore the leading order contribution associated
with Glasma flux tubes becomes relatively more important.) Such forward-
backward correlations are shown in Fig. 11 as a function of rapidity and
centrality[48]-[49]. The value of the correlation coefficient b can be shown
to be bounded b ≤ 1/2.

Such two particle correlations in the Glasma can generate ridge like
structures seen in two particle correlation experiments in azimuthal angle
and rapidity[50]-[51]. The long range rapidity correlation is intrinsic to
the Glasma. The angular correlation might be generated by flow effects at
later times in the collision, by opacity and trigger bias effects, or by intrinsic
angular correlations associated with the decay of Glasma flux tubes[52]-[56].
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Fig. 10. The J/Ψ production cross section as a function of centrality and rapidity.

2.2.6. The Negative Binomial Distribution

The decay of a single Glasma flux tube generates a negative binomial
distribution of produced particles[57]. A sum of negative binomial distribu-
tions is again a negative binomial distribution. Such oa form of the distri-
bution describes the RHIC data well. It is difficult with the heavy ion data
to isolate those effects due to an intrinsic negative binomial distribution and
those due to impact parameter. It is possible to isolate the effects of impact
parameter, but it demands a high statistics study.

2.2.7. Two Particle Azimuthal Angular Correlations in dA Collisions

The CGC will de-correlate forward-backward angular correlations when
the the transverse momentum of produced particles is of order the satura-
tion momentum[58]-[60]. This is because near the produced particles get
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Fig. 11. The strength of forward backward correlations as a function of rapidity
and centrality.

momentum from the CGC and therefore are not back-to-back correlated.
In dAu collisions such an effect will be largest at forward rapidities near the
fragmentation region of the deuteron, since this corresponds to the smallest
values of x for the nuclear target. This kinematic region is least affected
by multiple scattering on the nucleus. This effect has been seen by the
STAR and PHENIX collaborations[61]-[62]. There is a good quantitative
description by Tuchun and by Albacete and Marquet,[59]-[60] as shown in
the figure 12



mclerran˙zakopane˙2010 printed on October 20, 2010 15

200 GeV p+p and d + Au Collisions 
Run8, STAR Preliminary 

pp                d+Au (peripheral)   d+Au    (central)  

Fig. 12. Forward rapidity, forward backward angular correlations in dAu collisions
as a function of centrality.

2.3. Concluding Comments on the CGC and the Glasma

There is now a wide variety or experimental data largely consistent with
the CGC and Glasma based description. There is a well developed theoreti-
cal framework that provides a robust phenomenology of both electro-hadron
scattering and hadron scattering, There are new areas that are developing
that I have not had time to discuss. One is the possibility to see effects
of topological charge change in heavy ion collisions, the Chiral Magnetic
Effect[63]. Another area is pp collisions at the LHC, where some work
concerning recent experimental data was developed at this school[64].

3. Lecture II: Matter at High Temperature: The Quark Gluon
Plasma

4. Matter at Finite Temperature

4.1. Introdcution

In this lecture I will describe the properties of matter at high tempera-
ture. The discussion here will be theoretical. There is a wide literature on
the phenomenology of the Quark Gluon Plasma and its possible description
of heavy ion collisions at RHIC energies. The interested reader is referred to
that literature. I will here develop the ideas of decofinement, chiral symme-
try restoration based in part on a simple description using the large number
of colors limit of QCD.
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4.2. Confinement

The partition function is

Z = Tr e−βH+βµBNB (4)

where the temperature is T = 1/β and NB is the baryon number and µB is
the baryon number chemical potential. Operator expectation values are

< O >=
Tr O e−βH+βµBNB

Z
(5)

Under the substitution e−βH → e−itH , the partition function becomes the
time evolution operator of QCD. Therefore, if we change t → it,and rede-
fine zeroth components of fields by appropriate factors of i, and introduce
Euclidean gamma matrices with anti-commutation relations

{γµ, γν} = −2δµν (6)

then for QCD, the partition function has the path integral representation

Z =
∫

[dA][dψ][dψ]exp

{
−

∫ β

0
d4x

(
1
4
F 2 + ψ

[
1
i
γ ·D +m+ iµQγ

0ψ

])}
(7)

Here the fermion field is a quark field so that the baryon number chemical
potential is

µQ =
1
Nc
µB (8)

This path integral is in Euclidean space and is computable using Monte
Carlo methods when the quark chemical potential vanishes. If the quark
chemical potential is non-zero, various contributions appear with different
sign, and the Monte Carlo integrations are poorly convergent. Boundary
conditions on the fields must be specified on account of the finite length
of the integration in time. They are periodic for Bosons and anti-periodic
for Fermions, and follow from the trace in the definition of the partition
function.

A straightforward way to probe the confining properties of the QCD
matter is to introduce a heavy test quark. If the free energy of the heavy
test quark is infinite, then there is confinement, and if it is finite there is
deconfinement. We shall see below that the free energy of an quark added
to the system is

e−βFq =< L > (9)

where
L(~x) =

1
Nc
Tr P ei

∫
dt A0(~x,t) (10)
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So confinement means < L >= 0 and deconfinement means that < L > is
finite. The path ordered phase integration which defines the line operator
L is shown in Fig. 20. Such a path ordered phase is called a Polyakov loop
or Wilson line.

Fig. 13. The contour in the t plane which defines the Polyakov loop. The space is
closed in time because of the periodic boundary conditions imposed by the defini-
tion of the partition function.

It is possible to prove that the free energy of a heavy static quark added
to the system is given by Eqn. 9 using the effective action for a very heavy
quark:

SHQ =
∫

dt ψ(~x, t)
1
i
γ0D0 ψ(~x, t). (11)

The Yang-Mills action is invariant under gauge transformations that are
periodic up to an element of the center of the gauge group. The center of
the gauge group is a set of diagonal matrices matrix Zp = e2πip/NI where I
is an identity matrix. The quark contribution to the action is not invariant,
and L → ZpL under this transformation. In a theory with only dynamical
gluons, the energy of a system of n quarks minus antiquarks is invariant
under the center symmetry transformation only if n is an integer multiple
of N . Therefore, when the center symmetry is realized, the only states of
finite free energy are baryons plus color singlet mesons.

The realization of the center symmetry, L → ZpL is equivalent to con-
finement. This symmetry is like the global rotational symmetry of a spin
system, and it may be either realized or broken. At large separations, the
correlation of a line and its adjoint, corresponding to a quark-antiquark pair
is

limr→∞ < L(r)L†(0) >= Ce−κr+ < L(0) >< L†(0) > (12)

since upon subtracting a mean field term, correlation functions should van-
ish exponentially. Since

e−βFqq(r) =< L(r)L†(0) > (13)

we see that in the confined phase, where < L >= 0, the potential is linear,
but in the unconfined phase, where < L > is non-zero, the potential goes
to a constant at large separations.
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The analogy with a spin system is useful. For the spin system corre-
sponding to QCD without dynamical quarks, the partition function can be
written as

Z =
∫

[dA] e−
1

g2 S[A] (14)

The effective temperature of the spin system associated with the gluon fields
is Teff ∼ g2. By asymptotic freedom of the strong interactions, as real tem-
perature gets larger, the effective temperature gets smaller. So at large
real temperature (small effective temperature) we expect an ordered sys-
tem, where the ZN symmetry is broken, and there is deconfinement. For
small real temperature corresponding to large effective temperature, there
is disorder or confinement.

The presence of dynamical fermions breaks the ZN symmetry. This is
analogous to placing a spin system in an external magnetic field. There is no
longer any symmetry associated with confinement, and the phase transition
can disappear. This is what is believed to happen in QCD for physical
masses of quarks. What was a first order phase transition for the theory in
the absence of quarks becomes a continuous change in the properties of the
matter for the theory with quarks.

Another way to think about the confinement-decofinement transition
is a change in the number of degrees of freedom. At low temperatures,
there are light meson degrees of freedom. Since these are confined, the
number of degrees of freedom is of order one in the number of colors. In the
unconfined world, there are 2(N2

c − 1) gluons, and 4NcNf fermions where
Nf is the number of light mass fermion families. The energy density scaled
by T 4 is a dimensionless number and directly proportional to the number of
degrees of freedom. We expect it to have the property shown in Fig. 14 for
pure QCD in the absence of quarks. The discontinuity at the deconfinement
temperature, Td is the latent heat of the phase transition.

The energy density can be computed using lattice Monte Carlo methods.
The result of such computation is shown in Fig. 15. The discontinuity
present for the theory with no quarks becomes a rapid cross over when
dynamical quarks are present.

The large Nc limit gives some insight into the properties of high tem-
perature matter[65]-[68]. As Nc → ∞, the energy density itself is an order
parameter for the decofinement phase transition. Viewed from the hadronic
world, there is an amount of energy density ∼ N2

c which must be inserted
to surpass the transition temperature. At infinite Nc this cannot happen,
as this involves an infinite amount of energy. There is a Hagedorn limit-
ing temperature, which for finite Nc would have been the deconfinement
temperature.

The Hagedorn limiting temperature can be understood from the view-
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Fig. 14. The energy density scaled by T 4 for QCD in the absence of dynamical
quarks.

Fig. 15. The energy density scaled by T 4 measured in QCD from lattice Monte
Carlo simulation. Here there are quarks with realistic masses.

point of the hadronic world as arising from an exponentially growing density
of states. In a few paragraphs, we will argue that mesons and glueballs are
very weakly interacting in the limit of large Nc. Therefore, the partition
function is

Z =
∫

dm ρ(m)e−m/T (15)

Taking ρ(m) ∼ mαeκm, so that

< m >∼ 1
1/T − κ

(16)
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diverges when T → 1/κ

4.3. A Brief Review of the Large Nc Limit

The large Nc limit for an interacting theory takes Nc → ∞ with the ’t
Hooft coupling g2

′tHooft = g2Nc finite. This approximation has the advan-
tage that the interactions among quarks and gluons simplify. For example,
at finite temperature, the disappearance of confinement is associated with
Debye screening by gluon loops, as shown in Fig. 16a. This diagram gener-
ates a screening mass of order M2

screening ∼ g2
′tHooftT

2. On the other hand
the quark loop contribution is smaller by a power of Nc and vanishes in the
large Nc limit.

a b

Fig. 16. a: The gluon loop contribution to the heavy quark potential. b: The quark
loop contribution to the potential

To understand interactions, consider Fig. 17a. This corresponds to a
mesonic current-current interaction through quarks. In powers of Nc, it is
of order Nc. Gluon interactions will not change this overall factor. The
three current interaction is also of order Nc as shown in Fig. 17b. The
three meson vertex, G which remains after amputating the external lines,
is therefore of order 1/

√
Nc. A similar argument shows that the four meson

interaction is of order 1/Nc. Using the same arguments, one can show that
the 3 glueball vertex is of order 1/Nc and the four glueball interaction of
order 1/N2

c .
These arguments show that QCD at large Nc becomes a theory of non-

interacting mesons and glueballs. There are an infinite number of such states
because excitations can never decay. In fact, the spectrum of mesons seen
in nature does look to a fair approximation like non-interacting particles.
Widths of resonances are typically of order 200 MeV , for resonances with
masses up to several GeV .

4.4. Mass Generation and Chiral Symmetry Breaking

QCD in the limit of zero quark masses has a U(1)×SUL(2)×SUR(2) sym-
metry. (The U5(1) symmetry is explicitly broken due to the axial anomaly.)
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a

b

Fig. 17. a: The quark loop corresponding to a current-current interaction. b: A
quark loop corresponding to a three current interaction.

Since the pion field, ψτaγ5ψ is generated by an SUL−R(2) transformation of
the sigma field, ψψ, the energy (or potential) in the space of the pion-sigma
field is degenerate under this transformation. In nature, pions have anoma-
lously low masses. This is believed to be a consequence of chiral symmetry
breaking, where the σ field acquires an expectation value, and the pion fields
are Goldstone bosons associated with the degeneracy of the potential under
the chiral rotations.

Such symmetry breaking can occur if the energy of a particle-antiparticle
pair is less than zero, as shown in Fig. 18. On the left of this figure is the
naive vacuum where the negative energy states associated with quark are
filled. The right hand side of the figure corresponds to a particle hole ex-
citation, corresponding to a sigma meson. Remember that a hole in the
negative energy sea corresponds to an antiparticle with the opposite mo-
mentum and energy. If the σ meson excitation has negative energy, the
system is unstable with respect to forming a condensate of these mesons.

At sufficiently high temperature, the chiral condensate might melt. In-
deed this occurs[69] .For QCD, the chiral and deconfinement phase tran-
sition occur at the same temperature. At a temperature of about 170 −
200 MeV , both the linear potential disappears and chiral symmetry is re-
stored. It is difficult to make a precise statement about the indentification
of the chiral and deconfinement phase transitions, since as argued above,
for QCD with quarks, there is not a real phase transition associated with
deconfinement[70]-[71]. Also, when quarks have finite masses, as they do
in nature, chiral symmetry is not an exact symmetry, and there need be
no strict phase transition associated with its restoration. Nevertheless, the
cross over is quite rapid, and there are rapid changes in the both the po-
tential and the sigma condensate < ψψ > at temperatures which are in a
narrow range.
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Fig. 18. The energy levels of the Dirac equation. Unfilled states are open circles
and filled states are solid circles. For the free Dirac equation, negative energy states
are filled and positive energy states are unoccupied, as shown on the left hand side.
A mesonic excitation corresponding to a particle hole pair is shown on the right
hand side.

5. Lecture III: Matter at High Baryon Number Density:
Quarkyonic Matter

I now turn to a discussion of the phase diagram of QCD at finite baryon
number density.

In the large Nc limit of QCD, the nucleon mass is of order Nc[65]-[67].
This means that in the confined phase of hadronic matter, for baryon chem-
ical potential µB ≤MN , the baryon number density is essentially zero:

< NB >∼ e(µB−MN )/T ∼ e−Nc (17)

For temperatures above the de-confinement phase transition the baryon
number is non-zero since there the baryon number density is controlled by
e−Mq/T ∼ 1, and quark masses are independent of Nc. For sufficiently large
chemical potential the baryon number density can be nonzero also. The
Hadronic Matter phase of QCD is characterized in large Nc by zero baryon
number density, but at higher density there is a new phase.

In the large Nc limit, fermion loops are suppressed by a factor of 1/Nc.
Therefore the contribution to Debye screening from quarks cannot affect
the quark potential until

M2
Debye ∼ αt′Hooft µ

2
quark/Nc ∼ Λ2

QCD (18)

Here the quark chemical potential is µB = Ncµquark. The relationship in-
volving the Debye mass means there is a region parametrically large chemi-
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Quark-Gluon Plasma

QuarkyonicHadronic

Triple Point Deconfinement

Liquid-GasX

MN

T↑

μB→
Pairing

←Chiral?
Tc

Fig. 19. The revised phase diagram of QCD

cal potential MN ≤ µB ≤
√
NcMN where matter is confined, and has finite

baryon number. This matter is different than either the Hadronic Matter or
the De-Confined Phases. It is called Quarkyonic because it exists at densi-
ties parametrically large compared to the QCD scale, where quark degrees
of freedom are important, but it is also confined so the degrees of freedom
may be thought of also as those of confined baryons[73]-[74].

The width of the transition region between the Hadronic phase and the
Quarkyonic phase is estimated by requiring that the baryon number density
become of order NB/V ∼ k3

Fermi ∼ Λ3
QCD. Recall that the baryon chemical

potential is µB ∼ MN + k2
f/2MN for small kF , so that the width of the

transition in µB is very narrow, of order 1/Nc. This is δµqaurk ∼ 1/N2
c

when expressed in terms of µquark which is the finite variable in the large
Nc limit.

The transition from Hadronic Matter to that of the Quark Gluon Plasma
may be thought of as a change in the number of degrees of freedom of mat-
ter. Hadronic Matter at low temperatures has 3 pion degrees of freedom.
The quark gluon plasma has of order 2(N2

c − 1) degrees of freedom corre-
sponding to gluons and 4Nc degrees of freedom for each light mass quark.
The change in degrees of freedom is of order N2

c in the large Nc limit. At
very high baryon number densities, the quarks in the Fermi sea interact at
short distances, and although strictly speaking are confined, behave like free
quarks. The number of degrees of freedom is therefore of order Nc. Each
phase has different numbers of degrees of freedom, and is presumably sep-
arated from the other by a rapid crossover. Quarkyonic matter is confined
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Fig. 20. Chemical potentials and temperatures at decoupling.

and therefore thermal excitations such as mesons, glueballs, and Fermi sur-
face excitations must be thought of as confined. The quarks in the Fermi
sea are effectively weakly interacting since their interactions take place at
short distances. So in some sense, the matter is “de-confined” quarks in the
Fermi sea with confined glueball, mesons and Fermi surface excitations[75].

In Hadronic Matter, chiral symmetry is broken and in Deconfined Mat-
ter it is broken. In Quarkyonic Matter chiral symmetry is broken by the
formation of charge density waves from binding of quark and quark hole ex-
citations near the Fermi surface[76]. In order that the quark hole have small
relative momentum to the quark, the quark hole must have momentum op-
posite to that of the quark. This means the quark-quark hole excitation has
total net momentum, and therefore the finite wavelength of the correspond-
ing bound state leads to a breaking of translational invariance. The chiral
condensate turns out to be a chiral spiral where the chiral condensate rotates
between different Goldstone boson as one moves through the condensate[77].
Such condensation may lead to novel crystalline structures[78].

A figure of the hypothetical phase diagram of QCD is shown in Fig. 19
for Nc = 3. Also shown is the weak liquid-gas phase transition, and the
phase associated with color superconductivity. Although the color super-
conducting phase cannot coexist with quarkyonic matter in infinite Nc, for
finite Nc there is such possibility. The lines on this phase diagram might
correspond to true phase transitions or rapid cross overs. The confinement-
deconfinement transition is known to be a cross over. In the FPP-NJL
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Fig. 21. Ratios of abundances of various particles .

model[79]-[81], the Hadronic-Quarkyonic transition is first order[82], but
nothing is known from lattice computations. If as we conjecture, there
is region where chiral symmetry is broken by translationally non-invariant
modes, then this region must be surrounded by a line of phase transitions. I
call this region Happy Island becuase it is an island of matter in the µB−T
plane.

A remarkable feature of this plot is the triple point where the Hadronic
Matter, Deconfined Matter and Quarkyonic Matter all meet[83]. This triple
point is reminiscent of the triple point for the liquid, gas and vapor phases
of water.

Since we expect a rapid change in the number of degrees of freedom
across the transitions between these forms of matter, an expanding system
crossing such a transition will undergo much dilution would undergo much
dilution at a fixed value of temperature or baryon chemical potential[?]-[?].
One might expect in heavy ions to see decoupling of particle number chang-
ing processes at this transition, and the abundances of produced particles
will be characteristic of the transition. In Fig. 20
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Fig. 22. Energy density stored in baryons compared to that stored in mesons.

In the Fig. 20, the expectations for the confinement-deconfinement tran-
sition are shown with the dotted red line. It is roughly constant with
the baryon chemical potential, and the constant value of temperature is
taken from lattice estimates. The dark dashed curve represents µB − T =
cons×MN , corresponding to a simple model for the Quarrkyonic transition.
Such a very simple description does remarkably well.

A triple point is suggested at a baryon chemical potential near 400 MeV,
and temperature near 160 MeV. This corresponds to a center of mass energy
for Pb-Pb collisions of 9-10 GeV. This is near where there are anomalies in
the abundances of rations of particles[84], as shown in Fig. 21. Shown
are fits using statistical models of abundances of particles using chemical
potentials and temperature extracted from experimental data. The sharp
peak reflects the change in behavior as one proceeds along the dashed line of
Fig. 20 corresponding to the Quarkyonic transition and joins to the dotted
red line of the deconfinement transition

It is remarkable that the value of beam energy where this occurs cor-
responds to the hypothetical triple point of Fig. 20, and that this is the
density where the energy density stored in baryons becomes equal to that
stored in mesons, Fig. 22,
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