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CORRECTING TRANSPORT ERRORS DURING ADVECTION OF AEROSOL AND 
CLOUD MOMENT SEQUENCES IN EULERIAN MODELS 

 
Robert McGraw 

Atmospheric Sciences Division, Environmental Sciences Department 
Brookhaven National Laboratory, Upton, NY 11973 

 
 

Moment methods are finding increasing usage for simulations of particle population 

balance in box models and in more complex flows including two-phase flows.  These highly 

efficient methods have nevertheless had little impact to date for multi-moment representation of 

aerosols and clouds in atmospheric models.  There are evidently two reasons for this:  First, 

atmospheric models, especially if the goal is to simulate climate, tend to be extremely complex 

and take many man-years to develop.  Thus there is considerable inertia to the implementation of 

novel approaches.  Second, and more fundamental, the nonlinear transport algorithms designed 

to reduce numerical diffusion during advection of various species (tracers) from cell to cell, in 

the typically coarse grid arrays of these models, can and occasionally do fail to preserve 

correlations between the moments. Other correlated tracers such as isotopic abundances, 

composition of aerosol mixtures, hydrometeor phase, etc., are subject to this same fate.  In the 

case of moments, this loss of correlation can and occasionally does give rise to unphysical 

moment sets. When this happens the simulation can come to a halt. Following a brief description 

and review of moment methods, the goal of this paper is to present two new approaches that both 

test moment sequences for validity and correct them when they fail. The new approaches work 

on individual grid cells without requiring stored information from previous time-steps or 

neighboring cells. 
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1. Introduction 

The method of moments (MOM) provides a highly efficient approach to tracking particle 

populations, be they aerosols or cloud droplets. In the case of aerosols the method is a 

statistically based alternative to bin-sectional and modal approaches [Wright et al., 2000]. In the 

case of clouds, where moments are often the desired product of a simulation for comparisons 

with radar and satellite observations, the MOM can replace the bin-sectional method. Recent 

studies have begun looking at the inclusion of higher-order moments, beyond droplet mixing 

ratio, for improving the representation of cloud microphysics in models [Van Weverberg et al., 

2011; Milbrandt and McTaggart-Cowan, 2010]. 

Early applications of the MOM suffered from inability to close the moment evolution 

equations, except in the case of very special growth laws. This problem has been largely 

eliminated with introduction of the quadrature method of moments (QMOM), which allows one 

to obtain closure under very general conditions and to compute physical and optical properties of 

a particle population directly from its moments [McGraw, 1997]. Buoyed by this success, the 

attempt was made early on to incorporate the QMOM into a regional-scale chemical transport 

model (CTM) - the idea being to evolve and track the moments of several particle populations 

and transport these in the manner of chemical species during the advection step. Errors were 

soon encountered and attributed to the corruption of moment sequences during advective 

transport, which in this case was implemented using the Bott scheme, but any nonlinear transport 

scheme designed to reduce numerical diffusion would have the same effect. Wright examined 

invalid moment set generation by two representative advection schemes for ensembles of 104 test 

cases covering a range of initial moment sets and flow conditions. These tests revealed invalid 

moment set frequencies exceeding 0.7% for both schemes [Wright, 2007].  
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The paper of Wright, in addition to presenting a clear description of the problem, also 

analyzed its first solution: “vector transport”, or VT, previously implemented in the chemical 

transport model [Wright et al., 2000]. In VT a sequence of moments is normalized to a selected 

lead tracer, typically number or volume, and only that one tracer is transported for each 

population. The remaining vector components (remaining moments) are transported with the 

same mixing coefficients as the lead tracer, thereby preserving moment ratios within the 

sequence. The main advantages of the VT schemes are that they preserve valid moment 

sequences, and the number of transported quantities is reduced, but the accuracy is not as good as 

found when more than one moment is transported e.g. as in Wright’s number-volume VT scheme 

[Wright, 2007]. The main disadvantage, other than loss of accuracy, is that the VT schemes 

require modification of the transport algorithm to explicitly call out the cell-to-cell mixing 

coefficients at each time step. These modifications have proven tedious and go against the 

concept that aerosol and cloud modules should be interchangeable with any transport scheme. 

More recently a non-negative least squares (NNLS) method for preservation of moment 

sequences was developed and tested for transport of aerosol mixtures [McGraw, 2007]. The 

NNLS scheme makes use of all of the moments and the mixing coefficients (optimized in the 

least squares sense) are determined by the requirement that the final (post advection step) 

moment sequence be a non-negative linear combination of the moment sequence vectors in same 

cell and neighboring cells prior to the advection step – the idea here being based on the fact any 

linear combination of valid moment sequences with non-negative coefficients is itself a valid 

moment sequence.  The approach proved to be much less diffusive than the VT schemes in tests 

of source apportionment for aerosol mixtures [McGraw, 2007], but has the disadvantage that 

valid moment sequences from the previous time step need to be carried forward, as these 

comprise the basis set for NNLS optimization of the updated moments. The new approaches 
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developed here work, instead, on individual grid cells without requiring stored information from 

previous time-steps or neighboring cells. Cell-to-cell mixing coefficients are not required as the 

new methods test moment sequences and correct failed ones in a minimally disruptive way that 

preserves as many of the transport algorithm generated moments as possible. 

2. Moment inequalities 

 We are interested in tracking, in an atmospheric model, the moments of a generally 

unknown distribution function, f (r) . The required methods are illustrated for a particle size 

distribution expressed in terms of particle radius but other coordinates, such as particle volume 

or mass, could just as easily be used. The radial moments are: 

µk ! r k
0

"

# f (r)dr     (2.1) 

for   k = 0,1,2,! . In order to have physical validity it is clear that both the particle distribution 

function and its domain need to be positive: f (r) ! 0 ; r ! 0 .  Identification of the necessary and 

sufficient conditions for a valid moment sequence - i.e., one consistent with a distribution 

function of this type – is attributed to Stieljes and these are usually expressed as inequalities 

involving the Hankel-Hadamard determinants constructed from the moments [Shohat and 

Tamarkin, 1943]: 

  

! n =

µ0 µ1 ! µn
µ1 µ2 ! µn+1
! ! ! !
µn µn +1 ! µ2n

" 0    (2.2a) 

 

  

! n
1 =

µ1 µ 2 ! µn+1
µ 2 µ3 ! µn +2
! ! ! !
µn+1 µn+ 2 ! µ2n+1

" 0 .   (2.2b) 
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Without loss of generality we will work with normalized distribution moments (µ0 = 1). The un-

normalized moments are easily restored by multiplying each moment of the normalized sequence 

by µ0 . With normalized moments, the requirement that determinant !1 " 0 , for example, is 

equivalent to the requirement that the variance be positive: i.e., µ2 ! µ1
2 " 0 . More generally, a 

moment sequence is valid if and only if all inequalities 2.2a and 2.2b are satisfied. 

 Two new approaches for testing valid moment sequences, and correcting invalid ones, are 

now presented.  The first of these will be referred to as Positive Alpha Sequence Enforcement 

(PASE), where the "alpha sequence" consists of certain mathematical quantities introduced by 

Gordon [1968] that are related to the determinant sequence defined above. The PASE algorithm 

is introduced in Sec. 3. The second approach uses difference tables and has the advantage that it 

can pinpoint specific moment errors for sequences of six or more moments. This second 

approach is essentially a filtering method that smoothes moment sequences if and when an 

invalid sequence is found.  The filter algorithm is introduced in Sec. 4. 

3. Correcting invalid moment sequences by positive alpha sequence enforcement (PASE) 

 It is convenient to replace the determinants of Sec. 2 by another set of non-negative 

quantities, the alpha sequence, investigated by Gordon and generated by him using the product-

difference (PD) algorithm [Gordon, 1968]. Inspection of the alpha sequence will (1) indicate 

immediately whether or not a given moment sequence, e.g. one obtained after the advection step 

of a model simulation, is valid and (2) provide a recipe for correction if the tested sequence 

proves to be invalid.  PASE has the further advantage that it includes most of the steps en route 

to obtaining quadrature points for the weight function 

! 

f (r) directly its from moments. These 

points can then be used to approximate the physical and optical properties of f (r)while 

providing the moment closure needed to track the evolution of f (r)  directly from its lower-order 

moments. Indeed this is the basis of the QMOM [McGraw, 1997]. In those cases where an 
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invalid moment sequence is found, the (corrected) quadrature points easily provide corrected 

moments.  

 Consider the following ordering of the determinants defined in Sec. 2: 

  

! 

e = {" 0," 0
1 ,"1,"1

1 ," 2," 2
1 ,!}    (3.1) 

with ! 0 = µ0 = 1. The kth member of this sequence introduces the (k-1)th moment, as  evidence 

by inspection of Eqs. 2.2. Because its elements have an abundance of useful properties, it is more 

convenient to work with the alpha sequence: 

  ! = {!1,! 2,!3,!} ,     (3.2) 

This sequence can be written in terms of moments and e-sequence elements as follows: 

   

  

!1 =1
!2 = "0

1 = µ1

!3 =
"1

"0
1 =

µ2

µ1

# µ1

!4 =
"1

1

"1"0
1 =

e4e1

e3e2

=
(µ2 )2 # µ1µ3

(µ1)
3 # µ1µ2

     !

!n =
enen #3

en #1en# 2

=
"(n / 2)#1

1 / "(n / 2)#1

"(n / 2) # 2
1 / "(n / 2) #2

   (n even;  n $ 4)

                    =
"(n #1) / 2

"(n#3) / 2
1

"(n # 5) / 2
1

"(n# 3)/ 2

    (n odd;  n $ 5)

  (3.3) 

 
where en  is the nth element of sequence e.  The conditions for a valid moment set (Eqs. 2a and 

2b) are easily reformulated in terms of the alphas. Considering the order in which the 

determinants appear,  it follows that the non-negativity conditions: 

      !n " 0         (n = 1,2,!)     (3.4) 

are equivalent to the determinant inequalities (2.2a and 2.2b). Thus a moment sequence is valid if 

and only if inequalities (3.4) hold. To show this by induction, assume non-negativity through 

!n"1 . Eq. 3.3 shows that !n  will be non-negative if and only if the determinant en  is non-
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negative – so the equivalence between inequalities 2.2a and 2.2b, and 3.4 holds also at the level 

of !n . Inspection of the determinant sequence shows that en  is the first determinant to enlist the 

nth moment, µn!1 . Consider the case that 

! 

µn"1 is the first sufficiently corrupted moment that the 

sequence   {1,µ1,µ2 ,!,µ n!1} is invalid (the previous sequence   {1,µ1,µ2 ,!,µ n!2} is valid by 

assumption). In this case both en  and !n  will be negative; the former because the determinant 

inequality on 

! 

en  is violated for the invalid sequence and the latter by Eq. 3.3 that defines the 

alpha set. The method of PASE correction is to set the first negative entry, here !n , and all 

higher values of alpha,   !n+1,!n+ 2,!  to zero. Because the modified alpha sequence now satisfies 

inequalities 3.4, a valid moment sequence is guaranteed.  Equations 3.3 have been introduced 

mainly to show equivalence of the inequalities 2.2 and 3.4. For computational purposes handling 

products and quotients of determinants is not recommended given that a much more efficient and 

well-conditioned approach is available for generating the alpha sequence, quadrature points, and 

valid moment sets - as now described. 

 Inequalities 3.4 (rather than 2.2) will be used to test for corrupted moment sets. To obtain 

the alpha sequence the widely available Numerical Recipes subroutine ORTHOG is used to first 

obtain a tridiagonal Jacobi matrix from the moment sequence.  For six moments 

! 

µ0 =1 through 

! 

µ5  this has the form: 

    

! 

J3 =

a1 b2 0
b2 a2 b3
0 b3 a3

" 

# 

$ 
$ 
$ 

% 

& 

' 
' 
' 
    (3.5) 

where the matrix elements are computed from the moments using ORTHOG.  A similar 

construction applies for 2n moments and 

! 

Jn . Note that ORTHOG works with modified moments, 

which are better conditioned than powers of r, but require that the weight function 

! 

f (r) be 

known.  ORTHOG also works with the ordinary moments defined by Eq. 2.1. For this purpose 
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the coefficients of the modified moment recurrence relations used in ORTHOG need to be set to 

zero.  Because the ordinary moments are not as well conditioned, only lower-order moments 

(powers up to about 

! 

r9) should be used. Fortunately, even fewer moments have proven adequate 

for most applications requiring both reliable dynamics and accurate estimation of aerosol 

physical and optical properties from moments [McGraw et al. 1995; Wright et al., 2002].  

 The Jacobi matrix elements are expressed in terms of the alpha sequence as follows 

[Gordon, 1968]. Note a switch in notation from Gordon’s bi
2  to bi  in the equations below. This is 

consistent with the off-diagonal elements used in defining Jn  (Eq. 3.5) and Numerical Recipes 

[Press et al., 1992]. 

  

! 

a1 ="2

a2 ="3 +"4

a3 ="5 +"6

     !

 
  

b2 = ! 2! 3

b3 = ! 4!5

     !
 

           (3.6) 

Inverting Eq. 3.6 gives a continued fraction expansion for the alphas in terms of the Jacobi 

matrix elements: 

!2 = a1

!3 =
b2
a1

!4 = a2 "
b2
a1

 

  

!5 =
b3

a2 "
b2

a1

!6 = a3 "
b3

a2 "
b2

a1

     !

 

      

! 

     (3.7) 

This concludes generation of the alpha sequence. Quadrature abscissas and weights are obtained 

by solving the eigenvalue problem associated with the Jacobi matrix. The abscissas 

! 

{ri} are just 

the eigenvalues of this matrix. The corresponding weights, 

! 

{wi}, are given by squares of the first 
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components of the corresponding eigenvectors. Thus if 

! 

wi is the weight corresponding to 

abscissa/eigenvalue 

! 

ri , 

! 

vi the corresponding eigenvector, and 

! 

vi,1 its first component, then 

! 

wi = µ0(vi,1)
2 = vi,1

2 , where the second equality applies for normalized moments [Press et al., 

1992]. As with 

! 

f (r) (Eq. 2.1), each of the abscissas and weights must be non-negative for a 

valid moment set. Indeed, one can just as well examine the quadrature points obtained form the 

Jacobi matrix to determine validity of a moment set - especially if the QMOM is already being 

used. Most moment sequences will pass this inversion test; in case an invalid set is detected, e.g., 

by the appearance of a negative eigenvalue, an alpha sequence can be generated from the matrix 

elements using Eq. 3.7 and the PASE correction applied. 

The quadrature points, obtained through ORTHOG and matrix diagonalization, give 

approximations to integrals of the form: 

! 

I = "(r) f (r)dr
0

#

$ % "(ri
i=1

n

& )wi   (3.8) 

 
for known kernel functions, including an n-point quadrature estimate for µk  in the special case 

that kernel is of the form !(r) = r k : 

     

! 

µk " ri
k

i=1

n

# wi .     (3.9) 

 
The approximate equality of Eq. 3.9 is exact for moments 

! 

µ0  through 

! 

µ2n"1. For 

! 

"(r) = exp(#sr) , 

in which case Eq. 3.8 defines the Laplace transform, 

! 

I(s), of 

! 

f (r), nested and rapidity 

convergent pairs of upper and lower bounds to 

! 

I(s) are obtained form the alpha sequence 

[Gordon, 1968; McGraw, 2001]. Recent calculations using a model coagulation kernel show 

similar behavior, with rapid and nested convergence to benchmark numerical results from 

particle-resolved simulation [McGraw et al., 2008]. More work needs to be done to explore the 

mathematical basis for this result. 
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 Two test cases showing implementation of the PASE method are given in Tables 1 and 2. 

Table 1 illustrates the processing of a valid moment set. Here the alphas are non-negative and 

! 

J3 

gives a valid set of quadrature abscissas and weights. Table 2 shows moments from a log-normal 

distribution, except that 

! 

µ3  is corrupted. Here some of the alphas are negative, an eigenvalue of 

! 

J3 (not shown) is negative, and PASE (corrected alpha sequence column) applied. Elimination of 

higher-order alpha values has reduce the order of the Jacobi matrix to 

! 

J2 and for this smaller 

matrix a valid set of 2 quadrature points and a valid moment sequence, with exact recovery of the 

first 3 moments, are obtained. Table 2 shows a case where an odd-number of moments (here 

! 

µ0  

through 

! 

µ2) passes the test. With an odd number of moments Eq. 3.8 describes Gauss-Radau 

quadrature, which places an abscissa at one of the boundaries of the domain of 

! 

f (r) - in this case 

at 

! 

r = 0 [McGraw et al., 2008]. For certain kernels division by zero is a problem, e.g., vapor 

condensation by the continuum particle growth law has a kernel of the form 

! 

"(r)#1/r . So it is 

sometimes safer to work with even numbers of moments. Even in the most unfavorable situation 

two physically valid moments, e.g. number and radius or number and mass, always result when 

using a positive advection scheme. Transport errors in either of both of these are possible, even 

likely, but such errors will cause no violation of the moment equalities, which only require that 

the first two moments be positive or, in the trivial case, zero (see first two equalities of Eq. 3.3). 

Table 1. Valid moment set from a model cloud droplet size distribution 
with particle radii in micron. 
moments 

! 

J3 elements 
ORTHOG 

alpha sequence 
Eq. 3.7 

quadrature from 

! 

J3 

! 

µ0 =1 

! 

a1 = 5.0 

! 

"1 =1 

! 

r1 =15.2853 

! 

µ1 = 5.0 

! 

b2 = 2.88675 

! 

"2 = 5.0 

! 

w1 = 0.0283736  

! 

µ2 = 33.3333 

! 

a2 = 8.33343 

! 

"3 =1.66666 

! 

r2 = 7.18626  

! 

µ3 = 277.778 

! 

b3 = 4.7139  

! 

"4 = 6.66677  

! 

w2 = 0.452838 

! 

µ4 = 2777.78  

! 

a3 =11.6673 

! 

"5 = 3.33308  

! 

r3 = 2.52914  

! 

µ5 = 32407.4   

! 

"6 = 8.33423 

! 

w3 = 0.518788 
 



 11 

Table 2. Moment set from a log-normal distribution. The third radial moment 

! 

µ3  is corrupted. 
The natural logarithms of the corrected moments (Eq. 3.9 using the abscissas and weights from 

! 

J2) are {0, 1, 4, 7, 10, 13} for moments 0 through 5, respectively. Moments of lower order 
than the corrupted moment are reproduced exactly from 

! 

J2.   
moments 

! 

J3 elements 
ORTHOG 

alpha sequence 
Eq. 3.7 

corrected alpha 
sequence 

quadrature from 

! 

J2 

! 

lnµ0 = 0  

! 

a1 = 2.71828 

! 

"1 =1 

! 

"1 =1 

! 

r1 = 20.0855  

! 

lnµ1 =1.0 

! 

b2 = 6.87089 

! 

"2 = 2.71828 

! 

"2 = 2.71828 

! 

w1 = 0.135335  

! 

lnµ2 = 4.0 

! 

a2 = 2.68355  

! 

"3 =17.3673 

! 

"3 =17.3673 

! 

r2 = 0.0 

! 

lnµ3 = 6.0  

! 

b3 = 433.747  

! 

"4 = #14.6837  

! 

"4 = 0 

! 

w2 = 0.864665 

! 

lnµ4 =16.0 

! 

a3 = 8096.25  

! 

"5 = #12812.6  

! 

"5 = 0  

! 

lnµ5 = 25.0   

! 

"6 = 20908.9 

! 

"6 = 0  
 
4. Correcting invalid moment sequences by the filter method 

 Because corruption of moment sequences through advective transport tends to be 

infrequent, it is likely to result from improper assignment of one, or at most a few of the 

moments in the sequence.  Accordingly, we would like to adjust only those moments. 

For a sufficiently long sequence the filter method is a way to achieve this goal. 

Difference tables: The construction of difference tables is especially useful for spotting errors in 

an ordered sequence of data [Lanczos, 1988]. The construction is simple and evident from the 

tables to follow. Tables 1and 2 illustrate difference tables for two sequences of six moments.  

The first column gives the moment index, k.  The second column gives the 'data' to be evaluated, 

a sequence of values of ln µk .  The ith-order difference column is labeled di .  Column 3 contains 

the first-order differences, d1 , which are differences of the data entries in column 2.  Column 4 

contains the second-order differences, d2 , which are just the first-order differences of the entries 

in column 3, etc. 

 A necessary but not sufficient criterion for a valid moment sequence is that 

! 

lnµk  be a 

convex function of index k [Feller, 1971]. This requires that the second-order differences be non-

negative. In Table 1 the 

! 

lnµk  were assigned as a quadratic function of k, as is characteristic of a 

log-normal distribution [Hinds, 1982]. In this case the second-order differences are constant and 
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higher-order differences vanish. In general we cannot expect that 

! 

lnµk  will have quadratic form, 

however it is reasonable to expect a smooth function of index k and moment interpolation 

methods have been developed that exploit smoothness in 

! 

lnµk  [Frenklach, 2002]. In Table 4 the 

third moment has been corrupted and the modified sequence violates convexity as is evident 

from the appearance of negative elements in the column of second-order differences, d2 . Note 

how the error propagates with amplified oscillation in sign through the higher-order differences.  

Here one sees the useful property of a difference table for spotlighting errors in a data sequence 

through inspection of higher-order differences [Lanczos, 1988]. 

Table 3. Moment sequence and first to fifth-order differences. In this case the moments 
are from a lognormal distribution and 

! 

lnµk  is quadratic in index k. 'n' means no entry. 
log moments 

! 

d1 

! 

d2  

! 

d3  

! 

d4  

! 

d5  

! 

lnµ0 = 0  1 2 0 0 0 

! 

lnµ1 =1 3 2 0 0 n 

! 

lnµ2 = 4  5 2 0 n n 

! 

lnµ3 = 9  7 2 n n n 

! 

lnµ4 =16 9 n n n n 

! 

lnµ5 = 25  n n n n n 
 

Table 4. Similar pattern as Table 3 using the moments from Table 2 with the same 
corrupted value of 

! 

µ3 . 
log moments 

! 

d1 

! 

d2  

! 

d3  

! 

d4  

! 

d5  

! 

lnµ0 = 0  1 2 -3 12 -30 

! 

lnµ1 =1 3 -1 9 -18 n 

! 

lnµ2 = 4  2 8 -9 n n 

! 

lnµ3 = 6  10 -1 n n n 

! 

lnµ4 =16 9 n n n n 

! 

lnµ5 = 25  n n n n n 
 
 
 For sequences of six or more moments, the third-order differences can be used to both 

attribute the error (i.e. identify the index of the misaligned moment) and provide an optimal 

correction in the sense of minimizing the sum of the squared differences of the elements in 

column 

! 

d2 so as to restore smoothness.  Note that the sum of squared differences of elements in 
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column 

! 

d2  is just the squared magnitude of the vector 

! 

a = {"3,9,"9}  containing the third-order 

differences listed in column 

! 

d3  of Table 4. Our strategy will be to minimize the magnitude of the 

vector of these third-order differences, which vanishes for the special case of quadratic sequence, 

i.e., a 2 = 0  in Table 3. 

Description of the algorithm: The following minimum square gradient algorithm restores a valid 

moment sequence by adjusting that moment ,µk* , which after adjustment maximizes smoothness 

through minimization of a 2 .  To illustrate the method, we begin by first determining the 

response of  a 2  to change in an arbitrary moment, µk , and next determine k * .  (In actual 

calculations these steps are reversed as described below.)  Consider a change in the kth moment 

from an initial value µk(0)  to a final value µk(1) and denote the ratio 

! 

µk (1) /µk (0)  by 

! 

ck .  Note 

by inspection of the difference table that if µk(1) = ckµk (0)  or, equivalently, 

ln µk(1) = ln ck + lnµk (0) , then a1 ! a0 = (lnc k )bk  where a0  and a1  are, respectively, the initial 

and final vectors of third-order differences and the "response vectors" bk  give the change in the 

vector of third-order differences to a unit increment in ln µk .  The latter are as follows: 

b0 ={!1,0,0};b1 = {3,!1, 0};b2 = {!3,3,!1};b3 = {1,!3,3};b4 ={0,1,!3};b 5 = {0,0,1},    

(4.1) 

which are related to the entries in the Pascal triangle except for oscillations in sign [Lanczos, 

1988].  Next consider the value of ck  (actually ln ck ) for which  a1
2
= a0 + (ln ck )bk

2  is 

minimized.   Inspection of Fig. 1 shows that minimization is achieved for the condition that 

a0 + (ln ck )bk  is orthogonal to bk .  The value of ck  that satisfied this condition is: 

   ln ck = !cos(a0,bk )
a0
bk

= !
(a0 •bk )
bk

2 .   (4.2) 

The last equality follows form the law of cosines, 

! 

cos(a0,bk ) = (a0 "bk ) /(|a0 ||bk |)  where 

! 

(a0,bk ) 

is the angle between vectors 

! 

a0  and 

! 

bk . The resulting minimum squared amplitude satisfies: 
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a1
2
= a0 + lnc kbk

2
= a0

2
1! cos2(a0 ,bk)[ ]    (4.3) 

which is the largest reduction in magnitude of the vector of third-order differences achievable by 

changing µk  alone (Fig. 1).   

 

 

Figure 1:  Disposition of the third order difference vectors before and after correction, a0  and 
a1 = a0 + ln ckbk  respectively. 
 
 

Equation 4.3 shows that maximal smoothness is achieved by adjusting the moment, µk* , 

corresponding to that basis vector bk*  which gives the largest cos2(a0 ,bk)  for any moment index 

k.  Thus by determining which k gives the maximum value of cos2(a0 ,bk) , we obtain the index 

of the suspect moment, k * .  That moment alone is corrected, using the factor ck*  from Eq. 4.2, 

yielding an updated moment sequence.  Recalling that bk  gives the third-order difference 

response to a unit change in ln µk , the actual change in the moment for k = k *  is: 

ln µk*(1) = lnµ k* (0) + ln ck* = lnµk* (0) !
a0 "bk*( )
bk*

2 .  (4.4) 

The other moments having k ! k *  are unchanged.  The new moment sequence gives the third-

order difference vector a1  whose magnitude is in agreement with Eq. 4.3.  The new moment 

sequence is in turn tested to insure that negative second-order differences have been removed.  If 
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not, the process is repeated, replacing a0  by a1 , and obtaining a2 , etc.  Equation 4.3 assures a 

reduction in the amplitude of the third order difference vector on each iteration.  Thus the 

amplitude approaches zero after many iterations, and ln µk   approaches a quadratic function of 

index k .  Typically just one or two passes through the algorithm suffice to obtain a valid moment 

sequence. 

Examples: For our first example we begin with the moments of Table 4 and show that a single 

pass through the filter restores the moment sequence of Table 3.  Note that the third-order 

difference vector in Table 4 satisfies a0 ={!3,9,!9} = !3b3 . The multiplier here is 

understandable because b3  gives the response to a unit change in ln µ3  and in passing from 

Table 3 to Table 4 this quantity was changed by -3. Note also that the angle 

! 

(a0,b3) is 

! 

"  and 

thus the maximum value of cos2(a0 ,bk), which occurs here for k* = 3  is unity.  So a1 = 0  for 

this case, which is the reason why a single pass through the filter restores a quadratic sequence in 

ln µk . To correct the third moment, we evaluate the right hand side of Eq. 4.2 to obtain  

ln c3 = !(a0 "b3 ) /b3
2
= !(!3b3 "b3 )/ b3

2
= 3 . 

 

Finally from Eq. 4.4 we obtain ln µ3(1) = lnµ3 (0) + ln c3 = 6 + 3 = 9  showing restoration of the 

moment sequence of Table 3. 

 For our second example, consider the moment sequence 

! 

lnµk = {0, 1, 4, 6, 16, 22} for 

moments 

! 

µ0  though 

! 

µ5 , respectively, where moments 

! 

µ3  and 

! 

µ5  both differ from the original 

sequence of Table 3. A check of the second-order differences shows that convexity is not 

satisfied. After one pass through the filter 

! 

µ3  is changed yielding the log moment sequence 

! 

{0, 1, 4, 9.47368, 16, 22} . There is still a failure of convexity, although the sequence is 

smoother than before.  After a second pass 

! 

µ5  has changed, yielding the log moment sequence 

! 

{0, 1, 4, 9.47368, 16, 23.5789} and convexity is satisfied - for this and all subsequent iterations.  
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The last (two-pass) moment sequence not only satisfies convexity, it passes the moment 

inversion test to yield a valid set of three quadrature abscissas and weights. 

 For our final example, consider the log-moment sequence . 

Here is a case that satisfies convexity (the second-order differences are positive) but is still 

unphysical and fails the moment inversion test.  Moments 0-3 are fine but the next moment (

! 

µ4) 

fails. (The PASE test of Sec. 3 also shows failure of 

! 

µ4  because  is negative.) The filter 

method needs to include this possibility, which can be done using the computational flow 

scheme of Fig. 2. A single pass though the algorithm changes the failed moment from 9.1 to 10 

and a valid sequence is obtained. 

 In the hypothetical extreme case that the moment sequence is so corrupted that 

! 

lnµk  

versus k is predominantly concave, the filter can converge to a smooth function with negative 

curvature and never pass the inversion test.  Then, as in the PASE method, one is forced to work 

with two moments. Since a plot of 

! 

lnµk  versus k defined by just two points is a straight line, the 

corresponding size distribution,

! 

f (r), is monodisperse. 
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Figure 2. Flowchart of the computations used to generate a valid moment set in the filter method. 
 

5. Summary 

 This paper has introduced two independent methods for testing and correcting moment 

sequences undergoing advective transport in atmospheric models. Each method has been design 

to operate on single grid cells and require no modification to the transport scheme or storage of 

information from previous time steps or neighboring grid cells. With these features in place, 

either method, incorporated as part of an aerosol or cloud module, should enable that module to 

be compatible with any transport scheme. 
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 The PASE method is applicable to sequences of as few as three moments - the minimum 

number for which inconsistencies of the kind described here can arise - and a corrected moment 

sequence is achieved in a single step. The filter method has the advantage of identifying specific 

corrupted moments and only correcting these, whereas the PASE method recomputed all 

moments of index greater than or equal to that of the corrupted moment - thus retaining less of 

the raw information supplied by the transport scheme. On the other hand the filter method may 

require multiple passes (if more than a single moment is corrupted) and needs six or more 

moments to operate effectively. 

 Both the PASE and filter schemes appear well suited for immediate use in moment-base 

cloud simulation. Here the particles are of uniform composition (liquid water or ice) and thus 

(ignoring ice crystal shape) describable by univariate moments - ideally with a separate moment 

sequence for each phase. Aerosols, on the other hand, are complex not only with respect to size 

and shape, but also mixing state. Recent multivariate extensions of the QMOM have been 

developed that enable such complexities to be handled through the tracking of multivariate 

mixed moments [Yoon and McGraw, 2004a; 2004b]. For the purpose of assigning quadrature 

points in higher dimension the multivariate distribution function is treated as factorizable in the 

principal coordinates frame, which is continuously updated in time through tracking of first and 

second-order mixed moments. This reduction to a direct product of univariate distributions 

implies that either the PASE method or filter method can still be used.  

 Historically, most nonlinear advection schemes in current use derive one way or another 

from the need to advect individual tracers in the presence of sharp gradients (e.g. fluid density in 

a shock front) and have not been adequately tested for transport of multiple correlated tracers. 

Moments, because they are so strongly and nonlinearly correlated, provide a excellent indicator 

of correlation failure - they serve as the "canary in the mine", so to speak. Other correlated 
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tracers such as composition of aerosol mixtures and hydrometeor phase will also be affected and 

need to be considered - even if the loss of correlation is less obvious for these quantities. 

Quantitative metrics, which apply beyond moments to encompass these other kinds of correlated 

tracers, need to be developed for evaluating advective transport schemes if future climate models 

are to achieve optimum balance between the need to reduce numerical diffusion and the need for 

correlation preservation. 
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