Open-Midplane Dipoles for a Muon Collider

R. Weggel, J. Kolonko, R. Scanlan
Paricle Beam Lasers, Northridge, CA
D. Cline, X. Ding, UCLA, Los Angeles, CA 90095, U.S.A
M. Anerella, R. Gupta, H. Kirk, B. Palmer, J. Schmalzle
BNL, Upton, NY

Presented at the Particle Accelerator Conference (PAC11)
New York City, NY
March 28 – April 1, 2011

May 2011

Superconducting Magnet Division
Brookhaven National Laboratory

U.S. Department of Energy
University of Michigan

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
OPEN-MIDPLANE DIPOLES FOR A MUON COLLIDER*

R. Weggel#, J. Kolonko & R. Scanlan, Particle Beam Lasers, Northridge, CA
D. Cline & X. Ding, UCLA, Los Angeles, CA 90095, USA
M. Anerella, R. Gupta, H. Kirk, B. Palmer & J. Schmalzle, BNL, Upton, NY

Abstract
For a muon collider with copious decay particles in the plane of the storage ring, open-midplane dipoles (OMD) may be preferable to tungsten-shielded cosine-theta dipoles of large aperture. The OMD should have its midplane completely free of material, so as to dodge the radiation from decaying muons. Analysis funded by a Phase I SBIR suggests that a field of 10-20 T should be feasible, with homogeneity of 1×10^{-4} and energy deposition low enough for conduction cooling to 4.2 K helium. If funded, a Phase II SBIR would refine the analysis and build and test a proof-of-principle magnet.

CONCEPT, FIELD, FORCES & STRESSES

Dipole Magnet with Truly Open Midplane
For muon colliders, cos(θ) dipoles are expensive because of the large bore needed to accommodate shielding to protect the conductor from radiation from the decaying muons. Open-midplane dipole (OMD) designs [1] banish windings from the path of this radiation. The design concept proposed here—an outgrowth of R&D for an LHC luminosity upgrade [2, 3]—banishes structure, too, from the midplane. The windings closest to the midplane are supported via magnetic attraction from outboard windings embedded in stainless steel [Fig. 1].

![Figure 1: Cross section & field magnitude in 1st quadrant of an OMD. Half-gap = 15 mm; structural support: $x_{\text{max}}=40$ cm; $y_{\text{max}}=20$ cm. Muon beam is at [0, 0]. Lobed end of keyhole accommodates a radiation absorber of tungsten.](image)

Fields & Forces: Equations & FEM Modeling
To generate designs with optimized combinations of central field B_0, field homogeneity $\Delta B/B_0$, peak-field ratio B_{max}/B_0 and conductor volume or cost, while guaranteeing that the vertical magnetic force on each inboard coil will attract it away from the midplane, analytic equations are preferable to FEM methods to compute the fields and forces. For a bar of infinite length, rectangular X-section and uniform current density J, the vertical field B_j is [4]:

$$B_j = \sum_{i=2}^{\infty} \sum_{j=2}^{\infty} (-1)^{i+j} c_{B,j} \ln(u_i^2 + v_j^2) + 2v_j \tan^{-1}\left(\frac{u_i}{v_j}\right),$$

where $c_{B,j} = \mu_0 J$, and u_i and v_j are shorthand for a_i-x and b_j-y, the horizontal and vertical distances, respectively, from a bar corner $[a_i, b_j]$ to the field point $[x, y]$. B_j is of the same form, with u_i and v_j interchanged.

The vertical force F_j between two bars has sixteen terms of the form:

$$c_F \left[(3v^2 - u^2) u \ln(u^2 + v^2) + 2v\left[3u^2 \tan^{-1}\left(\frac{v}{u}\right) + v^2 \tan^{-1}\left(\frac{u}{v}\right)\right]\right],$$

where $c_F = \mu_0 J / 6$, and u and v are shorthand for u_{im} and v_{im}, the horizontal and vertical distances between bar corners $[a_i, b_j]$ and $[a_m, b_n]$; i, j, m and n each run from 1 to 2. For the horizontal force F_x, interchange u and v. Field and force formulas are analytic for bars of finite length, too, and are well-behaved even for bars with faces mitred to approximate conductors that curve [5].

The OMD of Fig. 1 has a central field of 10 T at 200 A/mm² and a peak field ratio of only 107%. $\Delta B/B_0$ is 0.01% everywhere within the red curve of Fig 2.

![Figure 2: Contours of field-homogeneity $\Delta B/B_0$ of OMD of Fig. 1. $\Delta B/B_0 = 1 \times 10^{-4}$ at [6.7 mm, 0] & [0, 5.2 mm].](image)

The inboard bar of conductor experiences a vertical force that is upward not only in total but on each half separately, to preclude tipping toward the midplane. The horizontal force totals 1356 kN/m. The forces on the outer bar are $F_y = -3650$ kN/m and $F_x = 4194$ kN/m.

*Supported by the U.S. DOE under Contract No. DE-AC02-98CH10886 and SBIR contract DOE grant Nos. DE-FG02-07ER84855 & DE-FG02-08ER85037

#bob_weggel@mindspring.com
Finite-element computations confirm that support structure of sufficiently great cross section can limit stresses and deformations to acceptable levels with a central field of well over 10 T, and maybe even 20 T. The von Mises stress [Fig. 3] to the right of the keyhole is benign, being compressive. The average tension in the web between the inboard and outboard bar is only ~150 MPa at 10 T; the predicted maximum deformation—not yet reduced by stress management—is less than 0.27 mm [Fig. 4]. At 20 T the tension would be ~600 MPa—acceptable for some stainless steels, especially when cold.

ENERGY-DEPOSITION PREDICTIONS

In a 1.5 TeV center-of-mass muon collider storage ring, muons decay to electrons at a rate of 5×10^9/s per meter of ring. About 1/3 of the muon energy is carried by electrons, which are deflected toward the inside of the ring by the dipole magnetic field. The radiation (energetic synchrotron photons and electromagnetic showers) is ~200 W/m, mostly in the horizontal plane of the storage ring. The energy deposition must not exceed the quench tolerance of the superconducting coils. To predict the energy deposition we use the code MARS15 [3].

For our simulations we assume two counter-circulating muon beams of 750 GeV, with 2×10^{12} muons per bunch at a rep rate of 15 Hz. Figure 5 shows the result for a unidirectional muon beam traversing an open midplane dipole of 15 mm half gap. At the downstream end of a 6-m-long dipole the peak power density is 0.13 mW/g on the right (inward) side of the bend and 0.05 mW/g on the left side. For the outboard bar the respective peak power densities are 0.14 mW/g and 0.07 mW/g. These values are comfortably below those considered acceptable [3].

PROPOSED PROOF-OF-PRINCIPLE OMD

A major goal of a proposed Phase II SBIR is to fabricate and test a proof-of-principle (P-O-P) open-midplane dipole with the following features:

- Magnetic Lorentz forces on the inboard conductors hold them away from the midplane, so that they need no midplane support.
- The short-sample field should be ~10 T.
- The conductor is Nb$_3$Sn, as in a full-size 10-T OMD.
- The OMD incorporates most pertinent cold-mass components—support structure, iron yoke & keyhole to accommodate a hypothetical warm absorber.
- The OMD meets all constraints on stress, strain and deformation.

Demonstration of such a magnet will advance both muon collider feasibility and magnet technology, being the first test of a magnet with only magnetic support of inboard coils.
To be consistent with the budget of a Phase II SBIR, costs are minimized by using a bolted structure and adopting a proven LBNL Nb3Sn double-pancake design [7]. The focus of this P-O-P magnet is to demonstrate a new design rather than to develop a new conductor technology. The design has a predicted short-sample field of ~9.7 T using Nb3Sn strands with a critical current density of 2500 A/mm² at 12 T and 4.2 K with a Cu:SC ratio of 1:1; the corresponding current density in the coil is ~750 A/mm². Figures 7 and 8 sketch the cross section of windings and support structure.

Figure 7: X-section of the proposed proof-of-principle OMD. Conductor is orange; structure is grey (stainless steel) or blue (iron). The four white circles are for tie rods to restrain end plates that resist end forces. The midplane gap would, in a muon collider, accommodate a beam pipe and, at its dumbbell ends, tungsten absorbers.

Figure 8: Racetrack coils & yoke (collar omitted for clarity). B₀ = 9.7 T at assumed short-sample current.

Figure 9: Von Mises stress, σvM, at B₀ = 10.7 T, which overestimates the stress by 21%; max. σvM ≈ 400 MPa.

ANSYS predicts the maximum deformation at a central field of 10 T to be only 87 μ in the structure and, more importantly, only ~ 20 μ in the coils (Fig. 10).

Figure 10: Total deformation δ on support structure at B₀ = 10.7 T; δmax = 87 μ; coil δmax ≈ 20 μ.

SUMMARY

A Phase I SBIR has advanced the feasibility of open-midplane dipoles for the storage ring of a muon collider. A proposed Phase II SBIR would refine these predictions of stresses, deformations, field quality and energy deposition. Design optimizations would continue, leading to the fabrication and test, for the first time, of a proof-of-principle dipole of truly open-midplane design.

REFERENCES