LIFETIME MEASUREMENT WITH PSEUDO MOVEABLE SEPTUM IN NSLS X-RAY RING

Presented at the 2011 Particle Accelerator Conference (PAC’11)
New York, NY
March 28-April 1, 2011

March 2011

Photon Sciences Directorate
Brookhaven National Laboratory

U.S. Department of Energy
DOE - Office of Science

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Abstract
The National Synchrotron Light Source II (NSLS-II) is a state-of-the-art 3 GeV third generation light source currently under construction at Brookhaven National Laboratory and starts to commission in 2014. The beam injection works with two septa and four fast kicker magnets in an injection section. To improve the injection stability and reproducibility, we plan to implement a slow local bump on top of the fast bump so that the fast kicker strength is reduced. This bump works as a pseudo movable septum. We can also use this ‘movable’ septum to measure the storage ring beam partial lifetime resulting from the septum edge and possibly increasing the lifetime by moving the stored beam orbit away from the edge. We demonstrate the feasibility of this idea, by implementing DC bump in NSLS X-ray ring. We report the results of beam lifetime measurements as a function of the amplitude of this bumped orbit relative to the septum and the idea of a slow bump that could reduce the fast bump magnet strengths.

INTRODUCTION
The NSLS-II [1] is a 3 GeV third generation synchrotron light source under construction at Brookhaven National Lab. Due to its short lifetime, NSLS-II storage ring requires the top-off injection (once a minute) to keep the storage ring current constant to +/-1%. During the top-off injection, the stored beam orbit is highly desired as transparent.

The design emittance of the ring results in extremely small beam size and even a small disturbance, from the SR pulsed magnets (four kickers and pulse septum) at the injection straight line, would excite the stored beam betatron oscillation and perturb some user experiments. As a consequence, the fast kickers have to be extremely well characterized to make the bump magnets’ mechanical placement to high accuracy and very tight requirements to maintain pulse-to-pulse stability and magnet-to-magnet reproducibility. Also, the pulse septum field has to be well shielded to control the leakage field at μT-m range.

We propose to implement a DC/slow ramping local bump [2] on top of the fast bump to reduce the fast kicker strength by a factor of 2/3, so that the fast kick power supply operates in a more stable region. Besides the improvements on kicker’s stability and reproducibility, it also releases the kicker’s tilt error and timing error tolerance. Furthermore, these magnets could provide a DC/slow ramping bump, which can be used to optimize the stored beam lifetime by optimizing the beam relative position to the septum knife.

To demonstrate the idea feasibility, we implemented a DC local bump at the injection region of NSLS X-ray ring and measured the beam lifetime change by changing the stored beam relative position to septum knife.

LOCAL DC BUMP
To make a local bump at the injection region, we choose 3 horizontal correctors around the injection point. The possible combinations are (X8BH16, X1H2, X1H8) and (X8BH16, X1H5, X1H8). Here X1H2 is located just

<table>
<thead>
<tr>
<th>corrector</th>
<th>kick angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>X8BH16</td>
<td>-0.26</td>
</tr>
<tr>
<td>X1H2</td>
<td>-0.99</td>
</tr>
<tr>
<td>X1H8</td>
<td>-0.76</td>
</tr>
<tr>
<td>X8BH16</td>
<td>-0.38</td>
</tr>
<tr>
<td>X1H5</td>
<td>-0.79</td>
</tr>
<tr>
<td>X1H8</td>
<td>-0.57</td>
</tr>
</tbody>
</table>

Table 1: Kick strength for the 2 sets of correctors (a) X8BH16, X1H2 and X1H8 (b) X8BH16, X1H5 and X1H8, to make a local bump around the injection point as in Fig. 1.

Figure 1: Simulated beam center with local bump around the injection point, corresponding to the kick angles in Table 1.
before the injection point and X1H5 is located just after the injection point. To select more efficient corrector set for the experiment, we generate the same bump amplitude at the septum position. Table 1 lists the needed kicker strength and Fig. 1 shows the corresponding beam center for different configuration.

By comparing case (a) and (b) in Table 1, we can see that set (b) is more efficient to make the bump and we use this set for the measurement. Fig. 2 shows the injection region layout. The correctors for DC bump are indicated by arrows. The boxes in the Fig. 2 show the locations of fast kickers and the bump amplitude are measured with BPM, XPU2 to measure the turn by turn beam position.

![Injection layout of NSLS X-ring. The correctors for DC bump are indicated by the blue arrows. The fast injection kickers are marked with pink boxes.](image)

Figure 2: Injection layout of NSLS X-ring. The correctors for DC bump are indicated by the blue arrows. The fast injection kickers are marked with pink boxes.

![Beam current variation and the residual error.](image)

Figure 3: Beam current variation and the residual error.

At the full energy, 2.8 GeV, the nominal operation set point is -2.8 mm. The beam position changes from 0 to -12 mm, limited by the correctors’ strength. The lifetime change relative to bump amplitude at BPM XPU2 is shown in figure 4 with 160 mA current. As we want to push the beam relative position in both sides as far as possible, the closed orbit is changed by tuning all horizontal correctors in X ring. The blue line and the red line correspond to different closed orbit, as shown in figure 5. In the horizontal plane, the red closed orbit at septum region is -11.1 mm, comparing with the blue closed orbit at -0.1 mm. The closed orbits in vertical plane are similar. The horizontal big offset affects the beam lifetime, which explains the lifetime gap in figure 4. The curve shows that the optimal position is -8 mm from the beam lifetime viewpoint, which means the nominal operation set can be optimized at this energy.

![Lifetime dependency on the local bump position at beam energies 2.8 GeV.](image)

Figure 4: Lifetime dependency on the local bump position at beam energies 2.8 GeV.

LIFETIME OPTIMIZATION

The beam lifetime optimization was done by changing the beam position at septum with the local DC bump. The vacuum pipe aperture is +30.15 mm/-50.8 mm at the injection region.
Meanwhile, at lower beam energies, 1.5 GeV and 745 MeV, the lifetimes were also studied and it shows that the beam lifetime decreases as the beam approaches to the septum. That is because the closed orbit relative to the ideal position is different, depending on beam energies. It comes from the non-zero dispersion at the injection region as can be seen in figure 6. For different energy operation, we should optimize the beam position at the septum.

Figure 5: X-ray ring horizontal and vertical closed orbit

Figure 6: Horizontal and vertical beta functions and dispersion in NSLS X-ray ring.

SUMMARY

By moving the beam position to ~ -8 mm with a local DC bump, the beam lifetime in X-ray ring could be improved by ~15%, compared with the normal operation where the beam position is about -2.8 mm. However, at the new optimal set point, the beam loss induced vacuum chamber temperature rise in other region is out of tolerance, because the local bump is not ideally closed. The residual orbit change could be a contribution to the lifetime change. Furthermore, the beam current drops from 300 mA to half value, which also affects the beam lifetime. In the future, we will do more dedicated beam studies by avoiding the beam loss at other region due to non-closed bump.

REFERENCES

[1] F.J. Willeke, Status of the NSLS-II Project, TUOBS3, These Proceedings