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COMPARISON OF 1D AND 2D CSR MODELS WITH APPLICATION TO
THE FERMI@ELETTRA BUNCH COMPRESSORS∗

G. Bassi† , BNL, Upton, NY 11973-5000, USA.
J. A. Ellison, K. Heinemann, University of New Mexico, Albuquerque, NM 87131, USA

Abstract

We compare our 2D mean field (Vlasov-Maxwell) treat-
ment of coherent synchrotron radiation (CSR) effects with
1D approximations of the CSR force which are commonly
implemented in CSR codes. In our model we track parti-
cles in 4D phase space and calculate 2D forces [1]. The
major cost in our calculation is the computation of the
2D force. To speed up the computation and improve 1D
models we also investigate approximations to our exact 2D
force. As an application, we present numerical results for
the Fermi@Elettra first bunch compressor with the config-
uration described in [1].

CSR MODELS FOR BUNCH
COMPRESSORS

In this paper we discuss and compare 1D and 2D mod-
els to study CSR effects in bunch compressors. In Fig.
1 we plot the reference curve (blue curve) for a four
dipole (regions in gray) chicane bunch compressor in the
(Z,X)-plane of the lab system. The parameters are for the
Fermi@Elettra first bunch compressor (see Table 1).
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Figure 1: First bunch compressor of Fermi@Elettra. The
curve in blue is the reference curve in laboratory system.
The regions in gray represent the magnets.

Self-consistent 2D model

We summarize the two-dimensional mean field treat-
ment of CSR effects discussed in [1]. We use Frenet-Serret
coordinates with respect to the reference curve and have,
in addition to the lab system, two coordinate systems, one
with u = ct as independent variable where path length s

∗Work supported by DOE under DE-FG-99ER41104 and DOE con-
tract DE-AC02-98CH10886
† gbassi@bnl.gov

Table 1: Chicane and beam parameters at first dipole
Parameter Symbol Value Unit
Energy reference particle Er 233 MeV
Peak current I 120 A
Bunch charge Q 1 nC
Norm. transverse emittance γε0 1 µm
Alpha function α0 0
Beta function β0 10 m
Linear energy chirp h -12.6 1/m
Uncorrelated energy spread σE 2 KeV
Momentum compaction R56 0.057 m
Radius of curvature R 5 m
Magnetic length Lb 0.5 m
Distance 1st-2nd, 3rd-4th bend L1 2.5 m
Distance 2rd-3nd bend L2 1 m

is a dependent variable and one coordinate system where
s is the independent variable and u is a dependent vari-
able. Following [2] we call the former “beam system 1”
and the latter “beam system”. In [1] we used the terminol-
ogy “beam frame” instead of “beam system” but that term
can be confused with “inertial frame”. The equations of
motion in the beam system are

z′ = −κ(s)x , x′ = px ,

p′z =
q

Prc
[t(s) + pxn(s)] ·E‖(R̂, s) ,

p′x = κ(s)pz +
q

Prc

[
n(s) ·E‖(R̂, s)− cBY (R̂, s)

]
,(1)

where ′ = d/ds and R̂ = Rr(s) + M(s)r. Here Rr(s) =
(Zr(s)Xr(s))

T gives the reference curve in the lab system,
t = (Z ′r, X

′
r)
T ,n = (−X ′r, Z ′r)T , M = [t,n], r = (z, x)T

and Pr is the momentum of the reference particle. These
are eqs. (27) of [1] and can be derived from eqs. (78) of [2]
using a slowly varying approximation.

The self-fields are retarded solutions of Maxwell’s equa-
tions, given by(

E‖
BY

)
(R, u) = − 1

4π

∫ u

−∞

∫ π

−π
S(R̃(θ, v), v)dθdv,

where R̃(θ, v) = R+ (u− v)e(θ) and S is the lab system
source term related to the charge/current density ρL,JL in
the lab system. These densities are determined from the
phase space density fB in the beam system [2]. For more
details see [1, 2].
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Figure 2: Comparison of the 2D model [1] and the 1D model [3], [4]. Left: mean energy loss. Center: mean power. Right:
x-emittance.
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Figure 3: Comparison of the 2D model [1] and the 1D approximation scheme discussed in the paper. Left: mean energy
loss. Center: mean power. Right: x-emittance.

1D model
Here we consider the model developed by Saldin et

al. [3] and Stupakov et al [4]. We distinguish two cases.
When the particle beam is inside the magnet, the CSR force
is formula (87) of [3], which is equivalent to formula (5) +
(6) of [4]. When the beam is in the drift, an explicit formula
(formula (10) + (15) of [4]) has been obtained by Stupakov
et al. based on Saldin’s formalism [3]. Apparently that for-
malism is developed in our beam system 1. In appendix
A we show how to write down the formulae in the beam
system using the results derived in [2]. The equations of
motion corresponding to eq. (1) are

z′ = −κ(s)x , p′z = GB(z, s) ,

x′ = px , p′x = κ(s)pz . (2)

If the beam is inside the magnets, i.e. si ≤ s ≤ si+1 for
i = 0, 2, 4, 6 (see Fig. 1), we have

GB(z, s)=−4r0N

γrRφ

[
λB

(
z−Rφ

3

24
, s
)
−λB

(
z−Rφ

3

6
, s
)]

− 2r0N

γr(3R2)1/3

∫ z

z−Rφ3/24

1

(z − z′)1/3

∂

∂z′
λB(z′, s)dz′, (3)

where φ=(s − si)/R, R is the radius of curvature of the
magnets, r0=q2/4πε0mec

2 the classical radius of the elec-
tron, γr the Lorentz factor of the reference particle, N the
number of electrons in the beam and λB :=

∫
dpzdpxdxfB

is the longitudinal density in the beam system.
If the beam is outside the magnets, i.e. si ≤ s ≤ si+1

for i = 1, 3, 5, 7 (see Fig. 1), we have

GB(z, s) = −4r0N

γrR

[λB(z −∆smax, s)

φm + 2ŝ

− 1

φm + 2ŝ
λB

(
z − R

6
φ2
m(φm + 3ŝ), s

)
+

∫ z

z−∆smax

1

ψ(z′) + 2ŝ

∂

∂z′
λB(z′, s)dz′

]
, (4)

where

φm =
s1

R
, ŝ =

s− si
R

, ∆smax =
Rφ3

m

24

φm + 4ŝ

φm + ŝ
, (5)

and ψ(z′) is obtained from the equation

z − z′ =
Rψ3

24

ψ + 4ŝ

ψ + ŝ
. (6)

Note that SI units are used.

NUMERICAL RESULTS FOR
FERMI@ELETTRA BC1

We apply the 2D and 1D models to the Fermi@Elettra
first bunch compressor (BC1). Numerical results with the
2D model are discussed in [1] where the microbunching
instability is analyzed. The phase space distribution at en-
trance to the bunch compressor is taken to be Gaussian. In
Fig. 2 we compare mean energy loss, mean power (mean
value of p′z) and transverse emittance. Even though eqs.
(1) and (2) are quite different, both in form and method of
derivation, the agreement between the 2D and 1D model
is good. The 1D model does underestimate the CSR force
in the second and third magnet, as shown in Fig. 2 (cen-
ter). We are working to understand this agreement by a
detailed comparison of eq. (1) and (2). The final transverse
emittance (Fig. 2, right) is 1.45µm with the 2D model and



1.56µm with the 1D model. A good agreement of 1D and
2D CSR models with detailed measurements of the CSR-
induced energy loss and transverse emittance growth has
been found recently in [5]. This may lead to the conclusion
that 1D models are reliable and that there is no need for 2D
models. Despite these results, we believe that a more accu-
rate comparison should be performed to validate 1D mod-
els in the study of effects such as the microbunching insta-
bility. We are planning to apply the 1D model to the study
of the microbunching instability in the Fermi@Elettra BC1
and compare the results obtained with the 2D model of [1].

We conclude with the discussion of a 1D approxima-
tion to our 2D model. We have discovered that the beam
system spatial density is almost stationary in the (z̃, x̃)
coordinates given by eq. (38) of [1]. Our 1D approx-
imation takes x̃ = 0 and the R̂ in eq. (1) becomes
R̂ = Rr(s)+M(s)(1+hR56(s), hD(s))T z̃. The accuracy
of the scheme is shown in Fig. 3. The approximation to the
mean power and transverse emittance is excellent. The fi-
nal value of the transverse emittance is 1.44µm, to be com-
pared with 1.56µm of the exact 2D model. The calculation
is considerably faster than the 2D calculation as it reduces
the computational cost by a factor proportional to the num-
ber of grid points in x̃. We believe this works because of a
weak dependence of Fz1 on its second argument for fixed
values of the first, as illustrated in Figs. 4 and 5 where
we have plotted Fz1(z̃, x̃, s) = (q/Prc)E||(R̂, s) · t(s) in
(ẑ, x̂) coordinates that put the 5 sigma range of the tilde
variables on the square [−1, 1]2. This weak dependence is
satisfied to good approximation where the CSR force has
its maximum strength, namely inside the magnets, with the
worst case scenario for s = 5m illustrated by Fig. 4. A
more detailed discussion, together with an analysis of the
relation between the CSR forces in eq. (1) and (2), will be
presented in a forthcoming paper [6]. We are also planning
to validate this approximation scheme against the exact 2D
model in the study of the microbunching instability [1]. On
our agenda is also the comparison of the 1D and 2D mod-
els with the LCLS bunch compressors [5] where measure-
ments have been done in a strong CSR regime.

APPENDIX: SALDIN’S FORMULA WITH
S AS INDEPENDENT VARIABLE

We now show how to derive formula (4) with s as inde-
pendent variable from Saldin’s formula (87) of [3] that has
u = ct as independent variable. We first write the right-
hand side of Saldin’s formula (87) in the form

G1(s, u) = −A
[
B(s)

(
λ1(s− sL, u)− λ1(s− 4sL, u)

)
+

∫ s

s−sL

1

(s− s′)1/3

∂

∂s′
λ1(s′, u)ds′

]
, (7)

where A = 2r0N/(γr(3R
2)1/3), B(s) = s

−1/3
L and sL =

Rφ3/24. Using the density transformation between lab and
beam system λ1(s, u) = λB(s− βru, s) [2] and assuming
the following slowly varying approximation (SVA)

λB(z, s+ ∆) ' λB(z, s), ∆ ≈ σ (σ = bunch length)

it follows that

GB(z, s) = G1(s, u =
s− z
βr

)

= −A
[
B(s)

(
λB(z − sL, s)− λB(z − 4sL, s)

)
+

∫ s

s−sL

1

(s− s′)1/3

∂

∂s′
λB(s′ − s+ z, s′)ds′

]
. (8)

Using again the SVA and changing integration variable
z′ = s′ − s+ z we have

GB(z, s) = −A
[
B(s)

(
λB(z − sL, s)− λB(z − 4sL, s)

)
+

∫ z

z−sL

1

(z − z′)1/3

∂

∂z′
λB(z′, s)dz′

]
, (9)

which is equivalent to eq (3). A similar argument leads
from formula (10) + (15) of [4] to eq. (4).
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Figure 4: Plot of Fz1(z̃, x̃, s) in normalized coordinates at
s=5m (exit third magnet). The 1D approximation scheme
uses Fz1(z̃, 0, s) (blue line).
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Figure 5: The same as in Fig. 4 for s=8m (end of chicane).
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