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CALCULATING POINT-CHARGE WAKEFIELDS FROM FINITE LENGTH 
BUNCH WAKE-POTENTIALS* 

Boris Podobedov, Brookhaven National Laboratory, Upton, NY 11973 
Gennady Stupakov, SLAC National Accelerator Laboratory, Menlo Park, CA 94025.

Abstract 

Starting from analytical properties of high frequency 
geometric impedance we show how one can accurately 
calculate short bunch wake-potentials (and even point-
charge wakefields ) from time domain calculations 
performed with a much longer bunch. In many practical 
instances this drastically reduces the need for computer 
resources, speeds up the calculations, and improves their 
accuracy. To illustrate this method we give examples for 
2D accelerator structures of various complexities. 

INTRODUCTION AND MAIN IDEA 
Knowledge of wakefields, and in particular geometric 

wakefields, is critically important for studies of 
accelerator beam dynamics. While analytical solutions are 
known for a number of simple geometries, detailed 
wakefield calculations for realistic vacuum chamber 
components is typically done utilizing time domain EM 
solvers. These, by design, calculate the fields due to finite 
length bunches, and one is forced to use extremely fine 
mesh (small fraction of the bunch length) to compute 
wakes at small distances. This is where the wakes are 
usually dominated by singularities, so that a wake-
potential due a bunch of rms length σ  scales as 

( )σ σ −∝ qW z , q>0 [1]. Utilizing fine meshes has   
obvious implications for computer memory requirements 
as well as calculation speed.  

To get around the fine mesh requirement we propose to 
take care of the wake singularities by representing the 
wake-potential as a sum of two parts,  

model( ) ( ) ( )W z W z D zσ σ σ= + ,    (1) 

where model ( )σW z  is the short-bunch asymptotic model 
(that includes all the singularities at 0σ → ), and 
function ( )D zσ that remains finite for arbitrarily short 
bunches. Furthermore, we suggest that for bunches 
shorter  than certain length σ0 (usually correlated with the 
smallest dimension of the structure) the σ-dependence of 

( )D zσ  is rather weak, so it can be dropped,  

0( ) ( ), 0D z D zσ σ σ≈ ≤ ≤ .   (2) 

Thus, if we pick the initial bunch length to be 0σ (or 
shorter) and calculate the corresponding wake-potential 

0 ( )σW z with an EM solver, we can then set  
0 0

model( ) ( ) ( )σ σ= −D z W z W z .   (3) 

For bunches,  shorter than 0σ , we now have   

model( ) ( ) ( )σ σ≈ +W z W z D z , 00 σ σ≤ ≤ . (4) 
In the limit of vanishing bunch length we can write for 

the point-charge wakefield  

model( ) ( ) ( ).W z W z D zδ δ≈ +    (5) 
For this method to be practical, we need to show that 1) 

model ( )σW z  is easily identifiable, tractable, and it captures 

all 0σ singularities; 2) with some reasonable choice of  
Eq. (2) holds true. With the help of time domain EM code 
ECHO [2], we show in the rest of this paper, that both of 
these statements are correct for a large number of 2D 
accelerator structures of the collimator and cavity type. 
We also show that for these structures a short bunch wake 
can be accurately reconstructed from EM solver results 
for a much longer bunch.  

COLLIMATOR-LIKE GEOMETRY 
  For a collimator chamber that transitions from radius 

a to smaller radius b and back, the point-charge wakefield 
and the wake-potential due to a Gaussian bunch of rms 
length σ, are given, respectively, by 

( ) ( )δ δ=o oW z k z ,    (6) 

( )2

2
1/2 1

2
( ) (2 ) exp z

o oW z kσ
σ

π σ− −= − ,  (7) 

where  0Z  is the free space impedance, and  

    0 ( / ) / π= −ok Z c Log a b .    (8) 

In our sign convention ( ) 0σ <W z corresponds to the 
energy loss of the particle with longitudinal coordinate z; 
z<0 is the head of the bunch.  Eq. (7) implies that the 
minimum of the wake-potential diverges for short 
bunches as 1(0)σ σ −∝oW .  

Eqs. (6-8) were derived a long time ago by various 
authors. Recently it was shown [3] that this example is a 
particular case of the so-called optical regime, where the  
wakes of all collimator-like structures (including 3D) 
have the same z-dependence as is shown above. 
Furthermore, in this asymptotic regime one can find exact 
impedances and wakefields of very complicated 
collimators (which amounts to calculating the value of 
geometry-dependent coefficient ok , for which the recipe 
was given in [3]). This makes us believe that what we 
illustrate below for axially symmetric case is applicable to 



 

 

3D. Meanwhile through the rest of this section we will 
assume that model ( )W zσ  is given by Eqs. (7-8). 

We investigated in detail a family of collimator-like 
geometries;  their radial dependence along the collimator 
is shown in Fig. 2 (inset). In the short bunch limit all of 
them have the same asymptotic wake given by Eqs.(7-8).  

 

Figure 1: Function  ( )D zσ for 3-step collimator. 

   First, in Fig. 1, we present the calculations for 3-step 
collimator (geometry shown in Fig. 2 inset in red dash). 
Specifically, we plot the function ( )D zσ defined in Eq. 
(1), i.e. the wake-potential (calculated with ECHO) with 
the optical model subtracted.  Clearly, the plots in Fig. 1 
do not show any singular behaviour as σ gets shorter. 
Furthermore, for the range of the bunch lengths shown, 
the traces basically overlap for most values of z, which 
confirms that ( )D zσ is weakly dependent on σ, i.e. Eq. 
(2) holds true. However, at certain “corner” points 
( z ≈ 2.2 cm, 4.2 cm, etc.), ( )D zσ has discontinuous 
derivatives, so strictly-speaking σ−>0  is needed to 
exactly match this behaviour. As long as we are not 
interested in the derivatives of the wake at these points, 
then ( )D zσ  calculated with a reasonably short bunch (i.e. 
σ < 2 mm) clearly provides a very good accuracy near 
these locations as well.   

Fig. 2 shows 0.5mm ( )D z for the set of collimators. For 
z<1 cm (which happens to be the smallest radial step 
among this set) all 0.5mm ( )D z  curves converge to the 
same linear trend already discussed above. Thus, for fixed 
a and b, the short-range ( )D zσ  is geometry-independent. 
This observation is important, since this simple short 
range behaviour (straight line) can be accurately 
calculated with  a fairly long bunch, i.e. σ0=0.5 mm. 
Furthermore, σ0 can be predicted in advance for most 
geometries; it simply needs to be short compared to the 
characteristic dimensions of the structure.  

 

Figure 2: Functions ( )D zσ for a family of collimators. 

   The situation becomes more complicated for slowly 
tapered collimators. However, recently we used a similar 
approach [4] (although in the frequency domain) to 
reconstruct accurate short bunch wake-potentials of a 
slowly tapered collimator from band-limited impedance.  

CAVITY-LIKE GEOMETRY 
For cavity-like structures the singular parts of the 

wakes are given by the diffraction model [1],  
1/2( ) ( 0)δ −= >d dW z k z z ,   (9) 

( )1/2( )d dW z k f zσ σ σ−= ,    (10) 

where 2 1
0 / 2dk Z c a gπ − −= − ,  (11) 

2 2 2/4
1/4 1/44 4( ) (I ( ) sign( ) I ( ))s s sf s e s s−

−= + ,  

and 
2

1/4 4I ( )s
± are the Bessel functions. The minimum 

of the wake-potential occurs at 0.76z σ≈ , and it 

diverges 1 2/σ −∝ for short bunches. Below we assume 
that model ( )W zσ  is given by ( )dW zσ , defined by Eq. (10). 

 We first consider a simple g=1 cm long cylindrical 
cavity of rectangular profile; the cavity and outer pipe 
radii are b=5 cm, a=1 cm (Fig.4 inset, solid brown). 
ECHO-calculated wake-potentials are shown in Fig 3. 
   The short-range wake-potentials clearly conform to the 
diffraction model, i.e. their minima scale 1 2/σ −∝ . 
However, similarly scaling peaks occur at multiples of 2g; 
particles at these locations gain energy. Subtracting the 
diffraction model from the calculated wake-potential 
results in a function that, in the limit of 0σ → ,   is still 
singular at these points (see Fig. 4, “Rectangular” traces).  
   For this simple geometry, one could expand the 
diffraction model to analytically describe the wake-
potential at these locations [5], so that one can then 
eliminate all singularities by subtracting this expanded 
model. For now we omit this exercise, but rather point out 
that singularities at multiples of 2g are due to reflections 
of the diffracted wave at the cavity sidewalls. These 
singularities disappear for realistic cavities with smooth 
corners and/or non-parallel sidewalls. 



 

 

 

Figure 3: Wake-potentials for rectangular profile cavity. 

  

 

Figure 4: ( )D zσ  for rectangular and trapezoidal cavities. 

 
  For example, if the inner corners of this cavity are 
replaced with 90 degree arc segments of radius r =1 mm, 
then, after reaching the value of ~1.3 V/pC at 

200μm / 2rσ π≈ ≈ , the ( 2cm)W zσ ≈  peak stops 
growing with decreasing σ.  
   Another example is a cavity with non-parallel sidewalls, 
like the “trapezoidal” one shown in Fig. 4, inset. Its wakes 
at multiples of 2g are not singular, as is clear from Fig. 4. 

10μm ( )D z and 100μm ( )D z  are almost exactly equal. In a 
separate set of calculations, we confirmed that these 
singularities are absent for other values of g1≠g, all the 
way down to g1=0.  
  With regards to the short-range behaviour of ( )D zσ  for 
either cavity, we observe that it is qualitatively similar to 
that discussed earlier for the collimator case. A positive, 
almost linear and featureless trend continues to z~1 cm, 
the distance easily predictable from cavity dimensions. 
   Since for trapezoidal cavity ( )D zσ  is non-singular 
everywhere, and it is σ-independent for σ<~1 mm, 

100μm ( )D z clearly allows for an accurate calculation of 
the wake-potential of shorter bunches.  

As a final and more practical example we calculate a 
very short bunch wake for 9-cell TESLA structure. 

Principle dimensions are 115.4 mm period, 70 mm iris 
diameter, and 1.036 m total length [6]. 

In this case the asymptotic wake model is unknown, 
although we expect σ-scaling similar to the diffraction 
model. To obtain an accurate model ( )σW z , we pick 

reasonably short σ1 and σ2 and calculate  1( )W zσ  and 
2 ( )W zσ with ECHO. Then we assume the equation  

( ) ( ) ( ),dW z W z D zσ σκ= +    (12) 
to hold exactly for σ=σ1 and  σ=σ2, with constant κ. 

Solving for κ  by direct elimination of ( )D z  results in 
z-varying κ. However,  near  z=0 (the region important for 
modelling short-bunch wakes) this dependence is almost 
flat. Thus we set 1 2 1 2 1

0
( )( )d d z
W W W Wσ σ σ σκ −

=
= − − . 

Now ( )D z   follows directly from Eq. (12), and wake-
potential of a shorter bunch is calculated from Eq. (4). 

A wake-potential for 3µm rms bunch reconstructed in 
this manner from σ1=100µm and  σ2=30µm ECHO 
calculations is plotted in Fig. 5. It shows perfect 
agreement with the direct ECHO calculation for σ=3µm 
bunch. A similar agreement was also found for the long-
range wake-potentials.      
 

 

Figure 5: TESLA cavity wakes for 3µm bunch calculated 
directly and from σ1=100µm and  σ2=30µm calculations. 

CONCLUSIONS 
   We describe preliminary results of a new method that 

allows us to accurately obtain longitudinal wakefields of 
short bunches  by adding a long-bunch result from  an EM 
solver and a singular analytical wake model. In the future 
this work will be generalized to 3D geometries as well. 
Similarly, the method should be equally applicable to the 
calculations of transverse wakefields.  

Periodic structures  with a significant number  of 
periods ( 2 / σ≥N a L , where L is the period length) 
have not been considered so far. They  have asymptotic 
wakefields that differ from the examples described above. 
We believe this method is applicable to such geometries 
as well, as long as correct asymptotic solutions are used.  
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