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ABSTRACT 

We explore the sonification of x-ray scattering data, which are 
two-dimensional arrays of intensity whose meaning is obscure 
and non-intuitive. Direct mapping of the experimental data into 
sound is found to produce timbral sonifications that, while 
sacrificing conventional aesthetic appeal, provide a rich 
auditory landscape for exploration. We discuss the optimization 
of sonification variables, and speculate on potential real-world 
applications. 
 

1. INTRODUCTION 

Sonification of datasets is becoming more popular as an 
alternative modality for exploring, and understanding, datasets. 
Beyond the obvious implications for accessibility, sonification 
enables interested parties to interact with data more deeply; e.g. 
multi-modal data exploration leverages more of a person’s 
sensory ‘surface area.’ This is especially relevant in light of the 
modern trends in data collection: datasets are growing ever-
larger, and in many cases ever-more complex, esoteric, and 
non-intuitive. We elected to study sonification of x-ray 
scattering data, which are rather abstract datasets that even 
experts struggle to understand. 
 An x-ray scattering experiment consists of directing a 
highly collimated, monochromatic, beam of x-rays through a 
sample of interest. The incident x-ray wave scatters off of all 
the atoms and/or particles in the sample, and the interference of 
these secondary waves produces scattered rays at angle (with 
respect to the direct beam) that are characteristic of the 
material’s internal structure.[1] Depending on the experimental 
geometry, this process may be called ‘diffraction.’ In a 
scattering experiment, the deflection of scattered rays is 
characterized by the so-called momentum transfer vector, 
usually denoted by q, which is computed from the measured 
scattering angle, 2θ, by: 

     (1) 

where λ is the wavelength of the x-rays. The quantity q has 
units of 1/distance, and q-space is thus frequently called 
‘inverse space,’ or ‘reciprocal space.’ This abstract space is in 
some sense the Fourier transform of the realspace density 
distribution in the sample. Mathematically: 

    (2) 

    (3) 

The scattered intensity, s(q), is computed by summing the 
scattering contributions from the n scattering entities in the 
material (e.g. each atom). The scattering contribution of each 
entity, fn, is in turn computed by integrating its density 
distribution, ρ(r), over all of real-space. 

Conceptually, the scattering experiment encodes all 
the information about the sample’s shape and internal structure, 
albeit in an opaque and non-intuitive way. Roughly, a scattering 
peak at a particular q (i.e. angle) implies a real-space repeating 
structure with a size-scale of: 

     (4) 

We note that the inverse nature of 2π/d means that a scattering 
peak at large angle corresponds to small real-space distances, 
whereas a peak at small angle corresponds to larger real-space 
distances. Wide-angle x-ray scattering (WAXS) is thus 
sensitive to the very-small atomic and molecular-scale ordering, 
whereas small-angle x-ray scattering (SAXS) can be used to 
probe larger (though still small!) nanoscale structures. As the 
field of nanotechnology matures, x-ray scattering is emerging 
as a powerful tool to study new materials; however interpreting 
this data is difficult. Although scattering data is in essence a 
Fourier transform of the material’s structure, an experiment 
only captures the amplitude of the scattered waves, and cannot 
record the phase information. This well-studied ‘phase 
problem’ prevents direct inversion of the data, making 
interpretation of such data problematic. 
 X-ray scattering datasets are normally visualized 
using two-dimensional false-color images (see example in 
Figure 1). These images are an extremely valuable tool for 
researchers, but have their limitations. Scattering data can have 
a very large dynamic range, which is difficult to represent in a 
single image. Here, sonification can help, since the human ear 
has a correspondingly large dynamic range. [2] Moreover, the 
Fourier transform nature of scattering data implies a natural 
match with audio data. In scattering experiments, a given 
feature (e.g. at q0) will frequently have harmonics (at 2q0, 3q0, 
etc.). Interpreting this axis as frequency in a sonification would 
naturally generate audio overtones (and deviations thereof), 
which the human auditory system is exceedingly well-equipped 
to detect: timbre. Timbre is difficult to define, but has been 
described as “that attribute of auditory sensation in terms of 
which a listener can judge that two sounds, similarly presented 
and having the same loudness and pitch, are different.” [3]  
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Figure 1: Example x-ray scattering data (in this case, wide-
angle diffraction data for a Nickel-Tungsten alloy). The 
direct beam is incident near the lower-left corner of the 
image. The false-color image highlights certain features 
(e.g. rings) which arise from diffraction of x-rays from the 
sample’s internal structure. The position and intensity of the 
rings encodes (non-trivially) the exact structure of the 
material. 

In this paper, we explore sonification as a tool to 
provide scientists with an additional method to deeply 
explore scattering datasets. The abstract nature of the data 
makes this a challenging, but critical, problem. Moreover 
the quantity of such data generated is growing hugely with 
time: newer x-ray instruments are now being built with 
ever-greater flux, generating data at an ever-increasing 
speed. It is also worth noting that scattering experiments can 
also be performed with visible light, electron beams, and 
even neutron beams. Although we focus very specifically on 
x-ray scattering data in this paper, we view this as a case 
study for the general problem of extracting meaning from 
the highly abstract datasets that are common in the physical 
sciences. We show that timbral sonification generated 
directly from the data through additive synthesis [4] can 
provide a useful instantiation of abstract data. 

 

2. SONIFICATION 

Over the last few decades, there have been a number of 
interesting cases of data sonification. Sonifications have been 
made of seismic data [5], ocean currents [6], heart rates [7],  
and the stock market [8]. Despite these examples, sonification 
is a largely underutilized technique. Sonification provides a 
number of unique advantages: the human ear has a wide 
dynamic range across two variables: frequency and loudness; 
the human auditory system is finely tuned to detect subtle 
changes and extract signals from substantial noise; sonifications 
can be ambient, rather than requiring focused attention; and 
sonifications can be added to, rather than replacing, other forms 
of data exploration, creating more immersive multi-modal 
interactions. 
 Much of the existing work in sonification involved 
conversion of time-series data; in fact in many cases the 
sonification was produced by frequency-shifting or time-
compression of an audio signal. Such conversions are 

undoubtedly valuable, and are intuitive to understand, but this 
leaves aside the vast majority of datasets, where some non-
temporal variable is of interest. We show here that although 
sonification of more abstract datasets is necessarily less 
intuitive, one can nevertheless learn to understand the 
sonifications and have them provide useful information. 

Many recent sonifications have mapped the input data 
onto a tonal scale, or even used sampling or synthesis to 
reproduce notes from particular instruments. [9] These musical 
sonifications, like music itself, exploit pattern-seeking features 
of the human auditory system to create sounds that are crisp, 
distinct, recognizable, and typically pleasant. Although such 
realizations can be interesting, even beautiful, the musical 
nature frequently obscures the underlying patterns in the data. 
In fact, the extensive cultural and emotional baggage associated 
with musical patterns can entirely overwhelm the data. Herein 
we advocate for the more direct mapping between data space 
and sound. This necessarily leads to more complex, even 
cacophonous, sonifications; however such a mapping is 
relatively unbiased and preserves the majority of the 
information content. Our sonification method uses pitch and 
loudness only to inform the additive synthesis; the main 
auditory channel is timbre. One can crudely identify a tradeoff 
between aesthetics and information content. A mapping will 
obviously need to be tuned to make it easy for a person to listen 
to (informative and at least not unpleasant), but rule added to 
the mapping enforces a kind of order on the output that was not 
in the original data. 

 

 
Figure 2: Sonification procedure. The x-ray scattering 
experiment converts sample structure into a two-dimensional 
array of intensity values. We map this array directly into a two-
dimensional spectrogram. This preserves all the information 
from the scattering experiment, which the listener then 
interprets. 

 
Our sonification procedure (see Figure 2) consists of 

reformulating the two-dimensional scattering image into a (q, 
angle) array, where ‘angle’ is the arc angle with respect to the 
vertical axis of the image. In so doing, rings of scattering 
(which have a constant q-distance from the incident x-ray beam) 
are turned into straight horizontal lines in the I(q,angle) matrix. 
This is essentially exploiting a known symmetry of scattering 
experiments, wherein all the scattering features are centered 
about the x-ray beam. Doing so also highlights any variation in 
the ring intensity, which corresponds to spatial orientation of 
the structures in the sample. The intensity matrix has no time 
variable; we introduce time by in effect sweeping through the 
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experimental data. In particular, the I(q,angle) matrix is directly 
converted into an I(f,t) matrix, where f is frequency and t is time. 
This matrix is simply a spectrogram, or sonogram, which can of 
course be converted into a sound waveform through additive 
synthesis. For a sampling rate fs: 

   (5) 

here A(t) is the instantaneous amplitude of the output waveform, 
and the I(f,t) is discredited into In(t) by splitting the frequency 
range into N bins. Thus the scattering data (the I(q,angle) 
matrix) is mapped directly into the amplitudes of the sine wave 
components of the sound. This synthesis inherently creates 
timbre-based (as opposed to tonal) sounds. 
 We wrote a simple program, using the Python 
programming language, which directly performs the 
computation in equation (5), and outputs the resultant 
waveform into a sound file. We note that this brute-force 
computation of the waveform is not necessarily the most 
computationally efficient, or elegant, means of performing 
additive synthesis (e.g. an appropriate FFT could be used). 
However we elected to use this method in order to provide 
flexibility in terms of redefining the mapping between the input 
data and the output waveform (as will be exploited in section 3). 

The mapping of q into frequency is extremely natural. 
As already described, both q and f are in some sense the 
variables along which a Fourier transform is taken. Both exhibit 
overtones and other natural relationships. The selected mapping 
is essentially taking the spatial modes (c.f. equations (2) and (3)) 
and mapping those into frequency modes. Although the one-to-
one mapping between the I(q,angle) array and I(f,t) array is 
information-preserving, and relatively natural, we must make a 
number of choices about what ranges to specifically map 
between. We explore in detail these choices in the next section. 

3. PARAMETER OPTIMIZATION 

In producing audio files from the two-dimensional data 
matrices, we must make a number of decisions about both 
audio encoding, and the range of the mapping (e.g. how to 
scale between angle and time). A sampling rate of fs = 44.1 
kHz (CD audio quality) was selected to provide sufficient 
quality for the detailed structures in the scattering data. 
Similarly, a 32-bit intensity encoding was used to allow for 
the large dynamic range of scattering datasets. As 
mentioned, there is a natural relationship between q and f. 
We align q = 0 with f = 0 so that any harmonics (or other 
natural progressions) in the scattering data are automatically 
converted into harmonics in the sound output. Scattering 
images are typically visualized using a false color map 
applied through a logarithmic scale. However the wide 
dynamic range of human hearing makes this unnecessary for 
sonification. 

 
Figure 3: X-ray scattering data used to optimize the sonification 
parameters. The sample is a polymer material, confined in a 
nanoscale grating (the grating wells are only 40 nm wide, 
~1/2500 the width of a hair). The overall structure is a 
prototype for future solar-cell technology. The scattering ring is 
not uniform: the variation of intensity along the ring encodes 
the orientation polymer crystals. 
 

 
Figure 4: The scattering data from Figure 3, remapped into an 
I(q,angle) matrix. This matrix can also be interpreted as the 
sonogram, where the horizontal axis is time, and the vertical 
axis is frequency. Note that the ring in the scattering data has 
become a line (at a particular value of q = 2π/d, which in the 
sonogram means a particular frequency). In the sonification, the 
change in loudness of this frequency effectively encodes the 
orientation of the original material. 
 
 Further parameters were optimized by testing a 
variety of values. For this testing we used scattering data from a 
polymer solar cell material confined in a nanoscale grating (see 
Figure 3). Physically, this sample has an oriented morphology; 
this translates to a scattering ring whose intensity varies along 
the arc. This, in turn, translates into time variation of the 
sonification. 
 The mapping along the frequency axis, which 
encodes the q-values, is necessarily arbitrary. Although there is 
a natural reason to align the origins of q and f space, there is no 
clear correspondence between inverse-distance and inverse-
time units. The maximum frequency for human hearing is 
~20 kHz. However this choice of frequency maximum was 
found to generate sounds with too many piercing components. 
This, in turn, would lead to listener fatigue. As would be 
expected, selecting too low a value for the frequency ceiling 
(e.g. 500 Hz) resulted in deep and rumbling sounds which 
essentially washed out all the structure in the scattering data. 
We found that an upper bound of ~5 kHz in frequency resulted 
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in sonifications that were rich and preserved important data 
features, without leading to ear fatigue. 
 The partitioning of the frequency axis into N bins has 
a substantial effect on the quality and character of the final 
sound. An extremely low value (e.g. 10 bins per Å–1), not 
surprisingly, over-smoothed the data and resulted in a loss of 
data. However, extremely fine partitioning (e.g. 1000 bins per 
Å–1) introduced drastic beating artifacts into the sound. 
Essentially, by having more frequency resolution than actually 
warranted by the data’s q-resolution, we introduce step-edges in 
the frequency envelope, which introduces artifacts into the 
sound. The optimized value (50 bins per Å–1 for the test dataset) 
reproduces the spacing in the original data. This highlights a 
recurring lesson from this sonification case study: the scaling 
and sampling in the sonic space must be commensurate with the 
information content of the input dataset. 
 The construction of the I(f,t) matrix also requires an 
arbitrary choice about temporal discretization. Note that this 
binning width is not the same as the sampling frequency, fs. 
Whereas fs describes the sampling rate used in the additive 
synthesis (the construction of the output waveform), the 
temporal binning describes the partitioning of the I(f,t) matrix 
used to compute the amplitude values for the synthesis. The 
temporal resolution here is limited by the original dataset. As 
expected, using low temporal resolution (10 bins per second) 
smoothed over features in the data, effectively throwing away 
data. Higher data rates of course cure this defect. However, 
there is no advantage to increasing the time partitioning beyond 
that dictated by the initial data. Doing so does not introduce 
artifacts, but nor does it yield additional information. We found 
that 50 to 1,000 bins per second were found to be essentially 
identical. We selected 150 bins per second as the optimal value, 
allowing a healthy safety margin. Increasing the temporal 
partitioning beyond this (e.g. all the way to the sampling rate) is 
unnecessary, and only slows down the computation process of 
the additive synthesis. We noted, however, that the quality of 
the sound improved substantially by interpolating between the 
data points along the time axis. Doing so avoids sudden 
changes in amplitudes, which introduce sharp popping artifacts 
into the sound, which hinders comprehension (not to mention 
damaging speakers). 
 The length of the sound has a strong effect on the 
listener’s ability to discern structure. Sounds that are too short 
are difficult to parse. Stretching the sound helps reveal certain 
details, but inherently makes changes more gradual and difficult 
to notice. We found that sounds less than 1 second were too fast 
to be of any use. Sounds on the order of 1-2 seconds could 
potentially be useful for quick comparisons and identifications, 
but were still too fast to truly notice signal variations. At 3.5 
seconds, sounds, and trends within those sounds, were 
discernible. Stretching sounds beyond ~10 seconds made it 
harder to track feature changes. 
 The above parameter optimization confirms certain 
limits of the sonification process, but is in some sense 
idiosyncratic to the datasets chosen. Ideally, all of these 
variables would be quickly and easily tunable by the user, 
allowing them to explore datasets in different ways. What we 
have presented here should be viewed as ‘sensible defaults.’ 
Looking forward, we envision a software interface that allows 
the user to select subsets of the scattering data to sonify, and 
allows the mapping ranges themselves to be easily modified. 

4. VARIANTS 

In the foregoing, we have attempted to motivate the use of the 
most direct, perhaps most naïve, mapping between the input 
data and the final waveform. This needn’t, of course, be the 
case. We explored a variety of alternative mapping strategies. 
Imposing additional mapping rules can be a powerful way to 
highlight certain features of datasets, and this is a valuable way 
to explore data through sound. However we note again that this 
imposition will necessarily distort the data, highlighting some 
features at the expense of others. 
 We considered the following alternate mapping of 
intensity to waveform amplitude: 

   (6) 

Here, rather than the intensities modulating the amplitude of the 
sine waves, they modulate the frequencies of these waves. Note 
that extremely small values in In(t) shift the corresponding 
frequency channel (fn) to an extremely low-frequency. Such low 
frequencies in effect do not contribute to the final sound. We 
thus recover the behavior that the q-ranges for which there is no 
scattering intensity are silent. By using the data matrix to 
modulate frequency, rather than amplitude, the character of the 
sound changes substantially. Changes in intensity become very 
strongly highlighted, as they produce noises that vary in pitch. 
These chirps or ‘boomerang’ sounds are distinctive and can be 
useful for uncovering subtle intensity changes, or small peaks, 
that might otherwise go unnoticed. 
 

 
Figure 5: One-dimensional scattering data for a sample of silver 
behenate (a lammelar-forming fatty acid). The data is obtained 
by averaging over all angles in a two-dimensional scattering 
image. 
 

For many samples of interest in x-ray scattering, there 
is no preferred orientation of the material (i.e.: it is isotropic). 
These samples produce scattering images with uniform rings. 
Experimentalists typically convert these two-dimensional 
datasets into one-dimensional curves by averaging overall all 
possible angles in the image (Figure 5 shows an example of the 
one-dimensional data thereby obtained). Sonifying the original 
two-dimensional data using the approaches described above 
would result in a sound that does not vary with time. This could 
still be useful, as the character of the sound would encode the 
relationships between the positions of the peaks in the data. 
However alternate encodings could potentially be more useful. 
One obvious mapping that we explored is to simply sweep time 
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through the horizontal axis (q), and use the intensity to 
modulate the amplitude of a single tone at frequency f: 

    (6) 

Although simplistic, this mapping can be useful. In particular, 
the existence of equally-spaced peaks in scattering data yields 
an oscillation, or ringing, in the sound. The decay of the sound 
loudness is unmistakable and easy to track. Moreover, subtle 
deviations of peak positions could be picked up by the listener, 
as hearing is able to discriminate small timing differences. As 
with the two-dimensional data, we can use the intensity data to 
instead modulate the frequency of the sound: 

    (7) 

Here again, we discover that by modulating frequency, rather 
than amplitude, sudden changes in intensity in the data become 
highlighted by sweeping changes in frequency, which sound 
vaguely like scratching a record. Details of peak positions and 
heights are sacrificed, but extremely weak peaks now become 
readily apparent. This points again to the need in sonification 
for user-adjustability: depending on the kind of data, and the 
kind of search being performed, a different sort of mapping 
may be optimal. 

5. APPLICATIONS 

Scientists studying x-ray scattering have already developed a 
sophisticated toolbox of visualization techniques to explore data, 
and theoretical models to explain, quantify, and fit their data. It 
is thus natural to ask whether sonification can bring any new 
insight to the task of understanding these abstract datasets. We 
envision a variety of ways in which sonification could elucidate 
experiments. Consider the data shown in Figure 6, for four 
different kinds of samples. The false-color images are all quite 
distinct; and indeed the corresponding sounds are all unique and 
extremely distinct: the first image (a commercial plastic) has 
many striations (scattering rings which arise from the 
crystalline packing in the material). This leads to a number of 
fairly distinct tones persisting in time. The second image is a 
‘misaligned’ sample, wherein the beam was not properly 
aligned onto the sample of interest. The result is a nearly empty 
scattering matrix; the corresponding sonification is dominated 
by blips and cracks that sound distinctly like artifacts. The third 
example is a composite of nanotubes dispersed in an elastic 
polymer. The scattering image has diffuse intensity throughout, 
due to the disordered arrangement in the sample; this can be 
heard as a hazy, wind-like sound permeating the sonification. 
The final example is a nano-scale grating measured using 
small-angle scattering. Here, the extremely regular and precise 
structure results in many distinct streaks in the false-color 
image. These non-horizontal streaks create periodic slewing 
noises that sound mechanical and unnatural, which nicely 
represents the finely-scribed nature of the sample. 

 

 

 
Figure 6: Examples of the variety of data one can obtain from 
x-ray scattering. From top to bottom the sample are: a semi-
crystalline commercial plastic; a ‘misaligned’ sample (where 
the beam missed the sample); a composite of carbon nanotubes 
in a matrix of elastic polymer; and an empty nano-scale grating. 
 

Overall, the evident distinction between the samples 
is well-conserved in sonification. One notable advantage of 
sonification over careful visual inspection is that the former can 
be done ambiently. Modern scientific instruments are becoming 
increasingly automated, to handle the growing scale of 
scientific discovery. Such automation is inefficient if it still 
requires the experimenter’s undivided attention. Sonification 
provides the opportunity for the experimenter to work on other 
tasks, while listening, in the background, to automated data 
collection. Any sudden changes in the incoming data, or 
surprising samples, will immediately be noticed and can be 
explored in greater detail. Consider for instance the 
‘misaligned’ sample (second example of Figure 6): the 
sonification is distinctly different and the experimenter would 
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immediately know that something was wrong with the 
instrument. Similarly a particularly poorly-ordered or 
particularly well-ordered material sample would sound unique, 
enabling the experimenter to find a substance of particular 
interest in a field of otherwise identical ones. 
 With some effort and training, it is also likely that an 
experimenter could learn to differentiate between all the unique 
features in the sound, and could pull out interest trends and 
features that they had ignored in a visual analysis. It is clear, 
however, that what is lacking are fast and easy-to-use software 
tools to enable users to quickly explore different mappings and 
different datasets. It may also be possible to use music 
information retrieval algorithms to automatically detect 
similarities and differences between new materials. [10] 

6. CONCLUSION 

We have presented a case study of sonifying x-ray scattering 
data. Direct mapping of the two-dimensional intensity values of 
a scattering dataset into the two-dimensional matrix of a 
sonogram is a natural and information-preserving operation that 
creates rich sounds.  

Our work supports the notion that many problems in 
understanding rather abstract scientific datasets can be 
ameliorated by adding the auditory modality of sonification. 
We further emphasize that sonification need not be limited to 
time-series data: any data matrix is amenable. 

Timbral sonification is less obviously aesthetic, than 
tonal sonification, which generate melody, harmony, or rhythm. 
However these musical sonifications necessarily sacrifice 
information content for beauty. Timbral sonification is useful 
because the entire dataset is represented. Non-musicians can 
understand the data through the overall color of the sound; 
audio experts can extract more detailed insight by studying all 
the features of the sound. 
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