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1.0 Background

This tech note is essentially a summary of a lecture we delivered to the Acc. Phys. Journal
Club Apr, 2010 [I]. However, since the estimated accuracy of these methods has been
naive and misleading in the field of particle accelerators, i.e., ignores the impact of noise,
we will elaborate on this in some detail.

A prerequisite for a calibration of the nonlinear Hamiltonian is that the quadratic part has
been understood, i.e., that the linear optics for the real accelerator has been calibrated. For
synchrotron light source operations, this problem has been solved by the interactive
LOCO technique/tool (Linear Optics from Closed Orbits) [2]. Before that, in the context
of hadron accelerators, it has been done by signal processing ofturn-by-tum BPM data [3­
5].

A straightforward "reality check" of the nonlinear model can be done by:

I. An elementary test is to measure the on- and off momentum dynamic aperture. Tradi­
tionally, what's measured has not agreed well with what's been predicted; due to over­
simplified models. Hence the poor estimates for Touschek life time. However, after the
linear optics has been calibrated and corrected, and after introducing a realistic nonlin­
ear model, the predictions and measurements actually do agree.

2. Another basic characteristic, and key design metric, is the tune footprint [6]. It can be
measured by (elementary) signal processing of turn-by-tum BPM data for different

amplitudes. It has become fashionable to use!

Le., to solve numerically for a Hann window

. 2(rtk)
wk = sm N' O~k~N-I. (2)

A more direct, Le., analytic approach, is to first compute the Discrete Fourier Trans­
form (OFT) and then do a nonlinear interpolation in the spectrum. In fact, this is how
we calibrated- and improved the nonlinear dynamics for LEAR (antiprotons), CERN in

the mid-80s [3]. In particular, our accuracy was - I x I0-
5

for 1024 turns (to calibrate

the optics) and - I x I0-
4

for 256 turns (to correct the linear coupling), see Figs. 1-2.
The measured amplitude dependenttune shift before- and after nonlinear corrections

I. Aka NAFF (Numerical Analysis of Fundamental Frequency); with a component wise spectrum deconvo­
lution by Gramm-Schmidt orthogona!ization [7].
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are shown in Fig. 31
• Later, at SPS, CERN in the mid-90s, they achieved e.g. _I x10-4

for 128 turns [8].

3. A more detailed footprint of the nonlinear dynamics is the betatron spectrum, see
Fig. 4. The frequencies, amplitudes, and phases are obtained by basic signal processing,
see section 2.0.

For more advanced work, one may attempt to correct the observed resonances [9-10].

Actually, this is how we corrected linear coupling in LEAR2, compare Figs. 4-5; a prereq­
uisite for improving the nonlinear dynamics.
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FIGURE I. Horizontal Betatron Spectrum for LEAR (N = 1048).

J. To obtain good agreement between the model and measured values, sextupole like kinematic (coriolis)
terms originating from the curved trajectories in the dipoles had to be included; due to the small circum­
ference of LEAR (80 m) [3].

2. First by introducing a 3.2 mrad roll (with a big crescent wrench) to one ofthe normal quadrupoles at a
suitable location (determined by the measured phase); because LEAR did not have any skew quadrupole
correctors. And, second, by moving the sextupo!es onto the vertical orbit; since feed-down from ditto (no
vertical orbit correctors) turned out to be the main source [3].
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FIGURE 2. Horizontal- and Vertical Betatron Spectrum for LEAR (N = 256).

VAR. Of"' QV VERSIJf!l SQIJI\RE OF' HOR.KICI<

0_0 0.'" 0." 0." 0.&

309 MtY/c.
ror. co"'?

3. ...

FigureJJ: Measwed tune ,hift,

FIGURE 3. Measured Amplitude Dependent Tune Shift in LEAR
Before- and After Nonlinear Corrections.
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FIGURE 5. Horizontal- and Vertical Betatron Spectrum for LEAR
After Correction of Linear Coupling.
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2.0 Signal Processing 101

Over the last decade(s), there has been a rediscovery of basic signal processing algorithms
in the field of accelerators. However, the estimated accuracy in this field has been naive
and misleading; because the impact ofnoise has been ignored. For a recent exception, Le.,
a straightforward analysis of the effect of noise by simulation, see ref. [II]. Needless to
say, these techniques have been well known in: telecommunication (taking noise into
account) since the 40s [12-13], oceanography since the 60s [14], and celestial mechanics
since the early 80s [15]. In fact, the FFT algorithm, which is credited to Cooley & Tukey
[16], who published to put it into the local domain [17], had already been developed for X­
ray crystallography in the 40s [18], and by Gauss ca 1805 [19]; to interpolate the trajecto­
ries for the asteroids Pallas and Juno [20]. Today there is even a standard (IEEE Std. 1057­
1994) for 3- and 4-parameter sine wave fit algorithms [21].

To recap, the Fourier transform is defined by

I IC() frot
f(t) = 211 -00 F(Ol)e dOl

where

00 .

F(Ol) = I f(t)e-1OJtdt
-00

In other words, introduce the basis/OJt and the scalar product

00

If(t), g(t» = I f(t)g(t)dt
-00

(3)

(4)

(5)

Le., F(Ol) If(t), e
iOJt

) . It follows that
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where

iroot
e f(t) ~ F(ro - roo),

I ~2reli(ro),

Ii(t)~ I,

-Ial/(t) 2a
e ---+ 2 2'

a + ro

rect(f) ~ Tsinc(ro
2
0,

(
ret) t(t) reTsin(roTI2-re/2)

cos-rec-~

T T-2 (roTI2)2 - (rel2t

2
2(ret) (1\ T re . (roncos T rect "T) ~ 2 2 2smc 2)

(roTI2) -re

rect(f) =0(t+ TI2)-0(t- TI2),

. sin(roT)
smc(roT) =

roT

(6)

(7)

For a sampled system, with sample rate is = 11M at discrete times kM over some inter­

val T = NM, one may introduce the normalized frequency

so that

and evaluate the transform for the discrete frequencies

October 11,2010
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'one obtains the Discrete Fourier Transform (OFT)! ofa N-periodic discrete-time sequence

xk,k=0,1, ... ,N-1 2

where

N-!

"X i2nkn/N
xk = ~ ne ,

k~O

k = 0, I, ... , N - I (II)

n 0, I, ...,N-l (12)

In other words, introduce the (discrete) orthogonal basis e
i2nkn

/ N and the (discrete) scalar
product

N-!

(xi'Y)N = ~ ~ xJ!k'
k~O

The "coordinates" Xn for the N samples xk' k = 0, I, ... , N - I

odic function is

X = ( i2nkn/N)
n xk,e N°

(13)

of any complex N-peri-

(14)

Due to the finite time window, a discrete peak has side lobes in the spectrum. These can be

reduced by a suitable choice of window function wk, k = 0, I, ... , N - I . The Fourier

transform for the typical choices are

Rectangular:

Sine:

Hann:

i2nkvo (k'\ .
erect H) ~ smc(n(n - Nvo»,

i2nkvo. (k'\ I sin(n(n-Nvo-ll2»
e SIn 7t-~ 4 ,

N 2n (n-Nvi -(112)2

i2nkvo • 2( k'\ I I .
e sm nH) ~-2 2 smc(n(n-Nvo»

(n-Nvo) -I

(15)

I. A straightforward implementation ofDFT leads to an O(N') process. Fast Fourier Transform (FFT) is an

algorithm to compute it as O(Nlog,(N» when N ~ 2" for some n. In fact, FFT is what made digital fil­

ters, etc. practical; e.g. digital music.

2. The interval is now [0, T] instead of [-T/2, TI2I.
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for nlN '" vo' In other words, the amplitude of the side lobes are suppressed on behalf of

the width of the main peak. For completeness, the exact expressions are obtained from Eq.
(12). For e.g. a rectangular window it is

I I _e-i2n(n-Nvo)

N -i2n(n/N - vol
I-e

I sin(ll(n- Nvo))

N sin(ll(nlN - Yo»~

sin(ll(n - Nvo))
--'-'-----"'..:. + ...

ll(n -Nvo)
(16)

Two-step (nonlinear) interpolation formula for a signal with one frequency are

Rectangular:

Sine:

Hann:

_I( 1+ I )
v - "it n- I +An_1IAn '

(17)

where (An = IXn!>' n - I ~ Nv ~ n 1. The interpolation formula for the Hann window is an

analytic solution which, in the ideal case of only one peak, is equivalent to the numerical
solution of

I i2nkv IMax{ (w0k' e )N} (18)

by NAFF. Neither of these estimates is exact even in the ideal case though, i.e., for a signal

with one frequency and no noise, due to aliasing2. However, due to the side lobe suppres­

sion for the latter two windows, v just need to be a few bins away from 0 and 0.5.

The accuracy for a DFT without interpolation is -liN. And from Eqs. (15) it is clear that
the reduction of the side lobes are

-1/N",a = 1,2,3,

respectively. So the "accuracy" (without noise) is

-11N", a = 2, 3, 4,

1. For best Signal-to-Noise-Ratio, i.e., n is arbitrary.

2. Missed by Laskar [7].

October tl, 2010
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respectively I. However, this analysis is academic, because the impact of noise is

-1/!<II2 ;for any of the methods. In particular, differentiating Eqs. (17) gives

dv (21)

and it follows that

where the Signal-to-Noise-Ratio (SNR) is the ratio between nns signal to nns noise

(22)

(23)

Regardless, it is substantial improvement. For e.g. N = 256 and 5% noise we obtain

ov - I x I0-5
• In fact, the interpolation technique developed by E. Asse02 [23] is precisely

what made our, at the time, novel method to calibrate- and improve the nonlinear dynam­

ics for LEAR, CERN (antiprotons) in the mid-80s practical; and a success3.

Alternatively, in the time domain a least-square fonnulation is given by

(24)

with the parameters i'i = [v,A, q>]. Note that aX\v,A, q»/av = a for the solution of

the least-square problem, so the error is given by a\2(v, A, q>)/ai .In fact, the variance
of the estimated parameters with a confidence level CL for a general least-square fit is
[24]

2(oa) 2
""XCL' C (25)

I. The same result was obtained from the analysis in ref. [22], i.e., for the suppression of other frequencies;
not noise.

2. An electrical engineer, that designed the electronics for the turn-by-tum BPM data acquisition system at
LEAR, with an in-depth understanding of noise, how to e.g. use a programmable HP-calculator to simu­
late/testlevaluate/improve a design, method, etc.

3. For example, the first anti-hydrogen atom was produced by one of the experiments at LEAR in 1995.
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where ~X~L is the Confidence Level, C the covariance matrix

-1
C = [a] ,

and [a] the curvature matrix

In particular, for a I-parameter fit of v we obtain

N 2 N
(211kA) 2 2 2 2L 2 cos (27tkv + cp) ~ 211 SNR L k

k~l crk k~l

2 2 2
= SNR2 . lIN(N+I)(2N+IL211 SNRJi3

3 - 3

(26)

(27)

(28)

for large N, where we have introduced SNR .. AIcr and assumed that crk = cr. It follows

that

(29)

since the SNR for the signal in the time domain is fixed.

Bottom line, the information content from a DFT and interpolation in the frequency space,
or a least-square fit in the temporal space are equivalent (in the sense of information con­
tent available from either space). In particular, the impact of noise is the same; something
that we stated on the last slide in our April lecture [I].

Clearly, the accuracy can be improved even further by using all the BPMs. For example,
the lea~t-square can be generalized to

Alternatively, the optics at each BPM can be obtained from individual FFTs; as we dem­

onstrated in ref. [3]. However, a more elegant approach, is to consider xjk as a matrix and

compute the Singular Value Decomposition (SVD) [24]
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(31)

Note that

(32)

Unfortunately, this has been advertised I as "Model Independent Analysis" (MIA) => pure
nonsense. Clearly, if the motion was not assumed to be quasi periodic and deterministic,
the pick-up electrodes not assumed to respond to the center-of-charge of the bunches, the
response of the diagnostics not assumed to be linear, etc., either approach would be mean­

ingless. Just another symptom of a reductionist2 point of view; or inflating the application
ofa known numerical technique to a "novel method". In fact, the approach is more gener­
ally known as Principal Component Analysis (PCA); a century old method in statistical
analysis [25-26]. Roughly, a variance based, orthogonal decomposition oflarge data sets
to a small set of significant components. On the contrary, for the PCA (statistical) results
to be meaningful (physics), for e.g. a calibration of the (linear) optics model, they must be
(mathematically) linked to the beam dynamics model.

In I D.O.F. the local amplitudes and phases can be estimated from [27]

(33)

and the tune is obtained by a FFT of uk] or uk2' where

(34)

Again, we conjecture that the noise suppression for tune measurements in either case
(least-square or SVD) is

I (35)

whereas for optics measurements (by least-square, individual FFTs, or SVD) we expect

I---
JNtum

(36)

I. Contributing to the confusions regarding known signal processing methods in this field, rather than a
comparative. quantitative analysis (including the effect of noise); aka an objective/experimentalist
approach.

2. A component, rather than system, based view/interpretation (e.g. ignoring the effect of noise) of the
world of physical phenomena.
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which may be demonstrated by simulations. For better spectral decomposition of the har­
monics in 2- or 3 D.G.F., one may use Independent Component Analysis (ICA) [28].

3.0 The Betatron Spectrum

A more detailed footprint is the betatron spectrum. A simulation for NSLS-II main ring

withA = [10,2] mm=> v = [33.117,16.195] is shown in Fig. 6. The linear coupling­

vx ± vy and leading order sextupolar resonances vx ± 2 vy' 3vx' generates

vyC0.12), 2vxjO.23, 0.39) and vx(0.20), Vx ±vy(O.3I, 0.08) sidebands in the horizon­

tal- and vertical betatron spectrum, respectively [3].

To improve the resolution, one may instead Fourier analyze the linear action variables
[29], which are directly related to the resonance terms in the Hamiltonian, see Fig. 7. The

linear coupling- vx ± vy(O.3I, 0.078), first order sextupolar-

vx(O.lI), vx ±2vyC0.49, 0.27), 3vx(0.35), and second order resonances

2vxjO.23, 0.39), 2vx ±2vyC0.38, 0.16), 4vxj0.47, 0.22) are now transparent.

In particular, a driving term hj [29]

(37)

perturbs the initial linear action Jo by

(38)

where

(39)

and

(40)

Le., generates to leading order a peak at

. October 11,2010

(41)

13



FFT ofx

~ll__
o 0.1 0.2

FFTofy

0.3 0.4 0.5

0.3 0.4 0.5

FIGURE 6. Betatron Spectrum, Vx,y = [33.12,16.19].
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FIGURE 7. Spectrum of 2Jx,y'
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4.0 A Floquet Space Estimator

Since Hill's equation (linear) is observable, the state-space, Le., [x, x',y,y'], can be
reconstructed with tum-by-tum data from one BPM [30]. However, to analyze the varia­

tion of the linear action variables due to the nonlinear dynamics, we need a pair of BPMs I

separated by only linear elements (Le., drifts, dipoles, and quadrupoles).

The transport matrix. between the two BPMs is2

Jf3~2) 0

a~2) 1
-----
Jf3~2) Jf3~2)

I 0

Jf3~l)

(I)

2- Jf3(l)
Jf3~l) x

(42)

with the (linear) center-of-charge motion at the first BPM given by

X(I) = J2J r.t(I)cos(k2Ttv + ",(I»
k x!Jx x 'l'x '

P(I) = _ J2Jxa(l)sin(k2TtV + ",(I» + J2Jx cos(k2Ttv + ",(I»
xk (I) x x 'Yx (I) x 'Yx

f3x f3x

and similarly at the second BPM. From the (N -tum) averages

(43)

(44)

we obtain an estimate of the ratio of the beta functions and phase advance between the two
BPMs

(1)* <(Xkl»2)f3x =
f3~2) 2 '

«Xk
2
» )

[ < (I) (2» )
(45)

* Xk Xk
(i1J.lx) = acos ,

<(Xkl» 2) <(Xk2» 2)

1. Preferable in a non dispersive region; to avoid a strong synchrotron sideband.

2. Assuming mid-plane symmetry, since the (linear) optics has been calibrated/corrected.
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whereas Jf3~l) is obtained from the linear optics; which we have assumed is known.

In Floquet space we have

-(2) -(1) -(1) .
xk = xk cos(6.J.t) +Pxk sm(6.J.t),

p~r = -x~l)sin(6.J.tx)+P~~Cos(6.J.t)'

which gives

(46)

(47)

where

The (linear) action can then be estimated from

Similar results hold for the vertical plane.

(48)

(49)

A simulation is shown in Fig. 8. By using multiple pairs of BPMs the spatial distribution
ofthe driving terms can be determined. Note, a PCA approach is not effective in this case,
since the corresponding components are variance based rather than physics based. In other
words, not directly related to the driving terms [29]. The estimator can be improved by
including the effect ofnoise which leads to a Kalman filter [3 I-32]. Essentially, an optimal

(recursive) solution of the generalized least-square problem1, i.e., for time-varying param­
eters.

1. Originally formulated by Gauss 1795 for fixed parameters and rediscovered by Legendre 1806.
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FIGURE 8. Spectrum of Reconstructed 2Jx,y'
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4.1 An Optimal Predictor-Corrector Algorithm: the Kalman Filter

The (linearized) dynamic (stochastic) process model is

(50)

with the (stochastic) measurement model

(51)

where A is the (linear) one-tum map, and the random variables wk and vk represent the

process- and measurement noise, respectively. They are assumed to be independent, nor­
mally distributed white noise

pew) - N(O, Q)

with covariance matrices Q and R .

The time update is given by (predictor)

p(v)-N(O,R), (52)

and the measurement update by (corrector)

T
Sk = HPk1k_1H + R,

T -I
Kk = Pk1k - I H Sk '

xk = xklk-l + Kk(zk - HXklk_l)'

Pk1k = (I-KkH)Pklk-l

where Pklk-l is the error covariance

and similarly for Pklk'

(53)

(54)

(55)

In particular, it is an (recursive) optimal solution for Kk that minimizes the variance Pk1k

at each time step for the system1

I. Essentially a weighted average of the previous state, updated by the model, and the measurements. One
may compare with classical navigation, i.e., dead reckoning and periodically a fix from the sextant.
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and correspondingly

T T T
Pk1k = (l-Kk)(APk_llk_lA +Q)(l-Kk) +KkRKk

T T= (I-Kk)Pklk_l(l-Kk) +KkRKk

which in this case simplifies to

(56)

(57)

(58)

In our case, the (linear) one-turn map is a rotation A = R 1n in Floquet space and H = I.

A simulation for the NSLS-lliattice with a BPM rms noise of 100 microns is shown in
Figs. 9-10 forabetatronamplitudeofAx,y = [1,1] and Ax,y = [10,2] mm,respec­

tively. The covariance is initially set to a large number so that most of the weight is on the
measurements. In the first case, the filter is reducing the noise considerable by shifting the
weight to the extra information from the "dead reckoning" by the (linear) model. In the
latter, this is no longer the case due the model errors caused by the nonlinear effects at
.large amplitudes. Generalizing, we improve the filter by using a 7th order Taylor map for
the model, see Fig. 11. While it works in this case, the approach is no longer self-consis­
tent because the initially assumed normal distributions are not eigenmodes for the (nonlin­
ear) system.

Clearly, the same (linear) technique could be used to improve the performance of e.g. the
fast orbit correction feedback system, i.e., the (linears) system is now

ilx(t) = B11(t) + w(t),

z(t) = HX(t) + ii(t)
(59)

where 11(t) are the kicks from the fast orbit correctors and B the orbit response matrix.
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FIGURE 9. A State Estimator with Kalman Filter (Ax,y = [1,1] mm).
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FIGURE 10. A State Estimator with Kalman Filter (AX,y = [10, 2] mm).
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FIGURE II. A State Estimator with Kalman Filter and 7th Order Taylor Map
(Ax,y = [10,2] mm).
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5.0 Requirements for NSLS-II Pinger

Ideally, the basic requirements are:

• The kick should be shorter than one turn, i.e., 792/3xI08
= 2.6 flsec.

• It would kick the beam out to the physical aperture. However, since the injection
amplitude is -10 mm in the horizontal plane and an (optimistic) estimate for the

dynamic aperture is -15 mm, I3x '" 20 m, we will use the latter. The vertical plane
..

is limited to ±12.5 mm, l3y '" 25 m; due to the physical vertical aperture in the
dipoles.

A horizontal kick ex; at a location i generates the betatron motion

(60)

and it follows that

(61)

And similarly for the vertical plane. The beta functions just downstream of the matching
section to a long straight are:

which gives

15x10-3

J20 x 20

I3x ; '" 20 m,

= 0.8 mrad,
-312.5xlO

Js x 25
= 0.9 mrad.

(62)

(63)
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6.0 Application to NSLS-II

For the NSLS-II commissioning it is desirable to:

1. Measure the on- and off momentum dynamic aperture. This could be done with the
injection kicker in the horizontal plane, but a pinger is required for the vertical. The

required amplitude is ±[ 15, 12.5] mm at the center of the injection straight in the
horizontal plane and the physical vertical aperture of the dipoles, respectively. Com­
plementary, the dynamic aperture can also be measured with the scrapers.

2. Measure the tune footprint. The best (most precise approach) is to use a pinger for
. each plane; rather than the injection kicker for the horizontal. In particular, with a

kick that is shorter than one tum, i.e., 2.6 flsec. If they are located just downstream

of the matching section to a long straight, the beta functions are [20,8] m, i.e., the

required kicks are [0.8,0.9] mrad.

There is a concept, known as e.g. TQM (Total Quality Management) in the U.S.; or simply
quality control in northern Europe. In this country it is associated with the name W.
Edwards Deming [35]. However, he is best known for his work in Japan (in particular the
car industry); which started 1950. Interestingly, he was decorated by the Japanese govern­
ment 1960 and the U.S. President 1987. TQM is simply how to deliver (to the end user aka
customer), timely and cost effectively, on a product with claimed performance. For exam­
ple, one may compare the successful Apollo program with the organizations' later attempt
for an inexpensive delivery system to put satellites, etc. into space. Or the successful tech­
nical culture fostered at the NACA Transonic Wind Tunnel; aka engineering-science [36];
a precursor to NASA.

The dynamic aperture and tune footprint are key characteristics of the performance of the
lattice. So, by measuring these and comparing with the (nonlinear) model during commis­
sioning, one can directly assess ifthe guidelines, requirements, etc. have been met by all
the subsystems, e.g. the mechanical- and magnetic tolerances; i.e., if the entire system is
performing as expected. And, in case of a gap between what's measured vs. predicted, at
least one would have a diagnostic. In particular, an in-depth gap analysis can be pursued
by:

3. Measure the betatron (or linear action variable) spectrum and compare with the
model.

In fact, we have been using this technique to deconvolute issues with, and provide guide­
lines for: working points, magnet tolerances, insertion devices, etc. by analyzing data
obtained from simulations with our computer model throughout the entire design process.
Simply put: TQM.

On a trivial level, e.g. a polarity error in a sextupole would be apparent. But, more impor­
tant, e.g. unacceptable higher order multipole errors in the magnets would have a unique
signal in the spectrum. In fact, if all the BPMs have tum-by-tum capability (as planned),
one can even obtain spatial information. An example is shown in Fig. 12 where we have
introduced a systematic decapole component to one of the sextupole families. It generates
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a clear "signal" from 3 vx ± 2vx (0.24, 0.018) (perturbed tunes). Analysis of its amplitude­

and phase gives direct information about the source's integrated multipole strength- and
location narrowed down to a set ofdiscrete locations (mod 211). If all the BPMs have turn­
by-tum capability, it can be further localized.

Similarly, when e.g. the damping wigglers are introduced into the lattice, one would have
a direct diagnostic to validate that their field quality is satisfactory. And, if not, a method
to determine why, by beam based measurements; rather than having to bring the device
back to the lab (or manufacturer) for refined magnetic measurements. Similarly, the same
technique can be applied for each insertion device that is introduced into the ring, i.e., ide­
ally, integrated into a complex nonlinear system; without causing a show stopper. Lessons
learnt (by one device) do exist: ALS (Apple-II EPU), SPEAR3 (wiggler), CHESS (wig­
gler).

With more advanced techniques one can also pursue on-line nonlinear corrections. For
example, in the case of a major deficiency with: dynamic aperture, injection efficiency, or
Touschek life time, e.g. at large positive chromaticities, specific nonlinear magnetic ele­
ments to control a particular resonance, identified from the spectrum, could potentially be
retrofitted.

FFT2Jy

:~Hr~,---,----,,--=t~ii~~=1---,--,-------,',,-,-------,,-I~-J
o 0.1 0.2 0.3 0.4 0.5

FIGURE 12. Spectrum of 2J with a Decapole Component in the Lattice.x,y
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7.0 Conclusions

To summarize:

• We have outlined how to make a basic calibration of the nonlinear model for syn­
chrotrons. In particular, we have shown how this was done for LEAR, CERN (anti­
protons) in the mid-80s [3]. Specifically, our accuracy for frequency estimation

was -1 x10-5 for 1024 turns (to calibrate the linear optics) and -1 x I0~4 for 256
turns for tune footprint and betatron spectrum. For a comparison, the estimated
tune footprint for stable beam for NSLS-II is -0.1 . Since the transverse damping
time is -20 msec, Le., -4,000 turns. There is no fundamental difference for: anti­
protons, protons, and electrons in this case.

• Because the estimated accuracy for these methods in the field of particle accelera­
tors has been naive, Le., ignoring the impact ofnoise, we have also derived explicit
formula, from first principles, for a quantitative statement. For e.g. N = 256 and

5% noise we obtain bV - 1xI0-5
. A comparison with the state-of-the-arts in e.g.

telecomm and electrical engineering since the 60s is quite revealing. For example,
Kalman filter (1960) [31-32], crucial for the: Ranger, Mariner, and Apollo (includ­
ing the Lunar Module) missions during the 60s, see e.g. ref [37]. Or Claude Shan­
non et al since the 40s for that matter [12-13]. Conclusion: what's elementary in
the latter is considered "advanced", if at all, in the former. It is little surprise then
that published measurements typically contains neither error bars (for the random
errors) nor estimates for the systematic in the former discipline.

• We have also showed how to estimate the state space by tum-by-tum data from
two adjacent BPMs. And how to improve the resolution ofthe nonlinear resonance
spectrum by Fourier analyzing the linear action variables instead of the betatron
motion [29]. In fact, the state estimator could be further improved by adding a Kal­
man filter.

• For transparency, we have also summarized on how these techniques provide a
framework- and method for a TQM (Total Quality Management) approach for the
main ring.

Of course, to make the ($2.5M) tum-by-turn data acquisition system that is being imple­
mented (for all the BPMs) useful, a means (-10% contingency for the BPM system) to
drive the beam is obviously required.
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