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AMPLIFICATION OF CURRENT DENSITY MODULATION IN A FEL 
WITH AN INFINITE ELECTRON BEAM* 

G. Wang#, V. N. Litvinenko, S. D. Webb, BNL, Upton, NY 11973, U.S.A. 
 

Abstract 
We show that the paraxial field equation for a free 

electron laser (FEL) in an infinitely wide electron beam 
with 2  energy distribution can be reduced to a fourth 
ordinary differential equation (ODE). Its solution for 
arbitrary initial phase space density modulation has been 
derived in the wave-vector domain. For initial current 
modulation with Gaussian profile, close form solutions 
are obtained in space-time domain.  

INTRODUCTION 
In developing an analytical model for a FEL-based 

coherent electron cooling system, an infinite electron 
beam has been assumed for the modulation and correction 
processes [1-3]. While the assumption has its limitation, it 
allows for an analytical close form solution to be obtained, 
which is essential for investigating the underlying scaling 
law, benchmarking the simulation codes and 
understanding the fundamental physics.  

1D theory was previously applied to model a CeC FEL 
amplifier[4]. However, the theory ignores diffraction 
effects and does not provide the transverse profile of the 
amplified electron density modulation. On the other hand, 
3D theories developed for a finite electron beam usually 
have solutions expanded over infinite number of modes 
determined by the specific transverse boundary conditions. 
Unless the mode with the largest growth rate substantially 
dominates other modes, both evaluation and extracting 
scaling laws can be complicated.  Furthermore, it is also 
preferable to have an analytical FEL model with 
assumptions consistent with the other two sections of a 
CeC system. 

Recently, we developed the FEL theory in an infinitely 
wide electron beam with 1 (Lorentzian) energy 
distribution[5]. Close form solutions have been obtained 
for the amplified current modulation initiated by an 
external electric field with various spatial-profiles. In this 
work, we extend the theory into 2  energy distribution 
and study the evolution of current density induced by an 
initial density modulation.    

EQUATION OF MOTION 
Assuming that the amplitude of the radiation field 

varies slowly with respect to the undulator period and that 
fast oscillation terms can be dropped, the amplitude of the 
radiation field is determined by the following paraxial 
field equation [6] 

 

 

     

 
   




















































































dPePrfe
c

i
dPPF

P
e

zrE
zc

i
e

zrE
c

e
dzrij

zrE
zc

i

zP
c

Ci
s

zzP
c

Ci

z
s

zz 0
2

0
2

0,,
~

',
~

2',
~

2
'

,
~

2

1
0

'

0

2

00
2

2

0

2






















  ,                             

(1) 
where  zrE ,

~

  is the complex amplitude of the radiation 

field,    is the radiation frequency,  C is the detuning, 
0  

is the nominal electron energy, P  is the electron energy 
deviation, 

s is the electron deflection angle,  PF  is the 

energy distribution function,  rj


0
 is the transverse 

spatial distribution of the unperturbed electron beam and 
 0,,

~
1 Prf 
  is the initial phase space density perturbation. 

Assuming   00 jrj 
  is independent of r

 and performing 

Fourier transformation to eq. (1) lead to [5] 
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where  

   CkzEeCkzR
z

ck
i

,,
~

,,
~ 2

2





  .                 (3) 

In eq. (2), we used the normalized variables as defined in 
[6] and [5], i.e. zz ˆ ,  /ˆ CC , the 1D- gain parameter 
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 the Alfven current ecmI eA
3 , the pierce parameter  

 cz 2 , the space charge parameter 
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and the normalized energy distribution function   PF ˆˆ  

satisfying  

                                             1ˆˆˆ 




PdPF . 

We assume the following 2  energy distribution, 
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to eq. (2) generates 
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where we define 
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The third derivative of eq. (9) with respects to ẑ reads 
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                                                                                        (11) 
Eq. (11) is a fourth inhomogeneous ordinary differential 
equation (ODE) with constant coefficients and its Green 
function with initial condition  
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and the summation is over the cyclic permutation of the 
four indices. The particular solution of eq. (11) is 
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the initial conditions are solely satisfied by the general 
solution, i.e. 
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The current density is related to the radiation field by [5, 
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Inserting eq. (14), eq. (16), eq. (17) into eq. (18) leads to 
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(21) 
The linearized Vlasov equation for electrons in a straight 
field-free section reads[6] 
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Assuming the electron beam goes through a field-free 
straight section before entering the undulator, the initial 
current modulation and its derivatives can be derived 
from eq. (22) as 
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In order to proceed further, the initial phase space density 
modulation has to be specified. 

 GAUSSIAN PROFILE 
For simplicity, we ignore the energy modulation and 

assume the initial phase space density perturbation has the 
following form 
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                        (a) 

 
                                            (b) 

Figure 2 The amplitude of amplified current density 
modulation as calculated from eq. (29). The snapshot is 
taken at 21ˆ z  with 51037.1ˆ t , 0ˆ  p

, 32.2ˆ   

and 1.0ˆ q . (a) surface plot; (b) contour plot.  
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Inserting eq. (28) into eq. (25) and carrying out the 
inverse Fourier transformations yields[4] 
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where 
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For 0ˆ z , the integration in eq. (31) can be carried out 

analytically and eq. (29) becomes  
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                                                                                        (32)  
Fig. 1 shows the amplitude of the current density 
modulation as a function of the transverse spatial 
coordinate and arrival time as calculated from eq. (29). 
The transverse radius is in unit of  z 2 , the 

longitudinal location is in unit of  cz
221  , and the 

current density is in unit of   243 2zec .  

DISCUSSION 
Eq. (29) has similar form as what have been previously 

obtained for current modulation due to external field 
excitation [5]. The contribution from the inhomogeneous 
driving term in eq. (11) is proportional to 3q̂ and hence is 

negligible for 1ˆ q .  
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