

BNL-94869-2011-CP

NSLS-II HIGH LEVEL APPLICATION
INFRASTRUCTURE

 AND CLIENT API DESIGN

G. Shen, L. Yang, K. Shroff

Presented at the 2011 Particle Accelerator Conference (PAC’11)
New York, NY

March 28-April 1, 2011

March 2011

Photon Sciences Directorate

Brookhaven National Laboratory

U.S. Department of Energy
DOE - Office of Science

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others
to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before
publication, it may not be cited or reproduced without the author’s permission.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

NSLS-II HIGH LEVEL APPLICATION INFRASTRUCTURE
 AND CLIENT API DESIGN *

Guobao Shen#, Lingyun Yang, Kunal Shroff, BNL, Upton, NY 11973, U.S.A.

Abstract
The beam commissioning software framework of

NSLS-II project adopts a client/server based architecture
to replace the more traditional monolithic high level
application approach. It is an open structure platform, and
we try to provide a narrow API set for client application.
With this narrow API, existing applications developed in
different language under different architecture could be
ported to our platform with small modification. This
paper describes system infrastructure design, client API
and system integration, and latest progress.

INTRODUCTION
As a new 3rd generation synchrotron light source with

ultra low emittance, there are new requirements and
challenges to control and manipulate the beam. A use case
study [1] and a theoretical analysis [2] have been
performed to clarify requirements and challenges to the
high level applications (HLA) software environment.

To satisfy those requirements and challenges, adequate
system architecture of the software framework is critical
for beam commissioning, study and operation. The
existing traditional approaches are self-consistent, and
monolithic. Some of them have adopted a concept of
middle layer to separate low level hardware processing
from numerical algorithm computing, physics modelling,
data manipulating, plotting, and error handling. However,
none of the existing approaches can satisfy the
requirement. A new design has been proposed by
introducing service oriented architecture technology
[3][4][5][6][7][8].

The HLA is combination of tools for accelerator
physicists and operators, which is same as traditional
approach. In NSLS-II, they include monitoring
applications and control routines. Scripting environment
is very important for the later part of HLA and both parts
are designed based on a common set of APIs. Physicists
and operators are users of these APIs, while control
system engineers and a few accelerator physicists are the
developers of these APIs.

With our Client/Server mode based approach, we leave
how to retrieve information to the developers of APIs and
how to use them to form a physics application to the
users. For example, how the channels are related to
magnet and what the current real-time setting of a magnet
is in physics unit are the internals of APIs. Measuring
chromaticities are the users of APIs. All the users of APIs

are working with magnet and instrument names in a
physics unit. The low level communications in current or
voltage unit are minimized.

In this paper, we discussed our recent progress of our
infrastructure development, and client API.

SYSTEM INFRASTRUCTURE
The system architecture is shown as Fig. 1. As

described in [6], it is a 3-tier’s architecture as below:
• Distributed front-end layer. This layer talks directly

with physical device including magnet power supply,
vacuum, RF, diagnostics system, and so on. The
communication can use either existing Channel
Access protocol, or pvAccess protocol. Migrating
EPICS database to pvAccess is undergoing. A virtual
accelerator could also locate at this layer, and
provide same access for high level application
development.

• Middle layer server layer. The middle layer service
collects data from front-ends, and relational database
such as IRMIS, organizes the data in predefined data
structure, publish to its upper layer, and/or accepts
data from its upper layer, and ships data to database
or front end.

• Application layer. Physics application developed
locates in this layer. Each application uses either
Channel Access client or pvAccess to access middle
layer servers and/or front ends. The application can
be a scripting, matlab middle layer application, or a
control system studio application. A clear API for
client to access middle layer is under development
[6].

Figure 1: System Architecture.

Since EPICS control system is adopted for the NSLS II
hardware control, it is nature to design the physics
applications against EPICS system also. However,
existing EPICS V3 cannot entirely satisfy the

* Work supported under auspices of the U.S. Department of Energy
under Contract No. DE-AC02-98CH10886 with Brookhaven Science
Associates, LLC, and in part by the DOE Contract DE-AC02-
76SF00515
#shengb@bnl.gov

requirements as mentioned above. A new EPICS
implementation, namely epics-pvdata [9], is under active
development.

The epics-pvdata is an open source project, available
from sourceforge. It consists of 4 modules:
• pvData, which defines and implements an efficient

way to store, access, and transmit memory resident
structured data;

• pvAccess [10], which is a new generation of EPICS
communication protocol, and will be successor of
existing Channel Access protocol. It is used to
deliver data over the network, fully supports pvData,
and depends only on module pvData;

• pvEngine/pvIOC, which is a processing engine. All
behaviours are defined by pvEngine/pvIOC engine,
and user has only to develop his own support for all
desired behaviours. It depends on the pvData and
pvAccess;

• pvService, which is a combination of all services
under this project. All generic services or facility
specified services should locate here.

The implementation of this project under Java is close
to stable, and binding to other language such as C++
and/or Python is undergoing.

There are 3 services are implemented under epics-
pvdata framework, and detailed implementation can be
found in for example [6][7], and the benchmarking
showed good performance [8][10][11].

Here we have to mention that for the dictionary service,
there are 2 different approaches at NSLS II project.
Different with the one implemented in epics-pvdata, a
standalone ChannelFinder is implemented as a REST
style web service [12]. Each entry consists of a channel
name, an arbitrary set of properties (name-value pairs),
and an arbitrary set of tags (names). An application sends
an HTTP query to the service, specifying an expression
that reference channel names, properties and their values,
and/or tags. The service returns a list of matching
channels with their properties and tags, as an XML or
JSON document. It allows an authorized user to create,
update, add properties or tags, and/or delete.

CLIENT API
As described above, the client API consists of 2 parts,

internal API and user API respectively. Here we focus on
the internal API development, and the user API will be
formalized eventually during developing the internal API.

The set of client APIs are grouped by prefix: measure,
set, get, load, save, calculate and plot. For example, the
APIs with prefix measure are for something that requires
changing the hardware settings of a complex set of
hardware in order to achieve a single measurement, while
set APIs involve a simple setting on a single hardware
device or a set of similar hardware. All can be used
interactively without looking up a channel dictionary.
The APIs can operate on magnet names directly but also
provide some low level channel access methods.

ChannelFinder service creates a link between PVs and
accelerator elements. A set of internal APIs are developed

for ChannelFinder client in both Java and Python. With
the Java API, CSS user has the capability to map an
element physics name to EPICS pv name, and build his
CSS application.

Since NSLS II chose Python as HLA scripting
environment, the Python API enables user to benefit from
the ChannelFinder service. For example, the channel
finder will have two records for PV "SR:C30-
MG:G02A{QDP:H1}Fld-RB" and "SR:C30-
MG:G02A{QDP:H1}Fld-SP". One is for read back and
the other is for setpoint of quadrupole "QH1G2C30A".
The property of the read back PV would have
handle="get", elementname="QH1G2C30A", cell="C30",
girder="G2", elementtype="QUAD" and tagged "default".
In a high level script, when calling get("QH1G2C30A"),
the channel finder will be queryed to match
elementname=="QH1G2C30A", handle="get" and tagged
by "default". A similar group read can be achieved by
calling get("QUAD") or get("C30") to read all
quadrupoles or all elements in cell 30. This makes the
high level scripts clear and short.

Wildcard matching on the element names can make
group operation more convenient.

As an example, here is part of a script for dispersion
measurement.

 bpm = hla.getElements('P*C0[3-6]*')
 s1 = hla.getLocations(bpm)
 f0 = hla.getRfFrequency()
 f = np.linspace(f0 - 1e-5, f0 + 1e-5, 5)

 # avoid a bug in virtac
 x0, y0 = hla.getOrbit(bpm)
 time.sleep(4)

 codx = np.zeros((len(f), len(bpm)), 'd')
 cody = np.zeros((len(f), len(bpm)), 'd')
 for i,f1 in enumerate(f):
 hla.putRfFrequency(f1)
 time.sleep(6)
 x1, y1 = hla.getOrbit(bpm)

 codx[i,:] = x1[:]
 cody[i,:] = y1[:]
From the demo code, we can see that there are no

EPICS pv names used directly, and the function is
realized by calling internal API such as getOrbit,
getRfFrequency, and putRfFrequency.

The result is as shown in Figure 2. It was run against a
virtual accelerator [3], which uses Tracy [13] simulation
code as backend, and wraps the simulator into EPICS v3
control system. By changing the wildcard matching in
"hla.getElements('P*C0[3-6]*')", we can measure
dispersion at other location without changing more codes.

Figure 2: Dispersion Measurement Result.

SUMMARY
The proposed Client/Server mode based architecture

for NSLS II HLA environment is under active
development. There are some services have been
prototyped. The development strategy for client API has
been decided, and client application are starting to use the
services.

ACKNOWLEDGEMENT
The authors would like to thank Matej Sekoranja at

COSYLAB, and Marty Kraimer for their contributions on
epics-pvdata development. They also want to thank Ralph
Lange at Bessy for his contribution on web-service based
channel finder development. They want to give their
thanks to Leo Dalesio and Sam Krinsky at BNL for their
continuous supports and encouragements.

REFERENCES
[1] J. Bengtsson, et al, “NSLS-II: Model Based Control

– A Use Case Approach”, NSLS-II Tech Note 51
(2008)

[2] J. Bengtsson, “Design and Control of Ultra Low
Emittance Light Sources”, Proc. of ICAP09 (2009),
TU3IOPK04, San Francisco, USA

[3] G. Shen, “A Software Architecture for High Level
Applications”, Proc. of PAC09 (2009), FR5REP004,
Vancouver Canada

[4] G. Shen, “A Modular Environment for High Level
Applications”, Proc. of ICALEPCS09 (2009),
THP094, Kobe Japan

[5] P. Chu, et al, “Service Oriented Architecture for
High Level Applications”, Proc. of IPAC10 (2010),
TUPEC072, Kyoto Japan

[6] G. Shen, et al, “Prototype of Beam Commissioning
Environment and its Applications for NSLS-II”,
Proc. of IPAC10 (2010), WEPEB026, Kyoto Japan

[7] G. Shen, et al, “A Novel Approach for Beam
Commissioning Software using Service Oriented
Architecture”, Proc. of PCaPAC10 (2010),
WEPL037, Saskatoon Canada

[8] G. Shen, et al, “Server Development for NSLS-II
Physics Applications and Performance Analysis”,
this Proc., MOP252

[9] http://sourceforge.net/projects/epics-pvdata/
[10] G. Shen, “Performance Analysis of EPICS Channel

Access and pvAccess”, NSLS-II Tech Note 082
(2010)

[11] G. Shen, et al, “Services Development for NSLS-II
Physics Application Environment using pvService”,
EPICS Collaboration Meeting Fall 2010, BNL

[12] http://channelfinder.sourceforge.net/ChannelFinder/
[13] J. Bengtsson, “TRACY-2 User’s Manual”, SLS

Internal Document, February 1997; M. Böge,
“Update on TRACY-2 Documentation”, SLS Internal
Note, SLS-TME-TA-1999-0002, June 1999

	75171.pdf
	BNL-94869-2011-CP
	NSLS-II High Level Application Infrastructure and Client API Design
	G. Shen, L. Yang, K. Shroff
	Presented at the 2011 Particle Accelerator Conference (PAC’11)
	Photon Sciences Directorate
	Brookhaven National Laboratory

	MOP250
	NSLS-II High Level Application Infrastructure and Client API Design *
	introduction
	System infrastructure

	Client API
	Summary
	acknowledgement
	References

