STRIPLINE KICKER DESIGN FOR NSLS2 STORAGE RING

W. Cheng, A. Blednykh, S.Krinsky, O. Singh

Presented at the 2011 Particle Accelerator Conference (PAC’11)
New York, NY
March 28-April 1, 2011

March 2011

Photon Sciences Directorate
Brookhaven National Laboratory

U.S. Department of Energy
DOE - Office of Science

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Abstract
In the NSLS2 storage ring, there are four stripline kickers/pickups. Two long striplines with electrode length of 30cm will be used as bunch-by-bunch transverse feedback actuators. Two short stripline kickers/pickups with 15cm length will mainly used for tune measurement excitation or signal pickup for the beam stability monitor. High shunt impedance of the long stripline kickers is demanded to produce 200\(\mu\)s damping time. Meanwhile the beam impedance should be minimized. The design work for these two types of stripline is discussed in this paper.

INTRODUCTION
NSLS2 is a third-generation light source under construction at Brookhaven National Laboratory. The machine will have < 1nm.rad horizontal emittance by using weak dipoles together with damping wigglers. For the storage ring of 792m circumference, geometric impedance, resistive wall impedance and ion effects are expected to be significant. A transverse bunch-by-bunch feedback system has been designed to suppress the coupled bunch instabilities. More information can be found in previous paper. [1]

High power amplifiers and stripline kickers are the feedback actuators. They are the most expensive parts of the system. Design of the kickers should provide sufficient shunt impedance while minimizing the beam impedance. Striplines have been proved effective as transverse kickers. They have high shunt impedance at low frequency, which is suitable if the main instability contribution is from resistive wall and ions. Required power can be calculated if the stripline shunt impedance, damping time and initial oscillation amplitude are known.

\[
\Delta \theta = \frac{2\alpha}{f_{rev}} \cdot \frac{\Delta x}{\sqrt{\beta_m \cdot \beta_k}} = -2 \cdot \frac{1}{\tau} \cdot T_{rev} \cdot \frac{\Delta x}{\sqrt{\beta_m \cdot \beta_k}}
\]

\[
V_\perp = \Delta \theta \cdot \frac{E}{e} = -2 \cdot \frac{1}{\tau} \cdot T_{rev} \cdot \frac{E}{e} \cdot \frac{\Delta x}{\sqrt{\beta_m \cdot \beta_k}}
\]

in which, \(\Delta \theta\) is deflecting angle due to kicker; \(V_\perp\) is transverse deflecting voltage; \(E\) is the beam energy; \(\alpha/\tau\) are feedback damping rate/time; \(\Delta x\) is initial beam oscillation amplitude; \(\beta_m/\beta_k\) – beta function at BPM and kicker.

From Panofsky-Wenzel theorem, electric field and magnetic field have the same kick effect when the power is fed to the stripline kicker from the downstream port:

\[
\Delta \theta = \frac{\Delta p_\perp}{p_\parallel} = \frac{V_\perp}{E/e} = \frac{2}{\text{Energy}/e} \int_{\text{stripline}} E \, dt
\]

Kicker shunt impedance is defined as:

\[
R_\perp = \frac{V_\perp^2}{2P}
\]

where \(P\) is input power.

Based on estimate of growth time of wakefield induced instabilities and fast-ion effects, we require 200\(\mu\)s damping time. For shunt impedance 10 kOhm, which is not hard to get with 30-cm stripline. \(\beta_m=12/10\)m and \(\beta_k = 7/21\) m (vertical/horizontal), to damp an oscillation with initial amplitude of up to +/- 0.5\(\mu\)m in the vertical plane, we need 1000W power (2*500W) which is commercially available.

At wave number \(k\), transverse shunt impedance of stripline with opposite electrode distance \(d\) and length \(l\) can be written as:

\[
R_\perp = 2Z_c \left(\frac{2g_1 l}{d}\right)^2 \left(\frac{\sin kl}{kl}\right)^2
\]

where \(g_1\) is the geometric factor and \(Z_c\) is the characteristic impedance of the stripline, which is matched to 50 Ohm.

With longer stripline kicker, the shunt impedance is bigger at low frequency but the bandwidth decreases. To separate between bunches in case the instability mode around 250MHz happens. Stripline electrodes typically select less than half of the bunch space, which is 30cm with 500MHz RF frequency.

In reality, Eq (3) may not easy to apply since it’s hard to get the geometric factor for complicated structure. We use the HFSS simulation code [2] to calculate the electric and magnetic field along the beam path. Integration of kick force determines the vertical deflecting voltage and angle. A two plate 30cm stripline in round chamber has been designed with sufficient shunt impedance.

CHARACTERISTIC IMPEDANCE
Stripline with round chamber and plate type electrode is actually a transmission line. Its characteristic impedance can be approximated by [3]:

\[
Z_c \approx \frac{377}{\Phi_0} \ln \frac{a}{b}
\]

where \(a\) – chamber inner radius
b – plate-type electrode radius
Φ₀ – plate open angle in rad unit

Eq. (4) turns to the famous coaxial cable characteristic impedance formula while Φ₀=2π. Even for round chamber stripline, Eq. (4) doesn’t always give the good estimation. For the complex chamber structure, HFSS code is the best to do characteristic impedance match to external cables and instruments (50Ω).

Stripline can be used as a pickup or kicker. The geometry in Figure 1 shows a typical four electrodes stripline. The geometry has four independent modes, namely sum, horizontal dipole, vertical dipole and quadrupole mode.

Figure 1, Different operation modes of stripline, H and E are boundary conditions in ¼ models.

For a round chamber, by symmetry, vertical and horizontal Z_dipole should be same. This is not true for other shaped chambers. In the case of two electrode stripline, there are two modes instead of four: Z_even and Z_odd, where Z_even is both electrodes fed in-phase while Z_odd is electrodes fed in opposite phase. Since the stripline will be used mainly as a dipole kicker, we match the Z_dipole (Z_odd for two electrode case) close to 50Ωm from HFSS result. The beam induced signals see the characteristic impedances of Z_sum or Z_even.

The optimized stripline geometry size is listed in table 1. The dipole characteristic impedance was tuned to 50 Ohm.

Table 1, geometrical size of the striplines

<table>
<thead>
<tr>
<th>Name</th>
<th>30cm type</th>
<th>15cm type</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>FB</td>
<td>tune stripline</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td>38mm</td>
<td>38mm</td>
<td>chamber radius</td>
</tr>
<tr>
<td>d</td>
<td>11.9mm</td>
<td>8.3mm</td>
<td>distance from plate to chamber</td>
</tr>
<tr>
<td>t</td>
<td>2mm</td>
<td>2mm</td>
<td>plate thickness</td>
</tr>
<tr>
<td>θ</td>
<td>90 deg</td>
<td>60 deg</td>
<td>plate opening</td>
</tr>
<tr>
<td>Φ₀</td>
<td>2</td>
<td>4</td>
<td>number of electrode</td>
</tr>
<tr>
<td>Z_dipole</td>
<td>50.0 Ohm</td>
<td>50.2 Ohm</td>
<td>or Z_odd</td>
</tr>
<tr>
<td>Z_sum</td>
<td>60.7 Ohm</td>
<td>65.2 Ohm</td>
<td>or Z_even</td>
</tr>
<tr>
<td>R⊥</td>
<td>8.3 kOhm</td>
<td>18.5 kOhm</td>
<td>shunt impedance at low frequency</td>
</tr>
</tbody>
</table>

SHUNT IMPEDANCE

As shown in Eq(3), shunt impedance can be estimated once the geometry is determined. By integrating the electric and magnetic field along the beam trajectory, shunt impedance can be calculated from numerical simulation. Figure 2 shows an example of electric and magnetic field along the beam axis for different exciting frequency, with 1W of power added on the port.

To include the transient effect, the shunt impedance was numerically calculated using the following equations.

\[
V_E = \sqrt{\left(\int E(0\ deg)\right)^2 + \left(\int E(90\ deg)\right)^2}, \quad V_B = c\sqrt{\left(\int B(0\ deg)\right)^2 + \left(\int B(90\ deg)\right)^2},
\]

\[
V_{EB} = V_E + V_B, \quad R_{shunt} = \frac{V_{EB}^2}{2P},
\]

S-parameters have been checked. S11 of the feeding port is below -40dB till 200MHz, which will guarantee minimum reflection back to the high power amplifier. However, the simulation doesn’t include the impedance mis-match of the feedthrough. Beam induced high frequency signal may damage the power amplifier. A high power low-pass filter will be added to protect it.

Transverse field uniformity is a concern in case the beam has large oscillation. We shifted the integration line and determined the transverse field uniformity. The variation is <5% with offset as large as 10mm.
BEAM IMPEDANCE

Normal chamber profile of the NSLS2 storage ring is elliptical-like with semi-major and minor axes of 38mm * 12.5mm (H*V). Different geometries have been evaluated and it has been found it’s difficult to design the horizontal kicker with required shunt impedance. The current design has all the striplines built in a round chamber of radius 38mm. This approach is convenient and cost efficient. However, two tapers are needed on the end of stripline to match to the normal chamber. Beam impedance from the taper and stripline body itself is an important design issue.

Several methods have been used to evaluate the beam impedance of the designed structure. Based on impedance wire measurement method [4], a thin wire was added in the HFSS model, see Figure 3. By calculating the S-parameters between ports, longitudinal beam impedance and transfer impedance can be derived from Equation (6).

\[
Z_{beam} = 2Z_{c_{port5}} \left(\frac{1}{S_{56}} - 1 \right)
\]

\[
Z_{trans,i} = \frac{S_{5,i}}{S_{5,6}} \sqrt{Z_{c,i} Z_{c_{port5}}}
\]

\(i = 1,2,3,4\) are the stripline input/output ports.

The wire method results matched well with the GdFidl calculation up to 3GHz. At higher frequency, the wire method cannot be trusted since more than TEM exist. GdFidl simulation shows no resonant peaks for longitudinal impedance below 20GHz.

Transverse beam impedance was simulated using double wire in the structure. The maximum value is around 12 kOhm/m, which is close to the GdFidl result and acceptable. Investigation still going on to check the resonant modes which might contribute from the tapers.

SUMMARY

Four stripline kickers have been designed for NSLS2 storage ring. Two long striplines will be used for transverse bunch-by-bunch feedback system. Two short striplines will be used as tune excitation or signal pickups. Sufficient shunt impedance has been achieved, which is essential to get the damping rate of 200 µs. Beam impedance of the striplines and tapers has been investigated. The results from wire method and GdFidl match well. Longitudinal beam impedance is within acceptable range. Transverse resonant modes needs need more simulations. The author thanks Dr. Makoto Tobiyama from KEK for his help, thanks NSLS2 RF group for the use of HFSS.

REFERENCES