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Preface to the Series 
 
The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven 
National Laboratory. It is funded by the "Rikagaku Kenkyusho" (RIKEN, The Institute of 
Physical and Chemical Research) of Japan. The Memorandum of Understanding between 
RIKEN and BNL, initiated in 1997, has been renewed in 2002 and again in 2007. The 
Center is dedicated to the study of strong interactions, including spin physics, lattice QCD, 
and RHIC physics through the nurturing of a new generation of young physicists. 

 
The RBRC has both a theory and experimental component. The RBRC Theory Group and 
the RBRC Experimental Group consists of a total of 25-30 researchers. Positions include 
the following:  full time RBRC Fellow, half-time RHIC Physics Fellow, and full-time post-
doctoral Research Associate. The RHIC Physics Fellows hold joint appointments with 
RBRC and other institutions and have tenure track positions at their respective universities 
or BNL. To date, RBRC has ~100 graduates of which 29 theorists and 15 experimenters 
have attained tenure positions at major institutions worldwide.   

 
Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. 
These appointments are joint positions of RBRC and RIKEN and include the following 
positions in theory and experiment:  RSP Researchers, RSP Research Associates, and 
Young Researchers, who are mentored by senior RBRC Scientists. A number of RIKEN Jr. 
Research Associates and Visiting Scientists also contribute to the physics program at the 
Center. 

 
RBRC has an active workshop program on strong interaction physics with each workshop 
focused on a specific physics problem. In most cases all the talks are made available on the 
RBRC website. In addition, highlights to each speaker’s presentation are collected to form 
proceedings which can therefore be made available within a short time after the workshop. 
To date there are over one hundred proceeding volumes available.   

 
A 10 teraflops RBRC QCDOC computer funded by RIKEN, Japan, was unveiled at a 
dedication ceremony at BNL on May 26, 2005. This supercomputer was designed and built 
by individuals from Columbia University, IBM, BNL, RBRC, and the University of 
Edinburgh, with the U.S. D.O.E. Office of Science providing infrastructure support at 
BNL. Physics results were reported at the RBRC QCDOC Symposium following the 
dedication. QCDSP, a 0.6 teraflops parallel processor, dedicated to lattice QCD, was begun 
at the Center on February 19, 1998, was completed on August 28, 1998, and was 
decommissioned in 2006. It was awarded the Gordon Bell Prize for price performance in 
1998. The next generation computer in this sequence, QCDCQ (600 Teraflops), is expected 
to be fully operational in June 2012. 

 
       N. P. Samios, Director 
       May 2012 
 
 
 
 
 

 *Work performed under the auspices of U.S.D.O.E. Contract No. DE-AC02-98CH10886. 
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1. Introduction
Flavor-Chiral Symmetries of QCD at low T

chiral anomaly
(explicit breaking)

spontaneous breaking of
chiral symmetry

flavor

deconfinement (QGP)

low T high T

U(Nf )L ⊗ U(Nf )R U(1)B ⊗ S(Nf )L ⊗ SU(Nf )R U(1)B ⊗ S(Nf )V

QCD at high T

restoration of chiral symmetry

U(1)B ⊗ S(Nf )V U(1)B ⊗ S(Nf )L ⊗ SU(Nf )R

phase transition

Questions in this study

1. Constraints to eigenvalue density: 

2. Constraint to singlet susceptibility: 

�(�) = lim
V��

1
V

�

n

�(�� �n)

�singlet =
�

d4x [�(x)�(0) � �(x)�(0)]



Previous studies

Cossu et al. (JLQCD11), Overlap
Topological susceptibility and axial symmetry at finite temperature Guido Cossu
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Figure 2: Spectral density of the overlap Dirac operator for Nf = 2. The several b s were isolated to
emphasize the mass dependence of the density. Zero counting of eigenvalues is intended on the left when
line stops.

the correlators of meson operators in all the channels looking for their degeneracy in the chiral
limit, signal of effective restoration of both chiral and axial symmetry. We found evidence of this
restoration, corroborated also by the spectral density analysis that exhibits a gap in the chiral limit
at temperatures above > 192 MeV, in the current data set.

We can currently fairly say that we have clear evidence of U(1)A effective restoration in a
region just above the chiral phase transition in two flavors QCD. The next step is narrowing the
region of uncertainty about the temperature when the gap starts opening. In a forthcoming paper in
preparation a complete analysis and the newly collected data will be presented.
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Figure 4: Dirac eigenvalue spectrum for the T = 150−200 MeV ensembles. Here the temperature is lowest
in the upper left and largest in the lower right. The chiral symmetry breaking density of near zero eigenvalues
disappears rapidly with increasing temperature and for the two highest temperature cases there appears to
be a gap with very few eigenvalues just above zero. The magnified inset in these two cases show some near
zero eigenvalues and a suggestive zero mode peak located at Λ= mf +mres
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Figure 2: The eigenvalue density above Tc. Plus, cross, asterisk, square, circle, triangle, and downward
triangle symbols indicate ρ(λ ) at T =173.0, 177.7, 188.7, 210.6, 239.7, 275.9, and 331.6 MeV, respectively.
The right figure shows a logarithmic plot of the same data for the small λ region. All of the data points for
T = 331.6 MeV are outside of the region shown.

universal scaling function fG(z) as
M = h1/δ fG(z) , (4.1)

with z ≡ t/h1/βδ , where h and t are scaling variables corresponding to a symmetry breaking field
and temperature, respectively, and β and δ are critical exponents. In QCD 〈  ψψ〉 and the (light)
quark mass m are regarded as M and h, respectively. Thus one has the relation

〈  ψψ〉 ∼ m1/δ fG(z) . (4.2)

On the other hand, in the infinite volume limit, 〈  ψψ〉 can be obtained from the eigenvalues of
the Dirac operators as

〈  ψψ〉=−
∫ ∞

0
dλ

2mρ(λ )
λ 2 +m2 . (4.3)

Assuming ρ(λ )∼ Aλα , Eq. (4.3) can be rewritten in the limit m→ 0 as

〈  ψψ〉=−mα
∫ ∞

0
d  λ

2A  λα
 λ 2 +1

, (4.4)

with  λ ≡ λ/m. Thus, by comparing (4.2) to (4.4), α = 1/δ would be expected at Tc in the chiral
limit and α should have a value close to 1/δ for a small enough quark mass and near Tc.

To test this expectation, we fit the eigenvalue density around Tc to the Ansatz ρ(λ ) = Aλα .
Here we set the fit range as [0,λmax]. Since the part of ρ(λ ) with large λ is suppressed due to us
having calculated only a fixed number of low-lying eigenvalues per configuration, the largest λ in
the region without such a suppression effect is chosen as λmax.

Figure 3 shows the temperature dependence of the fit parameters α and A. α increases mono-
tonically as the temperature increases and it has a value close to 1/δ for either the O(2) or O(4)
universality class2 at a temperature not more than 10 MeV below the pseudocritical temperature
for both ml/ms = 1/20 and 1/40. Since we expect that α = 1/δ at Tc only in the chiral limit, the

21/δ for the O(2) and O(4) universality classes are too similar to be distinguishable within our numerical accuracy.
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Is a gap open at � = 0 ?



Bernald, et al. (96), KSChandrasekharan-Christ(95), KS
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Figure 4. The quantity ω which directly mea-
sures the strength of anomalous symmetry break-
ing plotted versus β. On the left side results for
ma = 0.01 are shown while on the right, results
for ma = 0.01 and 0.025 are compared at β = 5.3
and 5.327 respectively.

3. EFFECTS OF QUARK LOOPS

In order to address the effects of the fermion
determinant, let compare our ma = 0.01 and
0.025 results in greater detail. We find that
even when comparing the quantity 〈ζ̄ζ〉 evaluated
over the entire range of mζ , the ma = 0.01 and
ma = 0.025 simulations can be made to agree
within a few percent if we allow for a quark-mass
dependent shift in β. In Figure 5 we show 〈ζ̄ζ〉
computed at β = 5.272, ma = 0.025 compared to
a group of ma = 0.01 results. The quite precise
5-6% agreement with the β = 5.255, ma = 0.01
curve over the entire mζ range is striking. Sim-
ilarly, for higher temperatures, Figure 6 shows
〈ζ̄ζ〉 computed at β = 5.327, ma = 0.025 com-
pared to ma = 0.01 results. Again, we see 5-6%
agreement with the β = 5.3, ma = 0.01 curve over
the entire mζ range. Thus, in both the chirally
symmetric and asymmetric phases, the change in
dynamical quark mass from 0.01 to 0.025 can be
quite accurately compensated by a simple shift in
β. No disparate effects on low or high eigenval-
ues are seen. The shift in β of 0.027 needed in
the high temperature phase is precisely the shift
in βc that we identified earlier when comparing

βc found in our 0.01 and 0.025 simulations.
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Figure 5. The quantity 〈ζ̄ζ〉 plotted as a func-
tion of mζ for β = 5.272 and ma = 0.025. It is
compared with ma = 0.01 results for three values
of β. The close agreement with the ma = 0.01,
β = 5.255 curve is evident.

It is interesting to note that the 0.017 shift in
β found in the low temperature regime is sub-
stantially smaller than the 0.027 shift needed at
high temperature. Thus, it is clearly incorrect to
describe the effects of quark loops as causing a
simple shift in β. At the least, that shift is itself
β-dependent.

4. QUENCHED CHIRAL TRANSITION

As has been discussed above, we have not seen
the effects of small eigenvalues for β > βc in our
ma = 0.01, full QCD simulations to the extent
expected, for example, from a model of dilute in-
stantons. In an attempt to enhance such possible
effects, we have repeated our calculation of 〈ζ̄ζ〉
for the pure gauge theory at and above the region

FIG. 1. Phase diagram for the standard SU(3)
Wilson gauge plus two-flavor staggered fermion
action showing the approximate Nt = 6 crossover
location (crosses and burst) as a function of gauge
coupling 6/g2 and quark mass amq. Data sample
points are indicated by octagons. FIG. 2. Chiral order parameters extrapolated in

quark mass squared.

We measure this susceptibility directly from the connected part of the f0 correlator: χconn =
∫

d4x 〈f0(0)f0(r)〉|conn,
while Chandrasekharan and Christ measure it by taking the derivative of 〈f0〉 with respect to the valence quark mass
[6]. Finally, a well-known Ward identity relates the pion susceptibility to the chiral order parameter [11]:

χπ = NfTa2/V
〈

Tr(M †M)−1
〉

= 〈f0〉 /(2mq). (8)

In practice we measure the order parameters (2) through

χSU(2)×SU(2) = 〈f0〉 /(2mq) − χconn − χdisc and χU(1) = 〈f0〉 /(2mq) − χconn (9)

The simulation consisted of a subset of configurations generated in an extensive study of the equation of state for
Nt = 6 and Nf = 2 at 6/g2 = 5.45 and quark masses amq = 0.0075, 0.01, 0.0125, 0.015, 0.02, and 0.025 [4,5]. This
parameter range lies in the high temperature phase slightly above the phase transition, as illustrated in Fig. 1, and
was selected to permit an extrapolation of the measured quantities to zero quark mass in the high temperature phase.
The simulation sample at each mass covered a molecular dynamics time span of at least 2000 time units with the first
400 omitted. Measurements were taken at intervals of at most 50 time units. The chiral order parameter 〈f0〉 ≡

〈

ψ̄ψ
〉

was measured using the random source method [12] with 33 random sources. These measurements, with care taken to
avoid biases inherent in the noisy source technique, in turn, provided an estimate of χdisc through the configuration
variance.

III. RESULTS AND CONCLUSIONS

Results are shown in Fig. 2 and table I. We have indicated a linear extrapolation in (amq)2. Because they are
closer to the crossover (Fig. 1), where curvature may be expected, we chose to exclude the two highest mass points
from the fit. The zero mass intercepts are

χSU(2)×SU(2) = 0.04(31) and χU(1) = 0.75(22) (10)

with χ2/df = 2.6/2 and 2.5/2 respectively. Fits to all points gave χSU(2)×SU(2) = −0.33(20) with χ2/df = 5.6/4 and
χU(1) = 0.81(11) with 2.7/4.

It is surprising that a fit of the same points to an expression linear in amq gives a result consistent with a zero
intercept for both order parameters: χSU(2)×SU(2) = 0.15(38) with χ2/df = 1.8/2 and χU(1) = 0.40(56) with 2.4/2. So

3
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FIG. 2. The quantity ω, which directly measures anomalous symmetry breaking, plotted versus

fermion mass, ma. Also shown are the chiral condensate 〈χ̄χ〉 and the pseudoscalar susceptibility
χP. We studied a 163 × 4 lattice at β = 5.3, just above βc.
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Looking for U(1)A Restoration Prasad Hegde

depending on the type of correlator being integrated. Furthermore, the disconnected parts of the σ
and η ′ susceptibilities are equal to the disconnected susceptibilities χdisc and χ5,disc viz.

χσ ,disc =
〈
(ψψ)2

〉
−
〈
(ψψ)

〉2
≡ χdisc and χη ′,disc =

〈
(ψγ5ψ)

2 〉≡ χ5,disc. (3.4)

The appropriate symmetry restoration gives rise to equalities among the different susceptibilities:

χπ = χδ + χdisc and χδ = χπ − χ5,disc.
[
SU(2)L×SU(2)R

]
(3.5a)

χπ = χδ and χδ + χdisc = χπ − χ5,disc.
[
U(1)A

]
. (3.5b)

The difference χπ−χδ must go to zero asU(1)A breaking is suppressed. Eq. (3.5a) tells us that this
difference equals χdisc once chiral symmetry is restored. Moreover, we see that chiral symmetry
restoration implies that χdisc = χ5,disc whereas axial symmetry restoration implies the opposite,
namely χdisc = −χ5,disc. Either way, when both chiral and axial symmetry are restored, one has
χdisc = 0= χ5,disc. In other words,U(1)A restoration is signaled by a vanishing disconnected chiral
susceptibility.

0

40

80

120

160

200

 140  150  160  170  180  190  200
T[MeV]

χdisc/T
2

χ5,disc/T
2

(χπ-χδ)/T
2

Figure 4: The susceptibilities χdisc, χ5,disc and χπ − χδ for each of the temperatures. All are very nearly
equal from T = 170 MeV onward. None of these susceptibilities vanishes for all the temperatures shown
here. The red and blue points have been horizontally displaced by ±1 MeV for clarity.

Fig. 4 plots these susceptibilities for each of the temperatures that we studied. Although the
equalities derived in Eqs. (3.5) are strictly valid only in the chiral limit, we see that χdisc, χ5,disc and
χπ − χδ are almost equal to each other from about 170 MeV onwards. Furthermore, none of these
susceptibilities is equal to zero even at T = 200 MeV, the highest temperature that we studied. If
we take Tc ≈ 160 MeV, this would seem to suggest thatU(1)A remains broken even at T ≈ 1.25Tc.

4. The Correlation with Topology

Let us take a closer look at the source of U(1)A violation. If we write the π and δ correlators
(Eqs. (3.1)) in terms of their left- and right-handed components, we get

Cδ/π(x) =
〈
uLdR(x)dRuL(0)+uRdL(x)dLuR(0)

〉
±
〈
uLdR(x)dLuR(0)+uRdL(x)dRuL(0)

〉
.

(4.1)
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2. Overlap fermions
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2
D
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Action

2 Overlap fermions

The argument is the previous section is ”formal”, since an existence of U(1)A

anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
which is compactly written as

〈(Ja
x − δa

xS)O + δa
xO〉 = 0 (58)

where δa
x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by

S = ψ̄Dψ − m

∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that

Dγ5 + γ5D = aDRγ5D (60)

and F (D) = 1 − R

2
aD. Since the total derivative term in δS vanishes after x

integration as
∫

d4x ∂µJa
µ = 0, we obtain

∫
d4x〈{Ja

x + 2mP a(x)}O + δa
xO〉 = 0. (61)

This is the master equation in this section. Here scalar and pseudo-scalar operators
are defined by

Sa(x) = ψ̄(x)T aF (D)ψ(x), (62)
P a(x) = ψ̄(x)T aiγ5F (D)ψ(x), (63)

which are transformed as

δbSa(x) = 2dab
c P c(x), (δ0Sa(x) = 2P a(x) = δaS0(x)) (64)

δbP a(x) = −2dab
c Sc(x), (δ0P a(x) = −2Sa(x) = δaP 0(x)) (65)

under the global chiral transformation δa =
∫

d4x δa
x, where

{
T a, T b

}
= 2dab

c T c.
In this note, the infinitesimal ”chiral” transformation for the overlap fermion is

defined by

θa(x)δa
xψ(x) = iθa(x)T aγ5(1 − RaD)ψ(x), (66)

θa(x)δa
xψ̄(x) = iψ̄(x)θa(x)T aγ5, (67)

for the infinitesimal parameter θa(x), under which the measure term is given by

Ja
x = −2itr T aγ5

(
1 − R

2
aD

)
(x, x) = −δa02iNf tr γ5

(
1 − R

2
aD

)
(x, x).(68)

where the minus sign comes from the fact that ψ and ψ̄ are Grassmann numbers.
For O = Sa(y)P a(z) and δb = δ0, we obtain the anomalous WT identity,
〈∫

d4x {J0
x + 2mP 0}Sa(y)P a(z) + 2P a(y)P a(z) − 2Sa(y)Sa(z)

〉
= 0, (69)
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Ward-Takahashi identities under “chiral” rotation

2 Overlap fermions

The argument is the previous section is ”formal”, since an existence of U(1)A

anomaly is not explicitly taken into account there. It is therefore interesting and
important to extend the argument to the case of overlap fermions.

2.1 Chiral symmetry W-T identities

We first consider the W-T identities for the overlap fermion under chiral symmetry,
which is compactly written as

〈(Ja
x − δa

xS)O + δa
xO〉 = 0 (58)

where δa
x is the local chiral rotation, Ja

x is the corresponding contribution from the
measure term, O is an arbitrary operator, and the action is given by
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∫
d4x ψ̄F (D)ψ. (59)

Here the overlap Dirac operator D satisfies the GW relation that
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and F (D) = 1 − R

2
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integration as
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This is the master equation in this section. Here scalar and pseudo-scalar operators
are defined by

Sa(x) = ψ̄(x)T aF (D)ψ(x), (62)
P a(x) = ψ̄(x)T aiγ5F (D)ψ(x), (63)

which are transformed as

δbSa(x) = 2dab
c P c(x), (δ0Sa(x) = 2P a(x) = δaS0(x)) (64)

δbP a(x) = −2dab
c Sc(x), (δ0P a(x) = −2Sa(x) = δaP 0(x)) (65)

under the global chiral transformation δa =
∫

d4x δa
x, where

{
T a, T b

}
= 2dab

c T c.
In this note, the infinitesimal ”chiral” transformation for the overlap fermion is

defined by

θa(x)δa
xψ(x) = iθa(x)T aγ5(1 − RaD)ψ(x), (66)

θa(x)δa
xψ̄(x) = iψ̄(x)θa(x)T aγ5, (67)

for the infinitesimal parameter θa(x), under which the measure term is given by

Ja
x = −2itr T aγ5

(
1 − R

2
aD

)
(x, x) = −δa02iNf tr γ5

(
1 − R

2
aD

)
(x, x).(68)

where the minus sign comes from the fact that ψ and ψ̄ are Grassmann numbers.
For O = Sa(y)P a(z) and δb = δ0, we obtain the anomalous WT identity,
〈∫

d4x {J0
x + 2mP 0}Sa(y)P a(z) + 2P a(y)P a(z) − 2Sa(y)Sa(z)

〉
= 0, (69)
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3. Constraints to eigenvalue densities
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N=2

3.3 Constraints at N = 2

We consider the (non-singlet) chiral susceptibilities defined by

χσ−π =
1

V 2
〈S2

0 − P 2
a 〉m, χη−δ =

1
V
〈P 2

0 − S2
a〉m. (3.20)

For χσ−π, a term with two traces is dominate in the large volume limit. We therefore
obtain

χσ−π =
〈
N2

f

(
1

mV
NR+L + I1

)2〉

m
+ O

(
1
V

)
. (3.21)

Again positivity implies

lim
m→0

lim
V →∞

1
m2V 2

〈(NA
R+L)2〉m = lim

m→0
lim

V →∞

1
mV

〈NA
R+L ρ

A
0 〉m = lim

m→0
〈(ρA

0 )2〉m = 0.(3.22)

The last two conditions are automatically satisfied since 〈ρA
0 〉m ∝ m2 and ρA

0 is m inde-
pendent. The first condition gives

lim
V →∞

1
V 2

〈(NA
R+L)2〉m = O(m4). (3.23)

Since NA
R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
〈NA

R+L〉m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)

– 7 –

3.3 Constraints at N = 2

We consider the (non-singlet) chiral susceptibilities defined by

χσ−π =
1

V 2
〈S2

0 − P 2
a 〉m, χη−δ =

1
V
〈P 2

0 − S2
a〉m. (3.20)

For χσ−π, a term with two traces is dominate in the large volume limit. We therefore
obtain

χσ−π =
〈
N2

f

(
1

mV
NR+L + I1

)2〉

m
+ O

(
1
V

)
. (3.21)

Again positivity implies

lim
m→0

lim
V →∞

1
m2V 2

〈(NA
R+L)2〉m = lim

m→0
lim

V →∞

1
mV

〈NA
R+L ρ

A
0 〉m = lim

m→0
〈(ρA

0 )2〉m = 0.(3.22)

The last two conditions are automatically satisfied since 〈ρA
0 〉m ∝ m2 and ρA

0 is m inde-
pendent. The first condition gives

lim
V →∞

1
V 2

〈(NA
R+L)2〉m = O(m4). (3.23)

Since NA
R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
〈NA

R+L〉m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)

– 7 –

3.3 Constraints at N = 2

We consider the (non-singlet) chiral susceptibilities defined by

χσ−π =
1

V 2
〈S2

0 − P 2
a 〉m, χη−δ =

1
V
〈P 2

0 − S2
a〉m. (3.20)

For χσ−π, a term with two traces is dominate in the large volume limit. We therefore
obtain

χσ−π =
〈
N2

f

(
1

mV
NR+L + I1

)2〉

m
+ O

(
1
V

)
. (3.21)

Again positivity implies

lim
m→0

lim
V →∞

1
m2V 2

〈(NA
R+L)2〉m = lim

m→0
lim

V →∞

1
mV

〈NA
R+L ρ

A
0 〉m = lim

m→0
〈(ρA

0 )2〉m = 0.(3.22)

The last two conditions are automatically satisfied since 〈ρA
0 〉m ∝ m2 and ρA

0 is m inde-
pendent. The first condition gives

lim
V →∞

1
V 2

〈(NA
R+L)2〉m = O(m4). (3.23)

Since NA
R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
〈NA

R+L〉m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)

– 7 –

O(mNf V ) O(mNf V ) O(m2)

These conditions are automatically satisfied.

3.3 Constraints at N = 2

We consider the (non-singlet) chiral susceptibilities defined by

χσ−π =
1

V 2
〈S2

0 − P 2
a 〉m, χη−δ =

1
V
〈P 2

0 − S2
a〉m. (3.20)

For χσ−π, a term with two traces is dominate in the large volume limit. We therefore
obtain

χσ−π =
〈
N2

f

(
1

mV
NR+L + I1

)2〉

m
+ O

(
1
V

)
. (3.21)

Again positivity implies

lim
m→0

lim
V →∞

1
m2V 2

〈(NA
R+L)2〉m = lim

m→0
lim

V →∞

1
mV

〈NA
R+L ρ

A
0 〉m = lim

m→0
〈(ρA

0 )2〉m = 0.(3.22)

The last two conditions are automatically satisfied since 〈ρA
0 〉m ∝ m2 and ρA

0 is m inde-
pendent. The first condition gives

lim
V →∞

1
V 2

〈(NA
R+L)2〉m = O(m4). (3.23)

Since NA
R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
〈NA

R+L〉m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)

– 7 –

Q(A) = NA
R �NA

L

3.3 Constraints at N = 2

We consider the (non-singlet) chiral susceptibilities defined by

χσ−π =
1

V 2
〈S2

0 − P 2
a 〉m, χη−δ =

1
V
〈P 2

0 − S2
a〉m. (3.20)

For χσ−π, a term with two traces is dominate in the large volume limit. We therefore
obtain

χσ−π =
〈
N2

f

(
1

mV
NR+L + I1

)2〉

m
+ O

(
1
V

)
. (3.21)

Again positivity implies

lim
m→0

lim
V →∞

1
m2V 2

〈(NA
R+L)2〉m = lim

m→0
lim

V →∞

1
mV

〈NA
R+L ρ

A
0 〉m = lim

m→0
〈(ρA

0 )2〉m = 0.(3.22)

The last two conditions are automatically satisfied since 〈ρA
0 〉m ∝ m2 and ρA

0 is m inde-
pendent. The first condition gives

lim
V →∞

1
V 2

〈(NA
R+L)2〉m = O(m4). (3.23)

Since NA
R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
〈NA

R+L〉m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)

– 7 –

3.3 Constraints at N = 2

We consider the (non-singlet) chiral susceptibilities defined by

χσ−π =
1

V 2
〈S2

0 − P 2
a 〉m, χη−δ =

1
V
〈P 2

0 − S2
a〉m. (3.20)

For χσ−π, a term with two traces is dominate in the large volume limit. We therefore
obtain

χσ−π =
〈
N2

f

(
1

mV
NR+L + I1

)2〉

m
+ O

(
1
V

)
. (3.21)

Again positivity implies

lim
m→0

lim
V →∞

1
m2V 2

〈(NA
R+L)2〉m = lim

m→0
lim

V →∞

1
mV

〈NA
R+L ρ

A
0 〉m = lim

m→0
〈(ρA

0 )2〉m = 0.(3.22)

The last two conditions are automatically satisfied since 〈ρA
0 〉m ∝ m2 and ρA

0 is m inde-
pendent. The first condition gives

lim
V →∞

1
V 2

〈(NA
R+L)2〉m = O(m4). (3.23)

Since NA
R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
〈NA

R+L〉m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)

– 7 –

lim
m�0

���� = 0

3.3 Constraints at N = 2

We consider the (non-singlet) chiral susceptibilities defined by

χσ−π =
1

V 2
〈S2

0 − P 2
a 〉m, χη−δ =

1
V
〈P 2

0 − S2
a〉m. (3.20)

For χσ−π, a term with two traces is dominate in the large volume limit. We therefore
obtain

χσ−π =
〈
N2

f

(
1

mV
NR+L + I1

)2〉

m
+ O

(
1
V

)
. (3.21)

Again positivity implies

lim
m→0

lim
V →∞

1
m2V 2

〈(NA
R+L)2〉m = lim

m→0
lim

V →∞

1
mV

〈NA
R+L ρ

A
0 〉m = lim

m→0
〈(ρA

0 )2〉m = 0.(3.22)

The last two conditions are automatically satisfied since 〈ρA
0 〉m ∝ m2 and ρA

0 is m inde-
pendent. The first condition gives

lim
V →∞

1
V 2

〈(NA
R+L)2〉m = O(m4). (3.23)

Since NA
R+L does not depend on quark mass m, we conclude

lim
V →∞

1
V
〈NA

R+L〉m = m4N̄2 + O(m6), (3.24)

which means that N̄1 = 0.
We next consider χη−δ, which becomes

χη−δ = Nf

〈
1

m2V
{2NR+L − NfQ(A)2} +

1
Zm

(
I1

mR
+ I2

)〉

m

(3.25)

where, Q(A) = NA
R − NA

L ,

I2 =
2

Zm

∫ ΛR

0
dλ ρA(λ)

m2
R − λ2g0(λ2)gm

(λ2 + m2
R)2

, gm =
1

Z2
m

(
1 +

m2

2Λ2
R

)
. (3.26)

Since, in the m → 0 limit, we have

I1

mR
+ I2 = ρA

0

(
πm

m
+

2
ΛR

)
+ 2ρA

1 + O(m), (3.27)

in addition to 〈NR+L〉m = O(m4V ) and 〈ρA
0 〉m = O(m2), the condition that limm→0 χη−δ =

0 gives

lim
m→0

N2
f 〈Q(A)2〉m

m2V
= 2 lim

m→0
〈ρA

1 〉m ≡ 2ρ̄1. (3.28)

– 7 –

O(mNf

�
V�2)

��A
1 �m = O(m2) 2nd constraint



N=3

3.4 Constraints at N = 3

We next consider the N = 3 case. WT identities at N = 3 are given by

〈O2001〉m → 0, 〈−O0201 + 2O1110〉m → 0, 〈O0021 + 2O1110〉m = 0,

〈−O0003 + 2O2001〉m → 0, 〈O0021 −O0201 + O1110〉m → 0, (3.29)

as m → 0. By combining these 3-pt functions, we obtain following 5 conditions in the large
volume limit.

χ1

V 2
= −N2

f

〈(
NR+L

mV
+ I1

)(
NR+L

m2V
− I2

)〉

m

→ 0 (3.30)

χ2

V 3
= N3

f

〈(
NR+L

mV
+ I1

)3
〉

m

→ 0 (3.31)

χ3

V
=

〈
−N2

f

N2
R−L

m3V
+ 2Nf

(
NR+L

m3V
+ I3

)〉

m

→ 0 (3.32)

χ4

V 2
= N3

f

〈(
NR+L

mV
+ I1

)
N2

R−L

m2V

〉

m

→ 0 (3.33)

χ5

V 2
=

〈
N2

f

m

(
NR+L

mV
+ I1

)(
NR+L

mV
− I1

)〉

m

→ 0, (3.34)

as m → 0. From the results in the previous subsection, it is easy to see

〈(NA
R+L)2〉m
m3V 2

= O(m),
〈NA

R+LI1〉m
m2V

= O(m2) (3.35)

〈NA
R+LI2〉m
mV

= O(m3), 〈I1I2〉m = O(m), (3.36)

〈(NA
R+L)3〉m
m3V 2

= O(m),
〈(NA

R+L)2I1〉m
m2V

= O(m2), 〈I3
1 〉A = O(m2), (3.37)

〈NA
R+LI2

1 〉m
mV

= O(m3), N2
f
〈Q(A)2〉m

m3V
= 2Nf

ρ̄1

m
, (3.38)

2Nf 〈I3〉m = 2Nf

[
π

2
〈ρA

0 〉m
m2

+
ρ̄1

m
+
π

4
〈ρA

2 〉m
]

(3.39)

〈NA
R+LQ(A)2〉m

m3V 2
= O(m),

〈I2
1 〉m
m

= O(m) (3.40)

〈Q(A)2I1〉m
m2V

= N2
fπ

〈Q(A)2ρA
0 〉m

m2V
,

〈(NA
R+L)2〉m
m3V 2

= O(m). (3.41)
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No additional constraints

Using these properties, we have

lim
m→0

lim
V →∞

χ1

V 2
= 0, (3.42)

lim
m→0

lim
V →∞

χ2

V 2
= 0, (3.43)

lim
m→0

lim
V →∞

χ3

V 4
= πNf lim

m→0

[
〈ρA

0 〉m
m2

+
2ρ̄1

mπ
+

〈ρA
2 〉m
2

]
, (3.44)

lim
m→0

lim
V →∞

χ4

V 4
= πN5

f lim
m→0

lim
V →∞

〈Q(A)2ρA
0 〉m

m2V
, (3.45)

lim
m→0

lim
V →∞

χ5

V 2
= 0. (3.46)

The condition for χ3 and the positivity give

〈ρA
0 〉m = O(m4), ρ̄1 = O(m2), 〈ρA

2 〉m = O(m2), (3.47)

which automatically leads to

〈Q(A)2ρA
0 〉m

m2V
= O(m2), (3.48)

so that lim
m→0

lim
V →∞

χ4

V 4
= 0. We finally obtain

〈ρA(λ)〉A = 〈ρA
3 〉A

|λ|3

3!
+ O(λ4) (3.49)

in the chiral limit.

3.5 Constraints at N = 4

3.6 Special constraints at general N

Before considering N = 3, 4 cases, we discuss constraints from an operator O(N)
a =

O1,0,0,N−1, whose non-singlet chiral WT identity becomes

−〈O0,0,0,N 〉m + (N − 1)〈O2,0,0,N−2〉m → 0, m → 0 (3.50)

The dominate contribution at large volume is given by

1
V N

〈SN
0 〉m = NN

f

〈{
NA

R+L

mV
+ I1

}N〉

m

+ O(V −1) → 0, m → 0 (3.51)

The positivity leads to

〈(NA
R+L)N 〉m
V N

=

{
O(mN+2) N = 2k

O(mN+1) N = 2k − 1
. (3.52)

Since this holds for all N and NA
R+L is independent on m, we conclude

lim
V →∞

〈NA
R+L〉m
V

= 0 (3.53)
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= 0
+ positivity

O(m)

��A
0 �m = O(m4), ��A

2 �m = O(m2) 3rd constraints

N=4

lim
m�0

��A(�)�m = lim
m�0

��A
3 �m

|�|3

3!
+ O(�4)

Final results



4. Discussion:Singlet susceptbility
Singlet susceptibility

���� = lim
V��

N2
f

m2V
�Q(A)2�m = (mNf

�
V�2)

lim
m�

���� = 0

singlet susceptibility becomes zero if the chiral symmetry is recovered at hight T.

This, however, does not mean U(1)_A symmetry is recovered at high T.

lim
m�

���� = 0 is necessary but NOT sufficient for the recovery of U(1)_A .

Future new constraints at N > 4 ?

eigenvalues of Dirac operator 
have a gap near zero ?

ρ(λ) = 0 at |λ| ≤ λc

ρ(λ)

|λ|λc
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models being studied:

• SU(3)

• fundamental: Nf=6, 8, 10, 12, 16

• sextet: Nf=2

• SU(2)

• adjoint: Nf=2

• fundamental: Nf=8

• SU(4)

• decuplet: Nf=2

P
o
S
(
L
a
t
t
i
c
e
 
2
0
1
0
)
0
0
4

Conformal window Luigi Del Debbio

conformal window: SU(3) with n f = 16,12,10,9,8,6 flavors in the fundamental representation,
SU(2) with n f = 6 flavors in the fundamental, SU(2) with n f = 2 flavors in the adjoint represen-
tation, and SU(3) with n f = 2 flavors in the two-index symmetric (sextet) representation. At these
early stages of the nonperturbative studies of the conformal window it is important to try to identify
a paradigm to guide the numerical investigations, rather than trying to get exhaustive results on one
specific theory.

Fund

2A

2S Adj

Ladder

γ = 1 γ = 2

Ryttov & Sannino 07

SU(N) Phase Diagram

Dietrich & Sannino 07

Sannino & Tuominen 04

Figure 3: Boundaries of the conformal window for SU(N) gauge theories with n f species of Dirac fermions.
The four bands represent respectively fermions in the fundamental (Fund), adjoint (A) and two-index sym-
metric and antisymmetric (2S,2A) representations. The upper limit of each band corresponds to the number
of flavors where asymptotic freedom is lost, as obtained from one-loop perturbative computations. The
lower limit of each band yields the number of flavors above which the theories develop an IR fixed point.
The location of these lower limits relies upon assumptions about the nonperturbative dynamics of the theo-
ries. Lattice simulations can provide first-principle evidence in favour (or against) this picture, and compute
the critical exponents that characterize the fixed points. Figure courtesy of F. Sannino.

2. Tools

Numerical tools that were originally designed for investigating lattice QCD have been used in
order to identify the existence of IRFPs. We describe briefly the main ideas, the observables that
are used in the different approaches, and their expected behaviour in the presence of an IRFP. For
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SU(3) + Nf=12   [fundamental]



Hadron spectrum: 
         mf-response in mass deformed theory

• IR conformal phase:

• coupling runs below μ=mf:   like nf=0 QCD with ΛQCD~mf

• multi particle / glueball state :  MH ∝ mf1/(1+γm*);   F! ∝ mf1/(1+γm*)

• SχSB phase:

• ChPT (but, large Nf, small F    ⇔ real QCD)

• hard to get to the chiral regime

• at leading:  M!
2 ∝ mf,  ;   F! = F + c mf

• so far no chiral logs are observed → polynomial in mf



Simulation

• Nf=12 HISQ (Highly Improved Staggered Quarks)

• tree level Symanzik gauge

• β=6/g2=3.7,    V=L3xT: L/T=3/4; L=18, 24, 30,    0.04≦mf≦0.2

• β=6/g2=4.0,    V=L3xT: L/T=3/4; L=18, 24, 30,    0.05≦mf≦0.24

• Nf=4 HISQ for the reference of SχSB for comparison

• using MILC code v7 with some modifications



staggered flavor symmetry for Nf=12 HISQ

• comparing mesonic mass with local PS and V operators  for β=3.7
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FIG. 20. The effective mass of both two operators at β = 3.7, 4 on (L/a, T/a) = (30, 40). {fig:spectrum}

Appendix B: Analysis of conformal hypothesis fit

{sec:conformal_fit}

In this appendix we show the details of fit results on the conformal hypothesis.

In the conformal hypothesis with a finite volume, we make an attempt to use the fit

functions given in Eq. 14. In the generic situation, however, we do not know how and what

kind of such correction terms can appear from the RG analysis. Therefore in this appendix

we fix the value of the exponent α to a certain value in the fit since it is hard to determine

both two exponents of the power behavior from the fit. We consider three possible value of

alpha as α = (3 − 2γ)/(1 + γ), 1 and 2, so we denote these fit functions as fit b-1, fit b-2

and fit b-3, respectively. We carry out simultaneous fit with above fit functions using all the

data for Mπ, Fπ and Mρ with common anomalous dimension γ and α. We also use same

data points for the fit as in the section V. As already discussed in the section V, additional

correction terms improve the accuracy of the fit efficiently for both case of β = 3.7 and

β = 4. On the other hand, each of the fit results with correction term gives same magnitude

of χ2/dof. Thus in this analysis it is not easy to determine both of γ and α.
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a crude analysis: F!/M! vs M!

mf # trj. Mπ Mρ Fπ

0.04 700 0.3024(16) 0.3777(47) 0.0633(6)

0.05 600 0.3513(12) 0.4332(19) 0.0738(8)

0.06 500 0.3994(15) 0.4888(14) 0.0840(7)

0.08 500 0.4875(9) 0.5965(10) 0.1017(6)

0.1 500 0.5670(7) 0.6927(14) 0.1167(3)

0.12 500 0.6460(7) 0.7899(22) 0.1328(4)

0.16 400 0.7877(6) 0.9549(14) 0.1586(5)

0.2 400 0.9193(6) 1.1049(22) 0.1821(6)

TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}

mf # trj. Mπ Mρ Fπ

0.05 600 0.3163(27) 0.3693(49) 0.0633(9)

0.06 600 0.3634(15) 0.4336(22) 0.0729(4)

0.08 600 0.4508(12) 0.5311(21) 0.0898(7)

0.1 600 0.5227(9) 0.6174(21) 0.1017(7)

0.12 600 0.5966(10) 0.7027(22) 0.1149(7)

0.16 500 0.7308(8) 0.8519(12) 0.1380(7)

0.2 500 0.8568(6) 0.9921(6) 0.1585(8)

TABLE VI. The results of the spectra on

V = 303 × 40 at β = 4. {tab:6}
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FIG. 2. Dimension-less ratio Fπ/Mπ as a function of Mπ for Nf = 4 at β = 3.7. Due to the

spontaneous chiral symmetry breaking, the ratio diverges in the chiral limit. {fig:ratio_mf_nf4}

dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,
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FIG. 3. Dimension-less ratios Fπ/Mπ and Mρ/Mπ as functions of mf for Nf = 12 at β = 3.7 (filled

symbol) and 4.0 (open symbol) for two largest volumes. {fig:ratio_mf_nf12}

the scaling range of the pion decay constant is very limited for β = 3.7 and no simple scale

would be expected for the decay constant for β = 4.

An existence of the scaling for Fπ at β = 3.7 and an absence at β = 4 at the same aMπ

can be possible if the Mπ in the physical units are larger (thus the correction is no longer

negligible) for β = 4, i.e., the lattice spacing decreases as β increases. We can see that it

is actually the case by trying to align the data by multiplying r > 1 to aMπ for β = 4.

Figure 4 shows the case for r = 2 where an approximate alignment is observed. From this

the approximate value of the ratio of the two lattice spacing is obtained:

a(β = 3.7)

a(β = 4)
∼ 2. (8)

The fact that the lattice spacing decreases as β = 6/g2 increases is consistent with being in

the asymptotically free domain, even if there is an infrared fixed point in the beta function.

IV. FINITE SIZE SCALING TEST OF THE CONFORMAL HYPOTHESIS
{sec:fss}

A. Preliminary

In the conformal window with finite masses and volume, the RG analysis tell us the

scaling behavior for low energy spectra which should obey the universal scaling relations

[32] as

ξp ≡ LMp = fp(x), (9) {eq:fss_mass}
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a crude analysis: F!/M! vs M!

• β=3.7: small mass: consistent with hyper-scaling
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dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From
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the scaling range of the pion decay constant is very limited for β = 3.7 and no simple scale

would be expected for the decay constant for β = 4.

An existence of the scaling for Fπ at β = 3.7 and an absence at β = 4 at the same aMπ

can be possible if the Mπ in the physical units are larger (thus the correction is no longer

negligible) for β = 4, i.e., the lattice spacing decreases as β increases. We can see that it

is actually the case by trying to align the data by multiplying r > 1 to aMπ for β = 4.

Figure 4 shows the case for r = 2 where an approximate alignment is observed. From this

the approximate value of the ratio of the two lattice spacing is obtained:

a(β = 3.7)

a(β = 4)
∼ 2. (8)

The fact that the lattice spacing decreases as β = 6/g2 increases is consistent with being in

the asymptotically free domain, even if there is an infrared fixed point in the beta function.

IV. FINITE SIZE SCALING TEST OF THE CONFORMAL HYPOTHESIS
{sec:fss}

A. Preliminary

In the conformal window with finite masses and volume, the RG analysis tell us the

scaling behavior for low energy spectra which should obey the universal scaling relations

[32] as

ξp ≡ LMp = fp(x), (9) {eq:fss_mass}
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a crude analysis: F!/M! vs M!

• β=3.7: small mass: consistent with hyper-scaling

• β=4.0: mass too heavy ?   inconsistent with being in the hyper-scaling region

mf # trj. Mπ Mρ Fπ

0.04 700 0.3024(16) 0.3777(47) 0.0633(6)
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TABLE V. The results of the spectra on V =

303 × 40 at β = 3.7. {tab:5}
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dependence.

Similar observation can be made for the other ratio Mρ/Mπ shown in the right panel of

Fig. 3. Here, the flattening is observed for β = 3.7 again, however the range is wider than

Fπ/Mπ. In this case β = 4 shows the flattening, also. The difference of the constant is made

possible due to a discretization effect.

In the following sections, further detailed study using these data are performed. From

the observation here, we note that the only the smaller mass data would qualify the hyper

scaling test if there is any, if only a leading mass dependence is taken into account. Further,
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FIG. 3. Dimension-less ratios Fπ/Mπ and Mρ/Mπ as functions of mf for Nf = 12 at β = 3.7 (filled

symbol) and 4.0 (open symbol) for two largest volumes. {fig:ratio_mf_nf12}

the scaling range of the pion decay constant is very limited for β = 3.7 and no simple scale

would be expected for the decay constant for β = 4.

An existence of the scaling for Fπ at β = 3.7 and an absence at β = 4 at the same aMπ

can be possible if the Mπ in the physical units are larger (thus the correction is no longer

negligible) for β = 4, i.e., the lattice spacing decreases as β increases. We can see that it

is actually the case by trying to align the data by multiplying r > 1 to aMπ for β = 4.

Figure 4 shows the case for r = 2 where an approximate alignment is observed. From this

the approximate value of the ratio of the two lattice spacing is obtained:

a(β = 3.7)

a(β = 4)
∼ 2. (8)

The fact that the lattice spacing decreases as β = 6/g2 increases is consistent with being in

the asymptotically free domain, even if there is an infrared fixed point in the beta function.

IV. FINITE SIZE SCALING TEST OF THE CONFORMAL HYPOTHESIS
{sec:fss}

A. Preliminary

In the conformal window with finite masses and volume, the RG analysis tell us the

scaling behavior for low energy spectra which should obey the universal scaling relations

[32] as

ξp ≡ LMp = fp(x), (9) {eq:fss_mass}
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a crude analysis: Mρ/M! vs M!
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FIG. 3. Dimension-less ratios Fπ/Mπ and Mρ/Mπ as functions of mf for Nf = 12 at β = 3.7 (filled

symbol) and 4.0 (open symbol) for two largest volumes. {fig:ratio_mf_nf12}

the scaling range of the pion decay constant is very limited for β = 3.7 and no simple scale

would be expected for the decay constant for β = 4.

An existence of the scaling for Fπ at β = 3.7 and an absence at β = 4 at the same aMπ

can be possible if the Mπ in the physical units are larger (thus the correction is no longer

negligible) for β = 4, i.e., the lattice spacing decreases as β increases. We can see that it

is actually the case by trying to align the data by multiplying r > 1 to aMπ for β = 4.

Figure 4 shows the case for r = 2 where an approximate alignment is observed. From this
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a crude analysis: Mρ/M! vs M!
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the scaling range of the pion decay constant is very limited for β = 3.7 and no simple scale

would be expected for the decay constant for β = 4.

An existence of the scaling for Fπ at β = 3.7 and an absence at β = 4 at the same aMπ

can be possible if the Mπ in the physical units are larger (thus the correction is no longer

negligible) for β = 4, i.e., the lattice spacing decreases as β increases. We can see that it

is actually the case by trying to align the data by multiplying r > 1 to aMπ for β = 4.

Figure 4 shows the case for r = 2 where an approximate alignment is observed. From this

the approximate value of the ratio of the two lattice spacing is obtained:
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The fact that the lattice spacing decreases as β = 6/g2 increases is consistent with being in

the asymptotically free domain, even if there is an infrared fixed point in the beta function.
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scaling behavior for low energy spectra which should obey the universal scaling relations
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a crude analysis: Mρ/M! vs M!

• β=3.7 & 4.0: small mass (wider than F!): consistent with hyper scaling (HS)
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would be expected for the decay constant for β = 4.

An existence of the scaling for Fπ at β = 3.7 and an absence at β = 4 at the same aMπ

can be possible if the Mπ in the physical units are larger (thus the correction is no longer

negligible) for β = 4, i.e., the lattice spacing decreases as β increases. We can see that it

is actually the case by trying to align the data by multiplying r > 1 to aMπ for β = 4.

Figure 4 shows the case for r = 2 where an approximate alignment is observed. From this

the approximate value of the ratio of the two lattice spacing is obtained:

a(β = 3.7)

a(β = 4)
∼ 2. (8)

The fact that the lattice spacing decreases as β = 6/g2 increases is consistent with being in

the asymptotically free domain, even if there is an infrared fixed point in the beta function.
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would be expected for the decay constant for β = 4.

An existence of the scaling for Fπ at β = 3.7 and an absence at β = 4 at the same aMπ

can be possible if the Mπ in the physical units are larger (thus the correction is no longer

negligible) for β = 4, i.e., the lattice spacing decreases as β increases. We can see that it
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Figure 4 shows the case for r = 2 where an approximate alignment is observed. From this

the approximate value of the ratio of the two lattice spacing is obtained:
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The fact that the lattice spacing decreases as β = 6/g2 increases is consistent with being in
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In the conformal window with finite masses and volume, the RG analysis tell us the

scaling behavior for low energy spectra which should obey the universal scaling relations

[32] as
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conformal (finite size) scaling

• Scaling dimension at IR fixed point [Wilson-Fisher];  Hyper Scaling [Miransky]

• mass dependence is described by anomalous dimensions at IRFP

• quark mass anomalous dimension

• operator anomalous dimension

• meson mass and pion decay constant obey same scaling 

• finite size scaling in a L4 box (DeGrand; Del Debbio et al)

• scaling variable: 

Lfπ = F (x) Lmπ = G(x)

x = Lm
1

1+γ∗

f

mπ = cmm
1

1+γ∗

f fπ = cfm
1

1+γ∗

f

γ∗
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FIG. 7. ξπ plotted against the scaling variable x for γ = 0.5, 1.0, 1.5 from left to right for Nf = 4

at β = 3.7, where spontaneous chiral symmetry breaking occurs. An alignment found at γ = 1 is

consistent with Eq. (5) {fig:nf4_mpi_g}
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian
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one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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deviation away from the measured value as an average through all the points, this function

would give 1.

For simplicity we will take the linear interpolation of ξ in x, which is a good approximation

of ξ for large x. The systematic error associated with the interpolation will be estimated by

the difference of the interpolations with linear and quadratic spline.

We estimate the error of γ from the statistical fluctuation of the minimum of Pp(γ)

calculated by the parametric bootstrap method to properly take into account the possible

statistical correlation in Eq. (12), where the distribution of ξjp is regenerated as a Gaussian

with the width being the error of ξjp. The form of the evaluation function is similar as the

one used in the literature [27, 37, 38]. While we use an error weighted definition of the

evaluation function, they have used the one without the weight for primary analysis. The

unweighted version of the evaluation function has been tested in our analysis, too, which

resulted in the consistent values of optimal γ.
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FIG. 5. ξπ plotted against the scaling variable x for γ = 0.1, 0.4, 0.7 from left to right for Nf = 12

at β = 3.7. An alignment is found for γ ∼ 0.4. {fig:mpi_g}
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FIG. 6. ξF v.s. x for γ = 0.2, 0.5, 0.8 from left to right for Nf = 12 at β = 3.7 γ ∼ 0.5. {fig:fpi_g}

Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑

K

∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured
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to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to
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unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).
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to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to
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to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
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to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by
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with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to
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B. Finite size hyper-scaling analysis

In the evaluation function Eq. (12), the summation over j is taken for the range of x

where all volume L = 18, 24, 30 have overlapping data. This can be achieved, for all the

values of γ to be tested, by choosing xmin or xmax to be the minimum / maximum of x

for L = 30/18 respectively: L = 30, mf = 0.04 (β = 3.7) or mf = 0.05 (β = 4) for xmin

and L = 18, mf = 0.2 (β = 3.7) or mf = 0.24 (β = 4) for xmax. The maximum mf was

chosen so aMπ
<∼ 1 is satisfied, and the minimum was chosen so that the finite volume effect

on the bound state mass is not too large, as well as to prevent the outrageous computer

effort. Around the optimal γ, we have 12 data points in [xmin, xmax] for β = 3.7 and 11 for

β = 4. Note, however, we use some neighboring data outside of the boundary to obtain the

interpolated value f (K)
p (xj) inside but near the boundary, when it is necessary.
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FIG. 9. (Left): The γ dependence of the function P for Mπ(left) at β = 3.7. The function f(x) is

obtained by using linear interpolation function. The vertical axis show the central value of P as a

function of γ. The each of curves show the results of Pπ(γ) with corresponding ranges. (Right):

The results of Pπ(γ) using two data sets with different volumes as L = 18, 24, L = 18, 30 and

L = 24, 30, respectively. We use full range. {fig:P_mpi}

By performing the γ scan the evaluation function using all the data in xmin ≤ x ≤ xmax is

plotted in Figure 9 (“all”) for the β = 3.7 case. A clear minimum exists, where the alignment

of the data is optimal. We repeat this analysis and obtain the optimal γ for each observable

and at each β. The results are tabulated as the “all” column in Table VII. Figures 10 and

11 show ξ for each case as a function of x with optimal γ.

Let us now remind ourselves that the naive analysis of the ratio in Sect. III indicated that
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to quantify the “alignment”
     without resorting to a model

•  γ of optimal alignment will minimize:

•  ξp=LMp  for p=!, ρ;   ξF=LF!

•  fp(x): interpolation .... linear

• (quadratic for a systematic error)

• if ξj is away from f(xi) by δ ξj as average→P=1

• optimal γ from the minimum of P
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and N denotes the total number of summation. If the interpolated value were one standard

14

B. Finite size hyper-scaling analysis

In the evaluation function Eq. (12), the summation over j is taken for the range of x

where all volume L = 18, 24, 30 have overlapping data. This can be achieved, for all the

values of γ to be tested, by choosing xmin or xmax to be the minimum / maximum of x

for L = 30/18 respectively: L = 30, mf = 0.04 (β = 3.7) or mf = 0.05 (β = 4) for xmin

and L = 18, mf = 0.2 (β = 3.7) or mf = 0.24 (β = 4) for xmax. The maximum mf was

chosen so aMπ
<∼ 1 is satisfied, and the minimum was chosen so that the finite volume effect

on the bound state mass is not too large, as well as to prevent the outrageous computer

effort. Around the optimal γ, we have 12 data points in [xmin, xmax] for β = 3.7 and 11 for

β = 4. Note, however, we use some neighboring data outside of the boundary to obtain the

interpolated value f (K)
p (xj) inside but near the boundary, when it is necessary.
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FIG. 9. (Left): The γ dependence of the function P for Mπ(left) at β = 3.7. The function f(x) is

obtained by using linear interpolation function. The vertical axis show the central value of P as a

function of γ. The each of curves show the results of Pπ(γ) with corresponding ranges. (Right):

The results of Pπ(γ) using two data sets with different volumes as L = 18, 24, L = 18, 30 and

L = 24, 30, respectively. We use full range. {fig:P_mpi}

By performing the γ scan the evaluation function using all the data in xmin ≤ x ≤ xmax is

plotted in Figure 9 (“all”) for the β = 3.7 case. A clear minimum exists, where the alignment

of the data is optimal. We repeat this analysis and obtain the optimal γ for each observable

and at each β. The results are tabulated as the “all” column in Table VII. Figures 10 and

11 show ξ for each case as a function of x with optimal γ.

Let us now remind ourselves that the naive analysis of the ratio in Sect. III indicated that
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to quantify the “alignment”
     without resorting to a model

•  γ of optimal alignment will minimize:

•  ξp=LMp  for p=!, ρ;   ξF=LF!

•  fp(x): interpolation .... linear

• (quadratic for a systematic error)

• if ξj is away from f(xi) by δ ξj as average→P=1

• optimal γ from the minimum of P

• systematic error due to small L, large m estimated by examining the x and L 
range dependence
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FIG. 5. ξπ plotted against the scaling variable x for γ = 0.1, 0.4, 0.7 from left to right for Nf = 12

at β = 3.7. An alignment is found for γ ∼ 0.4. {fig:mpi_g}
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FIG. 6. ξF v.s. x for γ = 0.2, 0.5, 0.8 from left to right for Nf = 12 at β = 3.7 γ ∼ 0.5. {fig:fpi_g}

Figs. 7 an alignment is observed for γ = 1, which is interpreted as an realization of Eq. (5).

The pion decay constant does not show any alignment (Figs. 8) for γ values allowed for the

unitarity requirement 0 ≤ γ ≤ 2 (reference anybody ?).

To quantify the “alignment” we introduce an evaluation function Pp(γ) which is made

to get smaller when the data are more “aligned”, so that the optimal γ can be obtained by

minimizing Pp(γ). Suppose that ξjp is composed of the measured spectrum of p at x = xj

with a certain value of γ, and that f (K)
p (xj) is a ξp value evaluated using an interpolation to

{xk} → xj using the data in a subset {(xk, ξk)} ∈ K of the measurements with fixed volume

L and varying mf , the evaluation function is given by

Pp(γ) =
1

N
∑
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∑

j !∈K

|ξjp − f (K)
p (xj)|2

δ2ξjp
, (12) {eq:p}

where K runs through different lattice size, and for each K, j runs through all the measured

points in a certain range excluding those which belong to K, δ2ξjp is the squared error of ξjp,

and N denotes the total number of summation. If the interpolated value were one standard
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for L = 30/18 respectively: L = 30, mf = 0.04 (β = 3.7) or mf = 0.05 (β = 4) for xmin

and L = 18, mf = 0.2 (β = 3.7) or mf = 0.24 (β = 4) for xmax. The maximum mf was

chosen so aMπ
<∼ 1 is satisfied, and the minimum was chosen so that the finite volume effect

on the bound state mass is not too large, as well as to prevent the outrageous computer

effort. Around the optimal γ, we have 12 data points in [xmin, xmax] for β = 3.7 and 11 for

β = 4. Note, however, we use some neighboring data outside of the boundary to obtain the

interpolated value f (K)
p (xj) inside but near the boundary, when it is necessary.
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function of γ. The each of curves show the results of Pπ(γ) with corresponding ranges. (Right):

The results of Pπ(γ) using two data sets with different volumes as L = 18, 24, L = 18, 30 and

L = 24, 30, respectively. We use full range. {fig:P_mpi}

By performing the γ scan the evaluation function using all the data in xmin ≤ x ≤ xmax is

plotted in Figure 9 (“all”) for the β = 3.7 case. A clear minimum exists, where the alignment

of the data is optimal. We repeat this analysis and obtain the optimal γ for each observable

and at each β. The results are tabulated as the “all” column in Table VII. Figures 10 and

11 show ξ for each case as a function of x with optimal γ.

Let us now remind ourselves that the naive analysis of the ratio in Sect. III indicated that
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summary of γ obtained by minimizing P(γ) 

0.3 0.4 0.5 0.6 0.7
 !

M
" 

 (#=4.0)

M
" 

 (#=3.7)

M
$

 (#=3.7)

M
$ 

 (#=4.0)

F
" 

 (#=3.7)

F
" 

 (#=4.0)

FIG. 13. The results on the value of γ for each observable, β are summarized, where all the

statistical and systematic errors are added in quadrature. Except for the γ from Fπ at β = 4,

where the scaling region is suspected to be outside of the parameter range we have, all the results

are consistent with each other with 1.5σ level. {fig:gamma}

From these analysis, we can conclude that the our data for Nf = 12 lattice simulations is

reasonably consistent with the FSHS, thus, with the low energy conformality, if we exclude

the Fπ at β = 4 from the analysis. The resulting mass anomalous dimensions from different

quantities and two lattice spacings separated by a factor ∼ 2 are reasonably consistent, too.

We quote 0.4 <∼ γ∗ <∼ 0.5 for the mass anomalous dimension at the infrared fixed point.

V. FINITE SIZE HYPER SCALING FIT
{sec:fshp}

We found in the previous sections that the hyper-scaling might be working, but, the

non-universal correction could be important in the mass and volume range we have. In this

section we try to test two plausible models for the correction. To do this test we need to fix

the term for the universal scaling in the following. Therefore, the approach looses generality

that the analysis in the previous section had. Thus, the result here is not going to be the

main result in this paper, but, still provides an useful information.

In the conformal hypothesis in a finite volume, we basically follow the finite size hyper-

scaling ansatz given in previous section, but in this section we try several fit functions by

adding some correction terms which can not be represented by a single scaling variable
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• consistent γ by 1.5 σ level except for F! at β=4.0
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From these analysis, we can conclude that the our data for Nf = 12 lattice simulations is

reasonably consistent with the FSHS, thus, with the low energy conformality, if we exclude

the Fπ at β = 4 from the analysis. The resulting mass anomalous dimensions from different

quantities and two lattice spacings separated by a factor ∼ 2 are reasonably consistent, too.

We quote 0.4 <∼ γ∗ <∼ 0.5 for the mass anomalous dimension at the infrared fixed point.
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section we try to test two plausible models for the correction. To do this test we need to fix

the term for the universal scaling in the following. Therefore, the approach looses generality

that the analysis in the previous section had. Thus, the result here is not going to be the

main result in this paper, but, still provides an useful information.

In the conformal hypothesis in a finite volume, we basically follow the finite size hyper-

scaling ansatz given in previous section, but in this section we try several fit functions by

adding some correction terms which can not be represented by a single scaling variable
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• consistent γ by 1.5 σ level except for F! at β=4.0

• remember: F! at β=4.0 speculated to be out of the scaling region
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statistical and systematic errors are added in quadrature. Except for the γ from Fπ at β = 4,

where the scaling region is suspected to be outside of the parameter range we have, all the results

are consistent with each other with 1.5σ level. {fig:gamma}

From these analysis, we can conclude that the our data for Nf = 12 lattice simulations is

reasonably consistent with the FSHS, thus, with the low energy conformality, if we exclude

the Fπ at β = 4 from the analysis. The resulting mass anomalous dimensions from different

quantities and two lattice spacings separated by a factor ∼ 2 are reasonably consistent, too.

We quote 0.4 <∼ γ∗ <∼ 0.5 for the mass anomalous dimension at the infrared fixed point.
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the term for the universal scaling in the following. Therefore, the approach looses generality

that the analysis in the previous section had. Thus, the result here is not going to be the

main result in this paper, but, still provides an useful information.

In the conformal hypothesis in a finite volume, we basically follow the finite size hyper-

scaling ansatz given in previous section, but in this section we try several fit functions by

adding some correction terms which can not be represented by a single scaling variable
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summary of γ obtained by minimizing P(γ) 

• consistent γ by 1.5 σ level except for F! at β=4.0

• remember: F! at β=4.0 speculated to be out of the scaling region

• universal low energy behavior: good with 0.4<γ*<0.5
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statistical and systematic errors are added in quadrature. Except for the γ from Fπ at β = 4,

where the scaling region is suspected to be outside of the parameter range we have, all the results

are consistent with each other with 1.5σ level. {fig:gamma}

From these analysis, we can conclude that the our data for Nf = 12 lattice simulations is

reasonably consistent with the FSHS, thus, with the low energy conformality, if we exclude

the Fπ at β = 4 from the analysis. The resulting mass anomalous dimensions from different

quantities and two lattice spacings separated by a factor ∼ 2 are reasonably consistent, too.

We quote 0.4 <∼ γ∗ <∼ 0.5 for the mass anomalous dimension at the infrared fixed point.

V. FINITE SIZE HYPER SCALING FIT
{sec:fshp}

We found in the previous sections that the hyper-scaling might be working, but, the

non-universal correction could be important in the mass and volume range we have. In this

section we try to test two plausible models for the correction. To do this test we need to fix

the term for the universal scaling in the following. Therefore, the approach looses generality

that the analysis in the previous section had. Thus, the result here is not going to be the

main result in this paper, but, still provides an useful information.

In the conformal hypothesis in a finite volume, we basically follow the finite size hyper-

scaling ansatz given in previous section, but in this section we try several fit functions by

adding some correction terms which can not be represented by a single scaling variable
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Conformal type fit with finite volume correction

• simultaneous fit it with a leading mass dependent correction is not bad

• b-1: Ladder Schwinger-Dyson,   b-2: (am)2 lattice artifact

• resulting γ is consistent with the model independent analysis

x = Lm1/(1+γ)
f . We make an attempt to use the following formulae as

ξ = c0 + c1Lm
1/(1+γ)
f · · · fit a, (14) {eq:f}

ξ = c0 + c1Lm
1/(1+γ)
f + c2Lm

α
f · · · fit b. (15)

The first one (fit a) is a naive fit form based on the hyper-scaling relation which is described

by the function form of f(x) = c0+ c1x with x = Lm1/(1+γ)
f . This formula is motivated from

the results obtained in Fig. 10, since the clear linearity of the data for large x can be found

near the optimal value of γ.

The second one (fit b) is considered as the above function for the hyperscaling including

the mass corrections. As discussed in the previous section, there may exist some corrections

beyond the hyperscaling relations in the region we simulated, so we try to include such

contributions. In particular the value of α = (3 − 2γ)/(1 + γ) is inspired by the analytic

expression of the solution of the SD equation given in [33] and the analogous structure in the

region of the large anomalous dimension is also discussed in [39]. We also consider the case

of the value of α = 2. This correction could be regarded as the small mass correction caused

by explicit chiral symmetry breaking effects or due to the lattice discretization artifact. It

is noted that in both cases the fit function cannot be described by a single scaling variable

x = Lm1/(1+γ)
f . We denote these fit functions with α = (3− 2γ)/(1+ γ) and α = 2 as fit b-1

and fit b-2, respectively. In this section we try to carry out the fit using these fit functions,

namely, fit a, fit b-1, and fit b-2. Another simple correction term with α = 1 can also be

considered in Ref. [26]. All the details of the fit results including other ansatz are shown in

the appendix B.

The finite size correction to the value ξ has been also considered. This kind of the

correction is motivated by the Fisher’s argument for the critical phenomena on a finite

system [40]. The study of the hyper scaling with such corrections in the QCD with many-

flavor has been seen in [41]. Here in order to avoid the large finite size effects, we restrict

ourselves to use of the data points in the fit which satisfy ξπ > L(= 30) ×Mπ(mf = 0.04)

for β = 3.7 and ξπ > L(= 18)×Mπ(mf = 0.08) for β = 4.

We carry out simultaneous fit with above fit functions using all the data for Mπ, Fπ and

Mρ with common anomalous dimension γ. The fit results of γ and χ2/dof are shown in

table VIII and figure 14 for β = 3.7 and and figure 15 for β = 4. Here we assume that the

possible correlations among these observables can be neglected. In these figures the data
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FIG. 14. The each of spectra ξπ(left), ξF (center) and ξρ(right) as a function of mf at β = 3.7.

For simplicity, we only show two fit results of fit a and fit b-2, by the solid and dotted curves,

respectively. The data with empty symbols are not used in the fit. {fig:mpiL}
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FIG. 15. The each of spectra ξπ(left), ξF (center) and ξρ(right) as a function of mf at β = 4.

For simplicity we only show two fit results of fit a and fit b-2, by the solid and dotted curves,

respectively. The data with empty symbols are not used in the fit. {fig:mpiL_b4}

VI. CHIRAL PERTURBATION THEORY ANALYSIS
{sec:chpt}

In order to give a fair comparison of scenarios whether or not the chiral symmetry is

spontaneously broken, we carry out the fit based on the ChPT hypothesis in our data.

23

γ α χ2/dof

fit a 0.455(3) - 5.43

fit b-1 0.417(10) (3−2γ)
(1+γ) 1.88

fit b-2 0.431(8) [2] 1.83

γ α χ2/dof

fit a 0.435(3) - 7.92

fit b-1 0.412(13) (3−2γ)
(1+γ) 1.53

fit b-2 0.424(8) [2] 1.61

TABLE VIII. The fit results of finite size conformal hypothesis at β = 3.7(left) and β = 4(right).

The values sandwiched as [· · · ] mean the input in the fit. {tab:fsc}

not used in the fit is denoted by the empty symbol. The full results in these analyses are

also shown in the appendix B.

First, let us look at the result at β = 3.7. One finds that the fit can work for our data

with the above ansatz. The fit curves of fit b-2 match to the data in the large fermion mass

region better than fit a for the case of Fπ. In fact, the fit results with correction terms

(fit-b) improve the quality of the fit, where both of fit b-1 and b-2 give χ2/dof ∼ 1.8− 1.9.

In contrast, the result of fit a gives χ2/dof ∼ 5. For the case of Mπ, both fit curves show

similar behavior and the contribution of correction term c2 are very small. (As shown in

appendix, the value of c2 in the fit b-2 is consistent with zero within the error.) This fact is

also consistent with the analysis of the finite size hyper-scaling in previous section, because

it is found that the optimal value of γ for Mπ at β = 3.7 is stable against the change of the

mass range. As a result, we can describe our data for three observables by one universal

γ ∼ 0.41 − 0.43 which is slightly smaller than the value obtained by using the function of

fit a. This result is actually consistent with one given by the finite size scaling test in the

previous section. In the case of β = 4, similar results can be found. That is to say, the fit

function with mass correction term help to improve the accuracy of the fit. Then the value

of χ2/dof is reduced from 7.9 to 1.5 − 1.6. We obtain the value of anomalous dimension

γ ∼ 0.41 − 0.42 which is also consistent with the one obtained in the previous section and

the one given by the fit at β = 3.7.

From these analysis, we can obtain the universal value of the γ from the fit with correction

term in both cases of β = 3.7 and 4.0. Thus the discrepancy of the γ among observables

discussed in the previous section may be understood by assumption of such non-universal

correction term. It is important to analyze the hyper-scaling with correction terms, Although

a correction term may not necessarily be efficient for all the quantities.
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Near the optimal value of !, the data become to align, 
 where linearity is observed.

•  L-> infinity, the (infinite volume) hyper-scaling relation is obtained. 
•  3 fit parameters : c0, c1, ! 
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ChPT fit (after infinite volume extrapolation) 

• 2nd order polynomial fit is reasonably good for small mass range & c0>0
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FIG. 18. The several fit results on M2
π at β = 3.7(Left) and β = 4(Right) using the data at infinite

volume limit. {fig:chpt37}
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FIG. 19. The plots show the (FπMπ)2/mf as a function of mf at β = 3.7(Left) and β = 4(right). {fig:fpi}
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FIG. 20. The plots show the (FπMπ)2/mf as a function of mf at β = 3.7(Left) and β = 4(right). {fig:pbp}
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fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] 0.0101(54) 1.53(19) -4.8(1.5) - 2.09

fit 1 : [0.04, 0.1] 0.0138(29) 1.39(88) -3.62(61) - 1.39

fit 1 : [0.04, 0.12] 0.0226(17) 1.113(45) -1.64(27) - 5.42

fit 2 : [0.04, 0.16] 0.0182(34) 1.28(13) -3.4(1.3) 6.0(4.2) 4.75

β = 4 fit 1 : [0.05, 0.1] -0.00006(530) 1.51(15) -4.95(92) - 0.20

fit 1 : [0.05, 0.12] 0.0156(27) 1.073(67) -2.08(39) - 6.18

fit 2 : [0.05, 0.16] 0.0031(61) 1.52(20) -7.1(2.0) 17.8(6.2) 3.81

TABLE XII. The fit results on Fπ in infinite volume limit. {tab:chpt_fpi}

fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0020(34) 0.15(13) 3.3(1.1) - 0.20

fit 1 : [0.04, 0.1] -0.0047(19) 0.251(62) 2.35(44) - 0.59

fit 1 : [0.04, 0.12] -0.0018(13) 0.150(39) 3.10(26) - 1.92

fit 1 : [0.04, 0.16] -0.0003(26) 0.07(11) 4.3(1.1) -6.0(3.9) 2.91

β = 4 fit 1 : [0.05, 0.1] -0.0121(39) 0.39(11) 0.15(72) - 2.08

fit 1 : [0.05, 0.12] -0.0076(26) 0.258(67) 1.07(41) - 2.26

fit 2 : [0.05, 0.16] -0.0120(54) 0.43(19) -1.0(1.9) 7.8(6.2) 1.97

TABLE XIII. The full fit results on (FπMπ)2/mf in infinite volume limit. {tab:chpt_pbp}

Further detailed study adopting a finite size scaling have shown that our data are rea-

sonably consistent with the finite size hyper scaling (FSHS), where the product of linear

system size and the composite masses or decay constants falls into a function of a universal

scaling variable composed of the mf , linear system size L and mass anomalous dimension γ∗

at the IRFP at low energy. The resulting γ∗ obtained with the introduced evaluation func-

tion of the scaling were reasonably consistent with each other for three observables and two

lattice spacings when only the aforementioned decay constant at finer lattice was excluded.

We concluded if there was an IRFP, the mass anomalous dimension there is in the range

0.4 <∼ γ∗ <∼ 0.5.

An existence of the non-universal correction indicated by the FSHS motivated a study

of global fit with models assumed in the correction. By adding a correction term to the
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FIG. 16. The results of the finite volume scaling fit for Mπ and fπ at β = 3.7 using a leading

correction in the equation. {fig:finite}
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FIG. 17. The results of the finite volume scaling fit for Mπ and fπ at β = 4 using a leading

correction in the equation. {fig:finite_b4}

where c0,1,2,3 are free parameters. This function corresponds to next leading order ChPT

function without log term. In M2
π case, it is noted that the constant term c0 should be zero.

Using these simple polynomial functions we carry out the fits for M2
π , Fπ and the chiral

condensate by the function h(mf ) varying the fit range of the fermion mass from mf = 0.04

to mf = 0.16. The fit functions h(mf ) of fit 1, 2 correspond as

h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

The fit results for M2
π are shown in Fig. 18 and table XI. As we see the data at β = 3.7

and 4.0, the center value of c0 obtained from the fit with polynomial function is negative for
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ChPT fit (after infinite volume extrapolation) 

• 2nd order polynomial fit is reasonably good for small mass range & c0>0
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FIG. 18. The several fit results on M2
π at β = 3.7(Left) and β = 4(Right) using the data at infinite

volume limit. {fig:chpt37}
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fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] 0.0101(54) 1.53(19) -4.8(1.5) - 2.09

fit 1 : [0.04, 0.1] 0.0138(29) 1.39(88) -3.62(61) - 1.39

fit 1 : [0.04, 0.12] 0.0226(17) 1.113(45) -1.64(27) - 5.42

fit 2 : [0.04, 0.16] 0.0182(34) 1.28(13) -3.4(1.3) 6.0(4.2) 4.75

β = 4 fit 1 : [0.05, 0.1] -0.00006(530) 1.51(15) -4.95(92) - 0.20

fit 1 : [0.05, 0.12] 0.0156(27) 1.073(67) -2.08(39) - 6.18

fit 2 : [0.05, 0.16] 0.0031(61) 1.52(20) -7.1(2.0) 17.8(6.2) 3.81

TABLE XII. The fit results on Fπ in infinite volume limit. {tab:chpt_fpi}

fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0020(34) 0.15(13) 3.3(1.1) - 0.20

fit 1 : [0.04, 0.1] -0.0047(19) 0.251(62) 2.35(44) - 0.59

fit 1 : [0.04, 0.12] -0.0018(13) 0.150(39) 3.10(26) - 1.92

fit 1 : [0.04, 0.16] -0.0003(26) 0.07(11) 4.3(1.1) -6.0(3.9) 2.91

β = 4 fit 1 : [0.05, 0.1] -0.0121(39) 0.39(11) 0.15(72) - 2.08

fit 1 : [0.05, 0.12] -0.0076(26) 0.258(67) 1.07(41) - 2.26

fit 2 : [0.05, 0.16] -0.0120(54) 0.43(19) -1.0(1.9) 7.8(6.2) 1.97

TABLE XIII. The full fit results on (FπMπ)2/mf in infinite volume limit. {tab:chpt_pbp}

Further detailed study adopting a finite size scaling have shown that our data are rea-

sonably consistent with the finite size hyper scaling (FSHS), where the product of linear

system size and the composite masses or decay constants falls into a function of a universal

scaling variable composed of the mf , linear system size L and mass anomalous dimension γ∗

at the IRFP at low energy. The resulting γ∗ obtained with the introduced evaluation func-

tion of the scaling were reasonably consistent with each other for three observables and two

lattice spacings when only the aforementioned decay constant at finer lattice was excluded.

We concluded if there was an IRFP, the mass anomalous dimension there is in the range

0.4 <∼ γ∗ <∼ 0.5.

An existence of the non-universal correction indicated by the FSHS motivated a study

of global fit with models assumed in the correction. By adding a correction term to the
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FIG. 16. The results of the finite volume scaling fit for Mπ and fπ at β = 3.7 using a leading

correction in the equation. {fig:finite}
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FIG. 17. The results of the finite volume scaling fit for Mπ and fπ at β = 4 using a leading

correction in the equation. {fig:finite_b4}

where c0,1,2,3 are free parameters. This function corresponds to next leading order ChPT

function without log term. In M2
π case, it is noted that the constant term c0 should be zero.

Using these simple polynomial functions we carry out the fits for M2
π , Fπ and the chiral

condensate by the function h(mf ) varying the fit range of the fermion mass from mf = 0.04

to mf = 0.16. The fit functions h(mf ) of fit 1, 2 correspond as

h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

The fit results for M2
π are shown in Fig. 18 and table XI. As we see the data at β = 3.7

and 4.0, the center value of c0 obtained from the fit with polynomial function is negative for
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ChPT fit (after infinite volume extrapolation) 

0.04 0.05 0.06 0.08

cMπ 125(34) 285(35) 270(14) 790(310)

Mπ 0.3029(15) 0.3518(11) 0.3991(14) 0.4876(9)

χ2/dof 3.49 1.95 0.75 0.19

cFπ 0.1(8.3) 7(21) -66(33) 160(200)

Fπ 0.0633(6) 0.0750(5) 0.0840(7) 0.1018(6)

χ2/dof 0.045 4.07 0.013 0.42

TABLE XI. The results on the parameters

below mf = 0.08 in infinite volume extrapo-

lation fit at β = 3.7. {tab:finite}

0.05 0.06 0.08 0.1

cMπ 353(28) 552(48) 480(170) -180(1500)

Mπ 0.3188(21) 0.3646(10) 0.4480(8) 0.5217(6)

χ2/dof 3.67 1.80 11.2 2.42

cFπ -24.4(4.4) -65(14) -92(82) -230(670)

Fπ 0.0630(6) 0.0728(3) 0.0890(6) 0.1015(31)

χ2/dof 0.22 0.46 4.13 0.20

TABLE XII. The results on the parameters

less than mf = 0.1 in infinite volume extrap-

olation fit at β = 4. {tab:finite_b4}

ChPT formula as

M2
π or Fπ = c0 + c1mf + c2m

2
f + c3m

3
f + · · · (20)

where c0,1,2,3 are free parameters. It is noted that the constant term c0 of M2
π should be

zero. Using these simple polynomial functions we carry out the fits for Mπ and Fπ varying

the fit range of the fermion mass from mf = 0.04 to mf = 0.16. The fit functions h(mf ) of

fit 1,2 correspond as

M2
π = h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

We carry our the fits for the several fermion mass ranges with two fitting functions.

The fit results are shown in Fig. 18 and table XIII. Now we focus on the constant term

c0 which should be zero in the chiral broken phase. As we see the data at β = 3.7 and 4.0,

the center value of c0 obtained from the fit with polynomial function is negative for M2
π ,

where the value of χ2/dof is at acceptable level. While some of results are still consistent

with zero within the statistical error, this is quite strange behavior if we take the result

from chiral extrapolation seriously. For simplicity our fit analysis shown here is based on

the polynomial function. If the chiral log correction terms enter the fit as follows

h(mf ) = c0 + c1mf +m2
f (c2 + c3 logmf ) , (22)

26

from a lattice result on the deeply hadronic phase. This fact is suggestive of a kind of the

scale invariance (in other words walking behavior).

Above fit analyses for the pion mass and the chiral condensation are rather simple and

restricted by a certain range of the fermion mass. We can not rule out the possibility that

our data obey the ChPT within the accuracy of the data. The more investigation about

continuum limit with high precision study is needed. The complementary study using other

channels like a scalar bound state is also helpful. We are currently extending our analysis

to smaller fermion mass with larger lattice size for obtaining a definitive result.
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FIG. 18. The several fit results on M2
π at β = 3.7(Left) and β = 4(Right) using the data at infinite

volume limit. {fig:chpt37}
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FIG. 19. The plots show the (FπMπ)2/mf as a function of mf at β = 3.7(Left) and β = 4(right). {fig:pbp}
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fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0090(93) 1.95(32) 14.2(2.6) - 0.16

[0] 1.640(31) 16.68(47) - 0.56

fit 1 : [0.04, 0.1] -0.0232(50) 2.46(16) 9.9(1.1) - 1.75

[0] 1.754(21) 14.73(25) - 8.54

fit 1 : [0.04, 0.12] -0.0174(31) 2.27(85) 11.32(52) - 1.93

[0] 1.801(16) 14.09(16) - 9.36

fit 2 : [0.04, 0.16] -0.0044(61) 1.69(22) 19.1(2.4) -32.9(7.6) 3.28

[0] 1.537(29) 20.76(53) -38.2(2.3) 2.59

β = 4 fit 1 : [0.05, 0.1] -0.0429(93) 2.61(25) 5.4(1.6) - 0.41

[0] 1.469(25) 12.61(28) - 11.03

fit 1 : [0.05, 0.12] -0.0235(54) 2.07(14) 8.97(76) - 3.55

[0] 1.501(19) 12.20(19) - 8.79

fit 2 : [0.05, 0.16] -0.026(12) 2.14(39) 8.6(3.9) -0.7(12.0) 3.86

[0] 1.288(39) 17.13(69) -27.0(2.9) 4.22

TABLE XI. The fit results on M2
π in infinite volume limit. The values sandwiched as [· · · ] mean

the input in the fit. {tab:chpt}

the existence of the infrared fixed point (IRFP) of the beta function, through the fermion

mass mf dependence of the spectrum. A type of highly improved staggered quark (HISQ)

action was adapted to maximally suppress the staggered flavor symmetry violation as well

as the other discretization errors. Three volumes with fixed aspect ratio and various mf

were examined. Simulations were repeated for two values of the bare gauge coupling, cor-

responding to two different lattice spacings separated by an approximate factor of 2. The

movement of the lattice spacing to finner when the bare gauge coupling is made small is

consistent with being in the asymptotically free domain.

A primary analysis of the masses of pseudoscalar and vector channel and the pseudoscalar

decay constant revealed a range of small mf where the ratios of composite masses and decay

constant are independent of mf . This is consistent with the hyper scaling characteristic to

the low energy conformality, and was observed all the quantities except for the one that

involves the decay constant at the finer lattice.
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ChPT fit (after infinite volume extrapolation) 

• wide range fit ends up c0<0

0.04 0.05 0.06 0.08

cMπ 125(34) 285(35) 270(14) 790(310)

Mπ 0.3029(15) 0.3518(11) 0.3991(14) 0.4876(9)

χ2/dof 3.49 1.95 0.75 0.19

cFπ 0.1(8.3) 7(21) -66(33) 160(200)

Fπ 0.0633(6) 0.0750(5) 0.0840(7) 0.1018(6)

χ2/dof 0.045 4.07 0.013 0.42

TABLE XI. The results on the parameters

below mf = 0.08 in infinite volume extrapo-

lation fit at β = 3.7. {tab:finite}

0.05 0.06 0.08 0.1

cMπ 353(28) 552(48) 480(170) -180(1500)

Mπ 0.3188(21) 0.3646(10) 0.4480(8) 0.5217(6)

χ2/dof 3.67 1.80 11.2 2.42

cFπ -24.4(4.4) -65(14) -92(82) -230(670)

Fπ 0.0630(6) 0.0728(3) 0.0890(6) 0.1015(31)

χ2/dof 0.22 0.46 4.13 0.20

TABLE XII. The results on the parameters

less than mf = 0.1 in infinite volume extrap-

olation fit at β = 4. {tab:finite_b4}

ChPT formula as

M2
π or Fπ = c0 + c1mf + c2m

2
f + c3m

3
f + · · · (20)

where c0,1,2,3 are free parameters. It is noted that the constant term c0 of M2
π should be

zero. Using these simple polynomial functions we carry out the fits for Mπ and Fπ varying

the fit range of the fermion mass from mf = 0.04 to mf = 0.16. The fit functions h(mf ) of

fit 1,2 correspond as

M2
π = h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

We carry our the fits for the several fermion mass ranges with two fitting functions.

The fit results are shown in Fig. 18 and table XIII. Now we focus on the constant term

c0 which should be zero in the chiral broken phase. As we see the data at β = 3.7 and 4.0,

the center value of c0 obtained from the fit with polynomial function is negative for M2
π ,

where the value of χ2/dof is at acceptable level. While some of results are still consistent

with zero within the statistical error, this is quite strange behavior if we take the result

from chiral extrapolation seriously. For simplicity our fit analysis shown here is based on

the polynomial function. If the chiral log correction terms enter the fit as follows

h(mf ) = c0 + c1mf +m2
f (c2 + c3 logmf ) , (22)

26

from a lattice result on the deeply hadronic phase. This fact is suggestive of a kind of the

scale invariance (in other words walking behavior).

Above fit analyses for the pion mass and the chiral condensation are rather simple and

restricted by a certain range of the fermion mass. We can not rule out the possibility that

our data obey the ChPT within the accuracy of the data. The more investigation about

continuum limit with high precision study is needed. The complementary study using other

channels like a scalar bound state is also helpful. We are currently extending our analysis

to smaller fermion mass with larger lattice size for obtaining a definitive result.
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FIG. 18. The several fit results on M2
π at β = 3.7(Left) and β = 4(Right) using the data at infinite

volume limit. {fig:chpt37}
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FIG. 19. The plots show the (FπMπ)2/mf as a function of mf at β = 3.7(Left) and β = 4(right). {fig:pbp}
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fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0090(93) 1.95(32) 14.2(2.6) - 0.16

[0] 1.640(31) 16.68(47) - 0.56

fit 1 : [0.04, 0.1] -0.0232(50) 2.46(16) 9.9(1.1) - 1.75

[0] 1.754(21) 14.73(25) - 8.54

fit 1 : [0.04, 0.12] -0.0174(31) 2.27(85) 11.32(52) - 1.93

[0] 1.801(16) 14.09(16) - 9.36

fit 2 : [0.04, 0.16] -0.0044(61) 1.69(22) 19.1(2.4) -32.9(7.6) 3.28

[0] 1.537(29) 20.76(53) -38.2(2.3) 2.59

β = 4 fit 1 : [0.05, 0.1] -0.0429(93) 2.61(25) 5.4(1.6) - 0.41

[0] 1.469(25) 12.61(28) - 11.03

fit 1 : [0.05, 0.12] -0.0235(54) 2.07(14) 8.97(76) - 3.55

[0] 1.501(19) 12.20(19) - 8.79

fit 2 : [0.05, 0.16] -0.026(12) 2.14(39) 8.6(3.9) -0.7(12.0) 3.86

[0] 1.288(39) 17.13(69) -27.0(2.9) 4.22

TABLE XI. The fit results on M2
π in infinite volume limit. The values sandwiched as [· · · ] mean

the input in the fit. {tab:chpt}

the existence of the infrared fixed point (IRFP) of the beta function, through the fermion

mass mf dependence of the spectrum. A type of highly improved staggered quark (HISQ)

action was adapted to maximally suppress the staggered flavor symmetry violation as well

as the other discretization errors. Three volumes with fixed aspect ratio and various mf

were examined. Simulations were repeated for two values of the bare gauge coupling, cor-

responding to two different lattice spacings separated by an approximate factor of 2. The

movement of the lattice spacing to finner when the bare gauge coupling is made small is

consistent with being in the asymptotically free domain.

A primary analysis of the masses of pseudoscalar and vector channel and the pseudoscalar

decay constant revealed a range of small mf where the ratios of composite masses and decay

constant are independent of mf . This is consistent with the hyper scaling characteristic to

the low energy conformality, and was observed all the quantities except for the one that

involves the decay constant at the finer lattice.
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ChPT fit (after infinite volume extrapolation) 

• wide range fit ends up c0<0

• consistent with c0=0 for small mass range

0.04 0.05 0.06 0.08

cMπ 125(34) 285(35) 270(14) 790(310)

Mπ 0.3029(15) 0.3518(11) 0.3991(14) 0.4876(9)

χ2/dof 3.49 1.95 0.75 0.19

cFπ 0.1(8.3) 7(21) -66(33) 160(200)

Fπ 0.0633(6) 0.0750(5) 0.0840(7) 0.1018(6)

χ2/dof 0.045 4.07 0.013 0.42

TABLE XI. The results on the parameters

below mf = 0.08 in infinite volume extrapo-

lation fit at β = 3.7. {tab:finite}

0.05 0.06 0.08 0.1

cMπ 353(28) 552(48) 480(170) -180(1500)

Mπ 0.3188(21) 0.3646(10) 0.4480(8) 0.5217(6)

χ2/dof 3.67 1.80 11.2 2.42

cFπ -24.4(4.4) -65(14) -92(82) -230(670)

Fπ 0.0630(6) 0.0728(3) 0.0890(6) 0.1015(31)

χ2/dof 0.22 0.46 4.13 0.20

TABLE XII. The results on the parameters

less than mf = 0.1 in infinite volume extrap-

olation fit at β = 4. {tab:finite_b4}

ChPT formula as

M2
π or Fπ = c0 + c1mf + c2m

2
f + c3m

3
f + · · · (20)

where c0,1,2,3 are free parameters. It is noted that the constant term c0 of M2
π should be

zero. Using these simple polynomial functions we carry out the fits for Mπ and Fπ varying

the fit range of the fermion mass from mf = 0.04 to mf = 0.16. The fit functions h(mf ) of

fit 1,2 correspond as

M2
π = h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

We carry our the fits for the several fermion mass ranges with two fitting functions.

The fit results are shown in Fig. 18 and table XIII. Now we focus on the constant term

c0 which should be zero in the chiral broken phase. As we see the data at β = 3.7 and 4.0,

the center value of c0 obtained from the fit with polynomial function is negative for M2
π ,

where the value of χ2/dof is at acceptable level. While some of results are still consistent

with zero within the statistical error, this is quite strange behavior if we take the result

from chiral extrapolation seriously. For simplicity our fit analysis shown here is based on

the polynomial function. If the chiral log correction terms enter the fit as follows

h(mf ) = c0 + c1mf +m2
f (c2 + c3 logmf ) , (22)
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from a lattice result on the deeply hadronic phase. This fact is suggestive of a kind of the

scale invariance (in other words walking behavior).

Above fit analyses for the pion mass and the chiral condensation are rather simple and

restricted by a certain range of the fermion mass. We can not rule out the possibility that

our data obey the ChPT within the accuracy of the data. The more investigation about

continuum limit with high precision study is needed. The complementary study using other

channels like a scalar bound state is also helpful. We are currently extending our analysis

to smaller fermion mass with larger lattice size for obtaining a definitive result.
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FIG. 18. The several fit results on M2
π at β = 3.7(Left) and β = 4(Right) using the data at infinite

volume limit. {fig:chpt37}
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FIG. 19. The plots show the (FπMπ)2/mf as a function of mf at β = 3.7(Left) and β = 4(right). {fig:pbp}
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fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0090(93) 1.95(32) 14.2(2.6) - 0.16

[0] 1.640(31) 16.68(47) - 0.56

fit 1 : [0.04, 0.1] -0.0232(50) 2.46(16) 9.9(1.1) - 1.75

[0] 1.754(21) 14.73(25) - 8.54

fit 1 : [0.04, 0.12] -0.0174(31) 2.27(85) 11.32(52) - 1.93

[0] 1.801(16) 14.09(16) - 9.36

fit 2 : [0.04, 0.16] -0.0044(61) 1.69(22) 19.1(2.4) -32.9(7.6) 3.28

[0] 1.537(29) 20.76(53) -38.2(2.3) 2.59

β = 4 fit 1 : [0.05, 0.1] -0.0429(93) 2.61(25) 5.4(1.6) - 0.41

[0] 1.469(25) 12.61(28) - 11.03

fit 1 : [0.05, 0.12] -0.0235(54) 2.07(14) 8.97(76) - 3.55

[0] 1.501(19) 12.20(19) - 8.79

fit 2 : [0.05, 0.16] -0.026(12) 2.14(39) 8.6(3.9) -0.7(12.0) 3.86

[0] 1.288(39) 17.13(69) -27.0(2.9) 4.22

TABLE XI. The fit results on M2
π in infinite volume limit. The values sandwiched as [· · · ] mean

the input in the fit. {tab:chpt}

the existence of the infrared fixed point (IRFP) of the beta function, through the fermion

mass mf dependence of the spectrum. A type of highly improved staggered quark (HISQ)

action was adapted to maximally suppress the staggered flavor symmetry violation as well

as the other discretization errors. Three volumes with fixed aspect ratio and various mf

were examined. Simulations were repeated for two values of the bare gauge coupling, cor-

responding to two different lattice spacings separated by an approximate factor of 2. The

movement of the lattice spacing to finner when the bare gauge coupling is made small is

consistent with being in the asymptotically free domain.

A primary analysis of the masses of pseudoscalar and vector channel and the pseudoscalar

decay constant revealed a range of small mf where the ratios of composite masses and decay

constant are independent of mf . This is consistent with the hyper scaling characteristic to

the low energy conformality, and was observed all the quantities except for the one that

involves the decay constant at the finer lattice.
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ChPT fit (after infinite volume extrapolation) 

• wide range fit ends up c0<0

• consistent with c0=0 for small mass range

• But:    M!/(4!F)~2   at lightest point → difficult to tell real chiral behavior

0.04 0.05 0.06 0.08

cMπ 125(34) 285(35) 270(14) 790(310)

Mπ 0.3029(15) 0.3518(11) 0.3991(14) 0.4876(9)

χ2/dof 3.49 1.95 0.75 0.19

cFπ 0.1(8.3) 7(21) -66(33) 160(200)

Fπ 0.0633(6) 0.0750(5) 0.0840(7) 0.1018(6)

χ2/dof 0.045 4.07 0.013 0.42

TABLE XI. The results on the parameters

below mf = 0.08 in infinite volume extrapo-

lation fit at β = 3.7. {tab:finite}

0.05 0.06 0.08 0.1

cMπ 353(28) 552(48) 480(170) -180(1500)

Mπ 0.3188(21) 0.3646(10) 0.4480(8) 0.5217(6)

χ2/dof 3.67 1.80 11.2 2.42

cFπ -24.4(4.4) -65(14) -92(82) -230(670)

Fπ 0.0630(6) 0.0728(3) 0.0890(6) 0.1015(31)

χ2/dof 0.22 0.46 4.13 0.20

TABLE XII. The results on the parameters

less than mf = 0.1 in infinite volume extrap-

olation fit at β = 4. {tab:finite_b4}

ChPT formula as

M2
π or Fπ = c0 + c1mf + c2m

2
f + c3m

3
f + · · · (20)

where c0,1,2,3 are free parameters. It is noted that the constant term c0 of M2
π should be

zero. Using these simple polynomial functions we carry out the fits for Mπ and Fπ varying

the fit range of the fermion mass from mf = 0.04 to mf = 0.16. The fit functions h(mf ) of

fit 1,2 correspond as

M2
π = h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

We carry our the fits for the several fermion mass ranges with two fitting functions.

The fit results are shown in Fig. 18 and table XIII. Now we focus on the constant term

c0 which should be zero in the chiral broken phase. As we see the data at β = 3.7 and 4.0,

the center value of c0 obtained from the fit with polynomial function is negative for M2
π ,

where the value of χ2/dof is at acceptable level. While some of results are still consistent

with zero within the statistical error, this is quite strange behavior if we take the result

from chiral extrapolation seriously. For simplicity our fit analysis shown here is based on

the polynomial function. If the chiral log correction terms enter the fit as follows

h(mf ) = c0 + c1mf +m2
f (c2 + c3 logmf ) , (22)

26

from a lattice result on the deeply hadronic phase. This fact is suggestive of a kind of the

scale invariance (in other words walking behavior).

Above fit analyses for the pion mass and the chiral condensation are rather simple and

restricted by a certain range of the fermion mass. We can not rule out the possibility that

our data obey the ChPT within the accuracy of the data. The more investigation about

continuum limit with high precision study is needed. The complementary study using other

channels like a scalar bound state is also helpful. We are currently extending our analysis

to smaller fermion mass with larger lattice size for obtaining a definitive result.
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FIG. 18. The several fit results on M2
π at β = 3.7(Left) and β = 4(Right) using the data at infinite

volume limit. {fig:chpt37}
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FIG. 19. The plots show the (FπMπ)2/mf as a function of mf at β = 3.7(Left) and β = 4(right). {fig:pbp}
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fit range c0 c1 c2 c3 χ2/dof

β = 3.7 fit 1 : [0.04, 0.08] -0.0090(93) 1.95(32) 14.2(2.6) - 0.16

[0] 1.640(31) 16.68(47) - 0.56

fit 1 : [0.04, 0.1] -0.0232(50) 2.46(16) 9.9(1.1) - 1.75

[0] 1.754(21) 14.73(25) - 8.54

fit 1 : [0.04, 0.12] -0.0174(31) 2.27(85) 11.32(52) - 1.93

[0] 1.801(16) 14.09(16) - 9.36

fit 2 : [0.04, 0.16] -0.0044(61) 1.69(22) 19.1(2.4) -32.9(7.6) 3.28

[0] 1.537(29) 20.76(53) -38.2(2.3) 2.59

β = 4 fit 1 : [0.05, 0.1] -0.0429(93) 2.61(25) 5.4(1.6) - 0.41

[0] 1.469(25) 12.61(28) - 11.03

fit 1 : [0.05, 0.12] -0.0235(54) 2.07(14) 8.97(76) - 3.55

[0] 1.501(19) 12.20(19) - 8.79

fit 2 : [0.05, 0.16] -0.026(12) 2.14(39) 8.6(3.9) -0.7(12.0) 3.86

[0] 1.288(39) 17.13(69) -27.0(2.9) 4.22

TABLE XI. The fit results on M2
π in infinite volume limit. The values sandwiched as [· · · ] mean

the input in the fit. {tab:chpt}

the existence of the infrared fixed point (IRFP) of the beta function, through the fermion

mass mf dependence of the spectrum. A type of highly improved staggered quark (HISQ)

action was adapted to maximally suppress the staggered flavor symmetry violation as well

as the other discretization errors. Three volumes with fixed aspect ratio and various mf

were examined. Simulations were repeated for two values of the bare gauge coupling, cor-

responding to two different lattice spacings separated by an approximate factor of 2. The

movement of the lattice spacing to finner when the bare gauge coupling is made small is

consistent with being in the asymptotically free domain.

A primary analysis of the masses of pseudoscalar and vector channel and the pseudoscalar

decay constant revealed a range of small mf where the ratios of composite masses and decay

constant are independent of mf . This is consistent with the hyper scaling characteristic to

the low energy conformality, and was observed all the quantities except for the one that

involves the decay constant at the finer lattice.
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Summary:
  SU(3) gauge theory with Nf=12 fundamental fermion simulation with HISQ

• β=3.7,  4.0:  consistent with being in the asymptotically free regime

• M!, F!, Mρ: consistent with the finite size hyper scaling for conformal theory

• resulting γ* from different quantities, lattice spacings are consistent except

• F! at β=4.0 (mf likely too heavy for universal mass dep. to dominate)

• need careful continuum scaling needed to get more accurate than 0.4<γ*<0.5

• real / remnant (approximate) conformal property is definitely there

• could not exclude SχSB with very small breaking scale

• even if SχSB, γm too small for walking theory of phenomenological interest

• Nf=8 theory is interesting & under investigation with same lattice set up



Thank you for your attention



ChPT inspired infinite volume limit  (β=3.7)

• ChPT type finite volume effect → chiral fit results not inconsistent with SχSB

A. The finite size dependence of the physical quantities

The finite volume corrections of the NG-boson mass and decay constant are also given

by the ChPT [42] or Luscher-type formula [43] using the ChPT relations which are

Mπ(L)−Mπ = +A
1

2Nf

K1(LMπ)

LMπ
+O(e−

√
2LMπ), (16)

Fπ(L)− Fπ = −A
Nf

2

K1(LMπ)

LMπ
+O(e−

√
2LMπ), (17)

where A is a constant described by Mπ and fπ and K1 is a Bessel function of the second

kind and its asymptotic behavior is K1(z) ∼
√
π/(2z)e−z. Mπ and Fπ are the NG-boson

mass and the decay constant in the infinite volume limit. We try to understand the volume

dependence based on the ChPT-like finite volume scaling. We use the following simplified

formula

Mπ(L)−Mπ = cMπ

e−LMπ

(LMπ)3/2
(18)

Fπ(L)− Fπ = cFπ

e−LMπ

(LMπ)3/2
, (19)

where we do not fix the parameters cMπ and cFπ . Our fitting procedure is as follows. First

we determine two parameters of cMπ and Mπ for each fermion masses by the fits using three

data points with L = 18, 24 and 30. Using the fit results of Mπ, we determine the two

parameters of cFπ and Fπ by the fits. Thus we obtain the results of Mπ and Fπ in infinite

volume limit. The fit results are shown in fig.16 and 17 and the fit parameters are given in

table IX and X.

As a result, in entire fermion mass region, our data are reasonably fitted. Furthermore

from the fit results, one can find that our data on L = 30 is still consistent with the result

in infinite volume limit. It is also noted that for our data of Fπ at β = 3.7 it is difficult for

the cases of Fπ to determine the sign of the constant terms cFπ (consistent with zero).

B. ChPT fit analysis

After taking the infinite volume limit, we analyze the fit using these data by the following

form as

h(mf ) = c0 + c1mf + c2m
2
f + c3m

3
f (20)
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FIG. 16. The results of the finite volume scaling fit for Mπ and fπ at β = 3.7 using a leading

correction in the equation. {fig:finite}
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FIG. 17. The results of the finite volume scaling fit for Mπ and fπ at β = 4 using a leading

correction in the equation. {fig:finite_b4}

where c0,1,2,3 are free parameters. This function corresponds to next leading order ChPT

function without log term. In M2
π case, it is noted that the constant term c0 should be zero.

Using these simple polynomial functions we carry out the fits for M2
π , Fπ and the chiral

condensate by the function h(mf ) varying the fit range of the fermion mass from mf = 0.04

to mf = 0.16. The fit functions h(mf ) of fit 1, 2 correspond as

h(mf ) =





c0 + c1mf + c2m2

f · · · fit1

c0 + c1mf + c2m2
f + c3m3

f · · · fit2
. (21) {eq:action}

The fit results for M2
π are shown in Fig. 18 and table XI. As we see the data at β = 3.7

and 4.0, the center value of c0 obtained from the fit with polynomial function is negative for
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HISQ action

• proposed by HPQCD collaboration for

• smaller taste violation than other approaches

• better handling of heavy quarks

• being used in simulations

• MILC: Nf=2+1+1 QCD

• HOTQCD: QCD thermodynamics: Bazavov-Petreczky (Lat’10 proceedings)

• HISQ/tree is best of [HISQ/tree, Asqtad, stout] 

 for flavor (taste) symmetry, dispersion relation

Lattice Gauge Theory

• Analysis of Quantum Field Theory such as Quantum Chromo Dynamics, needs non-

perturbative calculation.

Ψ(x), Aµ(x), x ∈ R4
: continuous infinity

quantum divergences: needs regularization and renormalization

ψ(n + µ̂)ψ(n)

Uµ(n)

a

• Discretize Euclidean space-time

• lattice spacing a ∼ 0.1 fm

(UV cut-off |p| ≤ π/a)

• ψ(n) : Fermion field (Grassmann number)

• Uµ(n) : Gauge field

1. Accumulate samples of vacuum, typically O(100) ∼ O(1, 000) files o f gauge

configuration Uµ(n) on disk.

2. Then measure physical observables on the vacuum ensemble.

�O� =
�
DUµ Prob[Uµ]×O[Uµ]

Taku Izubuchi, Wako, Mini Workshop on Lattice QCD at RIKEN, Decmber 22, 2009 7
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HISQ action

• proposed by HPQCD collaboration for

• smaller taste violation than other approaches

• better handling of heavy quarks

• being used in simulations

• MILC: Nf=2+1+1 QCD

• HOTQCD: QCD thermodynamics: Bazavov-Petreczky (Lat’10 proceedings)

• HISQ/tree is best of [HISQ/tree, Asqtad, stout] 

 for flavor (taste) symmetry, dispersion relation

Taste symmetry and QCD thermodynamics Alexei Bazavov

 0

 2

 4

 6

 8

 10

 0  0.02  0.04  0.06

(m!
2-mG

2)/(200 MeV)2

a2 [fm2]

"i"5
"0"5
"i"j
"i"0
"i
"0
1

stout, "i"5stout, "i"j

 0

 100

 200

 300

 400

 500

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

RMS m! [MeV]

a [fm]

RMS pion 306 MeV

RMS pion 200 MeV

HISQ/tree
stout

asqtad

Figure 1: The splitting between different pion mul-
tiplets calculated for HISQ/tree, mG ≡ m"5 .

Figure 2: RMS pion mass when m"5 = 140 MeV.
See details in the text.

performing such fits, we obtained the splittings #$ as functions of a2 for HISQ/tree, asqtad and
stout.

Having data for the splittings we set the Goldstone pion mass to m"5 = 140 MeV and calculate
the root-mean-squared (RMS) pion mass as a function of the lattice spacing:

mRMS
! =

√

1
16

(

m2"5 +m2"0"5 +3m2"i"5 +3m2"i" j +3m2"i"0 +3m2"i +m2"0+m21
)

. (2.1)

The results are presented in Fig. 2. Curves show the RMS pion mass obtained from fitted values
of #$ . The thickness of each band represents the systematic error introduced by varying the end of
the fitting interval from 0.17 to 0.22 fm. The symbols correspond to the RMS pion calculated from
the measured pion splittings. For our estimates below we took the midpoints in each band.

Consider lattice spacing a = 0.15 fm. On an N% = 8 lattice it corresponds to temperature
T = 164 MeV, well in the transition region. At this a the RMS pion mass is 306MeV for HISQ/tree,
394 MeV for stout, and 496 MeV for asqtad. Having the same mass as for HISQ/tree requires
a= 0.102 fm for asqtad and a= 0.109 for stout. In other words, a HISQ/tree simulation on N% = 8
at T = 164 MeV is comparable to an asqtad simulation on N% = 197.3/164/0.102 " 11.8, or a
stout simulation on N% = 197.3/164/0.109 " 11.0 at the same T . Thus, we expect HISQ/tree
N% = 8 results to be close to stout N% = 10 and asqtad N% = 12 results, as far as the taste symmetry
is concerned. For comparison, if one desires to have 200 MeV RMS pion at T = 164 MeV, this
requires a = 0.089 fm for HISQ/tree, a = 0.067 fm for asqtad, and a = 0.062 fm for stout. This
translates into the temporal extent of N% " 13.5, 18.0, 19.4, respectively, for these actions. The
lattice spacings discussed above are represented with vertical lines in Fig. 2. These estimates are
rather crude, but are completely in line with the conclusion of [5] that a HISQ (or HISQ/tree)
ensemble with spacing a is comparable to an asqtad ensemble with 2/3a.

Lattice artifacts, related to taste symmetry breaking, affect masses of hadron states, and, in
general, distort the hadron spectrum. In our simulations the masses of the pseudoscalar mesons
m! and mK were used as input to constrain the LCP. However, other states, e.g. vector mesons
or baryons, are predictions and can show how well the spectrum can be reproduced at a given
lattice spacing. In Fig. 3 we present masses of & , K∗, ' mesons, nucleon and (-baryon along with
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tiplets calculated for HISQ/tree, mG ≡ m"5 .

Figure 2: RMS pion mass when m"5 = 140 MeV.
See details in the text.

performing such fits, we obtained the splittings #$ as functions of a2 for HISQ/tree, asqtad and
stout.

Having data for the splittings we set the Goldstone pion mass to m"5 = 140 MeV and calculate
the root-mean-squared (RMS) pion mass as a function of the lattice spacing:

mRMS
! =

√

1
16

(

m2"5 +m2"0"5 +3m2"i"5 +3m2"i" j +3m2"i"0 +3m2"i +m2"0+m21
)

. (2.1)

The results are presented in Fig. 2. Curves show the RMS pion mass obtained from fitted values
of #$ . The thickness of each band represents the systematic error introduced by varying the end of
the fitting interval from 0.17 to 0.22 fm. The symbols correspond to the RMS pion calculated from
the measured pion splittings. For our estimates below we took the midpoints in each band.

Consider lattice spacing a = 0.15 fm. On an N% = 8 lattice it corresponds to temperature
T = 164 MeV, well in the transition region. At this a the RMS pion mass is 306MeV for HISQ/tree,
394 MeV for stout, and 496 MeV for asqtad. Having the same mass as for HISQ/tree requires
a= 0.102 fm for asqtad and a= 0.109 for stout. In other words, a HISQ/tree simulation on N% = 8
at T = 164 MeV is comparable to an asqtad simulation on N% = 197.3/164/0.102 " 11.8, or a
stout simulation on N% = 197.3/164/0.109 " 11.0 at the same T . Thus, we expect HISQ/tree
N% = 8 results to be close to stout N% = 10 and asqtad N% = 12 results, as far as the taste symmetry
is concerned. For comparison, if one desires to have 200 MeV RMS pion at T = 164 MeV, this
requires a = 0.089 fm for HISQ/tree, a = 0.067 fm for asqtad, and a = 0.062 fm for stout. This
translates into the temporal extent of N% " 13.5, 18.0, 19.4, respectively, for these actions. The
lattice spacings discussed above are represented with vertical lines in Fig. 2. These estimates are
rather crude, but are completely in line with the conclusion of [5] that a HISQ (or HISQ/tree)
ensemble with spacing a is comparable to an asqtad ensemble with 2/3a.

Lattice artifacts, related to taste symmetry breaking, affect masses of hadron states, and, in
general, distort the hadron spectrum. In our simulations the masses of the pseudoscalar mesons
m! and mK were used as input to constrain the LCP. However, other states, e.g. vector mesons
or baryons, are predictions and can show how well the spectrum can be reproduced at a given
lattice spacing. In Fig. 3 we present masses of & , K∗, ' mesons, nucleon and (-baryon along with
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LHC (Large Hadron Collider)

• excess @ ~125 GeV

• 1 σ level (look elsewhere)

• larger when ATLAS & CMS results are combined ?

• MW=MZcosθW=gF!/2 (F!=vweak=246 GeV)

• MH~500 GeV:  problem ?

• even if scalar is fund at ~125 GeV

• possible techni-dilaton (Matsuzaki-Yamawaki,,)

• 0++ glueball tends to be much lighter than techni-hadrons

• Cf. SU(2) lattice work by Del Debbio et al

• important to investigate glueball for SU(3) as well !!!
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Since the time these methods were proposed, it has always been recognized and emphasized that studies of charm
decays can be very helpful for extracting γ [5, 6, 8, 9]; in particular, precise knowledge of the branching ratio of
the relevant charm decay modes and the strong phase(s) can significantly facilitate the determination of γ. Specific
methods [10] have been proposed for studies at charm facilities for this purpose and great deal of experimental activity
has taken place and progress is being made [11–15].

The methods proposed in Refs. [5, 6] allow the extraction of γ, as well as the relevant strong phase difference in

B− → D0P− and B− → D
0
P− amplitudes. In these methods, the branching ratio,

Br[B− → D0P−], (2)

is an essential input. This branching ratio (for P = K or π) has been experimentally measured with good precision.

Due to technical reasons, Br[B− → D
0
P−] is not accessible to experiment [5]; for this reason in the method of [5, 6]

this branching ratio, expressed as the ratio,

rBP =
Br[B− → D

0
P−]

Br[B− → D0P−]
, (3)

is treated as an unknown that can be solved for along with γ. However, determination of this ratio in addition to γ,
places additional demands on the number of B mesons that are needed. For this reason, despite the large statistics
of the two B-factories [∼ O(109) B meson samples], γ is presently determined to only ∼ O(25%). This should be
compared with about 3% for β, and about 5% for α. To further improve the accuracy on γ, inputs from lattice QCD
(LQCD) on the ratio in Eq. (3) would be very useful. In other words if the lattice could provide an accurate value of
this ratio, a fewer number of B meson samples will be needed to achieve a given accuracy on γ.

For the purpose of a lattice study, we define a “reduced” ratio which is independent of the CKM matrix elements,

rredBP ≡ rBP

V combo
CKM

= rBP
|V ∗

cbVuq|
2

|V ∗
ubVcq|

2
, (4)

where q = s, d depending on whether P = K or π. Needless to say, the study of hadronic weak decays on the lattice
continues to represent an outstanding challenge. Exploratory studies [16–18] initiated in the 80’s did not have much
success, because of the Maiani-Testa no-go theorem (MTNGT) [19]. This theorem states that Euclidean four-point
correlators (three sources for external hadrons plus one weak-operator insertion point) always result in the average
of in- and out-states, leading to the impossibility of extracting information about the strong phases. That is, one
can only compute the real parts of nonleptonic decay amplitudes from such correlators in a finite volume.2 For the
calculation of K → ππ on the lattice, one can evade the MTNGT using the Lellouch-Lüscher (LL) method [21], and
the RBC-UKQCD collaboration is making considerable progress [22, 23] in this avenue.

On the other hand, the lattice computation of these B → DP decay amplitudes remains challenging, both because
the calculation of the lattice four-point function is computationally demanding to evaluate and because the LL method
is only applicable to processes involving elastic final-state scatterings. With the advent of new powerful computers
such as the BG/Q, the former difficulty may be overcome in the near future, especially since lattice results for the real
part of these amplitudes could provide valuable information on the ratio Eq. (4), and thereby help in the extraction
of γ when combined with experimental measurements. For now, we will investigate the use of some approximation
methods for tackling these amplitudes.3

Let us recapitulate that for a determination of the ratio, Eq. (4), what one needs is the absolute value of the amplitudes

for the B → D0P and B → D
0
P modes, and not just the real part of the amplitudes that is accessible on the lattice.

So what we envision is that the phase of these amplitudes will also be accessible by combining information from the
method of [5, 6] with the phase of the relevant charm modes coming from charm studies as briefly alluded to above.

2 The D−P spectrum in finite volume is rendered discrete, enabling the extraction of the energy of the excited state which corresponds
to the physical state [20].

3 It is useful to note that lattice calculation of these B → D(D)P amplitudes involve no mixing with lower dimensional operators,
“eye-graphs” or disconnected diagrams and to that extent are simpler than K → 2π amplitudes in the ∆I = 1/2 channel.
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While the strong phase is vital to determining γ, the real part of the amplitude is still useful in and of itself. This
is obtained from direct computation on the lattice from four-point function studies or via approximation methods,
directly yielding a lower bound on the absolute value of the amplitude, which would be a valuable constraint on γ
extraction. Comparing with the progress on K → 2π decays [22, 23], it is reasonable to foresee a lattice calculation
which may reach a precision on the real part of this amplitude on the order of 15-20% within the next five years.
With the input of such lattice computations, and the progress in the analysis of the CLEO data for the charm decays
[14], one can envisage the extraction of γ with error around 10%.

Regarding the approximation methods for lattice studies, we first examine the possibility of chiral expansion of the

real parts of B− → D
0
P

− and B
− → D

0
P

− amplitudes, in the framework of heavy-meson chiral perturbation theory
(HMχPT) which merges heavy quark effective theory and chiral perturbation theory (χPT) [24–29]. The presence
of the b and c quarks, both heavier than ΛQCD, allows for systematic expansion in terms of ΛQCD/mb,c (mb,c is the
b, c quark mass). This expansion has already been used both in lattice determinations to leptonic and semi-leptonic
decays, as well as in the continuum. Combined with the chiral expansion, it leads to a powerful tool for extrapolating
lattice data to the physical pion mass. This extrapolation will still be an essential step in lattice calculations in the
foreseeable future, since most lattice simulations are not yet performed at the physical pion mass.

To begin, we examine the validity of HMχPT for the processes we are interested in. In the limit where both the b

and c quarks are treated as static, resulting in a soft final-state Goldstone boson, this approach is valid. However,
this limit is far from the physical regime, and such an extrapolation would introduce significant systematic errors.
Therefore, the straightforward applicability of χPT is questionable (i.e. it would be a poor approximation with rather
large errors). On the other hand, if we perform simulations near the physical kinematic point of the decays of interest
[B → DK(π)], the emerging D meson and the Goldstone boson are hard, with p ∼ 2 GeV.4

The appearance of hard external momenta does not, as one may initially assume, lead to a breakdown in the chiral
expansion. It was recently shown that treating the s-quark as heavy and using SU(2) χPT works quite well for chiral
extrapolations [30, 31]. This method can be generalised to processes in which external pions have hard momenta,
and applications have appeared in analyzing K�3 decays [32], K → 2π [33], as well as extensions to semi-leptonic
B-decays [34]. A central concern in all of these applications is how well χPT works in the presence of hard momenta.
In particular, there is evidence that the hard pion does not spoil the chiral logarithms, at least to next-to-leading
order (NLO) [35]5.

Applying this to processes involving D mesons is straightforward, and a key result is that the hard momenta of the
external mesons (both the D and the pion) will be absorbed into a redefinition of the low-energy constants (LEC’s),
and thus all remaining quantities will be soft. Thus we can still treat the D meson using the non-relativistic approach
of HMχPT, so that corrections arising in the D sector will arise at O(ΛQCD/MD), as usual.

To investigate the relevant B decay processes, we are interested in the following current-current, ∆b = 1, operators
(α,β are color indices)

Q
b→c,i
1 = (qiαγ

µ(1− γ5)bα)(cβγµ(1− γ5)uβ) , (5)

Q
b→c,i
2 = (qiαγ

µ(1− γ5)bβ)(cβγµ(1− γ5)uα) , (6)

Q
b→c,i
1 = (qiαγ

µ(1− γ5)bα)(uβγµ(1− γ5)cβ) , (7)

Q
b→c,i
2 = (qiαγ

µ(1− γ5)bβ)(uβγµ(1− γ5)cα) . (8)

For the decay channels B
− → D

0
K

− or B
− → D

0
K

−, we will set q
i = s and for B

− → D
0π− or B

− → D
0
π− we

have q
i = d. The corresponding effective Hamiltonian for these decays is

Heff =
GF√
2

�

j=1,2

�

i=d,s

[V ∗
cbVuqiCj(µ)Q

b→c,i
j + V

∗
ubVcqiCj(µ)Q

b→c,i
j + h.c.] . (9)

4 Note that this implies large discretization errors of the form (ap)n, with n > 0, and as such it would require either very fine lattices or
a choice of action which would largely suppress these errors.

5 As noted in Ref. [33], hard-pion χPT may not be applicable to the extraction of the imaginary parts of the K → ππ amplitudes. We
will comment on this issue for nonleptonic B decays in Sec. V.

Weak operators

Maiani-Testa theorem 

4pt functions only yields real part (no strong phase)

�0|πDOweakB|0�

Can be circumvented 
(Lellouch-Lüscher, RBC/UKQCD)

K → 2πe.g.,

Sunday, May 13, 2012



Heavy-light meson ChPT

4

We will focus on the nonleptonic decays which have the underlying processes b → cud, b → cus, b → ucd, and

b → ucs. The first two will be mapped onto different operators in the chiral theory than the final two, because

they belong to different irreducible representations under the chiral transformation. Furthermore, a chiral field which

creates a heavy-light meson with a c quark is not a field which destroys a heavy-light meson with a c anti-quark. We

will discuss the details of these operators in the chiral effective theory in Sec. III.

The outline for this paper is as follows. First, in Sec. II we present an introduction to HMχPT for B,D and B,D

mesons. In Sec. III, we construct the χPT operators for the quark-level operators in Eqs. (5)-(8). We then treat

the leading-order calculation of B → DP and B → DP and relate them to the unphysical B → D and B → D

processes. In Sec. IV, we discuss the tree-level resonance (initially either a B
∗
or D

∗
) contributions to the nonleptonic

B decays in the framework of HMχPT. Finally we sketch the steps required for a full one-loop calculation in Sec. V

and conclude in Sec. VI.

II. HEAVY-MESON CHIRAL PERTURBATION THEORY

The strong-interaction chiral Lagrangian for the Goldstone bosons is (the η� is already integrated out) [36, 37]

LG =
f
2

8
Tr

�
∂µΣ∂

µΣ†�
+

1

4
µf

2
Tr

�
MΣ+MΣ†�

, (10)

where µ is a low-energy constant (LEC) related to the chiral condensate, M is the light-quark mass matrix,

M = diag (mu,md,ms) , (11)

Σ = exp(2iΦ/f) is the non-linear Goldstone particle field, with Φ being the matrix containing the standard Goldstone

fields, and we use a normalization for f such that fπ ≈ 130.7 MeV. Under an SU(3)L ⊗ SU(3)R chiral rotation, Σ
transforms as

Σ −→ L ΣR
†
, where L ∈ SU(3)L, and R ∈ SU(3)R. (12)

To account for the light-quark dynamics in heavy-light mesons, one can combine the formulations for heavy quark

effective theory (HQET) and χPT into HMχPT [24–29]. There is a U(2m) spin-flavor symmetry on the heavy-quark

side for m heavy quarks, and the standard (broken) SU(3)L ⊗ SU(3)R chiral symmetry for the light quarks.

We will sketch the relevant details for constructing HMχPT, using the notation of Ref. [38]. First, we have the field

which destroys (creates) a heavy-light meson

H
(Q)
v,a =

�
1 + v/

2

��
γµV∗(Q)

µ,a − γ5P(Q)
a

�
, H

(Q)
v,a ≡ γ0

H
(Q)†
a γ0

=

�
γµV∗(Q)†

µ,a + γ5P(Q)†
a

��
1 + v/

2

�
, (13)

where a is the light quark flavor index, Q is the heavy-quark index, and v is the four-velocity of the heavy-light meson.

We use P for the heavy-light pseudoscalar field and V∗
for the heavy-light vector field. For the heavy-light fields with

heavy anti-quarks, we have [39]

H
(Q)
v,a =

�
γµV∗(Q)

µ,a − γ5P(Q)
a

��
1− v/

2

�
H

(Q)
v,a ≡ γ0

H
(Q)†
a γ0

=

�
1− v/

2

��
γµV∗(Q)†

µ,a + γ5P(Q)†
a

�
. (14)

It is convenient when dealing with both charm and bottom quarks and antiquarks to combine them into multiplets

which transform under the U(4) spin/flavor symmetry,

HQ,v,a =

�
H

(b)
v,a

H
(c)
v,a

�
, HQ,v,a =

�
H

(b)
v,a

H
(c)
v,a

�
. (15)

Suppressing the light flavour and velocity indices, under the heavy-quark spin/flavour transformation S ∈ U(4), and

the unbroken light-flavour transformation U(x), the above fields transform as

HQ(x) → S HQ(x) U†
(x) , HQ(x) → U(x)HQ(x) S

†
,

HQ(x) → U(x)HQ(x) S
†
, HQ(x) → S HQ(x) U

†
(x) , (16)
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Suppressing the light flavour and velocity indices, under the heavy-quark spin/flavour transformation S ∈ U(4), and
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We will focus on the nonleptonic decays which have the underlying processes b → cud, b → cus, b → ucd, and

b → ucs. The first two will be mapped onto different operators in the chiral theory than the final two, because

they belong to different irreducible representations under the chiral transformation. Furthermore, a chiral field which

creates a heavy-light meson with a c quark is not a field which destroys a heavy-light meson with a c anti-quark. We

will discuss the details of these operators in the chiral effective theory in Sec. III.

The outline for this paper is as follows. First, in Sec. II we present an introduction to HMχPT for B,D and B,D

mesons. In Sec. III, we construct the χPT operators for the quark-level operators in Eqs. (5)-(8). We then treat

the leading-order calculation of B → DP and B → DP and relate them to the unphysical B → D and B → D

processes. In Sec. IV, we discuss the tree-level resonance (initially either a B
∗
or D

∗
) contributions to the nonleptonic

B decays in the framework of HMχPT. Finally we sketch the steps required for a full one-loop calculation in Sec. V

and conclude in Sec. VI.

II. HEAVY-MESON CHIRAL PERTURBATION THEORY

The strong-interaction chiral Lagrangian for the Goldstone bosons is (the η� is already integrated out) [36, 37]
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where U(x) is a function of L, R and Φ(x).

The Goldstone bosons couple to the heavy-light mesons in HMχPT via the non-linear realisation

σ =
√
Σ = eiΦ/f

, (17)

which transforms as

σ(x) → L σ(x) U†(x) = U(x) σ(x)R†
, σ†(x) → R σ†(x) U†(x) = U(x) σ†(x) L†

. (18)

Due to the properties of the heavy-light meson fields in Eq. (16), it is convenient to define objects involving the σ
field that transform only with U and U†. The two possibilities with a single derivative are

Vµ =
i

2

�
σ†∂µσ + σ∂µσ

†�
, (19)

Aµ =
i

2

�
σ†∂µσ − σ∂µσ

†�
. (20)

The Lorentz vector Vµ can be combined with the derivative to form a covariant derivative acting on the heavy-light
field or its conjugate:

HQ,v,b
←
D

ba
µ ≡ ∂µHQ,v,a + iHQ,v,bVba

µ ,

→
D

ab
µ HQ,v,b ≡ ∂µHQ,v,a − iVab

µ HQ,v,b , (21)

with implicit sums over repeated indices, and similarly for the HQ,a fields. The covariant derivatives and Aµ transform
under the unbroken light-flavour symmetry as

H
←
Dµ → (H

←
Dµ)U†

,
→
DµH → U(→DµH) , (22)

Aµ → UAµU†
, (23)

where we have dropped all the indices for simplicity.

The leading-order chiral Lagrangian is given by LLO = LG + LHL,1, where

LHL,1 = −iTr(HHv·←D) + gπ Tr(HHγµγ5Aµ) . (24)

Tr means the complete trace over light quark flavor indices, heavy quark flavor indices, and, where relevant, Dirac
indices. Since H and H always appear together in the Lagrangian, we treat HH as a matrix in light-quark flavor
space: (HH)ab ≡ HaHb. The axial coupling gπ in the above Lagrangian determines the B

∗−B−Goldstone and
D

∗−D−Goldstone interaction strength. Its value, gπ ≈ 0.45, has recently been computed using unquenched lattice
QCD [40–42].

At the next-to-leading order (NLO), the Lagrangian contains a number of additional terms [38, 43, 44]. Among these
terms, only one of them,

λ2 Tr

�
1

MP
HσµνHσµν

�
, (25)

is relevant to this paper (λ2 is a LEC). This operator breaks the heavy-quark spin symmetry and results in the B∗−B

and D
∗−D mass splittings. Notice that MP is taken to be the corresponding B and D meson masses in this work,

and we do not include other effects related to the breaking of heavy-quark flavour symmetry.

III. THE CHIRAL EXPANSION FOR B → DK(π) AMPLITUDES

The difficulty in the use of χPT in computations for B → DP decay amplitudes originates in the large momenta
carried by the final state hadrons. In general, the chiral expansion is known to be applicable only to processes involving
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momenta well below the chiral symmetry breaking scale. On the other hand, it has been established recently that χPT
can be valid for amplitudes containing hard final state particles [32–34, 45]. One important point in such procedures
is that the LEC’s are no longer universal quantities for a fixed number of sea quarks. Rather, they depend on the
hard momentum scale which results from either the kinematics or the mass of the external particles.

This procedure of separating the hard scales in a process is described in detail in the references given above. The key
point in this separation lies with the derivative couplings that give rise to momentum dependence in χPT calculations.
When these momenta are external and hard, they can be absorbed into the LEC’s of the theory. We will discuss this
procedure explicitly with an example diagram for the process B → DP in Sec. V.

First we discuss the construction of the χPT weak operators corresponding to those in Eqs. (5)–(8). Omitting the
colour indices which do not play a role in χPT, these operators can be written as

Q
b→c,i =

�
q
i
L Γ1 b

�
(c Γ2 uL) ,

Q
b→c,i =

�
q
i
L Γ1 b

� �
uL Γ2 c

�
, (26)

where q
i = d or s, and

qL =

�
1− γ5

2

�
q,

Γ1 = Γ2 = Γ1 = Γ2 = γµ(1− γ5). (27)

Under the SU(3)L ⊗ SU(3)R chiral symmetry group, Qb→c,i is in the (8L,1R) representation, while Q
b→c,i is in the

(6̄L,1R) representation. To bosonise these operators, we promote Γ1,2 and Γ1,2 to be spurion fields which transform
as

Γ1 → L Γ1 S
†
, Γ2 → S Γ2 L

†
,

Γ̄1 → L Γ1 S
†
, Γ̄2 → L Γ2 S

†
, (28)

under the heavy-quark spin/flavour and chiral rotations. This renders the operators in Eq. (26) invariant with respect
to such transformations. We then find the bosonisation results in the leading order (LO) operators

Oχ,i =
�

x

�
α1,xTrD

��
σ1kH

(c)
v�,k

�
Γ2Ξ

�
xΞxΓ1

�
H

(b)
v,l σ

†
li

��
+ α2,xTrD

��
σ1kH

(c)
v�,k

�
Γ2Ξ

�
x

�
TrD

�
ΞxΓ1

�
H

(b)
v,l σ

†
li

���
, (29)

for Qb→c,i, and

Oχ,i =
�

x

�
α1,xTrD

�
Ξ�
xΓ2

�
H

(c)
v�,kσ

†
k1

�
ΞxΓ1

�
H

(b)
v,l σ

†
li

��
+ α2,xTrD

�
Ξ�
xΓ2

�
H

(c)
v�,kσ

†
k1

��
TrD

�
ΞxΓ1

�
H

(b)
v,l σ

†
li

���
,

(30)
for Q

b→c,i, where TrD means the trace in Dirac space, and the summation over repeated indices are assumed. The
symbols Ξ�

x and Ξx are all possible pairs of Dirac structures allowed by symmetries [46],

{Ξ�
x,Ξx} =

�
{1, 1} , {γν , γ

µ
} , {/v

�
, /v} , {/v

�
, 1} , {1, /v} , {σµν ,σ

µν
} ,

{γ5, γ5} , {γµγ5, γ
µγ5} , {/v

�γ5, /vγ5} , {/v
�γ5, γ5} , {γ5, /vγ5}

�
. (31)

In particular, the positions of these Dirac structures in HMχPT weak operators are constrained by heavy-quark
spin/flavour symmetry. They have to be inserted to account for light-quark and gluon dynamics.
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hard momentum scale which results from either the kinematics or the mass of the external particles.

This procedure of separating the hard scales in a process is described in detail in the references given above. The key
point in this separation lies with the derivative couplings that give rise to momentum dependence in χPT calculations.
When these momenta are external and hard, they can be absorbed into the LEC’s of the theory. We will discuss this
procedure explicitly with an example diagram for the process B → DP in Sec. V.

First we discuss the construction of the χPT weak operators corresponding to those in Eqs. (5)–(8). Omitting the
colour indices which do not play a role in χPT, these operators can be written as
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where q
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Under the SU(3)L ⊗ SU(3)R chiral symmetry group, Qb→c,i is in the (8L,1R) representation, while Q
b→c,i is in the

(6̄L,1R) representation. To bosonise these operators, we promote Γ1,2 and Γ1,2 to be spurion fields which transform
as

Γ1 → L Γ1 S
†
, Γ2 → S Γ2 L

†
,

Γ̄1 → L Γ1 S
†
, Γ̄2 → L Γ2 S

†
, (28)

under the heavy-quark spin/flavour and chiral rotations. This renders the operators in Eq. (26) invariant with respect
to such transformations. We then find the bosonisation results in the leading order (LO) operators
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H
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H
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�
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H
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(30)
for Q

b→c,i, where TrD means the trace in Dirac space, and the summation over repeated indices are assumed. The
symbols Ξ�

x and Ξx are all possible pairs of Dirac structures allowed by symmetries [46],

{Ξ�
x,Ξx} =

�
{1, 1} , {γν , γ

µ
} , {/v

�
, /v} , {/v

�
, 1} , {1, /v} , {σµν ,σ

µν
} ,

{γ5, γ5} , {γµγ5, γ
µγ5} , {/v

�γ5, /vγ5} , {/v
�γ5, γ5} , {γ5, /vγ5}

�
. (31)

In particular, the positions of these Dirac structures in HMχPT weak operators are constrained by heavy-quark
spin/flavour symmetry. They have to be inserted to account for light-quark and gluon dynamics.
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(30)
for Q

b→c,i, where TrD means the trace in Dirac space, and the summation over repeated indices are assumed. The
symbols Ξ�

x and Ξx are all possible pairs of Dirac structures allowed by symmetries [46],

{Ξ�
x,Ξx} =

�
{1, 1} , {γν , γ

µ
} , {/v

�
, /v} , {/v

�
, 1} , {1, /v} , {σµν ,σ
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} ,

{γ5, γ5} , {γµγ5, γ
µγ5} , {/v

�γ5, /vγ5} , {/v
�γ5, γ5} , {γ5, /vγ5}

�
. (31)

In particular, the positions of these Dirac structures in HMχPT weak operators are constrained by heavy-quark
spin/flavour symmetry. They have to be inserted to account for light-quark and gluon dynamics.

b → c operators

b → c̄ operators

Chiral-level Weak operators:
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FIG. 1: Tree-level diagrams contributing to (a) B → D and (b) B → DP at lowest order, with no insertions of the strong
Lagrangian. The box is the weak operator, the solid line is a heavy-light pseudoscalar (either B or D), and the dashed line is
the light meson P .

Performing the Dirac traces in Eqs. (29) and (30), we obtain

Oχ,i = [β1 + (β1 + β2) (v
�
· v)]

��
σ1kP

(c)†
k

��
P

(b)
l σ†

li

��

+ [(β1 − β2) v
�µ − β1v

µ]
��

σ1kP
(c)†
k

��
V
∗(b)
µ,l σ†

li

��

+ [β1v
�µ − (β1 + β2) v

µ]
��

σ1kV
∗(c)†
µ,k

��
P

(b)
l σ†

li

��

− 4 [(β1 − β2) + β1(v
�
· v)]

��
σ1kV

∗(c)†
µ,k

��
V
∗(b)µ
l σ†

li

��
,

Oχ,i =
�
β1 + β2(v

�
· v)

� ��
P

(c̄)†
k σ†

k1

��
P

(b)
l σ†

li

��

−
�
β2v

�µ −
�
β1 + β5

�
vµ − β3(v

�
· v)vµ

� ��
P

(c̄)†
k σ†

k1

��
V
∗(b)
µ,l σ†

li

��

+
�
β1v

�µ − β2v
µ
� ��

V
∗(c̄)†
µ,k σ†

k1

��
P

(b)
l σ†

li

��

+
�
4β2 − β3 − 2

�
β1 + β4 + β5

�
(v� · v)

� ��
V
∗(c̄)†
µ,k σ†

k1

��
V
∗(b)µ
l σ†

li

��
, (32)

where βi is a linear combination of α1,x and α2,x while βi is a linear combination of α1,x and α2,x. At the lowest order
in the chiral expansion, only the first terms in the above operators contribute to B → DP and B → DP processes.
It is straightforward to demonstrate that if we evaluate the diagrams in Fig. 1 at leading order,

�D0K−
|Oχ,s|B

−� = �D0π−
|Oχ,d|B

−� = i

f
�D−

|Oχ,s|B
−�,

�D0
K−

|Oχ,s|B
−� = �D0

π−
|Oχ,d|B

−� = i

f
�D−

|Oχ,s|B
−� . (33)

From Eq. (32), it is clear that beyond the LO, the chiral expansion may become very different for B− → D0P− and

B− → D
0
P− amplitudes. In the next two sections, we will discuss the generic features of these amplitudes at the

NLO and leave the details to a future publication.

IV. RESONANCE CONTRIBUTIONS

In this section we discuss one generic feature of B → DP correlators and amplitudes, namely, the resonance contri-
bution.6 This is partly incorporated in HMχPT via the inclusion of the vector heavy-light mesons. Figure 2(b) shows
a typical diagram in which a resonance (D∗ in this case) appears in the B → DP correlators. One can also include
heavier resonances in the effective theory [47], but it is beyond the scope of this paper. Here we will address the issue

6 The conclusion presented in this section is also valid for B → DP decays.

Heavy-light meson ChPT
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FIG. 1: Tree-level diagrams contributing to (a) B → D and (b) B → DP at lowest order, with no insertions of the strong
Lagrangian. The box is the weak operator, the solid line is a heavy-light pseudoscalar (either B or D), and the dashed line is
the light meson P .

Performing the Dirac traces in Eqs. (29) and (30), we obtain
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�
β1 + β2(v

�
· v)
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(c̄)†
k σ†

k1
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P

(b)
l σ†

li

��

−
�
β2v
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�
β1 + β5

�
vµ − β3(v

�
· v)vµ
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P

(c̄)†
k σ†

k1
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V
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+
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β1v

�µ − β2v
µ
� ��

V
∗(c̄)†
µ,k σ†

k1
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P

(b)
l σ†

li
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+
�
4β2 − β3 − 2
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β1 + β4 + β5

�
(v� · v)

� ��
V
∗(c̄)†
µ,k σ†
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V
∗(b)µ
l σ†
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��
, (32)

where βi is a linear combination of α1,x and α2,x while βi is a linear combination of α1,x and α2,x. At the lowest order
in the chiral expansion, only the first terms in the above operators contribute to B → DP and B → DP processes.
It is straightforward to demonstrate that if we evaluate the diagrams in Fig. 1 at leading order,

�D0K−
|Oχ,s|B

−� = �D0π−
|Oχ,d|B

−� = i

f
�D−

|Oχ,s|B
−�,

�D0
K−

|Oχ,s|B
−� = �D0

π−
|Oχ,d|B

−� = i

f
�D−

|Oχ,s|B
−� . (33)

From Eq. (32), it is clear that beyond the LO, the chiral expansion may become very different for B− → D0P− and

B− → D
0
P− amplitudes. In the next two sections, we will discuss the generic features of these amplitudes at the

NLO and leave the details to a future publication.

IV. RESONANCE CONTRIBUTIONS

In this section we discuss one generic feature of B → DP correlators and amplitudes, namely, the resonance contri-
bution.6 This is partly incorporated in HMχPT via the inclusion of the vector heavy-light mesons. Figure 2(b) shows
a typical diagram in which a resonance (D∗ in this case) appears in the B → DP correlators. One can also include
heavier resonances in the effective theory [47], but it is beyond the scope of this paper. Here we will address the issue

6 The conclusion presented in this section is also valid for B → DP decays.

similar expressions for 
[Bernard et al, PRD32 2343]

K → 2π

Leading order

Can also include resonances:
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B D B
D∗

D

(b)(a)

FIG. 2: Tree-level correlators contributing to B → DP . The box is the weak operator, with (a) being the direct B → DP term
and (b) being the term with an intermediate resonance (here a D∗).

regarding the contribution from the resonance in the time-momentum representation of correlators. To avoid com-
plications arising from the formulation of HQET and HMχPT in Euclidean space [48], we work in Minkowski space
with the comment that we also carried out a similar calculations by modelling the heavy-light mesons as relativistic
particles in Eulidean space and obtained the same conclusions presented in this section.

We first set up the calculation for the LO correlator in Fig. 2(a). To mimic the setting for most lattice calculations,
we integrate over the spatial volume for the positions of external B, D and pion (kaon) sources/sinks, i.e., we perform
a Fourier transform for the spatial directions for each of the external points. On the other hand, we fix the location
of the weak operator (the square in the diagram) to be at the origin. To be consistent with the notation in Sec. III,
we denote the velocity of B and B∗ by v and that of D and D∗ by v�. For simplicity, the velocity v is chosen to be

v =
�
1,�0

�
, (34)

and the time-ordering is implemented as

tB < 0 < tD ≤ tP , (35)

where tB,D,P is the temporal locations of the B,D,P mesons, respectively. Using the Feynman rules derived from the
HMχPT Lagrangian and the weak operators in Eqs. (24) and (32), the result for the contribution from this diagram
in the correlator is

CLO =
gBDP

f

�
1

2
θ(−tB)

��
1

2v�
0

θ(tD)e−iδDtD

��
e−iωP tP

2ωP

�

=
gBDP

f

�
1

2

��
e−iδDtD

2v�
0

��
e−iωP tP

2ωP

�
, (36)

where

δD = �v� · �pD, and ωP =
�
M2

P + �p2P , (37)

with �pD and �pP denoting the spatial momenta of the D and the Goldstone boson. The coupling gBDP is one of the
linear combinations of the LEC’s βi in Eq. (32).

Next, we discuss the correlator depicted in Fig. 2(b). This diagram is calculated by integrating over the entire
space-time for the location of the strong vertex (denoted by the circle). It leads to the result

Cres =
gBD∗ (igπ)

f

�
1

2
θ(−tB)

��
1

2v�
0

θ(tD)e−iδDtD

��
e−iωP tP

2ωP

��
ei(ωP+δD−∆DP )tD − 1

2iv�
0
(ωP + δD −∆DP )

�

=
gBD∗gπ

f

�
1

2

��
e−iδDtD

2v�
0

��
e−iωP tP

2ωP

��
ei(ωP+δD−∆DP )tD − 1

2v�
0
(ωP + δD −∆DP )

�
, (38)

where

∆DP = �v� · (�pD + �pπ) +
∆D

v�
0

, (39)
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Of course here the physical point has

pπ = pD ≈ 2 GeV

Not appropriate for chiral expansion unless
one takes the unphysical point 

mB ≈ mD

But then we’re far from the point of interest.

How to go beyond tree-level?
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Beyond tree-level:

Exploit the fact that hard scales 
can be absorbed into LEC’s

Hard-pion ChPT (HPChPT)

Flynn & Sachrajda, Nucl.Phys. B812, 64
Bijnens & Celis, Phys.Lett. B680, 466  
Bijnens & Jemos, Nucl.Phys. B840, 54 

K�3

K → 2π
B → π
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In the SU(2) chiral theory, 
we have the generic one-loop form

9

D
D∗

D

FIG. 3: A contribution to the process DP → DP involving a single resonance.

with ∆D denoting the D∗−D mass splitting resulting from the heavy-quark spin symmetry breaking term in Eq. (25).
When the final-state momenta are tuned such that

ωP + δD = ∆DP , (40)

the resonance is on-shell and the correlator contains a linear term in tD,

Cres|ωP+δD=∆DP
=

gBD∗gπ
f

�
1

2

��
e−iδDtD

2v�0

��
e−iωP tP

2ωP

��
itD
2v�0

�
, (41)

which is an energy shift of the final state. When one takes the ratio of the B → DP correlator and the square root
of the DP → DP correlator, the tD dependence arising from the square brackets in Eq. (38) (hence this linear term
in tD), is exactly cancelled by the contribution from the diagram in Fig. 3.7 The coupling gπ is defined in Eq. (24),
and gBD∗ is a linear combination of the LEC’s βi in Eq. (32). Notice that gBD∗ is different from gBDP and thus
the resonance contribution results in general in an additional unknown parameter for B → DP amplitude at the tree
level.

V. BEYOND TREE LEVEL

The use of tree-level χPT is certainly limiting. While many systematic errors should cancel when looking at the ratio
of B → DP to B → DP , going to higher order both in the chiral and heavy quark expansions is essential. Using the
symmetry relations resulting from Eq. (32), we could attempt an NLO calculation to make similar relationships at
higher order, which is possible in the case of K → 2π, as in, for example, Refs. [52–54].

In order to treat these processes in the physical regime, we use the methods of Refs. [32–34]: Hard-pion χPT (HPχPT).
As discussed earlier, this formalism uses the fact that one or more of the momenta in the final state very well may be
hard, and at the physical point for B → DP , this is true. For this section we will focus on P = π.

In order to apply HPχPT to both B → Dπ and B → Dπ, there are quite a few one-loop diagrams that we must
evaluate. The result of a complete calculation (i.e., the sum of all one-loop diagrams) is expected to take the following
generic form [working with the SU(2) chiral theory for now]

M = Mtree

�
1 + a

m2
π

16π2f2
ln

�
m2

π

Λ2

�
+ Lm2

π

�
, (42)

where M is one of the the particular amplitudes from Sec. III, and Mtree its tree-level value. a is a coefficient
that depends on the particular kinematics chosen for the diagram, and L is a linear combination of low-energy
constants as well as terms arising from higher-order chiral-level weak operators.8 These would be determined from
evaluating the full one-loop corrections to these amplitudes. We stress that a and L above will depend on all the hard

7 This cancellation may not occur in partially-quenched QCD due to the loss of unitarity [49–51].
8 Repeating the spurion analysis of Sec. II would show in principle roughly 3-4 times as many LEC’s arising at NLO relative to LO, but

only certain combinations arise in calculations, eg., Eq. 42, and as such there will effectively only be a small number of LEC’s.

a and L are LEC’s that depend on the hard scales

HPChPT

tree-level amplitude
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B D D

π

FIG. 4: One of the many one-loop diagrams that contribute to B → Dπ, specifically one which shows the essential features
that arise in HPχPT.

quantities, specifically the mass of the external D meson and the momenta of both the external D meson and pion.

This dependence is not known analytically, and it makes the LEC’s non-universal when varying the hard momenta.

However, at any fixed kinematics, the values of the LEC’s are still fixed
9
. Additionally, we note that since all the

hard scales are absorbed into the LEC’s, we expect similar convergence as that of ordinary χPT. Corrections to the

heavy quark expansion will be more significant coming from the D-meson, and thus both a and L will have O(1/MD)

corrections.

In order to understand the specific details, we work through an example diagram, shown in Fig. 4. To evaluate this

diagram, we envision a lattice simulation where momentum will be conserved at the strong vertex, but need not be

at the weak vertex. Thus, we define the momentum entering the weak vertex as pwk, the momentum flowing through

the pion line is � (the integration variable), and the external D meson has velocity v� and residual momentum k, so
that this diagram has the form,

�D0π−
|Oχ,d|B

−�Fig. 4 =
�D0π−|Oχ,d|B−�tree

8f2

�
dd�

(2π)d
i

�2 −m2
π + i�

iv� · (�− pπ)

v� · (�− k − pπ)−∆+ i�
,

≡ �D0π−|Oχ,d|B−�tree

8
I , (43)

where the coefficient arises from the weak vertex, and the momentum injected into the weak vertex, pwk, is related

to those carried by the external B, D and pion,

pπ + pD = pB + pwk . (44)

∆ = MD −MB is the D-B meson mass splitting (which is of order 1/mc − 1/mb) and kB is the residual momentum

of the B-meson.

This integral can be evaluated simply to obtain

I =
1

16π2f2

�
v�·k +∆

v�·(k + pπ) +∆+ i�
I2(mπ, v

�
·(k + pπ) +∆+ i�)−m2

π ln

�
m2

π

Λ2

��
, (45)

with

I2(m, δ) = −2δ2 ln

�
m2

Λ2

�
− 4δ2F (m/δ) + 2δ2 , (46)

F (x) =

�√
1− x2 tanh

−1
√
1− x2 , 0 ≤ x ≤ 1

−
√
x2 − 1 tan

−1
√
x2 − 1 , x ≥ 1

. (47)

We can examine this case in the limit where v�·k � mπ, which is the hard-pion limit. In this limit we find

I2(mπ, v
�
·(k + pπ) +∆) ≈ −m2

π ln

�
m2

π

Λ2

�
, (48)

9 In practical lattice calculations, one would have to vary the pion mass, and extrapolate to the physical point. In this procedure, it is
inevitable to change the momenta, and therefore the values of the LEC’s. Fortunately, since the hard momenta are all much larger than
the typical pion masses in present and future lattice simulations, changes in the latter will result in very small variations of the former.
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FIG. 4: One of the many one-loop diagrams that contribute to B → Dπ, specifically one which shows the essential features
that arise in HPχPT.
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that this diagram has the form,

�D0π−
|Oχ,d|B

−�Fig. 4 =
�D0π−|Oχ,d|B−�tree

8f2

�
dd�

(2π)d
i

�2 −m2
π + i�

iv� · (�− pπ)

v� · (�− k − pπ)−∆+ i�
,

≡ �D0π−|Oχ,d|B−�tree

8
I , (43)

where the coefficient arises from the weak vertex, and the momentum injected into the weak vertex, pwk, is related

to those carried by the external B, D and pion,
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We can examine this case in the limit where v�·k � mπ, which is the hard-pion limit. In this limit we find
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9 In practical lattice calculations, one would have to vary the pion mass, and extrapolate to the physical point. In this procedure, it is
inevitable to change the momenta, and therefore the values of the LEC’s. Fortunately, since the hard momenta are all much larger than
the typical pion masses in present and future lattice simulations, changes in the latter will result in very small variations of the former.
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pπ ≈ 0

11

so that the full integral contributing to this diagram becomes either

I(pπ ≈ 0) → −2
m2

π

16π2f2
ln

�
m2

π

Λ2

�
, (49)

if we insert momentum into the weak vertex such that pπ ≈ 0, or

I(pπ ≈ k) → −3

2

m2
π

16π2f2
ln

�
m2

π

Λ2

�
, (50)

if we choose pwk such that pπ ≈ k. These would give rise to different values of the coefficient a in Eq. (42). This can
thus be extended to all of the diagrams that would contribute to one-loop order, and for each chosen set of kinematics,
we would be able to find different expressions for a in Eq. (42), and in general, the LEC L in that equation would
have an unknown dependence on the kinematics. However, the pion mass dependence is well determined.

We close this section by noting that HPχPT is not applicable for extracting the strong phases of B decays
via the computation of the one-loop diagram in Fig. 4. The imaginary part in this diagram is proportional to�
[v� · (pπ + k)]2 −m2

π, therefore grows with the increasing momenta carried by the final-state mesons, leading to the
failure of the chiral expansion when pD and pπ are large. This can be understood by noting that the imaginary part
arises from the contribution in which both mesons in the loop are on-shell, and therefore cannot be soft.

VI. SUMMARY AND OUTLOOK

In this paper, we proposed a strategy for calculating B → DP and B → DP (P is a Goldstone boson) decay
amplitudes via lattice calculations. Indeed the real part is accessible directly via four-point function calculations on
the lattice as it does not suffer from the Maiani-Testa No-Go Theorem, though it is computationally demanding.
As an approximation, one can invoke the chiral expansion, specifically taking into account the large momenta of the
final state mesons. We argue that this hard-pion chiral expansion is valid for these decays, for similar reasons to
those in semileptonic B decays and in K → ππ amplitudes. In general, this hard-pion chiral expansion results in
momentum dependence of low-energy constants and the coefficients of the chiral logarithms. From our investigation of
the structure of a typical one-loop diagram (Fig. 4), it is shown explicitly how this occurs for the B → DP amplitudes.

We constructed the leading-order operators, relevant to these decays, in the chiral effective theory. We studied the
tree-level resonance contributions in the framework of HMχPT, and showed that these contributions are accompanied
by combinations of the LEC’s which are different from that for the corresponding leading-order B → DP and B → DP
amplitudes. As such, incorporating resonances in the study of the lattice correlators allows us to extract some of the
LEC’s that are not accessible by applying χPT naively.

To complete this inital approach, the complete one-loop contributions must be calculated [55]. One can combine these
χPT results with lattice simulations to compute the real parts of B → DP and B → DP decay amplitudes. Although
the lattice calculation for the imaginary parts of these matrix elements is challenging, their real parts can already
provide important information for an accurate determination of the angle γ in the b−d unitarity triangle in the CKM
matrix. The real part gives a lower bound to the absolute value of the amplitude, which would be very useful in the
phenomenology of γ-extraction, and by combining this with the information on strong phases from B and D decays,
the absolute magnitude of the amplitude can also be deduced.

Finally, let us note that, in the long run, as the lattice program succeeds in evaluating rredBP and with experimental
studies using larger data samples, experiment will be able to pin down rBP with increasing precision. We envision
that a combination of these efforts could lead to an improvement in determinations of γ to about 10% in 3-5 years.
In the longer term, with the use of even more powerful computers and with data from Super-LHCb and Super-B
factories, the error could be reduced to a few percent. These improved determinations should allow a useful constraint
on V combo

CKM [Eq. (4)] and consequently on Vub since all the other factors therein are already known quite well. Given
the serious difficulties [56] in a precise determination of Vub through the conventional semileptonic methods, having
an independent constraint via purely hadronic decays: B → D(D)P may also prove useful.
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pπ ≈ k

Different contributions to a, L in above expression

Both a and L have unknown dependence on 
kinematics, but pion mass dependence is known.
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Conclusion

Problem is far from solved

Need full one-loop calculation

Need lattice calculations (takers?)

Key: Feasible problem for lattice to tackle
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Heavy-light Decay Constants
✦ Fermilab heavy quarks with MILC 2+1 Asqtad 

staggered light quarks
• “Old data” project

• 0.15 fm ≤  a ≤ 0.09 fm
• 4 sources per configuration 
• renormalization mostly non-perturbative; 1-loop 

perturbation theory for remainder
• to appear in PRD shortly

• “New data” project:  similar to above, but:
• 0.15 fm ≤  a ≤ 0.045 fm
• 2 to 5 times more configurations/ensemble
• in progress

✦ For D system, ongoing HISQ project with MILC 
2+1+1 HISQ quarks:  more later.
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analysis



Asqtad Ensembles

3

“old data” 
heavy-light 
decay const. 
analysis

not in central 
value but in 
error analysis



D system

✦ fD as function of light 
valence mass mq (= 
light sea mass ml).

✦ fDs as function of 
light sea mass ml.

• valence mass 
held fixed ≈ ms.

✦ a≅0.15 fm points 
not included in fit.

• note qualitatively 
different behavior
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B system

✦ fB as function of light 
valence mass mq (= 
light sea mass ml).

✦ fBs as function of 
light sea mass ml.

• valence mass 
held fixed ≈ ms.

✦ a≅0.15 fm points 
not included in fit.

• qual. different 
behavior + large 
stat. errors
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fDs = 260.1± 10.8 MeV

fD+ = 218.9± 11.3 MeV

fDs/fD+ = 1.188± 0.025

fBs = 242.0± 9.5 MeV

fB+ = 196.9± 8.9 MeV

fBs/fB+ = 1.229± 0.026

Fermilab/MILC Results

• errors include statistics and systematic errors
• discretization errors for heavy & light quarks automatically included 

with statistics errors by our Bayesian procedure
• have added on other systematics in quadrature
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fDs fD+

ETMC(nf=2)

 Expt. Avg.

FNAL/MILC

HPQCD

1.15 1.20 1.25 1.30

fDs [MeV]

ETMC(nf=2)

 Expt. Avg.

FNAL/MILC

HPQCD

245 250 255 260 265 270

fD+ [MeV]

ETMC(nf=2)

 Expt. Avg.

FNAL/MILC

HPQCD

200 205 210 215 220 225 230

fBs [MeV]

ETMC(nf=2)

FNAL/MILC

HPQCD '09

HPQCD '11

220 225 230 235 240 245 250

fB+ [MeV]

ETMC(nf=2)

FNAL/MILC

HPQCD '09

180 185 190 195 200 205

fBs fB+

ETMC(nf=2)

FNAL/MILC

HPQCD '09

RBC/UKQCD

1.05 1.10 1.15 1.20 1.25

Comparison w/ other calculations & expt

7

D System B System



Heavy-light Decay Constants
✦ Fermilab heavy quarks with MILC 2+1 asqtad 

staggered light quarks
• “Old data” project

• 0.15 fm ≤  a ≤ 0.09 fm
• 4 sources per configuration 
• renormalization mostly non-perturbative; 1-loop perturbation 

theory for remainder
• to appear in PRD shortly

• “New data” project:  similar to above, but:
• 0.15 fm ≤  a ≤ 0.045 fm
• 2 to 5 times more configurations/ensemble
• in progress

✦ For D system, ongoing HISQ project with MILC 
2+1+1 HISQ quarks:  more later.
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heavy-light 
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analysis

• 0.06 fm and 0.045 
ensembles added.



Asqtad Ensembles

9

“new data” 
heavy-light 
decay const. 
analysis

• 0.06 fm and 0.045 
ensembles added.

• runs lengthened by 
factor of ~2 to ~5.



“New Data” fD

• statistical errors 
reduced as 
expected.

• correlator fits 
still need work; 
chiral fits are in 
progress.

• trend:                
fD and fDs ↓       
as a ↓ 

10

a=0.12 fm

a=0.09 fm

a=0.06 fm

a=0.045 fm

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.55

0.60

0.65

0.70

0.75

xq !!mΠ2 "fΠ2 #

Φ c
r 1
3"2



Outlook: Fermilab/MILC

11

% Errors

Quantity

fDs

fD

fDs /fD

fBs

fB

fBs/fB

“Old data”
arXiv:1112.3051

“New data” 
(in progress)

4.2 2.2

5.2 2.8

2.1 1.1

3.9 2.6

4.5 2.8

2.1 1.2



B Mixing

⌇
⌇
⌇
⌇

W± W∓

t, c, u

t, c, u

B0
q B

0
q B0

q B
0
q

Operators 
are

O1 = (b̄αγµLq
α) (b̄βγµLq

β)

O2 = (b̄αLqα) (b̄βLqβ)

O3 = (b̄αLqβ) (b̄βLqα)

O4 = (b̄αLqα) (b̄βRqβ)

O5 = (b̄αLqβ) (b̄βRqα)

SM

BSM

Heff =
5∑

i=1

CiOi

Oi

Common parametrization

〈B̄0
q |Oi(µ)|B0

q 〉 ∝ f2
Bq

Bi(µ)

12



B Mixing
✦ Fermilab heavy quarks with MILC 2+1 asqtad 

staggered light quarks
• “Old data” project

• 0.12 fm ≤  a ≤ 0.09 fm
• focus on SM operators, and in particular on 01, which gives

• construct operators from Fermilab quark + naive quark 
(made from staggered).

– drop NLO “wrong spin” terms [⇒systematic error estimate].

• 1-loop perturbation theory for mixing.
• to be posted in next month or so.

• “New data” project:  similar to above, but:
• 0.15 fm ≤  a ≤ 0.045 fm.
• complete set of SM and BSM operators.
• all wrong spin terms included correctly in ChPT.
• in progress. 13
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“Wrong spin” Issue

✦ Four quark operators as in [HPQCD, PRD 80 (’09)014503].
• local products of bilinears of heavy quark fields           and naive 

quarks           (made from staggered):

✦ Desired spin-taste of staggered quarks not constructed by 
separately summing each bilinear over hypercube               
⇒ contributions from unwanted spin-tastes.

• vanish in continuum limit by taste conservation.

• but will appear in staggered ChPT at some order.

• we had an argument (in a collaboration note) that chiral logs from 
wrong-spin taste first appear at NNLO. [Was used in HPQCD paper.]

• in writing up our B mixing computation, found flaw in previous 
argument:  such terms appear at NLO and need to be included.

15
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“Wrong-spin” and Chiral/Continuum Errors

✦ Effects of wrong spin ops have now been calculated to 1-
loop in staggered ChPT [CB].
• don’t have all needed matrix elements in old-data calc, but can 

estimate effect by sample new-data calc.

• wrong-spin contrib < stat + other chiral/continuum errors, but 
effect on slope seems significant  ⇒ tends to increase ξ . 16
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Result:    ξ = 1.268(63)   (nearly final)



B Mixing
✦ Fermilab heavy quarks with MILC 2+1 asqtad 

staggered light quarks
• “Old data” project

• 0.12 fm ≤  a ≤ 0.09 fm
• focus on SM operators, and in particular on 01, which gives

• construct operators from Fermilab quark + naive quark 
(made from staggered).

– drop NLO “wrong spin” terms [⇒systematic error estimate].

• 1-loop perturbation theory for mixing.
• to be posted in next month or so.

• “New data” project:  similar to above, but:
• 0.15 fm ≤  a ≤ 0.045 fm.
• complete set of SM and BSM operators.
• all wrong spin terms included correctly in ChPT.
• in progress. 18
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“new-data” 
B-mixing: 
plan

completed

subset of 
operators 
done



Matrix element of O2 
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• limit to precision.

• may be able to reduce 
a bit (to ~6%?)  with 
finer spacings.



MILC HISQ 2+1+1 Ensembles
✦ Asqtad ensembles are complete; though there is 

more physics still to extract.

✦ For higher precision, have moved to HISQ [Follana et 
al. [HPQCD], PRD 75 (2007) 054502].
• Reduced O(αS a2) and O(αS2 a2) errors with respect to 

Asqtad.

• (amc)4 errors reduced ⇒ treat charm with same 

relativistic action as light quarks.

• Ensembles include charm sea quarks
• (although error of quenching charm is probably 

negligible in most cases, it doesn’t cost much to 
include it in sea.)

22
[A. Bazavov, D. Toussaint]
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Light decay constants w/ 2+1+1 HISQ

✦ In Asqtad case, needed ensembles with ms lighter 
than physical to control SU(3) chiral extrapolation.

✦ In HISQ case, such ensembles have not been 
available (but are coming on line now...), so SU(3) fits 
have not yet been very successful.

✦ “Heavy kaon” SU(2) chiral perturbation theory [à la 
RBC/UKQCD and PACS-CS], has been recently 
worked out for staggered case [CB, Du, and 
Lightman], but not yet tried.

✦ So focus for now on physical-mass HISQ ensembles, 
where ChPT not needed.

24
[M. Lightman]
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✦ On each ensemble: 
• for valence masses  mx, my    ms, meson mass squared   (mxy)2  

is very linear in mx + my.

• decay const fxy appears linear for mx + my     0.5 ms, but there 
is separate dependence on mx and my for heavier masses.
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HISQ fπ , fK
✦ Suggests following interpolating forms:

✦ On each ensemble, do linear interpolations of this form 
between (mx, my) = (ml, ml) and its nearest neighbor, and 
between (mx, my) = (ml, ms) and its nearest neighbors. 

✦ Require that (fxx/mxx)2  = (fπ/mπ)2, solve for mx to determine 
physical light mass mlphys

• (Checked that quadratic interpolation with 3 points makes little 
difference)

✦ Require that (mxy/mxx)2  = (mK/mπ)2, solve for my to determine 
physical strange mass msphys

• (Checked that interpolating 2(mxy)2-(mxx)2  to find msphys with makes little 
difference) 26

(amxy)2 = A1 + B1(amx + amy)

afxy =
{

A2 + B2(amx + amy), for mx ∼ ml and my ∼ ml

A3 + B3amx + C3amy, for mx ∼ ml and my ∼ ms



HISQ fπ , fK
✦ Then linearly interpolate f and f to physical masses.

• for the moment focus on fK/fπ ; compute it for each ensemble.

• then fit it as function of a2.

• two finest points in linear fit:  (fK/fπ)continuum = 1.1925(32)
• all 3 points in linear fit:   (fK/fπ)continuum = 1.1892(20)
• parabola through all 3 points:   (fK/fπ)continuum = 1.1962(56) 27
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HISQ fπ , fK: systematic errors
✦ Half the largest difference between continuum extraps to 

estimate that error.
✦ Finite volume effects from ensembles with  L=24, 32, and 

40 with a=0.12 fm and ml = 0.1 ms.

• “NNLO ChPT” means using Colangelo, Dürr, Haefeli, NPB 721 
(‘05) 136] to terms of                             . 28
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HISQ fπ , fK: preliminary result

✦ Find:   fK/fπ = 1.1925(32)stat(36)continuum(32)finite volume

✦ Effect still to investigate:  tuning error in sea quark 
masses.

✦ More study of interpolating fits also needed.
• A systematic way will be to use the SU(2) staggered ChPT; will 

also allow us to get information out of the  ensembles with u,d 
mass heavier than physical, and find LECs.

• Some ensembles with ms lighter than physical have recently 
been completed; SU(3) fits should now also be possible.

29



D decay constants w/ 2+1+1 HISQ

✦ advantage of HISQ: discretization errors sufficiently 
reduced (both a2 and (ma)4 ) that charm may be treated 
with same action as light quarks.
• avoid renormalization errors and many tuning issues.

• shares to some degree the small statistical errors of staggered 
light pseudoscalars.

30
[D. Toussaint, J. Kim]
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fD , fDs procedure

✦ On each ensemble:

•                                         ,  and then                                        
(cubic  interpolation through 3 light valence masses)

•                                                                                                          
(linear interpolation/extrapolation through 2 strange valence 
masses)

•                                                                                                        
(linear interpolation/extrapolation through 2 charm valence 
masses) 

•                 ,                   at proper adjusted masses                         
(linear interpolation in light, strange and charm masses)                                                                                               

32

2M2
K −Mπ → amphys

s

MDs → amphys
c

(Mπ/fπ)2 → amphys
u,d → a

f → fD f → fDs



HISQ fD , fDs
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HISQ fD , fDs
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quadratic continuum 
extrapolation and 
sea-mass chiral 
interpolation(!)

finite volume effects:
smaller volume
larger volume

(primarily from fπ 
scale setting)



Finite size effects

34

• Not much evidence for 
finite size effects.

• Here, results are in 
lattice units. 

• Finite-volume effects 
can enter if scale is 
set in finite-volume-
dependent way, e.g. 
fπ.



HISQ fD , fDs

✦ Very preliminary results:

• ??? are systematic errors, including:
• continuum extrapolation/chiral interpolation

– staggered ChPT has been worked out [CB and J. Komijani] and 
may help to control continuum extrapolation.

• finite volume.
• isospin:  easy to determine valence isospin breaking,                 

e.g.,          vs. generic       .

• EM effects: from Gläßle and Bali, arXiv:1111.3958 and Davies, 
et al., PRD  82  (2010) 114504, expect < 0.5%

– ultimately plan to check with our EM code....

35

fD+ fD

fD = 211.6± 2.4± ??? MeV
fDs = 245.2± 0.8± ??? MeV



Outlook: Fermilab/MILC
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3.9 2.6 ~1.5?

4.5 2.8 ~2.0?

2.1 1.2 ~0.8?
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Comment

✦ Best direction for us for B physics not obvious.  
• Use Fermilab or Oktay-Kronfeld (improved Fermilab) b 

quarks?  

• Push/extrapolate HISQ up to the b [HPQCD]?

• Leverage HISQ data for D (or heavier D) by using Fermilab 
quarks for B/D ratios?

• In any case, will eventually need non-perturbative or 2-loop 
matching for many quantities to match other systematic 
improvements.
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K→π semileptonic decay 

✦ Focus at q2=0, where we can use the method 
HPQCD proposed for semileptonic D decay:
• Full matrix element of vector current Vμ is hard because 

conserved current is complicated and local current needs 
renormalization.

• Instead use ∂μ Vμ = (mb - ma) S
• S is local, and product  (mb-ma)S  not renormalized.

• This is sufficient for f+(q2=0) = f0(q2=0).

✦ Two-part program:
•  HISQ valence on 2+1 Asqtad ensembles (close to 

completion).

•  HISQ valence on 2+1+1 HISQ ensembles (early stage).
• ultimately to include D → K, and q2 ≠ 0

38
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K→π project       
(HISQ on Asqtad)



K→π ;  HISQ on Asqtad

• Strange HISQ valence mass tuned to its physical value [from 
Davies, et al, PRD 81 (2010) 034506, using the “ηs”].

• Light HISQ valence mass tuned to Asqtad sea by: 

• So as close to “unitary” as possible for ml in this mixed-action 
theory.

• Mixed-action SChPT at 1-loop has been calculated [E. Gámiz and 
CB], but still needs checking.
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K→π ;  HISQ on Asqtad
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Preliminary

Sample Chiral Fit

• Statistical errors:         
~0.2% -- 0.3%

• Different chiral fits tried so 
far agree within 1 stat. σ. 
E.g.: 

• 1-loop SChPT + 2-
loop continuum ChPT.

• 1-loop SChPT + higher 
order analytic. 

• Need to understand the size of a2 effects better; check SChPT.



K→π ;  HISQ on Asqtad

✦ Expected error budget:
• Statistical: 0.2--0.3%

• Chiral extrapolation, fitting function: 0.1%

• Discretization: 0.15%

• Mistuning of ms in the sea: 0.2%

✦ Total:  0.35%--0.5%, should be competitive with state 
of the art:  RBC/UKQCD.

42



K→ π semileptonic decay 

✦ Focus at q2=0, where we can use the method 
HPQCD proposed for semileptonic D decay:
• Full matrix element of vector current Vμ is hard because 

conserved current is complicated and local current needs 
renormalization.

• Instead use ∂μ Vμ = (mb - ma) S
• S is local, and product  (mb-ma)S  not renormalized.

• This is sufficient for f+(q2=0) = f0(q2=0).

✦ Two-part program:
•  HISQ valence on 2+1 Asqtad ensembles (close to 

completion).

•  HISQ valence on 2+1+1 HISQ ensembles (early stage).
• ultimately to include D → K, and q2 ≠ 0
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K→π :  including HISQ on HISQ
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Sample Chiral Fit
• Consistency with 

extrapolated HISQ on 
Asqtad results. 

• Stat. errors larger on 
physical mass 
ensemble;  momentum 
needed for q=0 is 
larger. 

• Ensembles with 
heavier-than-physical 
u,d mass important for 
reducing final error.

• D→K being done in parallel, but fits not analyzed yet...



Some projects I didn’t talk about:

✦ B → D* l ν  [arXiv:0808.2519, arXiv:1011.2166] (J. Laiho)

✦ B → D l ν  [arXiv:1111.0677] (S. Qiu)

✦ B → K l l ;  B → K* γ  [arXiv:1111.0677] [R. Zhou; see his talk]

✦ B → π l ν  [arXiv:0811.3640] (R. Van de Water)

✦ Bs → μ+ μ-  [using f  for (Bs →Ds)/(B→D); arXiv:1202.6346] 
(D. Du)

✦ D → π  l ν, D → K l ν  [arXiv:0811.3640] (J. Bailey)

46

Heavy-Quark Semileptonic Decays  [Fermilab/MILC] 

Quarkonia [Fermilab/MILC] 
✦ [arXiv, 0912.2701, arXiv:1012.1837]  (L. Levkova, C. DeTar, 

A. El-Khadra, E. Freeland,S. Gottlieb, A. Kronfeld,...)



Some projects I didn’t talk about:

✦ Pseudoscalar mesons [arXiv:0812.4486, arXiv: 1011.3994, 
PoS(Lat10) 127] (S. Basak, A. Torok, S. Gottlieb, L. Levkova, E. 
Freeland, CB)

✦ Baryons  (S. Gottlieb & students)

47

Electromagnetic Effects [MILC]

Strangeness content of the nucleon, etc. [MILC]
✦ Nucleon strangeness [arXiv:0905.2432, arXiv:1011.5271] 

(D. Toussaint, W. Freeman)

✦ Nucleon charm [arXiv:1204.3866] (D. Toussaint, W. Freeman)

✦ σπN  (D. Toussaint, W. Freeman)



Fermilab Lattice/MILC Collaboration
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Outline of the talk

• Overlap/Domain Wall and Minimally Doubled fermions

• Crank-Nicolson discretisation scheme

• Applications: I. Crank-Nicolson-Wilson operator

• Applications: II. Crank-Nicolson chiral operator
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Chiral Fermions and the Lattice

• Lorentz invariance broken to hypercubic symmetry:

– there is no such a thing like spin on the lattice;
− at least in the sense of SU(2) representations;
− Dirac field does not fit the lattice.

• ⇒ Requiring emerging spin on the lattice brings undesirable results;

• Theorem (Nielsen-Ninomiya). There are no local chiral fermions on

the lattice.

• Broken Lorentz invariance + emerging spin makes a “choose-only-one-
item” menu:

– Many chirality pairs of flavours (naive, minimally doubled,. . . );
– One flavour of explicitely broken chirality (Wilson,. . . ).
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Overlap/Domain Wall Fermions

Adding a new item in the menu:

On shell chirality but an extra dimension.

• Satisfy Ginsparg-Wilson relation: on shell chiral symmetry;

• Expensive to compute: involves nested Krylov subspaces;

• Large density of near zero modes of the kernel;

• Topology stalling simulation algorithms; Solution:

– Fixed topology overlap: unitarity violations
– Fat links: lattice spacing of smoothed configuration?
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Minimally Doubled Fermions

• Reduce the number of doubler to two: 25 years old idea revived 5 years
ago with new actions;

• That is nice but in expense of hypercubic symmetry:

– Symmetry restoration requires fine tuning i.e. non-perturbative
renormalization;

– Simulation of one flavour needs rooting.

Lesson: lose symmetry in favour of less doublers.
Question: How far can one push it?
One can isolate a single flavour compensated by ghost particles, i.e. no

Dirac/Weyl content:
Weyl and ghost fermions on the lattice, A.B. ArXiv:1010.5156
Nielsen-Ninomiya theorem can be genralized, but the result is essentially

the same: the ghosts remain in the continuum limit.
Wilson strategy: distribute doublers in the real axis, revived recently by

Creutz and collaborators.
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Crank-Nicolson discretization

• Example: Schrödinger equation in Euclidean space:

∂tψ(t, x) = Hψ(t, x) , ψ(0, x) = ψo(x) .

• Solution ψ(t, x) = etHψ(0, x).

• Numerical problem: exp approximation.

– Problem: non-local grid in t;
– Requirement: stay with nearest neighbours, i.e. Euler scheme: ⇒

order O(a) errors.

• Crank-Nicholson scheme:

∂ψ(t, x) →
1
a

[ψ(t+ a, x) − ψ(t, x)] , Hψ(t, x) →
H

2
[ψ(t, x) + ψ(t+ a, x)] .

⇒ ψ(t+ a, x) = 1l+ a

2
H

1l− a

2
H
ψ(t, x) =

(
1l + aH + a2

2 H
2 +O(a3)

)
ψ(t, x) ;

⇒ order O(a2) errors in expense of solving linear systems.
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Crank-Nicolson and Dirac operator

• Momentum space spin-1/2 Hamiltonian on the lattice: H = ~σ sin ~p;

• ⇒ Crank-Nicolson time discretised operator:

D(p) = eip4 − 1 +
1
2
~σ sin ~p (eip4 + 1) .

• Particle content:

D(p) = 0 ⇔ 4 sin2 p4

2
+ sin2 ~p cos2

p4

2
= 0 .

• ⇒ 8 particles located at the edges of the 3d Brillouin zone.

• Result:

The number of doublers is reduced by a factor of two!
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Crank-Nicolson-Wilson operator

• Reduce the number of doublers using the Wilson approach:

DCNW (p) = γ4(eip4 − 1) +
1
2

[
i~γ sin ~p+

∑

k

(1 − cos pk)

]
(eip4 + 1) .

• DCNW (p) = 0 ⇔

4 sin2 p4

2
+




sin2 ~p+

[
∑

k

(1 − cos pk)

]2



 cos2
p4

2
= 0 .

• Result:

– Second order accurate in time;
– Smaller additive mass renormalisation;
– Hypercubic symmetry broken to cubic symmetry.
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Degenerate doublet of Crank-Nicolson-Wilson fermions

Restore hybercubic symmetry defining a doublet of Crank-Nicolson-Wilson
fermions:

DCNW =

(
D

(+)
CNW (m) 0

0 D
(−)
CNW (m)

)

where:

D
(+)
CNW (m) = m1l + γ4(eip4 − 1) +

1
2

[
i~γ sin ~p+

∑

k

(1 − cos pk)

]
(eip4 + 1)

D
(−)
CNW (m) = m1l + γ4(1 − e−ip4) +

1
2

[
i~γ sin ~p+

∑

k

(1 − cos pk)

]
(e−ip4 + 1)

• Hypercubic symmetry restored under flavour exchanging operation;

• Result: O(a2
t ) errors theory without fine tuning + 3-space Wilson.
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A chiral theory with doublers

• Start with a general theory of many chirality pairs flavours:

En(~p) = αn~σ~p , n = 1, 2, . . . ,m ,

• For example naive fermions have this continuum limit with αn = ±1;

• We are seeking a theory with a singlet chirality ground state:

– the opposite chirality counterpart should occupy a different level;
– the theory has a energy gap ∆(~p) = E1(~p) −E0(~p).

• Energy gap increases with momenta:

– A non-uniform gap;
– Maximal gap at cuttoff.

• ⇒ A chiral theory of free fermions with doublers.
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Lattice implementation

• Start from Crank-Nicolson discretisation in time and naive discretisation
in 3-space:

D(p)′ = eip4 − 1 +
1
2
~σ sin ~p (eip4 + 1) ;

• Add a pure imaginary operator of the Wilson type:

D(p) = eip4 − 1 +
1
2

[
~σ sin ~p+ ir

∑

k

(1 − cos pk)

]
(eip4 + 1) .

• D(p) = 0 ⇔

{
2 sin

p4

2
+

[
r
∑

k

(1 − cos pk)

]
cos

p4

2

}2

+ sin2 ~p cos2
p4

2
= 0 .
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Particle spectra

• 8 zeros in the edges of 3d Brillouin zone:

~p ∗ ∈ {(0, 0, 0), (0, 0, π), (0, π, 0), (π, 0, 0), (0, π, π), (π, 0, π), (π, π, 0), (π, π, π)}

• Define n(~p ∗) = 1
2

∑
k(1 − cos p∗k)

• ⇒ D(p) = 0 ⇔ tan p∗4
2 = −rn(~p ∗).

• Define chirality χ(~p ∗) = cos p∗1 cos p∗2 cos p∗3 ⇒

~p ∗ n(~p ∗) χ(~p ∗) Degeneracy
(0, 0, 0) 0 1 1
(0, 0, π), (0, π, 0), (π, 0, 0) 1 -1 3
(0, π, π), (π, 0, π), (π, π, 0) 2 1 3
(π, π, π) 3 -1 1

• Continuum limit dispersion relation: En(~p) → ~σ~p
1+r2n2 , n = 0, 1, 2, 3.
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Broken hypercubic symmetry

• Restore hypercubic symmetry defining a quartet of such fermions:

D =





0 0 0 D
(+)
r

0 0 D
(+)
−r 0

0 D
(−)
r 0 0

D
(−)
−r 0 0 0





• ⇒ symmetry is restored under (+) and (−) flavour exchange as well as
under r and −r flovour exchange.

• Result: a free theory of four flavours with definity chirality.

• Interacting theory: close to continumm theory should be Ok;

• Strong coupling: doubler mixing.
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Conclusions

• Crank-Nicolson discretisation scheme offers new definitions of fermions
on the lattice:

I. Crank-Nicolson-Wilson operator is a one flavour theory with broken
chiral symmetry and second order discretisation errors in at.

II. A free fermion chiral theory via doubler level splitting.
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New Horizons for Lattice Computations with Chiral Fermions 
BNL May 15, 2012� 

Richard C. Brower ( with SciDAC collaborators  

Ron Babich, Mike Clark, James Osborn et al!) 

 

 

 

 



 Causes:  

 Higher resolution physics.  

 Hierarchical Petascale hardware.  

 

  Long multi-year cycle: 

1. Physical Insight 

2. Mathematics of Complexity (flops & comms) 

3. Coding prototype on New Hardware 

4. Testing and Integration into Applications 



I. Moebius DW Fermions (retrospective!) 
 

II. Multigrid Wilson-clover Dirac Solver (at last!) 
 

III. GPUs with Domain Decomposition 
 

IV. The Future: MG/GPU/DD  for HMC 

 (MG for Domain Wall: next talk by Saul Cohen) 



 



Shamir: mres = O( 1/Ls) Moebius: mres = O( 1/(Ls*Ls)) Why: 





Small density of “topological defects” 

Thus Moebius for Ls = 32  Shamir at Ls = 1000 !!!!!  



 



 
 Laplace:  
 

 
 

  Solution (Green’s function) 
 
 

 



h  2h Restriction R = P†  
 
 
 
 

  2 h  h Prologation P 

 
 

 
   (1) Restriction must preserves the scale invariant solutions 
 
   (2)  Coarse operator  is renormalized: m  2  m  ( in units  h = 1) 



 
Restrict until exact solve possible 

 
Interpolate back to fine grid 
 
O(N)  to O(N log N) scaling 
 
Memory O(N) 
 
Extra Work:  1 + w + w*w + ..   <    1/(1-w)    



See Thomas Kalkretuer 

hep-lat/9409008 

review on “MG Methods 

for Propagators in LGT”. 

Israel: Ben-Av, M. Harmatz, 

P.G. Lauwers & S.Solomon 

Amsterdam: A. Hulsebos,  

J Smit J. C. Vick 

Hamburg: T. Kalkreuter, 

G. Mack & M. Speh 

Boston: Brower, Edwards, 

Rebbi & Vicari 





Gauss-Jacobi (Diamond), CG (circle),  

V cycle (square), W cycle (star) 
2-d Lattice,  U(x) on links (x) on sites 

 = 1 



Gauss-Jacobi (Diamond), CG(circle),  

3 level  (square & star) 
 = 3 (cross) 10(plus) 100( square) 



l 



Harvard U 

Mike Clark 

•  Saul Cohen 

•  Ron Babich 

•  Saul Cohen 

•INT Seattle 



smoothing 

Fine Grid 

Smaller Coarse Grid 

restriction 

prolongation 

(interpolation) 

The Multigrid 

V-cycle 

Spilt the  vector space 

into near null space S 

and the complement S? 

Adaptive Smooth Aggregation Algebraic Multigrid 

D: S ' 0 



 Partial success (RG) weak coupling 

 Maintain Gauge invariance 

 Maintain  °5 Hermiticity 

 Local adaptive blocking: Projective MG  

 Chiral Symmetry (density of small e.v.) 

 Null vector: Atya- Singer Index Theorem 

 

 



But    PyP =  1cc  so Ker(P) = 0 

S? 

span(P) 

ker(Py) 

P 

Py 

(coarse lattice vector space) 

span(Py) 

UV 

IR 

S= span(P) = Image(Py)  

rank(P) = rank(Py) =dim(S)= Nº NB = 2Nº L4/44 

y See  Front cover of Gilbert Strang’s undergraduate text ! 

fine space 



 “split” vector space  into: 

  near null  D S ' 0 & Complement S?  

 Schur decomposition (of course) does this! 

 Coarse = near null (IR) , Fine = complement  (UV) 

�� 

Splitting is essential the idea of the Schur complement: 

Implies 



The coarse operator :  

 The projection op to  coarse space : 

But the Schur complement use “oblique projects: 

 

 

  



 Smooth 
 

 Coarsen 
 

 Solver 
 

 Interpolate 
 

 Update 
 

 Hence  

 

 
 
 

Exact null space “deflation”  

by  right “preconditioner:  

 



 Devil is in the details!  

 Rigorous MG proofs for normal equation (Dy D Ã = b) 

 But would like to  project D to avoid higher complexity. 

 Multigrid is recursive to multi-levels. 

 Must preserves Gauge invariance and °5 ( [°5,P]= 0)  

  First benchmarks for Wilson-Dirac Operator: 

 Asym V=163 x64, 243x64, 323x96 (Nf = 2, 400MeV pion) 

 Nº =20  null vectors Ãs
x with 4th order MR with subset refinement.  

 MG Blocks = 4
4
x Nc x 2  and 3 level V MG cycle 

 pre and post-smoothing is done by 4 iteration GCR (later GMRES) 

 Extend to Red/Black preconditioning 

(James Osborn implement on BG/P in SciDAC-2 API 

Future SciDAC-3 develop in HYPER framework/GPUs etc).  



“Adaptive multigrid algorithm for the lattice Wilson-Dirac operator” R. Babich, J. Brannick, R. C. Brower, M. A. 
Clark, T. Manteuffel, S. McCormick, J. C. Osborn, and C. Rebbi, Phys. Rev. Lett. 105, 201602 (2010).  

 (Latest Result: Finite T lattice 128^3x96    32 x speed up!  James Osborn.) 
 





Speed up is even better at fixed error.  



 



 1/4 CM-2 

 16 K bit serial PE.           512 x 32 bit PE = 16 K bits 

) 

Nvidia FERMI chip 

) 

Nvidia Kepler has 1536 Floating point cores!  Maxwell ???  Next ??? 



2005-2006 



 Ronald  Babich (BU  PSC  NVIDIA)* 

 Kipton Barros (BU  LANL) 

  Michael Clark  (BU Harvard  NVIDIA)* 

 Justin Foley (Utah) 

 Joel Giedt (Rensselear) 

 Steven Gottlieb (Indiana) 

 Balint Joo (Jefferson Lab) 

 James Osbone (Utah  BU  Argonne) 

 Claudio Rebbi (BU) 

 Gouchin Shi (NCSA) 

 et al  



https://github.com/lattice/quda 

https://github.com/lattice/quda
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(GeForce GTX 480) 



 Reconstruct SU(3) matrices from 8 or 12 real numbers on the fly, e.g., 

 
 

   
 Better still SU(3) has 8 parameters on S3 x S5 

 Choose a gamma basis with 
4
 diagonal. 

 
 
 
 
 

 
 
 Fix to the temporal gauge (setting gauge  links in the t-direction to the identity). 

 

similarity 

transforms on 

D 







TO GET STRONG 

SCALING NEED TO  

MANAGE A MULTILEVEL 

MEMORY HEIRARCHY 

 

THIS IS THE CHALLENGE OF 

HETEROGENOUS 

ARCHITECTURE 

OF THE PRESENT AND  

THE FUTURE! 



• Update domains simultaneously  Block Jacobi 

• Expect higher iteration count than multiplicative 

• Algorithm is trivially parallel 

• Well suited to GPU architecture 

Ω Ω* 

∂Ω ∂Ω* 











       Cost in $s reduced by a at least factor of   

                                       100x 
   GPU O(10x)         MG O(10x) 



 



 Parallel MG works: When size is too small the 
common practice is to copy lower levels to all 
nodes and solver with zero comm. 

 
 Set up can be amortized by refining near null 
vectors from past or  intermittent refresh 
 
 Good for BSM Technicolor HMC! Faster solver 

encourage optimization with more solves.  
 
 



y Combined with  “Chronological Inverter” Brower, Ivaneko, Levi, Orginos  



 Exact: 

See Herbert Neuberger on Wednesday! 



 Past: 1990-2010   

 Present 2010-2012 

 Future: 2012-2018   
      Profound challenges to adapt efficient multi-scale 

algorithm to a complex heterogeneous architecture 

with deep memory hierarchies. 



 



 



  5-d  Wilson with “negative mass” and Dirichlet B.C. 
in 5th “time” interval [0,Ls] 
 

 New Gamma 5: 
 

 D is now violently not normal: 
 

 Physical long wavelength mode are low singular 
(eigen)vectors NOT eigenvectors of D! 

 
    
 





2 + 1 d but  4 + 1 d would have  5 eyes 

No zero e.v. 



• “Adaptive multigrid algorithm for the lattice Wilson-Dirac operator” R. Babich, J. 

Brannick, R. C. Brower, M. A. Clark, T. Manteuffel, S. McCormick, J. C. Osborn, and 
C. Rebbi, arXiv:1005.3043v2 [hep-lat], Phys. Rev. Lett. 105, 201602 (2010). 

 

• “Adaptive Multigrid Algorithm for Lattice QCD” J. Brannick, R. C. Brower, M. A. 
Clark, J. C. Osborn, C. Rebbi, arXiv:0707.4018 Phys. Rev. Lett. 100, 041601 (2008) 

 
• “Multigrid solver for clover fermions”, R. Babich, J. Brannick, R. Brower, M. Clark, S. 

Cohen, J. Os- born and C. Rebbi, Lattice 2010, Villasimius, Sardinia, Italy (2010). 
 
• “The role of multigrid algorithms for LQCD”, R. Babich, J. Brannick, R. C. Brower, 

M. A. Clark, S. D. Cohen, J. C. Osborn and C. Rebbi, PoS LAT2009, 031 (2009) 
[arXiv:0912.2186 [hep-lat]]. 

 
• “The removal of critical slowing down”, J. Brannick, R. C. Brower, M. A. Clark, S. F. 

McCormick, T. A. Manteuffel, J. C. Osborn and C. Rebbi, PoS LATTICE2008, 035 
(2008) [arXiv:0811.4331 [hep-lat]]. 

 



• “Algorithms for Lattice Field Theory at Extreme Scales”, Richard C. Brower, Ronald 
, Anthony 

Kennedy, James Osborn and Claudio Rebbi, SciDAC 2010, Chattanooga, TN 
(2010). 

 
• ”Hadronic Physics using Lattice QCD and GPUs” B. Joo, R. Babich, R. C. Brower, M. 

A . Clark, J. Chen, J. Dudek, R. G. Edwards, M. J. Peardon, C. Rebbi, D. G. Richards, 
G. Shi, C. Thomas, W. Watson, USQCD Collaboration and Hadron Spectrum 
Collaboration, SciDAC 2010, Chattanooga, TN (2010). 

 
•“Solving Lattice QCD systems of equations using mixed precision solvers on GPUs”, 

M. A. Clark, R. Babich, K. Barros, R. C. Brower and C. Rebbi, Comput. Phys. 
Commun. 181, 1517-1528 (2010) [arXiv:0911.3191 [hep-lat]]. 

 
• “Blasting through lattice calculations using CUDA”, K. Barros, R. Babich, R. Brower, 

M. A. Clark and C. Rebbi, PoS LATTICE2008, 045 (2008) [arXiv:0810.5365 [hep-
lat]. 

 
• “Moebius Algorithm for Domain Wall and GapDW Fermions”, R. Brower, R. Babich, 

K. Orginos,C. Rebbi, D. Schaich and P. Vranas, PoS LATTICE2008, 034 (2008) 
[arXiv:0906.2813 [hep-lat]]. 

 



 QUDA library  http://lattice.bu.edu/quda 
 

 CG and BiCGstab solvers for Wilson and clover-
improved Wilson,  mixed precision . 
 

 Release 0.3  staggered fermions, contributed by Steve 
Gottlieb, Guochun Shi, ... 
 

 Domain wall (Joel Giedt), twisted mass (contributed 
by Alexei Strelchenko), and multi-GPU ... 

 
 Interfaced to  Chroma/QDP++, QDP/C, CPS, etc. 

http://lattice.bu.edu/quda
http://lattice.bu.edu/quda
http://lattice.bu.edu/quda


Lattice QCD/CFT  Graphene 



Lattice volumes 

 

 

 

physical m2¼  
Chiral limit: m2¼ = 0 

ms (- 0.38922) 

Small increase is probably 
not significant? 

 “Adaptive Multigrid Algorithm for Lattice QCD” J. Brannick, R. C. Brower, M. A. Clark, 

J. C. Osborn, C. Rebbi, Phys. Rev. Lett. 100, 041601 (2008) 
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Ron Babich (BU) – QCDNA 
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~ 500 GPUs dedicated       

to LQCD at Jefferson      

Lab 



“Jaguar” - Oak Ridge Leadership Computing Facility 

“Intrepid” - Argonne Leadership  

                  Computing Facility 

QPACE – NIC Juelich 
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 Fermions PDEs are ubiquitous in Quantum Field 
theories an Nano materials.  Lattice geometries and 
boundary condition present new  fun challenges. 

 Finite T lattice (e.g. 32 x speed up on                       lattice*) 

 Old/New RG Geometric /Adaptive Hybrid MG 

 Monte Carlo Evolution of QCD: Sim implicit integrator 

 Conformal Theories for LHC Higgsless models 

 Radial lattices for conform/string duals 

 Domain Wall/Overlap 5-d fore EXACT chirality 

 Conformal Graphene Lagrangian 

   etc etc ...  

* has 4.8 x10**9 d.o.f. 

 



 Blue Waters will be composed of more than 
235 Cray XE6 cabinets based on the recently 
announced AMD Opteron™ 6200 Series 
processor (formerly code-named 
"Interlagos") and more than 30 cabinets of a 
future version of the recently announced Cray 
XK6 supercomputer with NVIDIA® Tesla™ 
GPU computing capability. 



exascale 
swimlanes 

IBM BG/Q++ CRAY Titan ++ 

Exascale Swimlanes 



Scaling Lattice QCD beyond 100 GPUs 

Authors: R. Babich, M. A. Clark, B. Joó, G. Shi, R. C. Brower, S. Gottlieb 

arXiv:1109.2935v1 [hep-lat]   and SuperComputing 2011 

 

http://arxiv.org/find/hep-lat/1/au:+Babich_R/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Clark_M/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Joo_B/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Shi_G/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Brower_R/0/1/0/all/0/1
http://arxiv.org/find/hep-lat/1/au:+Gottlieb_S/0/1/0/all/0/1
http://arxiv.org/abs/1109.2935v1


 In modern architectures, the main bottleneck is often 
bandwidth to memory, rather than raw floating point 
throughput. 

 We've seen that applying the Wilson Dirac operator (in single 
precision) requires that we move 1440 bytes for every 1320 
flops. 

 Clover-improved Wilson (Sheikholeslami-Wohlert) is a bit 
“better” (less memory-bound), at 1728 bytes and          1824 
flops. 

 Asqtad and HISQ are a bit worse, at 1560 bytes and     1146 
flops. 

 Other operations (beyond the matrix-vector product) are 
often much worse.  For example, adding two vectors of 
length N involves reading/writing a total of 12N bytes but 
consists of only N flops. 
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Serial on CPU  and Data Parallel on GPU 





 Intel Xeon X5680 
 6 cores (each with 4-wide SSE unit) 

 1.17 billion transistors 
 Shared L3 Cache: 12 MB 

 L1+L2: 6 x (320 KB) = 1920 KB 
 160 Gflops (SP) 

 32 GB/s memory bandwidth 
 up to 288 GB (96 GB is realistic) 

 

 NVIDIA GeForce GTX 480 
 480 cores 

 3.0 billion transistors 
 Shared L2 Cache: 768 KB 

 L1+SM+Reg: 15 x 192 KB = 2880 KB 
 1345 Gflops (SP) 

 177 GB/s memory bandwidth 
 1.5 GB (up to 6 GB in Tesla variant) 

“Gulftown” “Fermi” 

7.5:1 5:1 



 As discussed yesterday, in the usual method of iterative 
refinement (or “defect correction”), the Krylov subspace is 
thrown away at every restart: 

 
 
 
 
 
 
 
 
An alternative is “reliable updates,” originally introduced to combat residual 

drift caused by the erratic convergence of BiCGstab: G. L. G. Sleijpen, and H. A. van der 

Vorst, “Reliable updated residuals in hybrid Bi-CG methods,” Computing 56, 141-164 (1996). 



Chiral Symmetry and Residual Mass in   
Lattice QCD with Domain-Wall Fermions 

Ting-Wai Chiu (趙挺偉) 

Physics Department  
National Taiwan University 

 
 

“New Horizons for Lattice Computations with Chiral Fermions”  
Brookhaven National Laboratory, USA 

May 14-18, 2012 



Outline 

  Introduction  
  Axial Ward Idenity in Lattice QCD with ODWF 
  Generating Functional  for n-point Green’s Function 
  A New Formula for the Residual Mass 
  An Upper Bound for the Residual Mass 
  Concluding Remarks 
 

 
Reference: 

 
Yu-Chih Chen, TWC, “Chiral Symmetry and Residual Mass in  

Lattice QCD with Optimal Domain-Wall Fermion”, in preparation 



               Domain-Wall Fermions [Kaplan, 1992]   

dwf ˆis a local op. with the nearest neighbor coupling along  sD
1 2

sN s
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Optimal Rational Approximation for Square Root 

For the inverse square root function, the optimal rational 

approx. was obtained by Zolotarev in 1877.  
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Salient Feature of Optimal Rational Approximation 

In the figure, 

it has 14 alternate change 

of sign in [1,1000] 

6n m= =

( )log x

( ) ( ),1 n m
ZxR x−

Has                    alternate 

change of sign in                 ,  

and attains its max. and min. 

(all with equal magnitude)  

( )2n m+ +
[ ]min max,x x

5 T.W. Chiu, May 16, 2012 
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Optimal Domain-Wall Fermion 
[ TWC, Phys. Rev. Lett. 90 (2003) 071601 ] 

with boundary conditions 

( ) ( ) ( )odwf , , , 1 , 1 ,, ,
, 1 ,

odwf        

sN

x s w s s w s s s s x sx x x x
x

s
s s x

sA I D I D P P
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4
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( ) ( ),0 , ,     : bare quark massq s qP x rm P x N mψ ψ+ += −

( ) ( ) 5
1, 1 ,1 ,      (1 )
2s qP x N rm P x Pψ ψ γ− − ±+ = − = ±
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Optimal Domain-Wall Fermion (cont.) 

but with boundary conditions: 

The action for Pauli-Villars fields is similar to 

 In the original formulation of ODWF,   

where                 is the Jacobian elliptic function with argument  

and modulus                                 , 
        and        are lower and upper bounds of the eigenvalues of  

s s sρ σ ω= =
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2 2
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Optimal Domain-Wall Fermion (cont.) 

The effective 4D Dirac operator 

[ ][ ] [ ] ( )odwf PVexp det ( )qd d d d A A D mψ ψ φ φ  − − = ∫
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  For    

Optimal Domain-Wall Fermion (cont.) 

,  ,     ,  (constants)s s s sc d c d c dρ ω σ ω= + = −

The effective 4D Dirac operator becomes 
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  For the special case    

Optimal Domain-Wall Fermion (cont.) 

1,  0s sρ σ= =

It  reduces to the conventional DWF which does not have the 

optimal chiral symmetry. 
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Axial Ward Idenity in Lattice QCD with ODWF  

Transparent layers: 
[TWC, hep-lat/0303008] 
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Axial Ward Idenity (cont.)  
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Axial Ward Idenity (cont.)  
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Axial Ward Idenity (cont.)  

[Furman & Shamir, 1995] 

dependent on O, and y 
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Axial Ward Idenity (cont.)  

Summing over all sites y in the AWI gives the global residual mass 

pseudoscalar 

local 

global 
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Generating Functional for n-point Green’s Function  

Use the transformation 
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Generating Functional (cont.)  

Including external sources 
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Generating Functional (cont.)  

Integrating ( , ) successively from 3 to 0 :s s ss N sη η = + =
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Generating Functional (cont.)  
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Generating Functional (cont.)  
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A New Formula for the Residual Mass  
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A New Formula for the Residual Mass  

However, it is tedious to use these formulas to compute the residual mass 

since they involve the multiplication of 

 

 

to the columns of the sea-quark propagator, requiring multi-shift CG. 

1 1( ) (1 )( ) :  sea quark propagatorq q c qD m r rm D m− −= + − +
1( ) :  valence quark propagatorc qD m −+
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A New Formula for the Residual Mass (cont.)  

= 

Using 
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A New Formula for the Residual Mass (cont.)  

Using 

Thus 

= 4r - 4 
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An Upper Bound for the Global Residual Mass  
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An Upper Bound for the Residual Mass (cont.)  



∴

∴
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An Upper Bound for the Residual Mass (cont.)  

∴

(i) 

(ii) 

It can be shown that  
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An Upper Bound for the Residual Mass (cont.)  

=
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An Upper Bound for the Residual Mass (cont.)  

It is clear that the derivation also goes through for the conventional DWF 

with nonzero weights  

≈ universal for any DWF 
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An Upper Bound for the Residual Mass (cont.)  

s s
1 1

5 0 0

0
1

5

How does the residual mass depend on the quark mass ?

Consider  ,  ,  with

              (1 ) ,  [2 (1 )]
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1/ 2,  1/ 2,  (2 ) ,
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An Upper Bound for the Residual Mass (cont.)  
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An Upper Bound for the Residual Mass (cont.)  
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Concluding Remarks 
  Axial Ward identity is derived for LQCD with ODWF 

  Z[J]  for n-point Green’s function is obtained 
  A practical formula for the residual mass is obtained 

  An upper bound for the residual mass is obtained           
•  It provides a guideline for designing simulations with DWF 

•  The normalized residual mass is expressed as  

 

 

    which is universal for any DWF with sufficiently small    

2 2 2( , ) (1 2 )(1 ) 2q q q qF r m r m rm r m= + − +

max∆

  The residual mass of quark for any observable O  

    should be measured respectively.             
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Domain-Wall Fermions

Observables on the Lattice
...That Are Exceedingly Difficult

Disconnected diagrams
(strangeness of the proton,
dark matter couplings)

Zero-flavor physics
(η′, a0 properties)

Precision physics
(nuclear binding energies,
NPLQCD use 100s of sources)

H

p
duu

p
duuΧ

�

Χ
�

s

a0 a0
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Domain-Wall Fermions

A Chiral Fermion

Domain-Wall Fermions

Low-lying eigenstates:
chiral modes bound to
the edges of 5th

dimension

Very helpful for weak
matrix elements (BK ),
NPR, operator mixing

m f
coupling between walls

0
Ls � 2

Ls
s

x

ΨHx, sL
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Domain-Wall Fermions

Domain-Wall Operator
Spectrum
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Inversion Algorithms

Krylov Subspace Solvers

Krylov solvers spend 50–90% of a lattice calculation’s computer power

Includes the very common conjugate-gradients (CG) algorithm

Constructs the Krylov subspace Kn = {r ,Ar ,A2r , . . . ,Anr}
Number of iterations scales like the square-root of the matrix’s
condition-number:

√
κ

For the Dirac operator, κ ∝ 1/m = “critical slowing”

Very efficient at eliminating modes with large eigenvalues

S. D. Cohen (U Washington) DWF Multigrid 2012 May 15 5 / 17



Inversion Algorithms

Algorithm Study

Due to the indefinite spectrum of the DWF operator, none of the standard
Krylov solvers is guaranteed to work.

Most solvers, including
BiCGStab, fail to converge.

TFQMR and QMR work, but
very slowly.

CGNR is by far the fastest.
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100

 r¤2
CGNR
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Inversion Algorithms

Normal-Equation Solvers

If we accept that we must use the normal equation, most Krylov solvers
work.

CG remains fastest.

However, it cannot be
preconditioned in a flexible
way.

100 200 300 400 500 600
iter
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10-5

0.1

1000
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Multigrid

Sketch of Multigrid Algorithm
V-Cycling

D x � b
x1 � S Ν1 I D ¾D , D ¾b M

x2 � S Ν2 I P ¾ D ¾D P , b2 M

x � x1 + P x2 + S Ν3 I D ¾D , D ¾b3 M

b2 � P ¾I D ¾b - D ¾D x1 M b3 � b - D H P x2 + x1 L
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Multigrid

Sketch of Multigrid Algorithm
Constructing the Coarse Space
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Multigrid

Sketch of Multigrid Algorithm
Visualizing the Subspaces

r ′ =

[
1− AP

1

P†AP
P†
]
r

Multigrid

d
im

D

high modes

dim P

dim V

Deflation

d
im

D

high modes

dim V
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Multigrid

Sketch of Multigrid Algorithm
Visualizing the Subspaces

EV
TFQMR
GMRes6
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Multigrid

Adaptive Smoothed Algebraic Multigrid

1 Find a set of near-null vectors V for which ψ†D†Dψ ≈ 0 for all
ψ ∈ V .

2 Block the vectors to form the prolongator P. Let the unprolongator
be P†.

3 Construct the coarse operator P†D†DP. Use a V-cycle with Krylov
smoother and Krylov iteration on coarse operator as a preconditioner
to an outer Krylov solver.

The method by which V is constructed does not matter much. Using a
solver that will be reused later is convenient, but not necessary.

S. D. Cohen (U Washington) DWF Multigrid 2012 May 15 11 / 17



Multigrid

Adaptive Smoothed Algebraic Multigrid

1 Find a set of near-null vectors V for which ψ†D†Dψ ≈ 0 for all
ψ ∈ V .

2 Block the vectors to form the prolongator P. Let the unprolongator
be P†.

3 Construct the coarse operator P†D†DP. Use a V-cycle with Krylov
smoother and Krylov iteration on coarse operator as a preconditioner
to an outer Krylov solver.

Since D†D is normal, its left and right eigenvectors are the same. P and R
can be constructed from the same set of near-null vectors.
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Multigrid

Adaptive Smoothed Algebraic Multigrid

1 Find a set of near-null vectors V for which ψ†D†Dψ ≈ 0 for all
ψ ∈ V .

2 Block the vectors to form the prolongator P. Let the unprolongator
be P†.

3 Construct the coarse operator P†D†DP. Use a V-cycle with Krylov
smoother and Krylov iteration on coarse operator as a preconditioner
to an outer Krylov solver.

The outer solver must be flexibly preconditioned. The selection of the
smoother has some effect, but the coarse-level solver can be anything.
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Multigrid

Adaptive Smoothed Algebraic Multigrid

1 Find a set of near-null vectors V using the previously described
algorithm for which ψ†D†Dψ ≈ 0 for all ψ ∈ V .

2 Block the vectors to form the prolongator P. Let the unprolongator
be P†.

3 Construct the coarse operator P†D†DP. Use a V-cycle with Krylov
smoother and Krylov iteration on coarse operator as a preconditioner
to an outer Krylov solver.

How is this “adaptive”? We can select new near-null vectors from those
that are poorly converged by our current algorithm. Repeat as necessary.

S. D. Cohen (U Washington) DWF Multigrid 2012 May 15 11 / 17



Multigrid

Applied ASAM on DWF Normal Equation
202 × 8, U(1), quenched

This algorithm seems to work well on the 2d U(1) DWF normal equation,
removing the slowing at small masses.

202 × 8 U(1) lattice

42 × 8 blocks
Nv = 16

Outer solver: CG
Smoother: GMRes(6)
Coarse solver: CG
Coarse r2: 10−3

50 100 150 200 250 300 350
iter

10-9

10-5

0.1

1000

 r¤2
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Multigrid

Applied ASAM on DWF Normal Equation
202 × 8, U(1), quenched

This algorithm seems to work well on the 2d U(1) DWF normal equation,
removing the slowing at small masses.

202 × 8 U(1) lattice

42 × 8 blocks
Nv = 16

Outer solver: CG
Smoother: GMRes(6)
Coarse solver: CG
Coarse r2: 10−3

50 100 150 200 250 300
iter

10.-8

10.-5

0.01

10.

10.4
 r¤2
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Multigrid

Applied ASAM on DWF Normal Equation
163 × 32 × 16, SU(3), 6-flavor

The effect is equally impressive on a moderately-sized production lattice.

163 × 32× 16 Technicolor lattice

44 × 16 blocks
Nv = 24

Outer solver: GCR(12)
Smoother: 12× GCR(12)
Coarse solver: CG
Coarse r2: to 10−4 then 10−2/cycle

0 500 1000 1500 2000 2500
10-17

10-14

10-11

10-8

10-5

iter
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¤2
� 

b
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6f 163
´32 Lattice HCGL
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Multigrid

Applied ASAM on DWF Normal Equation
163 × 32 × 16, SU(3), 6-flavor

The effect is equally impressive on a moderately-sized production lattice.

163 × 32× 16 Technicolor lattice

44 × 16 blocks
Nv = 24

Outer solver: GCR(12)
Smoother: 12× GCR(12)
Coarse solver: CG
Coarse r2: to 10−4 then 10−2/cycle

0 500 1000 1500 2000 2500
10-17

10-14

10-11

10-8

10-5

iter

 rÓ
¤2
� 

b
¤2

6f 163
´32 Lattice HMGL

S. D. Cohen (U Washington) DWF Multigrid 2012 May 15 13 / 17



Multigrid

Applied ASAM on DWF Normal Equation
163 × 32 × 16, SU(3), 6-flavor

The effect is equally impressive on a moderately-sized production lattice.

163 × 32× 16 Technicolor lattice

44 × 16 blocks
Nv = 24

Outer solver: GCR(12)
Smoother: 12× GCR(12)
Coarse solver: CG
Coarse r2: to 10−4 then 10−2/cycle

0 1000 2000 3000 4000 5000 6000
10-17

10-14

10-11

10-8

10-5

coarse iter

 r c
¤2
� 

b
c
¤2

6f 163
´32 Lattice HMGL

S. D. Cohen (U Washington) DWF Multigrid 2012 May 15 13 / 17



Multigrid

Applied ASAM on DWF Normal Equation
163 × 32 × 16, SU(3), 6-flavor

The effect is equally impressive on a moderately-sized production lattice.

163 × 32× 16 Technicolor lattice

44 × 16 blocks
Nv = 24

Outer solver: GCR(12)
Smoother: 12× GCR(12)
Coarse solver: CG
Coarse r2: to 10−4 then 10−2/cycle
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1000
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2500

3000

a m q

it
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Multigrid

Applied ASAM on Clover-Wilson Fermions
Graphics courtesy of J. Osborn

Multigrid works even better on clover fermions.
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Multigrid

Applied ASAM on Clover-Wilson Fermions
Graphics courtesy of J. Osborn

If the 2-level multigrid starts to slow at very low mass, add more levels.
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Multigrid

Improved Error for Fixed Residual
Graphics courtesy of J. Osborn

Since multigrid works efficiently on relevant eigenmodes,
the quality of the solution is better than standard solvers.

S. D. Cohen (U Washington) DWF Multigrid 2012 May 15 16 / 17



Summary

Summary

Conclusions

Multigrid greatly speeds calculation of propagators
For clover fermions at the physical mass: 20× faster
Works for DWF normal equation; improved by factor of 4–8
Multigrid works even better on larger lattices

Recent advances

Integrated as a user-friendly module in Chroma
Scaling tests for DWF on large lattices (running on Kraken)

Future Work

Port to GPUs

S. D. Cohen (U Washington) DWF Multigrid 2012 May 15 17 / 17



Is This Algorithm Good Enough?

Advantages

Blocks away the entire 5th dimension.

Factor of 4–8 decrease in fine-operator applications.

Removes the critical slowing at small quark masses.

Should have excellent scaling with the lattice volume.

Disadvantages

Not a nearest-neighbor operator; poor parallelization.

Are there more vectors in P (and R) than we need?
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Constructing a 1-Hop Coarse Operator

Can we use (P†D†P)(P†DP) as a coarse operator?

No, the DWF operator is not normal:
left-vectors are not right-vectors (conjugated).

Can we use (P†Γ5DP)2 as a coarse operator?

Γ5 = γ5R, where R reverses the 5th dimension

Sounds promising, but empirical tests show no convergence

We know (P†D†1)(1DP) works; how do we get closer to that?

S. D. Cohen (U Washington) DWF Multigrid 2012 May 15 19 / 17
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Constructing a 1-Hop Coarse Operator

Can we use (P†D†P)(P†DP) as a coarse operator?

No, the DWF operator is not normal:
left-vectors are not right-vectors (conjugated).

Can we use (P†Γ5DP)2 as a coarse operator?

Γ5 = γ5R, where R reverses the 5th dimension

Sounds promising, but empirical tests show no convergence

We know (P†D†1)(1DP) works; how do we get closer to that?
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Constructing a 1-Hop Coarse Operator

Try (P†D†R†)(RDP) where dimR > dimP.
In the limit where dimR → dimD, this is the known-good algorithm.

163 × 32× 16 Technicolor lattice

44 × 16 blocks
Nv (R) = 48
Nv (P) = 12–48

mq = 0.01

Requires fast implementation of
rectangular-matrix linear algebra
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Axial symmetry at finite temp. with overlap fermionsAxial symmetry at finite temp. with overlap fermionsThe axial symmetry at finite temperature The axial symmetry at finite temperature 
in Lattice QCD with Overlap fermionsin Lattice QCD with Overlap fermions

New Horizons for Lattice Computations with Chiral Fermions
RIKEN BNL Research center workshop – May 14, 2012

Guido Cossu, KEK
��������	
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Axial symmetry at finite temp. with overlap fermionsAxial symmetry at finite temp. with overlap fermions

People involved in this project
JLQCD group:S. Hashimoto, S. Aoki, T. Kaneko, H. Matsufuru, 

J. Noaki, E. Shintani
See for example POS(Lattice2010)174 (arXiv:1011.0257),
PoS(Lattice 2011)188 (arXiv:1204.4519), article in prep.

Summary:
� Motivation
� Chiral phase transition at finite temperature and axial symmetry
� Simulating dynamical (overlap) fermions
� Topology fixing and friends
� Methodology and results (quenched and N

f
=2 )

� Discussion and conclusions
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Axial symmetry at finite temp. with overlap fermionsAxial symmetry at finite temp. with overlap fermions

Motivation

What is the fate of the axial U���� symmetry 
at finite temperature(T � Tc)?

Dirac Overlap operator, retaining the maximal amount of chiral symmetry on the lattice
is, theoretically, the best way to answer this question.
�Experimental data: PHENIX(BNL) Phys.Rev. C83 (2011) 054903
“the mass of the eta' meson is reduced by Delta-m > 200 MeV, 
at the 99.9% confidence level, in the considered model class”

����� �� � ����� �� � � ���� � ����� � ����� �� � �����

Pattern of chiral symmetry breaking at low temperature QCD

Well known facts about axial symmetry
� Axial anomaly – Non vanishing topological susceptibility
� Mass splitting of the � � (958 Mev) with respect to the lighter Goldsone bosons
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Goal of the current project

Check restoration of axial U���� symmetry by measuring 
(spatial) meson correlators at finite temperature in full QCD with overlap 

Degeneracy of correlators is the signal that we are looking for

As I will show in this talk, 
there is one issue to solve before attacking the real problem...

���� � ��� ����� � 	��


���� � ��� ���� � 	��

Chiral sym.

����� �����

Chiral sym.
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Simulating dynamical overlap fermions
In order to avoid expensive tricks to handle the zero modes of the 
Hermitian Wilson operator JLQCD simulations use (JLQCD 2006):
�Iwasaki action (suppresses Wilson operator near zero modes)
�Extra Wilson fermions and twisted mass ghosts to rule out the zero 

modes 
Topology is thus fixed throughout the HMC trajectory.

The effect of fixing topology is expected to be a Finite Size Effect 
(actually O(1/V) ), next slides
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Fixing topology: how to deal with it at T������ 
Partition function at fixed topology

�� �
�

	�

� �

��

� 
����� � ���� � ��� � ����� �����

Using saddle point expansion around �� � �
�

���
�� ������

�� �
��

	����
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�
� ��

	���

� �
�� ��

�� ���
�

�
�

� �
� ��
��

�

one obtains the Gaussian distribution

where the energy can be
expanded

���� �
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Axial symmetry at finite temp. with overlap fermionsAxial symmetry at finite temp. with overlap fermions

Fixing topology: how to deal with it at T������� 
From the previous partition function we can extract the relation between  
correlators at fixed θ and correlators at fixed Q

In particular for the topological susceptibility and using the Axial Ward 
Identity we obtain a relation involving fermionic quantities:

���
�
�����	


��� ����� �������� � �

�

�
��

�
� �� �

��
	���

�
������ �
��

P(x) is the flavor singlet pseudo scalar density operator
Aoki et al. PRD76,054508 (2007)

What is the effect of fixing Q at finite temperature?
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Results
� Simulation details

� Eigenvalues distribution

� Finite temperature quenched SU(3) at fixed topology

� Meson correlators in two flavors QCD

BG/LBG/L
Hitachi SR16KHitachi SR16K
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Simulation details
Pure gauge (163x6, 243x6):
Iwasaki action + top. fixing term

β a(fm) T (MeV) T/Tc

2.35 0.132 249.1 0.86

2.40 0.123 268.1 0.93

2.43 0.117 280.9 0.97

2.44 0.115 285.7 0.992

2.445 0.114 288 1.0

2.45 0.1133 290.2 1.01

2.46 0.111 295.1 1.02

2.48 0.107 305.6 1.06

2.50 0.104 316.2 1.10

2.55 0.094 347.6 1.20

β a(fm) T (MeV) T/Tc

2.18 0.1438 171.5 0.95

2.20 0.1391 177.3 0.985

2.25 0.12818 192.2 1.06

2.30 0.1183 208.5 1.15

2.40 0.1013 243.5 1.35

2.45 0.0940 262.4 1.45

Two flavors QCD  (163x8)
Iwasaki + Overlap + top. Fix
O(300) trajectories per T
am=0.05, 0.025, 0.01
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Eigenvalue distribution

Phase transition
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Topological susceptibility in pure gauge theory - I

���
�
�����	


��� ����� �������� � �

�

�
��

�
� �� �

��
	���

�
������ �
��

�(Spatial) Correlators are always approximated by the first 50 

eigenvalues

�Pure gauge: double pole formula for disconnected diagram

�Topological susceptibility estimated by a joint fit of connected 

and disconnected contribution. 
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Topological susceptibility in pure gauge theory - II
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Effect of axial symmetry on 
the Dirac sperctrum

If axial symmetry is restored 
we can conclude that

Full QCD – Eigenvalues

���� �

�
������

���

�� ��

�����������
�����

�
� �

Ref: S. Aoki, internal note
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Full QCD – Meson correlators

Temperature

M
ass
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Full QCD – Meson correlators

Temperature

M
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Temperature

Full QCD – Meson correlators
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Temperature

Full QCD – Meson correlators
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Temperature

M
ass

Full QCD – Meson correlators
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Temperature

Full QCD – Meson correlators
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Temperature

Full QCD – Meson correlators
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Full QCD – Meson correlators

Temperature
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Temperature

Full QCD – Meson correlators
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Full QCD – Meson correlators

Temperature

M
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Summary

� Overlap fermions are the best choice to check axial anomaly at finite 
temperature

� Current machine and algorithms permit now realistic simulations...
� ...at the cost of fixing topology
� We checked feasibility of finite t. sim. by test runs in pure gauge theory
� In pure gauge systematic errors are under control.

� Results in Full QCD show signal of restoration of axial U���� symmetry
� We need 1-2 points more in the chiral limit
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Backup slides
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Previous analyses
Vranas (Nucl.Phys.Proc.Suppl. 83 (2000) 414-416)
Measured the difference of 
susceptibilities � of � and � .
� Action: DWF, L �	�  
� Found a very small relative 
difference just above T� in the 
chiral limit

� Residual mass effects?

Other works with staggered fermions established a restoration at T>T�

Even bigger problems due to breaking of U���� by staggered fermions.�



28

Axial symmetry at finite temp. with overlap fermionsAxial symmetry at finite temp. with overlap fermions

Topological susceptibility in pure gauge theory - III
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Topological susceptibility in pure gauge theory
!���2.50 
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Topological susceptibility in pure gauge theory - VII

Definition of the Inverse Participation Ratio
�




���� � ����� � "����"���

# � �
�




�����
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Topological susceptibility in pure gauge theory - VII
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On quark masses

Michael Creutz

BNL
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Pseudoscalars in two flavor QCD

• fix md , vary mu

• M2
π ∝ mu+md

2

• Mη′ ∼ Λqcd

• with isospin broken

• M2
π±

−M2
π0

∝ (md −mu)
2

• η′, π0, glueballs all mix

(uu)+(dd)

(uu)−(dd)

m

m

d

u

η

π+−

π0

M
2

(ud), (d
u)

’
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No singularity at mu = 0

• extrapolate to negative mu

• M2
π0

can go negative

• pion condensate forms

• 〈π0〉 6= 0

• CP broken

• occurs at Θ = π

•
∏

qmq < 0

Dashen 1971
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η

π0

π+−

md0
mu

M2

pi
on

 c
on

de
ns

at
e

’

Manifested in both ‘‘linear’’ and ‘‘nonlinear’’ sigma models
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Second order transition at non-vanishing mu and md of opposite sign

• long distance physics without small Dirac eigenvalues

No structure at mu = 0 when md 6= 0

• no long distance physics despite possible small Dirac eigenvalues

At the heart of several frustrating and bitter controversies

• Does mu = 0 have any fundamental meaning?

• Do rooted staggered fermions make sense?

• Is topological susceptibility a physical observable?
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Two flavors in the massless limit: mu = md = 0

• massive proton, neutron, eta prime, glueballs

• 3 massless Goldstone pions

Eta prime and neutral pion: distinct mixtures of uu, dd, and glue

������������������������������

u

u d

d

R

L

R

L

π, η’

• anomaly: π0 and η′ not degenerate

• four point vertex 〈uLuR dLdR〉 does not vanish

Helicity-flip quark-quark scattering does not vanish in the chiral limit
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Now turn on a small d quark mass

• closing d loop induces uL uR mixing

u

u d

d

R

L

R

L

π, η
md

’

���������������
���������������
���������������

���������������
���������������
���������������

• gluons inserted to compensate for odd meson parity

Non-zero d quark mass induces an effective mass for the u quark
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Non-perturbative effects

• renormalize mu

md

• quark mass ratios not renormalization group invariant

• (except in isospin limit)

Effect automatically included in lattice simulations

Old point

• Georgi, McArthur, 1981 (unpublished)

• Banks, Nir, Seiberg, 1994 (conference proceedings)

• MC, 2003 (unpublished)

• MC, 2004 (PRL)
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Intense consternation from the perturbative community

• effect not seen perturbatively, i.e. in the MS scheme

• consequences

• mass renormalization is not flavor blind

• mass independent regularization problematic

• inherent ambiguities defining mu = 0

MS is only a perturbative regulator

• when mu 6= md

Matching lattice masses to MS is not appropriate!
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Specific critiques

Complaint 1:

• Use a mass independent regularization

• admi

da = γ(g)mi ⇒ mi

mj
= constant

Response:

• allowed, but obscures above off-diagonal md effect on mu

• no guarantee that mi

mj
universal between schemes

• lattice is not a mass independent scheme

• unclear how to do matching
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When mu 6= md

• isospin broken

•
M2

π0

M2

π±

= 1−O
(

(mu−md)
2

(mu+md)Λqcd

)

Holding quark mass ratios fixed

• hadronic mass ratios scale dependent

Holding hadronic mass ratios fixed

• quark mass ratios scale dependent
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Complaint 2:

• Do matching at 100 GeV

• instantons exponentially suppressed and irrelevant

Response:

• the lattice simulations are not done at miniscule scales

• instanton effects must be included

• 1/g2 ∼ log(µ) ∼ log(1/a)

• exponential suppression in 1/g2 → power in scale µ
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Effect controlled by

• Mη′ −Mπ0
∝ µ g−β1/β

2

0 e−1/(2β0g
2) 6→ 0

• β0 = 1
16π2 (11− 2Nf/3)

• β1 =
(

1
16π2

)2
(102− 38Nf/3)

• also proportional to md −mu

• estimate at scale µ = 2 GeV

• ∆mu(µ) ∼
(Mη′−Mπ0

) (md−mu)

µ = O(1 MeV)

• same magnitude as quoted ‘‘results’’
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Note

• Mη′ ∝ µ g−β1/β
2

0 e−1/(2β0g
2)

• exponential behavior controlled by

• 1
2β0g2 = 8π2

(11−2nf/3)g2 <<
8π2

g2 = classical instanton action

• topological excitations above quantum, not classical, vacuum

• classical instanton action strongly overestimates suppression
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Rooted staggered quarks

• tastes: (SU(4)u, SU(4)d)

• well separated spurious states

• not only in chiral limit

• one massless at mu = 0

• required by symmetry

Can multiple artifacts cancel?

• requires unitarity violation m

m

d

u

η

π+−

π0

M
2

’
(1,1)

(4,4), (4
,4)

(dd)

(1,1)

(u
u)

st
ag

ge
re

d 
ar

tif
ac

ts
  (

15
,1

)

staggered artifacts  (1,15)

Plausible???
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Summary

Non-perturbative effects mix mass terms for different species

• effect absent in perturbation theory

• inappropriate to match lattice and perturbative masses

Interesting phase structure with negative mass quarks

• CP violating pion condensation

• no structure at mu = 0 when md 6= 0

Crucial to resolving many controversies

• mu = 0, topological susceptibility, rooting

Review: Acta Physica Slovaca 61, 1 (2011), arXiv:1103.3304

free download at http://www.physics.sk/aps/
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Ising-like transition at mu < 0

• order parameter 〈π0〉 6= 0

• breaks CP spontaneously
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CP

CP

m

m

u

d

σ > 0

σ < 0

Connected with the anomaly and Mη′ ∼ Λqcd

• non-perturbative
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General mass term m1ψψ +m2ψτ3ψ + im3ψγ5ψ
• average quark mass, quark mass difference, CP violation from Theta

Two intersecting first order surfaces
• (m1 = 0, m3 6= 0) and (m1 < m2, m3 = 0)

m

m

m3

2

1

m  = 0u

Second order edge at m3 = 0, 0 < |m1| < |m2|
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CP breaking related to the Aoki phase
• Wilson fermion lattice artifacts
• phase persists in isospin limit
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Aoki phase

• First order alternative
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Which alternative remains controversial

• can depend on lattice action

Michael Creutz On quark masses 19/15
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Exploring Three-Nucleon Forces 

in Lattice QCD 

Takumi Doi 

(Nishina Center, RIKEN) 

for HAL QCD Collaboration 

S. Aoki, N. Ishii, H. Nemura, K. Sasaki, M. Yamada              
                      (Univ. of Tsukuba) 

B. Charron (Univ. of Tokyo) 

T. Hatsuda (RIKEN) 
Y. Ikeda (Tokyo Inst. Tech.) 

T. Inoue (Nihon Univ.) 

K. Murano (RIKEN) 



05/16/2012 Lattice Workshop @ RBRC 2 

Nuclear Physics on the Lattice 

 Frontier in the (coming) physical point Lattice era 
 Nuclear Physics directly from Lattice QCD (+QED) 

 (Many other interesting topics in this workshop…) 

 Traditional Nuclear Physics 

 
 

 

 

 

 

 No clear connection to QCD so far 

  Lattice QCD can establish firm foundations for Nuclear Physics 

05/16/2012 

NN phase shifts from experiments Phenomenological Nuclear Forces Various applications 

Nuclear Forces play significant roles 
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QCD Vacuum 
Few-Body / Light Nuclei 

Baryon 

Heavy Nuclei 

Neutron Star / Supernova 

1st-principle lat calc. (Yamazaki’s talk) 

S
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1st-principle lat calc. 

N
u

c
le

a
r 

F
o
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e

s
 Ab-initio nuclear calc. 

Nuclear Physics and Astrophysics 
from Lattice QCD 

Nuclear and Astro Physicists       

thirst for Lattice QCD predictions ! 

05/16/2012 (Another talk by Orginos) 

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/Focus1.jpg
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Frontier in Hadron-Hadron Interactions 

⇒Three-Nucleon Forces (3NF) 

2N 

3N 

Neutron Star 

（Densest system     
in the Universe） 

Short-range repulsive 3NF is required   

Can we understand it from QCD ? 

PSR1913+16 

J1614-2230 

What is 3NF ? 

＋ ＋ 

＋ 

2NF 

3NF: Forces which 
cannot be explained 

by pair-wise 2NF 

05/16/2012 Lattice Workshop @ RBRC 

◆ B.E. of light nuclei 

◆ EoS of high density matter  

◆ Neutron rich nuclei / Nucleosynthesis 
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Nuclear Force from Lattice QCD 
[HAL QCD strategy] 

 Potential is constructed so as to reproduce the 
NN phase shift (or, S-matrix) 

 Nambu-Bethe-Salpeter(NBS) wave function 

 
 Key concept: asymptotic region  phase shift 

 

 Define the potential at interaction region 

 
 Non-local, but E-independent potential 

 The combination of (2NF, 3NF)  observables 

  systematic determination by Lat QCD 

R L 

Luscher, NPB354(1991)531 

C.-J.Lin et al., NPB619(2001)467 
CP-PACS Coll., PRD71(2005)094504 

Aoki-Hatsuda-Ishii PTP123(2010)89 

05/16/2012 

Ishii-Aoki-Hatsuda PRL99(2007) 



Challenges in multi-baryons  
on the lattice 

 S/N issue in the system of #baryon = A 

 

 small energy splitting by scatt.  

  requires larger t … 

 Enormous computational cost for correlator 

 # of Wick contraction  

 # of color/spinor contractions 

05/16/2012 Lattice Workshop @ RBRC 6 

Lepage(1989) 

(color) (spinor) 

See also T.Yamazaki et al., 
PRD81(2010)111504 



S/N issue  New algorithm (t-dep Schrodinger eq) 

05/16/2012 

Good Convergence ! 

N.Ishii et al. (HAL QCD Coll.} 

arXiv:1203.3642, PLB in press 

Poor Convergence 

Phase shift 

Lattice Workshop @ RBRC 7 

Elastic scatt states share the same potential  

(E-indep of potential U(r,r’) is the key)  

Grand state saturation is NOT necessary !  



 Traditional algorithm 

 

 
 New algorithm 

 For each flavor, we impose same spacial label at source quark  

  Permutation applies to color/spinor indices at “Coeff” 

 

 

 Construct a list for color/spinor sum 

  Wick contraction and color/spinor contractions are unified 

 Significant improvement 

Computational cost issue     
Unified contraction algorithm 

8 

Permutations            
(Wick contractions) 

color/spinor contractions 

Sum over color/spinor unified list 

Permuted Sum 

TD, Endres, 
arXiv:1205.0585 (x add’l. speedup) 
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Lattice QCD Calculations 

T2K@Tsukuba 

BG/L@KEK 

Numerical   
Setup & Results 

SR16000 
@YITP, KEK 
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 Nf=2 clover fermion + RG improved gauge action (CP-PACS) 
 598 configs x 32 measurements 

 beta=1.95, (a-1=1.27GeV, a=0.156fm) 

 163 x 32 lattice, L=2.5fm 
 ) = 1.13GeV 

 M(N) = 2.15GeV 

 ) = 2.31GeV 

 

 Correlators 
 Standard nucleon op to define the wave function / potential at sink 

 

 Non-rela limit op is used to create 3N state at source 

 

 

Lattice calculation setup 

CP-PACS Coll. S. Aoki et al., 
Phys. Rev. D65 (2002) 054505  

(M L=14) 

t=t(src) t=t(sink) 

See also T.Yamazaki et al., 
PRD81(2010)111504 

sink source 

(ud) =0.13750 ) 

Lattice Workshop @ RBRC 05/16/2012 
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 We fix the geometry of 3N to extract the genuine 3NF 
 We study linear setup   reduced to 3x3 coupled channel 

 
 
 
 
 
 

 Linear setup with various distance “r2” 

 
 

3NF calculation in Lat QCD 

long “r2” setup short “r2” setup 

Study r2-dependence of 3NF 

We consider 
Triton channel 

05/16/2012 Lattice Workshop @ RBRC 
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Results for wave functions 

Red:     S 
Blue:    M 
Green:  3D1  

S overwhelms the 
wave function: 

 Indication of the dominance 

of all S-wave component,     
higher waves suppressed 

T.D. et al. (HAL QCD) 
PTP127(2012)723  



Genuine 3NF from Lat QCD 

05/16/2012 Lattice Workshop @ RBRC 13 

Results from t-dep method are 
consistent w/ t-indep method 

(but larger stat errors) 

short-range 

repulsive 3NF ! 

Huge Impact on physics of 
high density matters !                                        

T.D. et al. (HAL QCD) 
PTP127(2012)723  
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 Nuclear Physics on the Lattice 
 New Horizons for Lattice Computations 

 

 Lattice Predictions are highly awaited 
 Huge impact on astrophysics as well 

 

 Three-Nucleon Force (3NF) from Lattice QCD 
 Repulsive 3NF at short distance observed 

 Outlook 
 Realistic potentials with physically light masses w/ large volumes 
 

Summary/Outlook 

Ab-initio calculation using 2NF, 3NF                                
as well as hyperon forces  from Lat QCD 

10PFlops 
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Backup Slides 
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Parity-even 2N potentials (input) 

M( )=1.13GeV 
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Extension to                            
Three-Nucleon Systems 

 We extend the HAL QCD Strategy to 3N system to 
directly determine 3NF 
 

 c.f. Current status of 3N (3B, 4N) Lattice calc 

 T. Yamazaki et al. [PACS-CS Coll.] PRD81(2010)111504 

 Quenched clover, m(pi)=0.8GeV, L=3-12fm 
 B.E. : 3He(=3H)=18.2(3.5)(2.9)MeV, 4He=27.7(7.8)(5.5)MeV 

 
 S. Beane et al. [NPLQCD Coll.] PRD80(2009)074501 

  Nf=2+1 clover, m(pi)=0.39GeV, L=2.5fm 
 ( 0n) and (pnn) are explored,  

 

 Only (binding) energies have been calculated in these studies 
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 In the case of 2N system… 
 Calc 4pt func NBS amp. 

      

 
 Extention to 3N system 

 Calc 6pt func NBS amp. of 3N 

 

 Obtain 3NF through 

 

 Difficulty(1): volume factor 
 2N: naïve O(L6) calc  O(L3 log L3) 

 3N: naïve O(L9) calc  O(L6 log L6) 

 Difficulty(2): naïve calc of quark dof grows in factorial (~Nu! Nd!) 
 2N: O(L3) X Nwick X color/spinor loops 

 3N: O(L6) X Nwick X color/spinor loops 

 
 

 

How can we tackle 3NF in 
Lattice QCD ? 

by 2N calc 

O(104-105) factor 

O(L3) X O(4000) = O(107-108) factor 

3NF is 
exceptionally 
challenging 
problem ! 
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Features of Linear setup for 3H 

 Simplified coupled channel analysis possible 
 The vector to 3rd particle 
  L(1,2)-pair = Ltotal = 0 or 2 only 
  Possible bases are only three, which can be labeled by     

1S0, 3S1, 3D1 for (1,2)-pair 

(2) 

Schrodinger Eq.  

Kinetic energy 3x3 Matrix 

(1) 
(3) 
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Parity-odd potential Issue 

 However, in order to determine 3NF in 3x3 coupled channel, 
we need information of parity-odd potential  
 Although (1,2)-pair is L=even, (3,1),(2,3)-pair have L=odd components 

 Parity-odd potential from lattice QCD is under R&D now (K.Murano et al.) 

 3X3 channel, but unknown VC
I,S=0,0,VC

I,S=1,1,VT
I,S=1,1,3NF(s) 

Target to be 
determined 

unknown 
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 We can construct the wave function in which any 2N pair 
is spin/isospin anti-symmetric 

 

 
  L=even for any 2N pair automatically guaranteed 

 Bases are rotated as  

 

 

Solution using 
“symmetric” wave function  

All pair P=even 

No V(P=odd) 
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 We can construct the wave function in which any 2N pair 
is spin/isospin anti-symmetric 
  L=even for any 2N pair automatically guaranteed 

 3x3 coupled channel is reduced to 
 one channel with only 3NF unknown 

 two channels with VC
I,S=0,0, VC

I,S=1,1, VT
I,S=1,1,(3NF) unknown 

 

 

 

 

 

  Even without parity-odd V, we can determine one 3NF 
 This method works for any fixed 3D-geometry other than linear 

Solution using 
“symmetric” wave function  

(L2-dep 
ignored) 

No V(P=odd) Target to be 
determined 
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Short-Range 3NF 

 We determine 3NF effectively represented by a 
scalar/isoscalar functional form 

 c.f.  phenomenological 3NF to reproduce saturation point of   
nuclear matter, etc. 

Plot of 3NR only:               
there is cancellation from 3NA 

Urbana/Illinois 

AdS/CFT: 

K.Hashimoto, N.Iizuka 
JHEP 1011 (2010) 058 

r2 [fm] 
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(1) We assume ψ(x; E) for different E is linearly independent with each other. 

(2) ψ(x; E) has a “left inverse” as an integration operator as 

 

 

(3) K(x; E) can be factorized as 

 

 

 

 

 

(4) We are left with an effective Schrodinger equation with an E-independent potential 

U. 

2 2( ; ) ( ; )K x E k x E

2 22 NE m k

( , )Nm U x y

2 2 3( ; ) ( , ) ( ; )Nx E m d yU x y yk E

Effective Schrodinger equation with E-independent potential 

[START] local but E-dep pot.  (L3xL3 dof) 

[GOAL] non-local but E-indep pot.  (L3xL3 dof) 

Intuitive 
understanding 



Two-Photon Decay of Neutral Pion from Lattice QCD

Xu Feng (KEK)

work with S. Aoki, H. Fukaya, S. Hashimoto, T. Kaneko, J. Noaki
and E. Shintani on behalf of JLQCD collaboration

BNL, New York, 2012/05/14
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Motivation

PrimEx@JLab: Γπ0γγ = 7.82(22) eV [PrimEx, PRL106, 2011]

Precision: 2.8% → 1.4% (projected goal)

Benchmark test in the chiral anomaly sector of QCD

Γπ0γγ = (π/4)α2
em

3
πF2

π0γγ(m2
π, 0, 0)

I Fπ0γγ(m2
π, p

2
1 , p

2
2): π0 → γ∗γ∗ transition form factor

I mπ: π0 mass; p1, p2: photon 4-momentum

Xu Feng (KEK) Two-Photon Decay of Neutral Pion from Lattice QCDBNL, New York, 2012/05/14 2 / 19



Lattice setup

overlap fermion: exact chiral symmetry ⇒ test chiral anomaly

all-to-all propagators ⇒ C (t1, t2, t3)

I low mode: low-lying eigenvalues and eigenvectors

I high mode: stochastic propagators

I calculate correlator at any time slice of t1, t2, t3

I disconnected diagram

Xu Feng (KEK) Two-Photon Decay of Neutral Pion from Lattice QCDBNL, New York, 2012/05/14 3 / 19



Ensemble information

four mu,d : mπ = 540 → 290 MeV ⇒ chiral exapolation

ms fixed to be close to its physical value ⇒ dynamical s-quark effects

L/a = 16 and 24 ⇒ finite-size effects

Q = 0 and 1 ⇒ fixing-topology effects

a = 0.11 fm ⇒ study possible lattice artifacts

Xu Feng (KEK) Two-Photon Decay of Neutral Pion from Lattice QCDBNL, New York, 2012/05/14 4 / 19



Theoretical setup

starting point: S-matrix

〈γ(p1, λ1)γ(p2, λ2)|π0(q)〉

transition form factor is defined by matrix element∫
d4xe ip1x〈Ω|T{Jµ(x)Jν(0)}|π0(q)〉︸ ︷︷ ︸ = εµναβp

α
1 p

β
2Fπ0γγ(m2

π, p
2
1 , p

2
2)

Mµν

I εµναβp
α
1 p

β
2 : induced by the negative parity of the π0

I chiral limit, photon on-shell, ABJ anmoaly:

Fπ0γγ(0, 0, 0) = FABJ
π0γγ =

1

4π2Fπ

Xu Feng (KEK) Two-Photon Decay of Neutral Pion from Lattice QCDBNL, New York, 2012/05/14 5 / 19



Method

matrix element in the Minkowski space-time

Mµν =

∫
d4xe ip1x〈Ω|T{Jµ(x)Jν(0)}|π0(q)〉

analytical continuation from Minkowski to Euclidean space-time
[Ji, Jung, 2001; Dudek, Edwards, 2006]

Mµν =

∫
dteωt

∫
d3~xe−i~p1·~x〈Ω|T{Jµ(x)Jν(0)}|π0(q)〉

pion is on-shell: q = (Eπ, ~q) ⇒ q2 = m2
π

photon 4-momentum: p1 = (ω,~p1) and p2 = (Eπ − ω,~q − ~p1)

requirement: p21,2 < m2
ρ or E 2

ππ (hadron production threshold)
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Amplitude Aπ(τ)

observable:

Mµν =

∫
dteωt

∫
d3~xe−i~p1·~x〈Ω|T{Jµ(x)Jν(0)}|π0(q)〉

correlation function:

Cµν = 〈Ω|Jµ(~p1, t1)Jν(~p2, t2)π0(−~q, tπ)|Ω〉

set τ = t1 − t2 and t = min{t1, t2}

Aπ(τ) ≡ lim
t−tπ→∞

Cµν(t1, t2, tπ)/e−Eπ(t−tπ)

matrix element Mµν is given by

Mµν =
2Eπ
φπ

(∫ ∞
0

dτ eωτAπ(τ) +

∫ 0

−∞
dτ e(ω−Eπ,~q)τAπ(τ)

)
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Distribution of Aπ(τ)

〈Jµ(~p1, t1)Jν(~p2, t2)π0(~q, tπ)〉: µ = 1, ν = 2
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Time dependence of Aπ,1,2

VMD model: FVMD
π0γγ (m2

π, p
2
1 , p

2
2) = cVGV (p21)GV (p22)

GV (p2) = M2
V /(M2

V − p2) is the vector meson propagator, MV = mρ
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Fit ansatz

lowest vector meson effects should be accounted for first
corrected by including excited-state effects

Fπ0γγ(m2
π, p

2
1 , p

2
2) = cVGV (p21)GV (p22)

+
∑
V ′

cV ′
(
GV (p21)GV ′(p22) + GV ′(p21)GV (p22)

)
+

∑
V ′,V ′′

cV ′V ′′GV ′(p21)GV ′′(p22)

replace GV ′(p2) by a basis of polynomial function

Fπ0γγ(m2
π, p

2
1 , p

2
2) = cVGV (p21)GV (p22)

+
∑
m

cm
(
(p22)mGV (p21) + (p21)mGV (p22)

)
+

∑
m,n

cm,n(p21)m(p22)n
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Form factor

Fπ0γγ =
∫
dt eωt〈Ω|T{Jµ(~p1, t)Jν(~p2, 0)}|π0(q)〉/εµναβpα1 p

β
2

tunning ω: p21 = ω2 − ~p21 p22 = (Eπ − ω)2 − ~p22
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Combined fit

fit ansatz Fπ0γγ(m2
π, p

2
1 , p

2
2) = cVGV (p21)GV (p22)+∑

m

cm
(
(p22)mGV (p21) + (p21)mGV (p22)

)
+
∑
m,n

cm,n(p21)m(p22)n
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combined fit
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On-shell photon limit

0 0.05 0.1 0.15 0.2 0.25
mπ

2
  [GeV

2
]

0
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0.8

1

F(
m

π2 ,0
,0

)

L/a=16, Q=0
L/a=24, Q=0
L/a=16, Q=1
PrimEx

27.2% shift

F (m2
π, 0, 0) ≡ Fπ0γγ(m2

π, 0, 0)/FABJ
π0γγ

data with mπL ≥ 4: consistent with ABJ and PrimEx
L = 16: smallest two quark mass, mπL < 4, big FS effects
FS effects checked at topological sector Q = 0 and 1
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Expansion of matrix element

expand the correlator into three hadronic matrix elements:

〈JµJνπ0〉 → 〈Ω|Jµ|V 〉〈V |Jν |π0〉〈π0|π0|Ω〉

vector-meson electromagnetic coupling gV

〈Ω|Jµ|V , p, ε〉 = MVFV εµ(p) = M2
V gV εµ(p)

Vπγ coupling gVπγ , V → πγ decay

〈V , εµ(p1)|jν(0)|π0(q)〉 =
gVπγ
MV

εµναβp1αp2βKV (p22) , p2 = q − p1

pion decay constant Fπ

〈π0|π0|Ω〉 =
m2
π

2mu,d
Fπ
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Finite-size effects
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FS effects accumulate and add up to a large effect
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Finite-size corrections
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FS corrections RO ≡ O(∞)/O(L) with O = gρ, gρπγ and Fπ
assume that RF (m2

π ,0,0)
= RgρRgρπγRFπ
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Disconnected-diagram effects

0.6

0.8

1
F(

m
π2 ,0

,0
) 

w
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conn only
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fit with conn data
fit with full data
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all-to-all propagator: control error of disc. contribution
although not significant, conn+disc systematically shift down
precision level (2% for form factor): disc. diagram should be included
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Lattice artifacts

discrete data v.s. continuum case?
right fig: turnover obtained; left fig: not obtained?
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disc. effects in VMD model: less than 5× 10−4, neglegiable
turnover contributed by ground and excited states, not very large
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Conclusion

after examining possible systematic effects

F (0, 0, 0) = 1.009(22)(29)

F (m2
π,phy, 0, 0) = 1.005(20)(30)

Γπ0γγ = 7.93(29)(43) eV

ABJ anomaly and PrimEx measurement

F (0, 0, 0) = 1

F (m2
π,phy, 0, 0) = 1.004(14)

Γπ0γγ = 7.82(22) eV

mu 6= md , effects mixing of mπ with η and η′ are not yet studied
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Motivated by muon gµ − 2

Exp. determination of gµ− 2 to 0.54 ppm [E821@BNL, PRD73, 2006]

S.M. prediction of gµ − 2 to 0.51 ppm [Jegerlehner, EPJC71, 2011]

Discrepancy: 3.3σ ⇒ New Physics ??

HLbL is predicted to be dominant error in the next round

γ∗

γ∗

γ

γ∗

µ

(b)(a)

γ

q2

q1

π, ...

µ

q3

Difficult: HLbL involves 〈JµJνJρJσ〉
Better to start with π0(η, η′)→ γ∗γ∗
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π0 contribution

summary table [Jegerlehner, Nyffeler, Phys.Rept.477:1-110,2009]
I π0(η, η′)→ γ∗γ∗ are consistent to total contributions
I Among three PS mesons, π0 takes about 7̃0%
I calulation on the π0 → γ∗γ∗ can be duplicated to the η, η′ sector
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Non-perturbative nature

Invariant mass spectrum for two-photon

Three spikes presents three bound states: π0, η, η′

Bound states → confinement → LQCD
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Rho mass
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High precision scale setting

Z. Fodor

University of Wuppertal & Budapest, UCSD, FZJ
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BNL, May 14, 2012
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Scale setting Flow of the gauge field Pure gauge Full QCD

Scale settings and the static potential

raw output of lattice QCD: physical quantities in lattice unit
⇒ measure a dimensionful quantity Q (MΩ or fK )
the lattice spacing is given by a=(aQlat )/Qexp

today erros below 2% for several lattice predictions
it depends crucially on the error of the lattice spacing
need for a controlled/small error lattice spacing determination

not necessarily directly accesable for experiments e.g. potential
popular choices are:
string tension (strictly speaking doesn’t exist: string breaking)
the Sommer-scale r2

x · dV/dr = Cx
originally r0 with C0 = 1.65 or MILC choice r1 with C1=1

Z. Fodor High precision scale setting



Scale setting Flow of the gauge field Pure gauge Full QCD

Sommer-scale, Omega mass, fπ and fK

unfortunately, the calculations of r0 & r1 are quite involved
far more complicated than fitting the masses of particles

complications are reflected in the literature
MILC: r1=0.3117(22) fm (less than 1% accuracy)
RBC/UKQCD: r1=0.3333(93)(1)(2) fm
7% difference and 2.3σ tension between them

another popular way is to use the Omega baryon mass
the experimental value of MΩ is well known
more CPU demanding & sensititve to the strange quark mass
mismatched strange quark mass leads to a mismatched scale

difficulties with fπ (chiral extrapolation) & fK (mismatched ms)

suggestion of M. Luscher: use the Wilson flow to set the scale
Z. Fodor High precision scale setting



Scale setting Flow of the gauge field Pure gauge Full QCD

Definition of the flow of the gauge field

Morningstar, Peardon PRD 69 (2004) 054501; Narayan, Neuberger, JHEP 0603 (2006) 064; Luscher JHEP 1008 (2010) 071

consider the flow: Bµ(t , x) for t > 0 with Bµ(0, x) = Aµ(x)
flow equation: ∂tBµ = DνGµν with Gµν = ∂µBν − ∂νBµ + [Bµ,Bν ]

the evolution in t has a smoothing effect:

∂tBµ = ∆Bµ − ∂µ∂νBν + non-linear terms

the first term is the same as in the heat-equation

Bµ(t , x) =
∫

d4xKt (x − y)Aµ(y) + ...

Kt four dimensional heat kernel Kt (r) = exp(−r2/4t)/(4πt)2

smoothing effect with
√

8t smoothing range

on the lattice regularize it: Vt (x , µ) for t > 0 with V0(x , µ) = U(x , µ)
flow equation with (Z) staples: ∂tVt (x , µ) = Z (Vt (x , µ)) · Vt (x , µ)

Z. Fodor High precision scale setting



Scale setting Flow of the gauge field Pure gauge Full QCD

Wilson flow: technical realization

flow equation: V̇t = Z (Vt )Vt , where Z is the staple
equivalent to a series of infinitesimal stout smearing steps

in our case it is integrated with 4th-order Runge-Kutta scheme
M. Luscher, JHEP 1008 (2010) 071

evolution from time t to time t + ε is given by Zi = εZ (Wi)

W0 = Vt ,

W1 = exp
(

1
4

Z0

)
W0,

W2 = exp
(

8
9

Z1 −
17
36

Z0

)
W1,

Vt+ε = exp
(

3
4

Z2 −
8
9

Z1 +
17
36

Z0

)
W2
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Scale setting Flow of the gauge field Pure gauge Full QCD

Wilson flow and the coupling

M. Luscher, JHEP 1008 (2010) 071

as a representative example E = Ga
µνGa

µν/4 is considered
lattice: E(t) can be defined by the (1-plaquette) or clover terms
they only differ by discretization effects
lattice: we expect 〈E〉∝(1-plaquette)·t2 behavior

very important results about the renormalization of the Wilson flow

calculation of 〈E〉 up to α2
s(q) with q = (8t)−1/2

(result has been obtained in the continuum MS scheme)

〈E〉 = 3
4πt2α(q)

{
1 + k1α(q) +O(α2)

}
, k1 = 1.0978 + 0.0075Nf

above the cut-off (small t): lattice and continuum quite different
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Scale setting Flow of the gauge field Pure gauge Full QCD

Lattice study of the Wilson flow (pure gauge)

the perturbation QCD expansion works for small t (�1 fm)
for large t one uses numerical lattice simulations
SU(3) pure gauge theory with lattice spacing a=0.05 fm

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

t /r0
2

0

0.1

0.2

0.3

0.4

0.5

t2〈E〉

t0

√   8t = 0.2 fm √   8t = 0.5 fm

statistical error: smaller than the thickness of the (linear) line
lattice: expect (1-plaquette)·t2 behavior for small t
perturbation theory is given by the band (uncertainty on Λ)
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Scale setting Flow of the gauge field Pure gauge Full QCD

Wilson flow for scale setting: quenched

〈E〉 is physical: approaches its continuum limit with a2

test it with the reference scale t0 given by{
t2〈E〉

}
t=t0

= 0.3

0 0.01 0.02 0.03 0.04

(a/r0)2

0.90

0.92

0.94

0.96
√     8t0

       r0

a = 0.05 fm 0.07 fm 0.1 fm

scaling violation increases toward smaller reference scales
for which the smoothing range is only 2-3 times the lattice spacing
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Scale setting Flow of the gauge field Pure gauge Full QCD

Gauge flow for dynamical fermions & w0

one can determine the gauge flow also for the dynamical case
use the Wilson flow or the gauge flow defined by the action

t2〈E(t)〉 incorporates informations from all t>O(1/
√

t)
its derivative (almost constant) mostly from scales around O(1/

√
t)

advantage: flow at small t ∼ a2 is a subject of cutoff effects

 0
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 0  0.005  0.01  0.015  0.02  0.025  0.03  0.035  0.04

t
2
〈E〉

t [fm
2
]

mπ≈300 MeV

a≈0.092 fm
a≈0.077 fm
a≈0.065 fm
a≈0.054 fm

perturbative

observed “linearity” for t2〈E〉
one can extract it by t · dt2〈E〉/dt
instead t2〈E〉=0.3 (M. Luscher)
t · dt2〈E〉/dt=0.3 (w0 scale)

a→0: non-universal part shrinks
w0 has less cutoff effects than t0
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Scale setting Flow of the gauge field Pure gauge Full QCD

Continuum limit is the same

different definitions should have the same continuum limit
one can use the Wilson flow or the Symanzik flow: Mπ=135 MeV

 0.96
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2
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1.0020(35)(30)

w0
Wilson flow

w0
Symanzik flow



original definition of Luscher has the largest cut-off effect
various definitions of w0 have tiny ones (a few % or less)
(statistical errors are neglible, good for scale setting)
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Scale setting Flow of the gauge field Pure gauge Full QCD

Finite volume effects

how sensitive is w0 to the size of the system
only for boxes <2 fm: MπL ≈ 1.35 instead of 4
=⇒ finite volume effects are tiny, far below the 1% level
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w
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staggered, a=0.0975 fm
1 %

robust and stable method for determining the scale
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Scale setting Flow of the gauge field Pure gauge Full QCD

a→ 0: Wilson & staggered w0 Budapest-Marseille-Wuppertal Collaboration, 1203.4469∗
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w0 = 0.1757(12)(07) fm
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w0 [fm] staggered with 2 stout
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w0 = 0.1755(18)(04) fm

continuum limit

w0 [fm]Wilson-clover with 2 HEX 

the physical scale was obtained by the Omega baryon mass

our final result is the Wilson result (staggered is a cross check)
(no rooting =⇒ theoretically cleaner)

w0=0.1755(18)(04) fm

error (dominantly statistical) is 1%
(and comes not from the gauge flow itself, but from MΩ)
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Scale setting Flow of the gauge field Pure gauge Full QCD

a→ 0: Wilson & staggered w0 Budapest-Marseille-Wuppertal Collaboration, 1203.4469∗
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the physical scale was obtained by the Omega baryon mass

our final result is the Wilson result (staggered is a cross check)
(no rooting =⇒ theoretically cleaner)

w0=0.1755(18)(04) fm

error (dominantly statistical) is 1%
(and comes not from the gauge flow itself, but from MΩ)
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Scale setting Flow of the gauge field Pure gauge Full QCD

Scale off the physical point

usually runs aren’t at physical masses: what is the scale there
measure Mπ, MK and w0: x = w2

0 M2
π and y = w2

0 (M2
K −M2

π/2)

w0=0.18515-0.5885x2-0.0497y-0.11xy-1.476x3±18·10−3±4·10−3[fm]
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change Mπ from 135 to 350 MeV

4% change in the lattice spacing
(same size as cutoff effects)

change ms by 10%
0.5% change in the lattice spacing

error is 1% in the continuum limit
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Scale setting Flow of the gauge field Pure gauge Full QCD

Error analysis: 2HEX data set

histogram method to give statistical and systematic errors
64 possible results (mq interpolation, Mπ cut, a→0, fit range, scale)

0.174 0.176 0.178
w0[fm]

0.05

0.1

0.15

0.2

0.25

orange/gray bands: systematic/full error; red line: result

interpolation Mπ-cut a→0 fit range scale
15% 40% 55% 55% 45%
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Outline

Relation between the entropy density and the response of the system to the shift

s = −
1

T 2
lim

V →∞

1

V

d2

dz2
ln Z({0, 0, z})

˛̨
˛
z=0

Z

0X

Generalization to the specific heat

Finite-size effects

Extension to the lattice (and exploratory numerical study for SU(3) Yang–Mills)

Conclusions and outlook
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Momentum distribution from shifted boundary conditions

The relative contribution to the partition function of
states with momentum p is [T = 1/L0]

R(p)

V
=

Tr{e−L0Ĥ P̂(p)}

Tr{e−L0Ĥ}

where

Z

0X

P̂(p) =
1

V

Z
d3

z e−ip·z eip̂·z , eip̂z|φ〉 = |φz〉

The momentum distribution can then be written as

R(p)

V
=

1

V

Z
d3

z e−ip·z Z(z)

Z
, φ(L0,x) = φ(0,x + z)

where Z(z) is the usual path integral but with shifted boundary conditions in time direction
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Cumulant generator

As usual the generator of its cumulants is defined as

e−K(z) =
1

V

X

p

eip·z R(p) =⇒ e−K(z) =
Z(z)

Z

The momentum cumulants can then be written as

〈p̂
2n

1
1 p̂

2n
2

2 p̂
2n

3
3 〉c

V
=

(−1)n
1
+n

2
+n

3

V

∂2n
1

∂z
2n

1
1

∂2n
2

∂z
2n

2
2

∂2n
3

∂z
2n

3
3

ln

»
Z(z)

Z

–

z=0

In the continuum they equal the standard definition

〈p̂2n
1 p̂2n

2 p̂2n
3 〉c = (−1)n

1
+n

2
+n

3 〈T 01 · · ·T 03〉c , T 0k(x0) =

Z
d3x T0k(x)

and, being conn. corr. functions of the momentum charge, they are finite as they stand.
The generator K(z) and the distribution R(p) are thus expected to be finite as well
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Momentum distribution from shifted boundaries on the lattice[Della Morte, LG 10; LG, Meyer 10]

On the lattice a theory is invariant under a discrete
group of translations only. It is still possible, how-
ever, to factorize the Hilbert space in sectors with
definite conserved total momentum

The momentum distribution is given by

R(p)

V
=

a3

V

X

z

e−ip·z Z(z)

Z

a
L

where Z(z) is the usual PI but with (discrete) shifted boundary conditions.

Since only physical states contribuite to it, R(p) is expected to converge to the continuum
universal value without need for UV renormalization

The shifted boundary conditions allow us to define connected correlation functions of the
momentum which do not require any UV renormalization

Their continuum limit satisfies the standard EMT WIs, which can be used to interpret the
cumulants in terms of basic thermodynamic potentials
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Ward identities for two-point correlators ofT 0k (I)

In the continuum a judicious combination of WIs associated with translational invariance

∂µ〈Tµν(x) O1 . . . On〉 = −
nX

i=1

〈O1 . . . δxOi . . . On〉 ,

leads to (x0 6= y0 , wk 6= zk)

L0 〈T 0k(x0) T0k(y)〉 − Lk 〈 eT0k(wk) T0k(z)〉 = 〈T00〉 − 〈Tkk〉

where

T 0k(x0) =

Z
d3x T0k(x) , eT0k(xk) =

Z h Y

ν 6=k

dxν

i
T0k(x)

Note that:

∗ All operators at non-zero distance

∗ Number of EMT on the two sides different

∗ Trace component of EMT does not contribute

∗ On the lattice it can be imposed to fix the renormalization of T0k
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Ward identities for two-point correlators ofT 0k (II)

The commutator of boost with momentum

[K̂k, p̂k] = iĤ

is expressed in the Euclidean by the WIs

0

∂ R ∂ R

Oi

Tok

X

Z

∂R
dσµ(x) 〈Kµ;0k(x) T 0k(y0) O1 . . . On〉c = 〈T 00(y0) O1 . . . On〉c

when the Oi are localized external fields.

In a 4D box boost transformations are incompatible with (periodic) boundary conditions.
WIs associated with SO(4) rotations must be modified by finite-size contributions

The finite-volume theory is translational invariant, and it has a conserved Tµν . Modified
WIs associated to boosts constructed from those associated to translational invariance

L0 〈T 0k(x0) T0k(y)〉 − Lk 〈 eT0k(wk) T0k(z)〉 = 〈T00〉 − 〈Tkk〉
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Ward identities for two-point correlators ofT 0k (III)

In the thermodynamic limit the WI reads (y0 6= x0)

L0 〈T 0k(x0) T0k(y)〉 = 〈T00〉 − 〈Tkk〉

By remembering that in the Euclidean

p̂k ↔ −i T 0k , e = −〈T00〉 , p = 〈Tkk〉 =⇒
〈p̂2

k〉

V
= T {e + p} = T 2s

In a finite box and for M 6= 0 (M lightest screening mass)

〈T 0k(x0) T0k(y)〉 = −T {e + p} +
νMT 2

2πL

»
M + 3T

∂M

∂T

–
e−ML + . . .

i.e. leading finite-size effects are known functions of M , and are exponentially small in ML
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Entropy density from shifted boundary conditions

By putting together the two formulas

s = −
1

T 2
lim

V →∞

1

V

d2

dz2
ln Z({0, 0, z})

˛̨
˛
z=0

On the lattice the only difference is the discrete derivative

s = −
1

T 2
lim

V →∞
lim
a→0

2

n2
za2V

ln

»
Z({0, 0, nza})

Z

–

with nz being kept fixed when a → 0

Note that:

∗ No ultraviolet renormalization

∗ Finite volume effects exponentially small

∗ Discretization effects O(a2) once action improved
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Recursive relation for higher order cumulants

There is more information in K(z). Again a judicious combination of WIs leads to

〈T 0k(x1
0) T 0k(x2

0) . . . T 0k(x2n
0 )〉c = 〈T 00(x1

0) Tkk(x2
0) . . . T 0k(x2n

0 )〉c + f.s.c.

At finite temperature and volume

L0 〈T 00(y0) T 0k(x1
0) . . . T 0k(x2n

0 )〉c = L0
∂

∂L0
〈T 0k(x1

0) . . . T 0k(x2n
0 )〉c

L0 〈Tkk(y0) T 0k(x1
0) . . . T 0k(x2n

0 )〉c =
n

Lk
∂

∂Lk
+ 2n

o
〈T 0k(x1

0) . . . T 0k(x2n
0 )〉c

By combining these relations, and by taking the infinite volume limit

〈T 0k(x1
0) . . . T 0k(x2n

0 )〉c = (2n − 1)
∂

∂L0

n 1

L0
〈T 0k(x1

0) . . . T 0k(x2n−2
0 )〉c

o

Expression of finite-size corrections similar to the one of two-point corr. functions
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Specific heat

Written for cumulants the recursive relation reads

〈p̂2n
z 〉c = (2n − 1) T 2 ∂

∂T

n
T 〈p̂2n−2

z 〉c
o

and analogously for mixed ones

The definition of the specific heat implies

cv = T
∂

∂T
s =⇒ cv =

1

V

h 〈p̂4
z〉c

3T 4
− 3

〈p̂2
z〉c

T 2

i

and therefore

cv = lim
V →∞

1

V

»
1

3T 4

d4

dz4
+

3

T 2

d2

dz2

–
ln Z({0, 0, z})

˛̨
˛
z=0

On the lattice the only difference are the discrete derivatives. Finite-size corrections are
again known, and are exponentially suppressed
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Scale-invariant case

If T is the only dimensionful parameter in the problem, the recursive relation implies

〈p̂2n
z 〉c

V
= c2n T 2n+3 =⇒ c2n =

(n + 1)

4
(2n!) c2

By using the moment-cumulant transformation, the generator of the cumulants reads

K({0, 0, z}) =
∞X

n=1

(−1)n+1 〈p̂2n
z 〉c

2n!
z2n

The series can be re-summed to obtain

K({0, 0, z})

V
=

s

4

n
1 −

1

(1 + z2T 2)2

o

i.e. the entropy determines all the cumulants. The combination of scale and relativistic
invariance fixes the functional form to be the one of the free case.
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Numerical algorithm for the cumulant generator (I)

The most straightforward way for computing
the cumulant generator is to rewrite it as

Z(z)

Z
=

n−1Y

i=0

Z(z, ri)

Z(z, ri+1)

where a set of (n + 1) systems is designed so
that the relevant phase spaces of successive path
integrals overlap and that Z(z, r0) = Z(z) and
Z(z, rn) = Z

Z

0X

The path integrals of the interpolating systems are defined as

Z(z, r) =

Z
DU DU4,L0/a−1 e−SG[U,U4,r]

where U4,L0/a−1 is an extra (5th) temporal link assigned to each point of last time-slice
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Numerical algorithm for the cumulant generator (II)

The action of the interpolating systems is

SG[U, U4, r] = SG[U ] +
β

3
(1 − r)

X

x,k

ReTr
n

U0k(L0/a − 1,x) − U4k(L0/a − 1,x)
o

with the extra space-time plaquette given by

U4k(L0/a− 1,x) = U4(L0/a− 1,x) Uk(0,x + z) U†
4 (L0/a− 1,x + k̂) U†

k(L0/a− 1,x)

If we define the "reweighting” observable as

O[U, ri+1] = eSG[U,U4,ri+1]−SG[U,U4,ri]

then
Z(z, ri)

Z(z, ri+1)
= 〈O[U, ri+1] 〉ri+1
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Numerical algorithm for the cumulant generator (II)

The action of the interpolating systems is

SG[U, U4, r] = SG[U ] +
β

3
(1 − r)

X

x,k

ReTr
n

U0k(L0/a − 1,x) − U4k(L0/a − 1,x)
o

with the extra space-time plaquette given by

U4k(L0/a− 1,x) = U4(L0/a− 1,x) Uk(0,x + z) U†
4 (L0/a− 1,x + k̂) U†

k(L0/a− 1,x)

On each lattice the entropy is finally given by

s = −
2

z2T 2V

n−1X

i=0

ln

»
Z(z, ri)

Z(z, ri+1)

–
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Numerical results for the entropy

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

a
2
 T

2

4

5

6

7

s/
T3

T=1.5 T
c

(s/T
3
)=32π2/45

Lat 6/g2
0 L0/a L/a K(z, a) 2K(z,a)

|z|2T5V

A1 5.9 4 12 17.20(11) 5.10(3)

A1a 5.9 4 16 40.71(15) 5.089(19)

A2 6.024 5 16 13.05(10) 4.98(4)

A3 6.137 6 18 7.32(8) 4.88(6)

A4 6.337 8 24 4.32(16) 5.12(19)

A5 6.507 10 30 2.62(17) 4.9(3)
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Numerical results for the entropy

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

a
2
 T

2

4

5

6

7

s/
T3

T=1.5 T
c

T=4.1 T
c

(s/T
3
)=32π2/45

A linear extrapolation in a2 gives

s

T 3
= 4.77 ± 0.08± ?? T = 1.5 Tc

s

T 3
= 6.30 ± 0.09± ?? T = 4.1 Tc

Compatible with previous computations, but
continuum extrapolation must be improved
[Boyd et al. 96; Namekawa et al. 01]

Lat 6/g2
0 L0/a L/a K(z, a) 2K(z,a)

|z|2T5V

A1 5.9 4 12 17.20(11) 5.10(3)

A1a 5.9 4 16 40.71(15) 5.089(19)

A2 6.024 5 16 13.05(10) 4.98(4)

A3 6.137 6 18 7.32(8) 4.88(6)

A4 6.337 8 24 4.32(16) 5.12(19)

A5 6.507 10 30 2.62(17) 4.9(3)

Lat 6/g2
0 L0/a L/a K(z, a) 2K(z,a)

|z|2T5V

B1 6.572 4 12 22.22(11) 6.58(3)

B1a 6.572 4 16 53.47(16) 6.684(20)

B2 6.747 5 16 17.11(15) 6.53(6)

B3 6.883 6 18 9.61(9) 6.40(6)

B4 7.135 8 24 5.42(17) 6.42(20)

B5 7.325 10 30 3.32(18) 6.1(3)
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Numerical results for the entropy

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

a
2
 T

2

4

5

6

7

s/
T3

T=1.5 T
c

T=4.1 T
c

T=9.2 T
c

(s/T
3
)=32π2/45

A linear extrapolation in a2 gives

s

T 3
= 4.77 ± 0.08± ?? T = 1.5 Tc

s

T 3
= 6.30 ± 0.09± ?? T = 4.1 Tc

Compatible with previous computations, but
continuum extrapolation must be improved
[Boyd et al. 96; Namekawa et al. 01]

Lat 6/g2
0 L0/a L/a K(z, a) 2K(z,a)

|z|2T5V

A1 5.9 4 12 17.20(11) 5.10(3)

A1a 5.9 4 16 40.71(15) 5.089(19)

A2 6.024 5 16 13.05(10) 4.98(4)

A3 6.137 6 18 7.32(8) 4.88(6)

A4 6.337 8 24 4.32(16) 5.12(19)

A5 6.507 10 30 2.62(17) 4.9(3)

Lat 6/g2
0 L0/a L/a K(z, a) 2K(z,a)

|z|2T5V 3

C1 7.234 4 16 57.44(25) 7.18(3)

C2 7.426 5 20 36.5(4) 7.13(8)

C3 7.584 6 24 24.7(4) 6.94(12)
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Conclusions and outlook

Correlation functions of total momentum fields can be related to derivatives of path
integrals with shifted boundary conditions

One of the applications is the computation of thermodynamic potentials, which can be
connected to the cumulants via Ward identities of EMT. The entropy, for instance, is

s = −
1

T 2
lim

V →∞

1

V

d2

dz2
ln Z({0, 0, z})

˛̨
˛
z=0

If lightest screening mass M 6= 0, leading finite-size corrections exponentially small in ML

On the lattice these formulas apply once the derivative is discretized and the continuum
limit is taken. No additive (vac. subtraction) or multiplicative UV renormalization is needed

Same WIs allow for a non-perturbative renormalization of T0k

Feasibility study very promising even with a very simple-minded (expensive) algorithm

L. Giusti – BNL May 2012 – p. 16/16



Padé	  approximants	  and	  g-‐2	  for	  the	  muon	  

Christopher	  Aubin,	  Tom	  Blum,	  Maarten	  Golterman,	  San@	  Peris	  

New	  Horizons	  for	  LaFce	  
Computa@ons	  with	  Chiral	  Fermions	  

BNL,	  May	  14-‐16,	  2012	  



Contribu@on	  from	  lowest-‐order	  hadronic	  vacuum	  polariza@on	  (HLO)	  

f(Q2) =

0.2 0.4 0.6 0.8 1.0 Q
2

0.01

0.02

0.03

0.04

0.0 0.2 0.4 0.6 0.8 1.0 Q2

0.09

0.10

0.11

0.12

0.13

Data	  for	  	  	  	  	  	  	  	  	  	  	  	  	  	  :	  ⇧(Q2)

Need	  to	  fit	  data	  
to	  compute	  
integral;	  
VMD	  introduces	  
model	  dependence	  	  

aHLO
µ = 4↵2

Z 1

0
dQ2 f(Q2)

�
⇧(0)�⇧(Q2)

�
(Lautrup,	  
Peterman,	  	  
de	  Rafael	  1971,	  
Blum	  2002)	  



Mul@-‐point	  Padé	  approximants:	  

Write	  

This	  integral	  is	  a	  S@eltjes	  func@on,	  analy@c	  everywhere	  except	  cut	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .	  	  

Theorem:	  	  Given	  	  	  	  	  	  points	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  a	  sequence	  of	  PAs	  	  can	  be	  constructed	  	  
which	  converge	  to	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  on	  any	  closed,	  bounded	  region	  of	  the	  complex	  place	  
excluding	  the	  cut,	  in	  the	  limit	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  .	  	  	  	  (Baker	  1969,	  	  Barnsley	  1973)	  	  

Construc@on:	  

with	  	  	  	  	  	  related	  to	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ,	  etc.),	  yields	  a	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  PA.	  	  	  	  	  	  	  	  	  	  	  	  	  

P (Q2
i ,�(Q

2
i ))

�(Q2)

(�1,�4m2
⇡]

P ! 1

�
⇧(0)�⇧(Q2)

�
/Q2 =

Z 1

4m2
⇡

dt
⇢(t)

t(t+Q2)
⌘ �(Q2) , ⇢(t) � 0

 i [[(P � 1)/2], [P/2]]

�(Q2) =
 0

1 +
(Q2�Q2

1) 1

1+ ...
(Q2�Q2

P�2
) P�2

1+(Q2�Q2
P�1

) P�1

 0 = �(Q2
1)�(Q2

ji+1)



Parametriza@on	  and	  strategy	  

Furthermore,	  can	  prove	  that	  (Baker,	  Barnsley)	  

with	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (posi@ve	  residues)	  and	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (all	  poles	  on	  cut),	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  for	  	  	  	  	  	  even	  .	  

Fit	  this	  form	  for	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  ;	  yields	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  PAs.	  	  	  

Compute	  

Note:	  	  	  VMD	  	  is	  same	  as	  	  	  	  	  	  	  	  	  	  	  	  	  PA	  with	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  fixed;	  	  NOT	  a	  (valid)	  PA!	  	  	  	  	  	  	  	  

⇧(Q2) = ⇧(0)�Q2

0

@a0 +

[P/2]X

n=1

an
bn +Q2

1

A

an > 0 b[P/2] > · · · > b1 > 4m2
⇡

a0 = 0 P

P = 2, 3, 4, 5 [0, 1], [1, 1], [1, 2], [2, 2]

aHLO,Q21
µ = 4↵2

Z 1 GeV2

0
dQ2 f(Q2)

�
⇧(0)�⇧(Q2)

�

[0, 1] b1 = m2
⇢



Test	  on	  MILC	  laFces	  with	  	  

• 	  	  	  Correlated:	  	  VMD	  bad,	  clear	  improvement	  with	  addi@on	  of	  parameters	  
• 	  	  	  Difficult	  to	  determine	  2nd	  pole,	  but	  	  	  	  	  	  	  	  insensi@ve	  to	  higher	  poles	  
• 	  	  	  Internal	  consistency,	  except	  uncorr.	  VMD	  (unknown	  systema@c	  error!)	  and	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  correlated	  PAs	  

aµ

a = 0.09 fm , m⇡ = 480 MeV

correlated uncorrelated

interval 0 < Q2  0.6 GeV

2
interval 0 < Q2  1 GeV

2

PA # parameters �2
/dof 10

10aHLO,Q21
µ �2

/dof 10

10aHLO,Q21
µ

VMD 2 5.86/3

⇤
363(7) 4.37/18 413(8)

[0, 1] 3 11.4/8 338(6) 3.58/17 373(37)

[1, 1] 4 7.49/7 350(8) 3.36/16 424(116)

[1, 2] 5 7.49/6 350(8) 3.35/15 443(293)

[2, 2] 6 7.49/5 350(7) 3.35/14 445(432)

⇤
interval 0 < Q2  0.35 GeV

2

uncorrelated VMD fit agrees with Aubin and Blum, 2007

1
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[1,1]	  	  corr.	  (solid)	  and	  uncorr.	  (dashed)	  	  	  	  	  	  	  [1,1]	  corr.	  (solid)	  and	  VMD	  uncorr.	  (dashed)	  

• 	  	  	  uncorrelated	  fits	  look	  beeer	  at	  small	  

• 	  	  	  also	  considered	  MILC	  laFces	  with	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  −	  similar	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  [1,1]	  corr.	  ,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  VMD	  uncorr.	  

• 	  	  	  not	  possible	  to	  decide	  which	  fit	  is	  best,	  based	  on	  current	  data	  

Q2

a = 0.06 fm , m⇡ = 220 MeV

aHLO,Q21
µ = 572(41)⇥ 1010 aHLO,Q21

µ = 646(8)⇥ 1010



0.05 0.10 0.15 0.20

-0.005

0.005

Integrand	  of	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  compared	  with	  data	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (MILC,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  )	  

⇒	  	  	  	  need	  more	  data	  at	  low	  	  	  	  	  	  	  	  with	  smaller	  errors!	  	  	  	  In	  progress…	  	  Q2

aHLO
µ /(4↵2)

a = 0.06 fm , m⇡ = 220 MeV



Conclusions	  

• 	  	  New	  method	  to	  parametrize	  hadronic	  vacuum	  polariza@on;	  
	  	  	  	  avoid	  model	  dependence	  of	  vector	  meson	  dominance.	  
	  	  	  	  Based	  on	  representa@on	  of	  vacuum	  polariza@on	  in	  terms	  of	  S@eltjes	  func@on.	  

• 	  	  Tested	  on	  two	  examples	  of	  numerical	  data	  for	  vacuum	  polariza@on.	  
	  	  	  	  Padé	  approximant	  fits	  can	  lead	  to	  larger	  sta@s@cal	  errors,	  but	  avoid	  	  
	  	  	  	  unknown	  systema@c	  error	  associated	  with	  VMD.	  

• 	  	  Method	  looks	  promising,	  but	  data	  at	  lower	  momenta	  and	  smaller	  errors	  
	  	  	  	  are	  indispensible	  (difference	  between	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  and	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  is	  about	  17%).	  	  

• 	  	  Note:	  	  long	  chiral	  extrapola@on	  –	  also	  need	  data	  with	  small	  pion	  mass!	  

aµ(VMD) aµ([1, 1])



Backup	  slide	  1:	  	  comparison	  with	  polynomial	  fits	  

• 	  	  Poly	  3,	  PA	  [1,1]	  and	  PA	  [1,2]	  correlated	  fits	  all	  good,	  not	  so	  Poly	  4.	  

• 	  	  Stability	  from	  PA	  [1,1]	  to	  PA	  [1,2],	  not	  from	  Poly	  3	  to	  Poly	  4.	  



Backup	  slide	  2:	  	  chiral	  extrapola@on	  

Assume	  VMD,	  and	  approximate	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (con@nuum)	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (laFce)	  

Define	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (Feng	  et	  al.	  2011)	  

Then	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  hence	  choose	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  

Whatever	  choice:	  	  model	  dependent!	  	  	  	  1st	  PA	  pole	  not	  equal	  to	  	  
Cannot	  avoid	  small	  pion	  masses	  (much	  smaller	  than	  300	  MeV)	  	  	  	  	  	  	  	  	  
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The many faces of gauge-fermion systems 

Renormalization group β function at 2 loops 

Nf < 8.05                                                     8 < Nf < 16.5 



The many faces of gauge-fermion systems 

Renormalization group β function at 2 loops 

Nf < 8.05                                                    

Chirally broken & confining 
 
•  QCD with 2+1 (+1) flavors 
•  Original technicolor candidates 



The many faces of gauge-fermion systems 

Renormalization group β function at 2 loops 

                                                             8 < Nf < 16.5 

Conformal 
  
•  IRFP where g0 is irrelevant 
•  universal anomalous dimension 



The many faces of gauge-fermion systems 

Renormalization group β function at 2 loops 

The gauge coupling changes slowly and the anomalous mass dimension 
remains large across an extended energy scale 
 

What we really want is walking  



Roadmap for the conformal window 

S-D type calculations 

Nc 

Nf 

•  Which models are conformal?  
•  Which  – if any - is walking?  
•  What is the anomalous mass ? 
•  S parameter?  



Roadmap for the conformal window 

S-D type calculations 

Nc 

Nf 

•  Which models are conformal?  
•  Which  – if any - is walking?  
•  What is the anomalous mass ? 
•  S parameter?  

Don’t be unpatient : QCD has a 25 year head start 

•  What is the best approach to 
study these systems? 

•    Do we understand the 
systematics? 



Strongly coupled systems can lead to unexpected phenomena:  

 
Nf=12 and 8 flavors SU(3) with staggered fermions 

–  8 flavors: most likely chirally broken 
–  12 flavors: still controversial 

Goal: study the phase diagram both at zero and at finite temperature  
          and contrast the two systems 
 
(Lattice action: it’s a good one)   

 
 

 

 A phase with novel symmetry breaking pattern 



Why Finite temperature ? 

m 

QCD like 

m 

Conformal 

¯c ∞	 as	 NT  ∞ ¯c ¯bulk as	 NT  ∞ 

confining confining 

IRFP bulk deconfined 

NT  4     8  16  32 .. NT  4     8  16  32 .. 

The scaling of βc is a good test of conformality 
                                                            (possibly) 



The phase stucture of  Nf=12  

¯c ¯bulk as	 NT  ∞ 

confining 

IRFP bulk 

NT  4   8  16  32 .. 

co
nd

en
sa

te
 

β 

m=0.005 
84,124,164 



The phase stucture of  Nf=12  

Similar transitions were observed previously by INFN/Groeningen group 
and LHC collaboration 

¯c ¯bulk as	 NT  ∞ 

confining 

IRFP bulk 

NT  4   8  16  32 .. 

co
nd

en
sa

te
 

β 

m=0.005 
84,124,164 



Phase diagram  β-m plane Nf=12  

Intermediate phase bordered by bulk 1st order transitions  



Phase diagram  β-m plane Nf=12  

Intermediate phase bordered by bulk 1st order transitions  

? 



New symmetry breaking pattern in the IM phase 

Single-site shift symmetry (S4)   of the staggered action  
 
 
 
is broken  plaquette expectation value is “striped” 

t 

x 



New symmetry breaking pattern 

Order parameter I: 
 
 
Plaquette on even & odd time slices are different – this is on the 
background gauge configuration! 
 

β = 2.6 IM phase 

β=2.7 weak coupling phase 



New symmetry breaking pattern 

S4 breaking occurs at the fermionic level:  
Order parameter –II: link difference 
 

β=2.6 IM phase 

 β=2.7 weak phase  

      +          - 
n      n+µ       n+2µ 



New symmetry breaking pattern 

–  Single-site shift symmetry is exact in the action. 
–  Both ΔP and ΔL are order parameters of S4  
–  When S4 is broken, the phase has to be separated by a “real” 

phase transition  
–  The S4 broken (      )  phase cannot go away with the volume 
–  S4 is related to taste so this could be a special taste breaking 

What are the physical properties of the S4b  phase?        



The Polyakov line 

Is it deconfining? Polyakov line is very noisy but the blocked Poly line is 
sensitive: 

Blocked Poly line is measured on RG 
blocked lattices: 

•   improved Poly line 
or 
•  Poly line on renormalized 

trajectory, after removing UV 
fluctuations  



The static potential  Confinement! 

  Static potential on 123,163 volumes (no volume dependence!) 
  shows a linear term:    r0=2.1 – 2.7, √σ =0.40 --  0.48 

β=2.6 – IM phase 

β=2.7 – weak coupling  

No comment about the weak coupling side  
from the potential – too small volume 



Chiral properties : Dirac eigenvalue spectrum 

4 different volumes, 12 eigenvalues each:  

     β=2.6 – IM phase                          β=2.7 – weak coupling phase                                       
 

Qualitatively different – quantitative description?  



Dirac eigenvalue spectrum 

•  RMT predictions require knowledge of the dynamics 
•  Simple volume scaling is more general. In the chiral limit          

                                         
 
 
       

 
 
 

-  Conformal IRFP   : ym= 1 + γ* ,  : independent of V, β 

-  Confining system : ym= 1 + γ(L) : in volumes smaller than the           
                                                     confinement scale 

ρ(λ) ~ (λ − λ0 )
α

ρ(λ)
m

n

∫ dλ = n −m
V

+Ο(1 /V 2 )

λn − λ0 ~
n − x0
V

⎛
⎝⎜

⎞
⎠⎟
1/(α+1)

, D
α +1

= ym

λ0 : soft edge  



Dirac eigenvalue spectrum 

Fit in S4b  phase (β=2.6):  
Needs soft edge λ0=0.0175  with α=0.6(1)  (RMT prediction: α=1/2)   
  Very chiral symmetric! (Even U(1)A restoring ) 

log(λn –λ0)  vs  log(n/V)  



Scaling of Dirac eigenmodes, Nf = 12, weak coupling side 

log((n-x0)/V) 

log(λn) β=3.0, 163x32, 243x48  

β=2.8, 163x32, 243x48  

Two coupling values, four volumes with 30 eigenmodes each 
 are consistent,  predict γm=0.47(2) 
Very efficient method to determine the anomalous dimension 
(we need larger volumes, other β, more eigenmodes to reduce error) 

λn ~
n − x0
V

⎛
⎝⎜

⎞
⎠⎟
ym /4



The S4b phase 

Is most likely a lattice artifact 
•  Breaks single-site translational symmetry 
•  It is confining with small correlation length 
•  It is chirally symmetric  
•  (yes, it would violate the ‘t Hooft anomaly matching in the continuum) 

    What happens at finite temperature? 



  Phase structure at finite T,  Nf=12   

NT=12, 16 transitions 
•   indistinguishable 
•   run into the S4b phase 
  
The weak coupling, m<0.03 
region  is either 
•  conformal or 
•  has NT >16  

Preliminary; more data in progress 



 Improved Polyakov line 

Poly line is difficult to measure at 
large Nt as   it decays exponentially  
 
        <P> ~ exp(- f *Nt) 
 
Smeared (HYP) or blocked Poly 
gives a better signal 

original 
HYP smeared 

Blocked +  
HYP smeared 



 S4b phase in other systems 

There are signs of the intermediate phase with other Nf=12 actions 

  
Is it unique to Nf=12? 
                                 No. 



  Phase structure with Nf=8 

The S4b phase, bordered by bulk 
 transitions, is present 
 S4b does not imply conformality  
 
 
 
But  NT=12, 16 transitions behave 
differently:  move toward g2 = 0 
as NT increases  
 
This is consistent with confinement 

Preliminary; more data in progress 



Summary & Outlook 

These systems are complicated and have strange (strong 
coupling) lattice artifacts 
Progress is steady but we need better understanding 
 
The S4b phase is present with 2 sets of staggered fermions. Could it show 
up in 2+1 flavor simulations?  



Four flavour simulations with maximally
twisted mass QCD

Karl Jansen
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for the European Twisted Mass Collaboration

• Twisted mass fermions

• Selected results for Nf = 2 + 1 + 1 flavours

• A glimpse at our next plans



• Cyprus (Nicosia)

• France (Orsay, Grenoble)

• Italy (Rome I,II,III, Trento)

• Netherlands (Groningen)

• Poland (Poznan)

• Spain (Huelva, Madrid, Valencia)

• Switzerland (Bern)

• United Kingdom (Glasgow, Liverpool)

• Germany (Berlin/Zeuthen, Bonn, Frankfurt, Hamburg)
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Collaboration performed very successful Nf = 2 research programme

Simulation results versus PDG Low energy constants

2



The ρ-meson resonance: dynamical quarks at work
(X. Feng, D. Renner, K.J.)

• usage of three Lorentz frames
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a=0.086fm
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PDG data

mπ+ = 330 MeV, a = 0.079 fm, L/a = 32 fitting z = (Mρ + i12Γρ)
2

mρ = 1033(31) MeV, Γρ = 123(43) MeV
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Natural2 next step: move to four flavours

• twisted mass: works with quark doublets

– maximal twist: automatic O(a)−improvement
– infrared cut-off due to twisted quark mass
– simplification in renormalization (fπ, 〈N |q̄q|N〉)

? ? ? need to control isospin splitting effects

• strange and charm quarks needed for physical quantities

– mesons: mstrange, mcharm, fD, fDs, η
′, ηc

– baryons: spectrum, 〈N |q̄q|N〉
– gµ − 2 ← can unambiguously compare to experimental value

– running of αstrong(µ) with four flavours
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Wilson (Frezzotti, Rossi) twisted mass QCD (Frezzotti, Grassi, Sint, Weisz)

Fermion action of twisted mass fermions

Sl =
∑
x χ̄

l
x

[
mq + 1

2γµ
[
∇µ +∇∗µ

]
− ar1

2∇∗µ∇µ + iµtmτ3γ5

]
χlx

Sh =
∑
x χ̄

h
x

[
mq + 1

2γµ
[
∇µ +∇∗µ

]
− ar1

2∇∗µ∇µiγ5τ1µσ + τ3µδ
]
χhx

• quark mass parameter mq , twisted mass parameter µtm

• strange and charm quark masses

ms = Z−1
P µσ − Z−1

S µδ

mc = Z−1
P µσ + Z−1

S µδ

• note, mq the same in Sl and Sh
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A word on flavour breaking

• isospin (flavour symmetry) violation at any a 6= 0: m±π −m0
π 6= 0

• observe large O(a2) effect in neutral pion mass

• effect visible both for Nf = 2 and Nf = 2 + 1 + 1

• theoretical understanding (Dimopoulos et.al., Phys. Rev. D81, 034509 (2010))

• χPT analysis of meson sector including pion mass splitting a2 effect
(O. Bär, Phys.Rev. D82 (2010) 094505)
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Tuning to maximal twist

Maximal twist: tune mq such that

mPCAC =
∑

x〈∂0A
a
0(x)Pa(0)〉

2
∑

x〈Pa(x)Pa(0)〉 = 0

• tuning of mq at each µtm used

• demand mPCAC . 0.1µtm

• demand ∆(mPCAC) . 0.1µtm
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Autocorrelations from gradient flow
(Deuzemann, Wenger) see also talk by Z. Fodor

• flow of the gauge field U(x, µ) according to the flow equation

∂
∂tVt(x, µ) = −g2

0{∂x,µSlattW (Vt)}Vt(x, µ)

Vt=0(x, µ) = U(x, µ)

• lattice: discrete integration scheme with finite step size ε for integration

0 2 4 6 8

t/a
2
= 0.245 n

0

0.2

0.4

0.6

0.8

1

t2
 E

(t
)

HYP smearing

gradient flow

TlSym_B3.90_L16T32_k0.160856_mu0.004_HYPvsGF, N
meas

=545

t
0

1/2
/a = 1.50

a ≈ 0.08fm mπ ≈ 300MeV

energy density:

E(t) = 2
∑

plaq Retr[1− Vt(plaq)]
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Topology and autocorrelations

• topological charge well defined on smooth configurations Vt

• use standard field theoretic definition FµνF̃µν(Vt)

0 2 4 6 8

t/a
2

0

5

10

15

20

τ
in

r

t
2
 E(t)

t d/dt(t
2
E(t))

Q
2

TlSym_B3.90_L16T32_k0.160856_mu0.004_GF, N
meas

=545

gradient flow gives largest
autocorrelation

autocorrelation from topological
susceptibility significantly smaller

? ? ? warning
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Nf = 2 + 1 + 1 light quark sector: scaling

Nf = 2 r0mPS = 0.614
Nf = 2 r0mPS = 1.100

Nf = 2 + 1 + 1 r0mPS = 0.728

r0fPS

(a/r0)
2

0.060.040.020

0.42
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0.30

0.26

Nf = 2 + 1 + 1 r0mPS = 0.614
Nf = 2 + 1 + 1 r0mPS = 0.728
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2
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Nf = 2 + 1 + 1 light quark sector: χPT fit

• basic formulae: Nf = 2 continuum χPT at NLO

m2
PS = χµ

[
1 + ξ log(χµ/Λ

2
3)
]

K2
m(L)

fPS = f0

[
1− 2ξ log(χµ/Λ

2
4)
]
Kf(L)

χµ = 2B̂0Zµµq , ξ = χµ/(2πf0)2

• finite size corrections Km(L),Kf(L)
(Gasser, Leutwyler, 1987, 1988; Colangelo, Dürr, Haefeli, 2005)

in preparation: analysis a la Colangelo, Wenger, Wu; Bär; Ueda, Aoki

• fit simultaneously to our data at all β-values

• fit includes renormalisation constant Zµ = 1/ZP
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Nf = 2 + 1 + 1 light quark sector: χPT fit

• estimate systematic effects : lattice artifacts, FSE
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Comparison of low energy constants

Nf = 2 Nf = 2 + 1 + 1
¯̀
3 3.70(27) 3.50(31)

¯̀
4 4.67(10) 4.66(33)
fπ/f0 1.076(3) 1.076(9)
B0 [MeV] 2437(120) 2638(200)

〈r2〉NLO
s [fm2] 0.710(28) 0.715(77)
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Nf = 2 + 1 + 1 adding strange quark: fit formulae

• SU(2) χPT Fit Formulae for fK and fπ:

fPS(µ`, µ`, µ`) = f0 · (1− 2 ξ`` ln ξ`` + b ξ``)

fPS(µ`, µ`, µs) = (f
(K)
0 + f

(K)
m ξss) ·

[
1− 3

4ξ`` ln ξ`` + (b
(K)
0 + b

(K)
m ξss) ξ``

]

ξXY =
m2

PS(µ`,µX,µY )

(4πf0)2

(Gasser, Leutwyler (1984); Allton et al (2008); ETMC, Blossier et al. (2010))

• correct for finite size effects using NLO χPT
(Gasser, Leutwyler (1987); Becirevic, Villadoro (2004))
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Nf = 2 + 1 + 1 light quark sector: fit results

fπ (input)

fK

fK(a = 0.060 fm)

fK(a = 0.079 fm)

fπ(a = 0.060 fm)

fπ(a = 0.079 fm)

Fit

m2
π [GeV2]

f P
S
[M

eV
]

0.250.20.150.10.050

190

180

170

160

150

140

130

120

110

• fit β = 1.95 (a = 0.079fm) and
β = 2.10 (a = 0.06fm) simultaneously

• from setting m2
PS(µ`, µs, µs) = 2m2

K −m2
π

• mπ = 135 MeV, fπ = 130.7 MeV,
mK = 497.7 MeV

preliminary fit results:

• fK/fπ = 1.224(13), fK = 160(2) MeV, ¯̀
4 = 4.78(2), |Vus| = 0.220(2)

• errors statistical only
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Nf = 2 + 1 + 1 heavy quark sector

Wilson twisted mass Dirac operator for (c, s) pair:

Dh =

(
γµ∇̃µ + µσ + µδ iγ5

(
a
2∇∗µ∇µ −mq

)

iγ5

(
a
2∇∗µ∇µ −mq

)
γµ∇̃µ + µσ − µδ

)

• mixing of c and s flavour and of parity

• Kaon is the ground state : good precision

• D meson appears as an excited state

• three independent methods:

– generalised eigenvalue problem
– multi-exponential fits
– imposing parity and flavour restoration

at finite a

• they provide consistent results for mD

• overcome mixing of flavour ; mixed action

c
s

c
O(a)O(a)

c

j = {strange, Γ = 1}
j = {strange, Γ = γ5}
j = {charm, Γ = 1}
j = {charm, Γ = γ5}

t/a

e
ig
e
n
v
e
c
t
o
r
s

|v
(
c
,γ

5
)

j
|2

20151050

1
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0.7

0.6

0.5
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0.1

0

symmetry restauration
multi-exponential

GEP

method

a
m

D

321

0.95

0.9

0.85

0.8

0.75
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Nf = 2 + 1 + 1 approaching the charm quark

• introduce Wilson twisted mass doublets in the valence sector

Dtm(µval) = D +mcrit + i µvalγ5τ
3

(Osterwalder, Seiler (1990), Pena et al. (2004); Frezzotti, Rossi (2004))

• mcrit from unitary set-up

• 4− 6 values for µval in the strange µs and the charm µc region
inversions with multi-mass solver

• matching to unitary set-up using mK and mD

• ⇒ avoid flavour breaking
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Unitary versus Osterwalder-Seiler: fK

• the unitary fK can be computed from: fK = (m` +ms)
〈0|PK|K〉
m2
K

with ms = µσ − (ZP/ZS)µδ

• similar formula for fD

• PK is the physical Kaon projecting operator

• the mixed action fK computed from: fPS =
(
µ

(1)
val + µ

(2)
val

)
|〈0|P |PS〉|

mPS sinhmPS
,

fPS(OS) mixed
fPS(OS,Mtm) unit.

(af0)
2

0.0050.0040.0030.0020.0010.000

1.70

1.65

1.60

1.55

1.50

1.45

1.40

1.35

1.30

Test for Nf = 2 situation for Nf = 2 + 1 + 1
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Decay constants, FD, FDs

●
●

●

●

0.00 0.05 0.10 0.15 0.20 0.25 0.30
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24
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26
0

28
0

mπ
2 GeV2

f D
M

eV

●
●

●

●

●

β = 1.9
β = 1.95
β = 2.1
experimental value

• quark mass dependence of fD

• input: mπ = 135 MeV, fπ = 130.7 MeV,
mK = 497.7 MeV

• all results preliminary

• results very encouraging
fDs = 250(3) MeV, fD = 204(3) MeV, fDs/fD = 1.230(6)

• very preliminary but very first results from Nf = 2 + 1 + 1 !
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The strange quark content of the nucleon
(Drach, Dinter, Frezzotti, Herdoiza, Rossi, K.J.)

• neutralino in supersymmetric models candidate for dark matter

• interaction with nucleon most strongly through the strange quark content
via the Higgs boson exchange diagram

χ χ

N N

H

spin independend cross section:

σSI ∝
∑
q

fTq
mq

; q = u, d, s, c

fTq =
〈N |mqq̄q|N〉

mN
≡ mqBq

⇒ cross section proportional to quark content; independent from quark mass

Study here: 〈N |s̄s|N〉 = mNBs; 〈N |c̄c|N〉 = mNBc
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The problem

spin independent cross section strongly dependend on
pion-nucleon sigma term ΣπN

Varying 48MeV < ΣπN < 80MeV

⇒ cross section changes by an order of magnitude

ΣπN connected to yN parameter

yN = 2Bs
Bu+Bd

;Bq = 〈N |q̄q|N〉
mN

relation: yN = 1− σ0/ΣπN

σ0 = mq〈N |ūu+ d̄d− 2s̄s|N〉 , mq = (mu +md)/2

from χPT: yN = 0.44(13) → quite large

want: a first principle, non-perturbative computation of fTs, fTc and yN
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Twisted mass fermions: special noise reduction technique
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Hopping parameter expansion

twisted mass noise reduction

• standard calculation very (too?) difficult

• using techniques for twisted mass fermions
→ can obtain a signal with reasonable statistics

• remark: calculation of dis-connected contribution to
neutral pion mass much easier
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Twisted mass fermions: strange and charm: 〈N |s̄s|N〉, 〈N |c̄c|N〉,

• charm quark content

0 2 4 6 8 10 12

0
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0
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0
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t a

R
(
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0
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0
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0
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0
.5

0
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0
.7

t a

R
(
t)

bare strange quark content error band

lattice data

band: plateau value for strange quark content

• 〈N |c̄c|N〉 < 〈N |s̄s|N〉 (note: still need mulitplication with quark mass)

• fTs = 0.011(2)(1), σ0 = 0.137(2)(3) MeV, yN = 0.065(12)(2)
(note: all results still need extrapolation to physical point)

• still ylatt
N � yXPT

N → bad news for experiments if value persists in chiral limit

• for twisted mass: no mixing effects in renormalization
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Spectral projectors: Σ and χtopo

(Giusti, Lüscher; Lüscher, Palombi; Giusti, Rossi, Testa)

• In the continum:

Σ
π = limλ→0 limm→0 limV→∞ ρ(λ,m)

ρ(λ,m) = 1
V

∑∞
k=1 〈δ(λ− λk)〉 , Σ = − limm→0 limV→∞ 〈ūu〉

• mode number ν ; average number of eigenmodes of D†mDm with λ ≤M2

ν(M,m) = V
∫ Λ

−Λ
dλρ(λ,m), Λ =

√
M2 −m2

ν(M,m) = νR(MR,mR) ; renormalization-group invariant

• ΣR ∝ ∂
∂MR

νR
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Condensate

• Spectral Projector PM to compute ν(M,m)

ν(M,mq) = 〈Tr{PM}〉

• Approximation of PM :

PM ≈ h(X)4,

X = 2M2

D
†
mDm+M2

− 1

• h(x) is an approximation to the step function θ(x) in the interval [−1, 1]

h(x) = 1
2{1− xP (x2)}

where P (x) is the polynomial which minimizes δ = maxε≤y≤1 ‖1−√yP (y)‖

• ν(M,mq) = 〈ON〉 , ON = 1
N

∑N
k=1(ηk,PMηk)

ηk sources generated randomly
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Chiral limit of scalar condensate
(Cichy, Garcia Ramos, K.J.)

β = 3.9, 163 × 32, aµ = 0.004

M2
⋆

ν
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r0
3
Σ

mq [MeV]

Nf=2+1+1: β=2.1 and β=1.95

β=2.1
β=2.1, r03Σ=0.3882(101)

β=1.95
β=1.95, r03Σ=0.3868(94)

linear behaviour of mode number chiral extrapolation of condensate

slope: Σren
spectral two lattice spacings
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Non-perturbative renormalization for Nf = 2 + 1 + 1

renormalisation factors computed from dedicated Nf = 4 flavour
simulations of Wilson fermions

• RI-MOM scheme at non zero values of both the standard
and twisted mass parameters

MR = 1
ZP

√
(ZAmPCAC)2 + µ2

q → 0

• O(a) improvement via average of simulations with +mPCAC and −mPCAC

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012
(aMsea)

2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Z_A
Z_S
Z_V(WI)
Z_P

study at β = 1.95

a = 0.08 fm, L = 1.9 fm

• linear mass dependence

• allows for chiral extrapolation
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Simulation setup for Nf = 2 + 1 + 1
Configurations available through ILDG

β a[fm] L3T/a4 mπ[MeV] therm/production

1.9 ≈ 0.085 24348 300 – 500 1500/5000
1.95 ≈ 0.075 32364 300 –500 1500/5000
2.0 ≈ 0.065 32364 300 1500/5000
2.1 ≈ 0.055 48396 230 – 500 1500/5000

• can go down to mπ ≈ 230MeV

• see only small lattice spacing scaling

• can perform rich physics programme
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D-ensembles
B-ensembles
A-ensembles

(r0m
±
π )

2

(r
0
m

0 π
)2

1.41.210.80.60.40.20

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Size of cut-off effects: pion mass splitting

• question: how fast can we reach the physical point?

• Preliminary!

• m0
π < m±π → c2 < 0

significant flavour violations

• answer: not fast enough!
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Effects of smearing for Nf = 2 + 1 + 1

action aµ` κcrit ZV [WI] ZP/ZS

0-stout 0.0060 0.163265 0.60 0.67
0.0080 0.163260
0.0080 0.163204

1-stout 0.0060 0.145511 0.73 0.77
0.0080 0.145510

4-stout 0.0015 0.136720 0.82 0.86

• κcrit → moves closer to 1/8

• Z factors → move closer to 1

• plaquette behaves much smoother:

∆[〈P 〉]
∆[(2κ)−1]

∣∣∣
κcrit

= 11.4(no stout)→ −3.4(stout)

• proof-tested that simulations at mπ/fπ = physical feasible
at lattice spacing a ≈ 0.1fm

30



Summary

• ETMC successful simulations with Nf = 2 and Nf = 2 + 1 + 1 quark flavour

– found good scaling behaviour
– could achieve accurate results for many quantities
– performed dedicated renormalization programme

• simulation at physical point difficult with present action

• developed new (maximally) twisted mass action

– reach mπ/fπ = physical at lattice spacing a ≈ 0.1fm
– m0

π ≈ m±π

• plan new simulations at physical point (+isospin + electromagnetism)
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Introduction

Detailed data in:
ñ My dissertation (2011):

http://academiccommons.columbia.edu/catalog/ac:137844
ñ Lattice conference proceedings (2008-2011).

Goal: Identify the phase (walking or conformal or ...)
ñ Hadronic observables from zero temperature simulations,

including meson propagators and masses, π decay constant,
Quark potential and string tension...

ñ Zero temperature and finite temperature
ñ DBW2 gauge with naïve staggered fermion action

Xiao-Yong Jin (RIKEN AICS) Phases of QCD with many flavors 2012 May BNL 2 / 16
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To see the whole picture
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The subject of this talk

Understand the direct implication of our data

Carefully speculate about our blind spots

Xiao-Yong Jin (RIKEN AICS) Phases of QCD with many flavors 2012 May BNL 4 / 16



Summary of data
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Zero temperature simulations
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Finite temperature
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The bulk transition
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The bulk transition

8 flavors:
ñ Bulk transition appears (strengthens) when simple plaquette

action is used instead of DBW2.

12 flavors:
ñ Volume independent -→ finite temperature effect less likely.
ñ For most channels, the difference in particle masses on the two

sides of the bulk transition become smaller and vanish when
quark mass is increased.

ñ The scalar singlet is found to be special.
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Scalar singlet meson
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The scalar singlet meson becomes lighter along the 1st order
bulk transition line approaching the 2nd order critical end point.
Critical exponent is consistent with Ginzburg-Landau theory.
Continuum limit of the lattice theory at second order critical
point is likely a free scalar field theory.
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Consequences of a light scalar singlet meson

Chiral perturbation theory is not applicable.
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Scaling of mρ2/fπ versus quark mass

8 flavors
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12 flavors
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Approaches to a constant at weak couplings

Other ratios behave the same, except for pion masses
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Scaling of mπ/fπ versus quark mass
8 flavors
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Warnings:

Backward flow of constant mπ/fπ in weaker couplings.

Misleading conclusions at large mq.
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The flow of constant physics (mπ/fπ )

A sketch of mπ/fπ surface parameterized by m and β.

Strong coupling side
mπ

fπ
m

β

mσ=0

Same as QCD except the β→∞
cannot be reached, because the
bulk transition blocks the way.

Weak coupling side
mπ

fπ
m

β

mσ=0

Comparing with 8-flavor data, we
conjecture that only when mq is
much smaller and β is much
larger than the bulk transition,
can we recover QCD behavior.
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Conjectured lines of constant physics (mπ/fπ )

Solid lines represent data.
Dashed lines are our conjecture.
Arrows denotes the direction of mπ/fπ going smaller.
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Conclusion

Our data show:
ñ 12-flavor has an additional critical point where scalar correlation

length diverges.
ñ 12-flavor show the same behavior as 8-flavor at larger mq.

We conjecture:
ñ Possible bulk transition with 8-flavor at smaller mq.
ñ For 12 flavors, much smaller mq and/or much weaker coupling

is required to move away from the additional critical point and
recover the physics at β→∞.
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introduction introduction

1. introduction

K → π decay form factors

〈π+(p′)|Vµ|K
0(p)〉 = (p + p′)µ f+(q2) + (p − p′)µ f−(q2),

f0(q
2) = f+(q2) +

q2

M2
K − M2

π

f−(q2), ξ(q2) =
f−(q2)

f+(q2)

vector form factor at q
2 =0 : f+(0) ⇔ determination of |Vus|

Mπ,sim . MK : Nf =3 : RBC/UKQCD, 2008,2010, Nf =2 : ETM, 2009

(see also MILC/FNAL/HPQCD, 2005; FNAL/MILC @ Lat’11)

Γ ⇒ |Vus|f+(0) = 0.2163(5) (FlaviaNet, 2010) ⇔ f+(0) w/ . 1 % accuracy

other information of ME : f−(0), λ′,′′
+,0 ⇔ consistency with ChPT, exp’t

T. Kaneko Kaon semileptonic decays in lattce QCD with exact chiral symmetry



introduction introduction

1. introduction

this talk

report on JLQCD’s calculation of K → π form factors in Nf =2+1 QCD

overlap quarks ⇒ straightforward comparison w/ ChPT (a=0)

all-to-all quark prop. ⇒ precise calculation of relevant meson correlators

outline

simulation method

extraction of form factors

q
2 interpolation

chiral extrapolation

T. Kaneko Kaon semileptonic decays in lattce QCD with exact chiral symmetry



simulation method simulation method

2. simulation method

configurations

Nf =2+1 QCD

Iwasaki gauge + overlap quarks + det[H2
W ]/det[H2

W +µ2] ⇒ speed up, fix Q

a= 0.1120(5)(3) fm (MΩ as input) ⇔ O((aΛQCD)2) ≈ 8 % error
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simulation method simulation method

2. simulation method

configurations

Nf =2+1 QCD

Iwasaki gauge + overlap quarks + det[H2
W ]/det[H2

W +µ2] ⇒ speed up, fix Q

a= 0.1120(5)(3) fm (MΩ as input) ⇔ O((aΛQCD)2) ≈ 8 % error

measurements of meson correlators

4 mud’s ⇒ Mπ ≃ 290 – 540 MeV; ms = 0.080 ⇔ ms,phys = 0.081

163 × 48 or 243 × 48 (depending on mud) ⇒ MπL & 4

in Q=0 sector ⇒ fixed Q effects ∝ V
−1; sub-% for M{π,K}, f{π,K}

50 conf × 50 HMC traj. for each (mud,ms)
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simulation method simulation method

2. simulation method

configurations

Nf =2+1 QCD

Iwasaki gauge + overlap quarks + det[H2
W ]/det[H2

W +µ2] ⇒ speed up, fix Q

a= 0.1120(5)(3) fm (MΩ as input) ⇔ O((aΛQCD)2) ≈ 8 % error

measurements of meson correlators

4 mud’s ⇒ Mπ ≃ 290 – 540 MeV; ms = 0.080 ⇔ ms,phys = 0.081

163 × 48 or 243 × 48 (depending on mud) ⇒ MπL & 4

in Q=0 sector ⇒ fixed Q effects ∝ V
−1; sub-% for M{π,K}, f{π,K}

50 conf × 50 HMC traj. for each (mud,ms)

w/ all-to-all propagator ⇒ 160 - 240 low-modes + noise method

twisted boundary conditions (TBCs) ⇒ q
2∈ [– 0.1 GeV2

, q
2
max]

reweighting ⇒ additional ms =0.060
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extraction of form factors ratio method statistical accruacy

3.1 ratio method

CPQ
Vµ

(p,p′) = 〈OQ(p′)Vµ,latO
†
P (p)〉 ∼

p
ZQ(p′)ZP (p)

4EP EQ ZV
〈Q(p′)|Vµ|P (p)〉e−EQ∆t′−EP ∆t

CP (p) = 〈OP (p′)O†
P (p)〉 ∼

ZP

2EP
e−EQ∆t′ (P, Q = K or π)

ratio method (Hashimoto et al., 1999)

(partially) cancel ZV , exp[−Eπ(K)∆t], fluctuation in C
PQ
Vµ

(p,p
′) and C

P (p)

R =
CKπ

V4
(0,0) CπK

V4
(0,0)

CKK
V4

(0, 0)Cππ
V4

(0,0)
→

(MK + Mπ)2

4MKMπ
f0(q2

max)2 (q2
max =(MK −Mπ)2)

R̃ =
CKπ

V4
(p, p′) CK(0) Cπ(0)

CKπ
V4

(0,0) CK(p) Cπ(p′)
→


1 +

EK(p) − Eπ(p′)

EK(p) + Eπ(p′)
ξ(q2)

ff
f+(q2)

f0(q2
max)

Rk =
CKπ

Vk
(p, p′) CKK

V4
(p, p′)

CKπ
V4

(p, p′) CKK
Vk

(p, p′)
→ a function of ξ(q2)

⇒ can construct f+(q2), f0(q
2), ξ(q2)
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extraction of form factors ratio method statistical accruacy

3.2 extraction of form factors : statistical accuracy

all-to-all propagator ⇒ can improve stat. accuracy

CKπ
Vµ

at each jackknife sample

0 20 40
jackknife sample

0.99

1.00

1.01

C
V

µK
π   /

  <
 C

V
µK

π  >

not averaged
averaged

0 20 40
0.9

1.0

1.1

µ = 4 µ = 1

Mπ ~ 450 MeV,  θ = 1.60,  θ′ = 0.00,  ∆t = ∆t′ = 8a

ξ(q2;∆t, ∆t′) vs ∆t

0 5 10 15
∆t′ / a

-0.10

-0.05

0.00

0.05

0.10

ξ(
q2 ; ∆

t, 
∆t

′)

∆t = 6a
∆t = 7a
∆t = 8a
∆t = 9a
∆t = 10a

Mπ ~ 540 MeV,  θ = 1.60,  θ′ = 0.00,  smeared-smeared

all-to-all ⇒ average over location of meson source op.

⇔ a factor of 3 (4) improvement for µ = 4 (1)

clear signal for ξ(q2) : 10 – 30% (comparison w/ exp’t (later))

f{+,0}(q
2) : statistical accuracy sub-% level

K

V

meson source op.

T. Kaneko Kaon semileptonic decays in lattce QCD with exact chiral symmetry



extraction of form factors ratio method statistical accruacy

3.2 extraction of form factors : statistical accuracy

reweighting ⇒ can impair stat. accuracy

〈CPQ
Vµ

〉m′
s

= 〈CPQ
Vµ

w̃(m′
s, ms)〉ms

w̃(m′
s, ms) =

w(m′
s, ms)

〈w(m′
s, ms)〉ms

w(m′
s, ms) = det[D(m′

s)]/ det[D(ms)]

=

QNe

k=1 λk(m′
s)

QNe

k=1 λk(ms)
×

1

Nr

NrX

r=1

e
− 1

2
ξ†

r

D(m′
s
)

D(ms)
ξr

243(163) × 48, ≈ 200 low-modes

⇒ do not need large Nr

largely increase ∆[CPQ
Vµ

]

at most × 2 for ratios

1000 2000
HMC traj

0.0

1.0

2.0

3.0

4.0

w
(m

s′;m
s) 

 / 
 <

w
(m

s′;m
s)>

N
r
 = 50

N
r
 = 20

N
r
 = 10

N
r
 = 0

Mπ ~ 540 MeV,   m
s
 ~ m

s,phys
,   m

s
′ - m

s
 ~ - 25 MeV

1000 2000

HMC traj.

0.95

1.00

1.05

C
V

4K
π  / 

<
C

V
4K

π >

@ m
s

@ m
s′

1000 2000

0.999

1.000

1.001

1.002

R
 / 

<
R

>

Mπ ~ 540 MeV,  θ = 1.60,  θ′ = 0.00

all-to-all + ratio + reweight ⇒ ∆[f+,0(q
2)] . 1.5 %, ∆[ξ(q2)] ∼ 20 – 40 %
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q
2 -dependence q

2 dependence

4. q2-dependence
f0(q

2) vs q
2

-0.10 -0.05 0.00

q
2
  [GeV

2
]

0.95

1.00

f 0(q
2 )

@ q
2

max

q
2
 < q

2

max
linear
quadratic
free-pole
interpolated to q

Mπ ~ 540 MeV,   m
s
 ~ m

s,phys

-0.10 -0.05 0.00

q
2
  [GeV

2
]

0.95

1.00

f 0(q
2 )

@ q
2

max

q
2
 < q

2

max
linear
quadratic
free-pole

q
2
 = 0

Mπ ~ 540 MeV,   m
s
 ~ (3/4) m

s,phys

reweighting ⇒ slightly larger error

small curvature in simulated region of q
2

⇔ Mpole =1.2 – 1.3 GeV @ mq,phys (PDG, 2010) ⇒ q
4
/M

4
pole . 0.6%

well described by any of

f0(q2) = f0(0)(1 + a1q2), f0(0)(1 + a1q2 + a2q4),
f0(0)

1 − q2/M2
pole
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q
2 -dependence q

2 dependence

4. q2-dependence

f0(q
2) vs q

2

-0.10 -0.05 0.00 0.05

q
2
  [GeV

2
]

0.90

0.95

1.00

1.05

f 0(q
2 )

@ q
2

max

q
2
 < q

2

max
linear
quadratic
free-pole
interpolated to q

16
3

x 48

Mπ ~ 290 MeV,  24
3

x 48

fit results for f+(0)

0.96 0.97 0.98
f
+
(0) = f

0
(0)

Mπ ~ 290 MeV

linear fit to  f
0

quadratic fit to  f
0

pole fit to  f
0

linear fit to  f
+

quadratic fit to  f
+

pole fit to  f
+

K*-pole + linear fit to  f
+

f+(0) (= f0(0)), df+,0(0)/dq
2|q2=0 : stable against choice of fit form

small finite volume effects ⇔ lattice boundaries + fixed Q

163×48 ⇔ 243×48 : 0.4 – 0.7% (. 2.2-2.5σ) ⇒ even smaller on 243 × 48 (?)

this talk : quadratic fit ⇒ f+(0), df+(q2)/dq
2|q2=0
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chiral fit f+(0) 〈r
2〉Kπ

V
ξ(0)

5.1 chiral fit : f+(0)

chiral expansions (cf. JLQCD, 2008)

f+(0) = 1 + f2 + f4 + · · · = 1 + f2 + ∆f

xπ(K) ≡ M2
π(K)

/(4πF0)2 (“x-expansion”)

small F0 =52.5(5.1) MeV ≪ Fπ ⇒ enhanced chiral corrections O2n = (Mπ/F0)2n

ξπ(K) ≡ M2
π(K)

/(4πFπ)2 (“ξ-expansion”)

better convergence for M{π,K}, F{π,K} (JLQCD, 2008 (Nf =2) ; 2009 (Nf =2 + 1))

T. Kaneko Kaon semileptonic decays in lattce QCD with exact chiral symmetry



chiral fit f+(0) 〈r
2〉Kπ

V
ξ(0)

5.1 chiral fit : f+(0)

chiral expansions (cf. JLQCD, 2008)

f+(0) = 1 + f2 + f4 + · · · = 1 + f2 + ∆f

xπ(K) ≡ M2
π(K)

/(4πF0)2 (“x-expansion”)

small F0 =52.5(5.1) MeV ≪ Fπ ⇒ enhanced chiral corrections O2n = (Mπ/F0)2n

ξπ(K) ≡ M2
π(K)

/(4πFπ)2 (“ξ-expansion”)

better convergence for M{π,K}, F{π,K} (JLQCD, 2008 (Nf =2) ; 2009 (Nf =2 + 1))

fitting w/ ξ-expansion

NLO (Gasser-Leutwyler, 1985)

Ademollo-Gatto ⇒ f2(Fπ , M{π,K,η})

NNLO and higher orders
(Post-Schilcher, 2001; Bijnens-Talavera, 2003)

∆f(Fπ, {Li}, {Ci}, M{π,K,η})

modeling ∆f (as in previous studies)
0 0.1 0.2 0.3 0.4

Mπ
2
 [GeV

2
]

-2

-1

0

∆f
 / 

(M
K

2  -
 M

π2 )2

c
4
 + c

6,πξπ

c
4
 + c

4,π′ln[ξπ]

c
4
 + c

6,πξπ + c
6,K

ξ
K

∆f = (M2
K − M

2
π)2( c4 + c

′
4 ln[ξπ], c

′′
4 ln2[ξπ ], c6,πξπ, c6,KξK)

T. Kaneko Kaon semileptonic decays in lattce QCD with exact chiral symmetry



chiral fit f+(0) 〈r
2〉Kπ

V
ξ(0)

5.1 chiral fit : f+(0)

0.0 0.1 0.2 0.3 0.4

Mπ
2
 [GeV

2
]

0.94

0.96

0.98

1.00

f +
(0

)

m
s
 = 0.080 ~ m

s,phys

m
s
 = 0.060

NLO SU(3) ChPT +  (N)NNLO anly.

f
2
  (m

s
 = 0.080)

RBC/UKQCD, 2008; 2010 (N
f
 = 2+1)

ETM, 2009 (N
f
=2)

ξ - expansionξ - expansion fit results

test parameterizations of ∆f

c4 + c6,π ξπ ⇒ central value

c4

c4 + c6,π ξπ + c6,K ξK

c4 + c′4,π ln[ξπ] (ill-determined cX )

fit excluding largest mud

assume O((aΛ)2) error in f2 + ∆f

f+(0) = 0.953(6)stat

(
+4
−9

)
chiral

(4)a6=0
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chiral fit f+(0) 〈r
2〉Kπ

V
ξ(0)

5.1 chiral fit : f+(0)

0.0 0.1 0.2 0.3 0.4

Mπ
2
 [GeV

2
]

0.94

0.96

0.98

1.00

f +
(0

)

m
s
 = 0.080 ~ m

s,phys

m
s
 = 0.060

NLO SU(3) ChPT +  (N)NNLO anly.

f
2
  (m

s
 = 0.080)

RBC/UKQCD, 2008; 2010 (N
f
 = 2+1)

ETM, 2009 (N
f
=2)

ξ - expansionξ - expansion fit results

test parameterizations of ∆f

c4 + c6,π ξπ ⇒ central value

c4

c4 + c6,π ξπ + c6,K ξK

c4 + c′4,π ln[ξπ] (ill-determined cX )

fit excluding largest mud

assume O((aΛ)2) error in f2 + ∆f

f+(0) = 0.953(6)stat

(
+4
−9

)
chiral

(4)a6=0

CKM unitarity

|Vus|f+(0) = 0.2163(5) (FlaviaNet, 2010) ⇒ |Vus| = 0.2270(+20/−27)

|Vud| = 0.9743(2), |Vub|∼10−3 (ICHEP’10)

∆CKM = |Vud|
2 + |Vus|

2 + |Vub|
2 − 1 = 0.0007(+9/−13)
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chiral fit f+(0) 〈r
2〉Kπ

V
ξ(0)

5.2 chiral fit : 〈r2〉Kπ
V

slope of f+(q2)

f+(q2) = f+(0)
˘
1 + (1/6)〈r2〉Kπ

V q2 + · · ·
¯

SU(3) NLO ChPT (Gasser-Leutwyler, 1985) + NNLO analy., ξ-expansion,

〈r2〉Kπ
V = 12Lr

9/F 2
π − (1/F 2

π ) ”logs” + cπξπ + cKξK

0.0 0.1 0.2 0.3

Mπ
2
 [GeV

2
]

0.10

0.20

0.30

0.40

<
r2 >

K
π V

  [
fm

2 ]

m
s
 ~ 0.080 ~ m

s,phys

m
s
 ~ 0.060

PDG 2010
NLO + NNLO analytic
NLO 

significant NNLO @ mud(s),sim

⇒ milder mud-dependence

⇔ 〈r2〉πV , 〈r2〉KV (JLQCD, Nf = 2, 3)

Lr
9(Mρ) : consistent w/ pheno.

Lr
9 = 6.2(0.5)(2.7) × 10−3

pheno. : 5.91(4) × 10−3

(Bijnens, 2007, ξ-expansion)

〈r2〉Kπ
V : consistent w/ exp’t
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chiral fit f+(0) 〈r
2〉Kπ

V
ξ(0)

5.3 chiral fit : ξ(0) = f−(0)/f+(0)

ξ(q2) vs q
2

-0.10 -0.05 0.00

q
2
  [GeV

2
]

-0.06

-0.04

-0.02

ξ(
q2 )

linear

Mπ ~ 540 MeV

ξ(0) vs M
2
K − M

2
π

0.0 0.1 0.2

M
K

2
-Mπ

2
 [GeV

2
]

-0.15

-0.10

-0.05

0.00

ξ(
0)

PFG, 2004

mild q
2 dependence w/ our statistical accuracy

cf . f−,analy(q
2) = (M2

K − M2
π) (4Lr

5/F 2
π − 2Lr

9/F 2
π ) (Bijnens-Talavera 2003)

(for simplicity) fit form linear in (M2
K − M

2
π) : ξ(0) = c0 + c1(M2

K − M2
π)

vanish in SU(3) limit as expected : c0 =−0.0017(9)

consistent w/ experiment : ξ(0)=−0.125(23) (PDG 2004, K
+
l3

)

one-loop chiral log.s (and two-loops?) should be included (Bijnens-Talavera 2003)
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summary summary

6. summary

kaon semileptonic form factors in Nf =2 + 1 QCD with overlap quarks

techniques

all-to-all propagators ⇒ precise determination of f+,0(q2)

TBCs ⇒ precise determination of f+(0), ξ(0), 〈r2〉Kπ
V,S

reweighting ⇒ additional ms

chiral fits

f+(0) = 0.953(6)stat(
+4
−9)chiral(4)a6=0 , |Vus| = 0.2270(+17

−26),

∆CKM = |Vud|
2 + |Vus|2 + |Vub|

2 − 1 = 7 (+9
−13) × 10−4

〈r2〉Kπ
V , ξ(0) : reasonably consistent w/ exp’t

future directions

further refinements ⇔ more rigorous treatment of NNLO ⇔ overlap quarks

π, K EM form factors ⇔ test of ChPT

D, B meson decays ⇔ flavor physics
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appendix F0

7.1 chiral fit : f+(0)

F0

phenomenological estimates
(Bijnens @ Lattice’07; µ=0.77 GeV)

103Lr
4 ≡ 0 ≡ 0.5 ≡ 0.2

103Lr
6 ≡ 0 ≡ 0.1 ≡ 0

F0[MeV] 87.7 70.4 80.4

JLQCD’s analysis (Noaki @ Lattice’10)

NNLO fit to M{π,K}, F{π,K}

chiral expansion w/ M2
π/F 2

π

instead of M2
π/F0

⇒ better convergence

single lattice spacing ∼ 0.11 fm

F0 =52.5(5.1) MeV

0.0 0.2 0.4 0.6

Mπ
2
 [GeV

2
]

0.05

0.10

0.15

F
π,  

F
K
  [

G
eV

]

F (m
ud

 = m
s
)

Fπ,  m
s
 ~ m

s,phys

Fπ,  m
s
 ~ (5/4) m

s,phys

F
K
,  m

s
 ~ m

s,phys

F
K
,  m

s
 ~ (5/4) m

s,phys

F
0
 = 87.7 MeV

F
0
 = 70.4 MeV

small F0 ⇒ enhance chiral corrections : NLO ∝ 1/F
2
0 ; NNLO ∝ 1/F

4
0
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Motivation



  

              Decays
 Direct CP-violation first observed in               decays.

 Two types of decay:

with amplitude

with amplitude

 Strong interactions very important – origin of the so-called  
                  rule: preference to decay to            final state. 
Mechanism for this is not yet understood.

 Direct CP-violation:

where

and     are strong rescattering phase shifts.  



  

                 Decays on the Lattice.

 Direct calculation of               decays essential to 
understanding                   rule and in the search for BSM 
physics.

 Lattice computation of realistic decays has only recently 
become possible.

 RBC & UKQCD recently published (arXiv:1111.1699) 
calculation of                  decay using:

 2+1f domain wall fermions on a                         lattice with           
 

 Near physical pions:

 Energy conserving decays

 Determined           and          .



  

                 Decays on the Lattice.

 Combining results of                  calculation with 
experimental value for       , we obtained first value for         

 Calculation of       from first principles is much more 
difficult. 



  

Challenges



  

Forming the       Propagator

      state has vacuum quantum numbers, hence there are 
disconnected diagrams:

 Need large statistics and many source positions (or 
A2A/AMA propagators) to resolve.

 With Blue Gene/Q resources we can now perform such 
calculations with large enough physical volumes.



  

 Best method is to use a stationary kaon and pions moving 
with equal momentum in opposite directions.

 This is an excited state of the      system – normally require 
very large statistics for decent signal.

 Instead impose antiperiodic BCs on d-quark propagator.     
     gains momentum        , but for     the p's cancel.

 This breaks isospin symmetry! However for                   we 
can use Wigner-Eckart theorem and isospin to relate           
                                          to                                           .

 As            is only charge-2 final state (q-conservation still 
true), isospin breaking becomes unimportant as this state 
cannot mix with           states.

 Note: In practise we needed APBC in 2 dirs for physical 
kinematics.

Physical Kinematics



  

 For                  the Wigner-Eckart trick cannot be used.

 Isospin-breaking BCs would allow mixing between         
and           final states. Separation would be difficult.

 Need to apply BCs that commute with isospin.

 Also, for                   the vacuum plays a role, so the BCs 
must be applied to both the valence and sea quarks.

Physical Kinematics



  

 G-parity is a charge conjugation followed by a 180 degree 
isospin rotation about the y-axis:

 

 At the quark level:

 G-parity commutes with isospin.

 Pions are all eigenstates with e-val -1, hence G-parity BCs 
make pion wavefunctions antiperiodic, with minimum 
momentum        .    

G-Parity Boundary Conditions

where



  

G-Parity Implementation



  

Gauge Field Boundary Conditions

  -field becomes         across the boundary. Consider a 
bilinear on the boundary under a gauge transformation     :

 Link must transform as

 Link parallel to boundary on on other side              must 
then transform as:



 Gauge fields therefore obey complex-conjugate BCs.



  

The Two-Flavor Method

 Two fermion fields on each 
site indexed by flavor index:

 BCs are:

 Periodic BCs in other dirs.

 Single U-field shared by both 
flavors, with complex conj 
BCs.

 Dirac op for        uses      . 



  

The One-Flavor Method
 Obtain equivalent formulation by unwrapping flavor indices 

onto two halves of doubled lattice:

 Antiperiodic boundary conditions in G-parity direction.

    -field on first half and      -field on second half.



  

Choosing an Approach
 One flavor setup is much easier to implement. 

 However recall that we needed APBC in 2 directions for 
physical kinematics in                  calculation.

 G-parity in >1 dir using one-flavor method requires doubling the 
lattice again, which is highly inefficient.

 A second approach requires non-nearest neighbour 
communication:

 Also inefficient 
depending on machine 
architecture.

 Choose to implement 
two-flavor method.



  

G-Parity Contractions



  

Unusual Contractions
 Flavor mixing at boundary allows contraction of up and 

down fields:

 Interpret as boundary creating/destroying flavor (violating 
baryon number):

 Also have     -hermiticity:



  

Pion Correlation Functions

     correlation function

 Now has two contractions:



  

Results: Pion Correlator

 Generated an                        DWF quenched ensemble.

 ~150 configs (20 MD tu's sep) with G-parity in 0,1,2,3 dirs.

 Coulomb-gauge fixed wall source propagators.



  

Results: Pion Dispersion Relation

 Deviations from continuum disp. reln. expected on lattice. 
e.g. free-field: 



  

The Strange Quark



  

Kaons
               calculation needs stationary     .

                       not a G-parity eigenstate.

 Need an eigenstate with e-val +1 for periodic BCs and 
hence                 .

 Introduce 'strange isospin' (   ): s-quark in doublet

 A neutral kaon-like state:

is an eigenstate of 'modified G-parity':                               
with e-val +1.

 Need factor of 2 in decay calc as only 1/2 of components 
of initial kaon couple to      .   



  

Locality

 Theory has one too many flavors. Must take square-root of 
       determinant in evolution to revert to 3 flavors.

 Determinant becomes non-local.

 Non-locality is however only a boundary effect that 
vanishes as              . With sufficiently large volumes the 
effect should be minimal.



  

Charged Kaon Correlator

      analogue:  

 2-point function has 4 contractions:

 If we make the masses of the           and          doublets the 
same this reduces to:

 This is just twice the      correlation function but with the 
opposite sign between the 2 contractions.

 Periodicity of spatial dependence appears to arise due to 
some cancellation between the two contractions.



  

Results: Degenerate         
Dispersion Relation



  

Conclusions and Outlook



  

Conclusions and Outlook
 G-parity boundary conditions look to be very promising for 

realising                                  decays with physical 
kinematics.

 Direct calculation of       is essential for understanding         
                 rule and in the search for BSM physics.

 Coding two-flavor method is challenging but significant 
progress has been made.

 Aim to dedicate significant BlueGene/Q resources towards 
generating                          DWF Iwasaki+DSDR 
ensembles with G-parity BCs and physical pions.
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1. GPU computation for HPC 

- GPGPU: General Purpose computation using GPU. 

- CUDA : C extension(API) for GPGPU by nVIDIA 

- Open CL : Standard C extension for GPGPU 

2. Conjugate Gradient algorithm 

Iterative method for solving linear algebraic equations :  b = Ax 

3. CG implementation on CUDA  

Introduction 



Why use the GPU ? 

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012 

1. If money is not a problem~? 

- Just buy a good super computer 

High performance computing 

 

                                   IBM BlueGene Q Super computer 



Why use the GPU ? 

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012 

2. Physicist in Korea? 

- No money.  

- Find alternative way 

- GPU Supercomputing ! 
- Cost & energy effective 

- Hard to develop 

High performance computing 
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 David 1, 2 GPU cluster 

- Intel core i7 920 , 32 node 

- 32 x 2 x GTX 480 GPUs 

- 20Gbps infiniband network 

- Theoretical performance 

SP : 1.34 TFLOPS / GPU 

DP : 168 GFLOPS / GPU 

Bandwidth : 177.4 GB / sec / GPU 

 David 3 GPU cluster 

- Intel core i7 950 , 8 node 

- 8 x 2 x GTX 590 GPUs 

- 40Gbps infiniband network 

Machine Environment in SNU 

David Cluster 
64x GTX 480 GPUs + 16x GTX 590 GPUs 

20Gb 32nodes + 40Gb 8 nodes Infiniband 



CG Algorithm 

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012 

Update 
process 

r : residual vector 
d : directional vector 
ε : tolerance 
Ax(or Ad): Dirac operation 

Initial Condition 

• Conjugate gradient operation 

for (i = 0; i < Ndim and δnew > ε2δ0; i++){ 
 Tmp = Ad 
 α = δnew / d†Tmp 
 r = r - αTmp 
 δold = δnew  ,       δnew = r†r 
 x = x + αd 
 β = δnew / δold 
 d = r + βd   
} 

r = b - Ax 
d = r  
δnew = r†r  
δ0 = δnew 



Staggered Dirac Operator 
2. Dirac operation  

 Dirac equation h = Aχ  ;      A ≡ −𝐷2 + 𝑚2 

𝐷𝑥,𝑦 = 𝑈µ 𝑥 δ𝑦,𝑥+µ − 𝑈µ 𝑥 − µ δ𝑦,𝑥−µ   

⇒   D χ(x) = Σ Uµ(x)χ(x+μ) - Uµ(x-μ)χ(x-μ) 

 

 

 6 [χ(x)] + 8 x 6 [χ(x±μ)] + 8 x 18 [Uµ(x)] = 198 : 792 bytes(SP), 1584 bytes(DP) 

 Uµ(x)Χ(x+μ) part has 72 floating point calculations  

→ 8 x 72 = 576 floating point calculations per site 

 For 28^3 x 96 lattice, there are 106 of lattice even(or odd) sites  

→ 0.61 Giga floating point calculations (Total 1 CG iteration = 0.624 x 109 ) 

→ 1.55 Giga bytes(DP) of data transfer : Memory IO is major bottle neck !  

𝑥ʺ1
𝑥ʺ2
𝑥ʺ3

 
𝑥𝑥𝑥
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C & CUDA Code Comparison  

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012 

... 
for(x = 0;x < Nx ;x++) 
for(y = 0;y < Ny ;y++) 
for(z = 0;z < Nz ;z++) 
for(t = 0;t < Nt ;t++) 
{ 
   for( μ = 0; μ < 4 ; μ++) 
   { 
      ... 
      if( cur_l[mu] == nx[mu]-1 ) 
         ... 
      else 
         ... 
      uDotXPlus(sol, U, src); 
      ... 
      uDagDotXMinus(sol, U, src); 
      ... 
   } 
} 

CPU code(CPS Lib.) CUDA code 
... 
position = blockIdx.x*blockDim.x+ 
   threadIdx.x; 
Get_location(cur_l, position); 
... 
for( μ= 0; μ < 4; μ++) 
{ 
   ... 
   if( cur_l[mu] == nx[mu]-1 ) 
      ... 
   else 
      ... 
   uDotXPlus(sol, U, src); 
   ... 
   uDagDotXMinus(sol, U, src); 
   ... 
}  

 
 

 Initial performance is  
0.97 GFLOPS per 1 GPU(DP).  

 GPU is only twice faster than 
CPU code (0.46GFLOPS, DP). 

_ 



CUDA Optimization(1) 
1. Coalesced memory access 

2. Using fast on-chip memory(register & shared memory) 

- Increase data reusability 

3. Adjust the code for CUDA architecture 

- Higher CUDA occupancy 

- Reduce the branch code 

4. Data compression 

- SU(3) data reconstruction(8, 10, 12 parameter) 

5. Using mixed precision  

- Load balancing between single precision and double precision calculation 

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012 



CUDA Optimization(2) 

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012 

 Coalesced Memory Access 
 
 
 
 
 
 
 

- 64 bit memory access channel 
- Multiple data accesses by Warp(32 threads)  

 Using Fast On-chip Memory ( register & shared memory ) 
 
 
 

- Output vector is accessed 6 times  
- Input vectors are accessed 2 times  
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CUDA Optimization(3) 
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 Data Reconstruction ( Data Compression ) 

- In most application, The performance of GPU application is bounded to 

memory bandwidth 

- Need to load balancing between calculation and data accessing 

- Data has SU(3) symmetry, so this property can be used for data 

compression  

- 8, 10, 12 parameter SU(3) reconstructions 

- Each method needs different optimization 

- 10 parameter method is chosen to production 
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CUDA Optimization(4) 
 Using Mixed Precision 

- Performance gap between Single Precision and Double Precision in GPU 

- Tesla : DP / SP = 1/2,     Geforce : DP / SP = 1/8, 1/12 or 1/24 ! 

- To retrieve this performance discrepancy, mixed precision method can be 

used 

- The main idea of iterative refinement is using two types of iterative 

loops to get the true solution value.  

- At first, by using the single precision iteration, we can approach fast 

to the roughly estimated solution 

- Next, double precision or more precise iteration can be used to get 

the more accurate solution 

 



MPI Communication 
 Practical multi GPU performance 

- Network IO ( include PCI-E bus IO) : bottle-neck 

- MPI(mvapich) is used for multi GPU implementing 
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Lattice data 
at each node 

… … 

Each node collects  
boundary data 
on GPU Memory. 

Download GPU data on host memory 

cudaMemcpy(DeviceToHost) 

MPI data transfer 
Data send and receive 
are done concurrently 

by 4 direction 

CPU Mem 

Upload the 
transferred Data  
from host to  
device 

GPU 



Communication Optimization(1) 
1. Reduce the size of surface data 

 

2. Reduce the unnecessary data transfer 
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CPU Mem 

Lattice Data then 

MPI Comm. 

Lattice data 
at each node 

Both data are in 
the same GPU 
memory space 

No need to be 
copied or 
transferred  



Communication Optimization(2) 
3. Use GPU direct technology 
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GPU direct 2.0 
Key features 

- GPU direct 1.0 

- GPU direct Access 

Possible only in Tesla GPU 

- GPU direct Transfer 

is now implementing 

- It may give ~20%  

enhancement on network 

GPU1 GPU2 

Node1 

GPU1 GPU2 

GPU direct 1.0 

GPU direct 2.0 Node2 



Performance (1) 
 Total CG Performance(exclude network, used 4 GPU, 2896 

lattice) 

 Used GTX 480 : bandwidth = 118GBytes/sec (measured),  

SP FLOPS = 1344 GF (ideal) ,  DP FLOPS = 168 GF (ideal) 

 For 1 Dirac operation, 

In double precision, it takes 2 x 2.77 ms 
→  576 x 28 x 28 x 28 x 96 /4 /2 / 0.00277 

 = 55 GFLOPS 

In single precision, it takes 2 x 1.04 ms 
→  576 x 28 x 28 x 28 x 96 /4 /2 / 0.00104 

 = 145 GFLOPS 

 Total mixed iteration = 30468(SP) + 52(DP) 

Data loading 
2.0ms, measured 

GPU calc.  
(1.6ms, ideal) 

Double Precision 
Total 2.77ms (measured) 

Data loading 
1.0ms,measured 

Single Precision 
Total 1.04ms (measured) 

GPU calc.  
(0.2ms, ideal) 

Enhanced 
   166%  

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012 



Performance (2) 
 Time table of total sequence : For 1 D χ(x) operation, 
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GTX 480, 590  
 Optimized Result 

 Double 
Precision 

(ms) 

Single 
Precision 

(ms) 

GPU calculation time 2.77 1.04 

boundary data collect 0.5 0.38 

Memcpy GPU to CPU 1.3 0.25 

MPI communication 2.1 0.6 

Memcpy CPU to GPU 1.3 0.26 

Total Comm. time ~5.5 ~1.5 

Total time ~8.3 2.6 

GFLOPS(measured) 18.8 44 



HISQ action 
 We are also implemented HISQ action to our CG invertor 

- by Boram Yoon(in SNU)  

 In single precision, for 1 Dirac operation, it takes 2 x 1.98 ms 

- 2 x 576 x 28 x 28 x 28 x 96 /6 /2 / 0.00198 = 102 GFLOPS 

- Most of times are also used for data loading  

 Include network comm., real performance is 18.2GFLOPS 

- Boundary data size is doubled! 

- Optimization is still in progress 
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Summary 
 CUDA version of CG invertor is successfully implemented on CPS 

library 

 For better performance, many optimization method were applied 

 Network communication can be optimized a little bit more 

 In mixed precision, CUDA version of staggered CG invertor shows 

44 GFLOPS / GPU of performance 

 We are also preparing HISQ CG invertor 

Hyung-Jin Kim, New Horizons for Lattice Gauge Theory Computations at BNL 2012 
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1+1+1 Flavor QCD+QED Simulation  
at the Physical Point	

Y.Kuramashi (U. of Tsukuba/RIKEN AICS)  
for PACS-CS Collaboration 
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　　 §1. Introduction 
　　　§2. Previous works 
　　　§3. Method  
　　　§4. Parameters and solver  
　　　§5. Results 
       §6. Summary 
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§1. Introduction	

Isospin symmetry breaking 

・ Quark mass difference: 
             mu≠md  

・ Electric charge difference 
　 ephQu≠ephQd, eph

2=4π/137          	

Mass splittings among 
isospin multiplets 

mπ0−mπ±, mK0-mK±, mn−mp 	

1+1+1 flavor QCD+QED simulation is a straightforward way 

                   isospin multiplets ⇔ u,d,s quark masses  
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§2. Previous works	

Group	 Ref	 Action	

Duncan et al. PRL76(1996)3896	 qQED+qQCD Wilson 

Blum et al.	 PRD76(2007)114508	 qQED+Nf=2 QCD DW	

Blum et al. 	 PRD82(2010)094508	 qQED+Nf=2+1 QCD DW	

MILC Lat08,Lat10	 qQED+Nf=2+1 QCD Stag	

BMW	 Lat10	 qQED+Nf=2+1 QCD Clover	

Duncan et al.	 PRD71(2005)094509	 Test of RW for fQED DW 

Ishikawa et al.	 arXiv:1202.6018	
fQED+Nf=2+1 QCD DW 
RW for fQED 
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§3. Method	

Reweighting from Nf=2+1 QCD to Nf=1+1+1 QCD+QED 

with (κu*,κd*,κs*) hopping parameters at the physical point 
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Evaluation of det[Wuds[U]]	

Introduce a complex bosonic field η 

Given a set of ηi (i=1,…,Nη) with Gaussian distribution 
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Reduction of fluctuations in stochastic evaluation  	

・Determinant breakup                       Hasenfratz et al.,PRD78(2008)014515 
        divide the reweighting path (e=0; κud,κs) ⇒ (e=eph; κu*,κd*,κs*)  
        in the parameter space into NB subintervals 

・Combined reweighting factor                
                                                              explained in next slides 
・Averaged photon field 
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Combined reweighting factor	

・Combined reweighting factor for u,d,s quarks with a single set of noise 

                         det[Wuds] rather than det[Wu]×det[Wd]×det[Ws]        

        Leading contribution of O(e) is partially cancelled due to Qu+Qd+Qs=0 

Odd part is extracted  
from ±e calculations	

Ishikawa et al., arXiv:1202.6018	
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Averaged photon field (1)	

・generate photon field bµ on 643×128 lattice (⇔ 323×64 QCD lattice)  
                                     with non-compact pure gauge action 

      c1=−0.646 is chosen such that	

N	 n	 n+µ/2	
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Averaged photon field (2)	

・averaged photon fields over independent paths  
                inside the 24 hypercube on the QED lattice 

・construct U(1) link variable in terms of the averaged photon field 
・numerically checked that the averaged and conventional photon fields give 

consistent results for mPS0-mPS±  

path 1	

path 2	

path 3	
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§4. Parameters and solver	

・Configuration parameters                         PACS-CS,PRD81(2010)074503 
        Nf=2+1 flavor QCD near the physical point        
        NP O(a)-improved Wilson-clover quark and Iwasaki gauge action 
        β=1.9, 323×64, a〜0.1fm, (κud,κs)=(0.137785,0.13660), 2000 MD time 

・Reweighting parameters 
        physical point: (κu*,κd*,κs*)=(0.13787014, 0.13779700,0.13669510) 
                                determined from π+,K+,K0,Ω− masses  
        eph

2=4π/137 
        NB=426, Nη=12 for each piece of divided determinant 

・Modified block BiCGStab                     Nakamura et al.,CPC183(2012)34  
        quark matrix inversions for Nη=12 noises 
        a factor of 3〜4 cost reduction compared with non-block solvers                
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Modified block BiCGStab (1)	

A solver algorithm for linear eqs with multiple right-hand sides 
                       Dx(i)=b(i) (i=1,…,L) ⇒ DX=B	

Basic idea: blocked version searches the solution vectors  
                   with the enlarged Krylov subspace 	
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Modified block BiCGStab (2)	

a representative case	

Nf=2+1 QCD, 323×64, a〜0.1fm, 
(κud,κs)=(0.137785,0.13660), point source	
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Modified block BiCGStab (3)	

T(gain) > NM(gain) is thanks to effective usage of cache 

Performance test averaged over 10 configs 
Dx(i)=b(i) (i=1,…,12) 	
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§5. Results 	

Normalized by <det[Wuds]>  

Configuration dependence of reweighting factor 
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Effective masses for π+,K+,K0,Ω−   	

Smear-local propagators, Nη=12 
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Nη dependence of hadron mass ratios   	

plateau close to the experimental value for Nη≳4  
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Ratio of K0 to K+ propagators   	

Fit result 4.54(1.09) MeV is consistent with exp value 3.937(28) MeV 

Exp value for K0-K+ mass diff	

much smaller than 1	
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Quark masses with NP renormalization factor  	

・NP renormalization factor with Schrödinger functional scheme 
            PACS-CS, JHEP1008(2010)101     
                              PRD81(2010)074503 [2+1f QCD (1)]  
                              PRD79(2009)034503 [2+1f QCD (2)] 
・neglect QED corrections to the renormalization factor      
・physical inputs: mπ+, mK0, mK+, mΩ−   
・MS-bar scheme at µ=2GeV 

・possible QED finite size effects: −13.50% for u, +2.48% for d, −0.07% for s 
                                                      Blum et al., PRD82(2010)094508	

This work	 2+1f QCD (1)	 2+1f QCD (2)	
mu [MeV]	 2.57(26)(07)	
md [MeV]	 3.68(29)(10)	
ms [MeV]	 83.60(58)(2.23)	 86.7(2.3)	 87.7(3.1)	
mud [MeV]	 3.12(24)(08)	 2.78(27)	 3.05(12)	
mu/md	 0.698(51)	
ms/mud	 26.8(2.0)	 31.2(2.7)	 28.78(40)	
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§6. Summary 	

・1+1+1 flavor QCD+QED simulation at the physical point 

・Dynamical quark effects in QED and u-d quark mass difference are 
incorporated by reweighting technique      

・u,d,s quark masses are determined with mπ+, mK0, mK+, mΩ− as physical 
inputs   

・Direct investigation of finite size effects due to QED is left as a future work 
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The Composite Higgs Mechanism 
and the Conformal Window

USQCD BSM 

1

Lattice Higgs Collaboration  (LHC)

with Zoltan Fodor, Kieran Holland, Daniel Nogradi, 
Chris Schroeder, Chik Him Wong



Outline

  
- LHC Higgs search and BSM implications
  focus on SU(3) fermion representation with two flavors

- Two RG based strategies

- New results on the Nf=2 sextet model in the SU(3) color rep

- Cosmology connection 
  (dark baryon matter and  EW phase transition)

- Conformal FSS method

- New results on FSS in the Nf=12 model in the fundamental SU(3) rep

- Outlook

2



Atlas and CMS compared (from Vivek Sharma)
For low Higgs mass hypothesis both CMS & ATLAS see 

an excess in event yield over expected background

3
ATLAS excess at M ≈ 126 GeV CMS excess at M ≈125 GeV



  What comes at the end of the LHC run?

- light Higgs with non-SM couplings (dilaton?)

- Heavy Higgs, or Higgsless

- SM Higgs (SUSY symmetry breaking?)

- USQCD composite Higgs and SUSY  -  timely efforts



- Composite Higgs mechanism
 
- The paradigm is important again

- Higgsless QCD-like (cutoff Λ to 3 TeV)

- changes close to conformal windo

- non-perturbative lattice studies needed  

- USQCD effort:

  What comes at the end of the LHC run?

- light Higgs with non-SM couplings (dilaton?)

- Heavy Higgs, or Higgsless

- SM Higgs (SUSY symmetry breaking?)

- USQCD composite Higgs and SUSY  -  timely efforts



- Composite Higgs mechanism
 
- The paradigm is important again

- Higgsless QCD-like (cutoff Λ to 3 TeV)

- changes close to conformal windo

- non-perturbative lattice studies needed  

- USQCD effort:

  What comes at the end of the LHC run?

- light Higgs with non-SM couplings (dilaton?)

- Heavy Higgs, or Higgsless

- SM Higgs (SUSY symmetry breaking?)

- USQCD composite Higgs and SUSY  -  timely efforts1.4. The role of a composite scalar and the fundamental Higgs boson limit
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Figure 1.3: Experimental allowed regions and theoretical predictions for the S and T parameters in the Higgsless

SM for 100 < Λ < 3000 GeV (Eqs. (1.3.25)). The experimental allowed regions are chosen as in Ref. [34]. For the

definition of the (0, 0) point see the footnote 1.6. For the theoretical prediction we have used the most updated

value of the top mass mt = 173.3 GeV [35].

of the SM Higgs boson on the Ŝ and T̂ parameters of Eqs. (1.3.26) is exactly to cut-off the
logarithms by substituting the scale Λ with the Higgs boson massmh. In Fig. 1.3 we have plotted
the experimental allowed region in the (S, T ) plane1.6 compared with the theoretical predictions
for Λ < 3 TeV (or equivalently mh < 3 TeV). It is simple to see that the experimental bounds
on S and T imply Λ � 200 GeV that fixes a cutoff for the Higgsless SM of the order of the
EW scale. As we will see in the next section, the same bound can be read mh � 200 GeV for
the SM Higgs boson mass. The plot in Fig. 1.3 only contains the logarithmic contributions of
Eqs. (1.3.25). It turns out that introducing also the finite terms that vanish in the limit mh → 0
the straight line in Fig. 1.3 acquires a slight bending shape slightly changing the limit on the
Higgs boson mass. However, a precise determination of the limits on the Higgs boson mass
requires a global fit to all the EWPO. The result of the global fit is [3]

mh = 90+27
−22 GeV , mh < (145, 149, 194) GeV at (90, 95, 99)% CL . (1.3.27)

1.4 The role of a composite scalar and the fundamental Higgs

boson limit

In this section we generalize the Higgsless SM discussed in the previous section adding a
scalar field, coupled to the SM fields through a general effective Lagrangian. We will see that
for a particular choice of the parameters the scalar coincides with the SM Higgs boson, i.e. can
be embedded with the GBs into a linear doublet of SU(2)L. In this case the Lagrangian will
reduce exactly to the SM Lagrangian.

1.6
The origin of the axes in the (S, T ) plane is chosen in such a way that (SSM, TSM)

���
mh=150 GeV ,mt=175 GeV

≡
(0, 0). All the plots represent deviations from these values.
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S parameter LSD Collaboration, PRL 106:231601 (2011)

Constraint from vacuum polarizations Πµν(Q) of EW gauge bosons

S = 4πND lim
Q2→0

d
dQ2 ΠV−A(Q2)−∆SSM

ΠV−A(Q2)

�

(Linear+chiral log fits to guide the eye)



Standard Model: Charged currents in SU(2)L ⊗ U(1)Y sector

Julius Kuti, University of California at San Diego USQCD Collaboration Meeting, Jefferson Laboratory, April 4 - 5, 2008, 15/19

  Extended Technicolor paradigm:

- requires walking gauge coupling 
  chiral SB on                       scale

- fermion mass generation from   
  scale at  

- can solve problem of flavor changing  
  currents

- composite Higgs mechanism 

- broken scale invariance (Dilaton)             
  light non-SM composite Higgs 
  particle?  
    
- can avoid conflict with EW precision 
  constraints

- candidate models require non-
  perturbative lattice studies

- focus is on composite Higgs
  mechanism 

ΛTC ~ TeV

ΛETC ~ 100 −1000ΛTC

walking coupling 
separates two scales

target of USQCD lattice BSM effort

Chiral symmetry breaking turns 
conformal FP into walking

running coupling

non-conformal QCD-like
far from conformal window

original Technicolor  paradigm 
replaced with sextet SU(3) color rep:

- one massless fermion doublet
  chiral SB

- three Goldstone pions 

- become longitudinal   
  components of weak bosons

- composite Higgs mechanism  
  scale of Higgs condensate ~ F=250 GeV  
  
- flavor changing currents and fermion 
  mass generation would be problems

- conflicts with EW precision constraints?

ΛTC ~ TeV

u
d
⎡

⎣
⎢

⎤

⎦
⎥

important for lattice studies in BSM theory space 

 composite Higgs?  example: Nf=2 SU(3) sextet rep    TC (ETC) language used



Probing technicolor theories with staggered fermions Kieran Holland

Figure 1: The conformal window for SU(N) gauge theories with Nf techniquarks in various representations,

from [3]. The shaded regions are the windows, for fundamental (gray), 2-index antisymmetric (blue), 2-index

symmetric (red) and adjoint (green) representations.

1. Introduction

The LHC will probe the mechanism of electroweak symmetry breaking. A very attractive

alternative to the standard Higgs mechanism, with fundamental scalars, involves new strongly-

interacting gauge theories, known as technicolor [1, 2]. Such models avoid difficulties of theories

with scalars, such as triviality and fine-tuning. Chiral symmetry must be spontaneously broken in

a technicolor theory, to provide the technipions which generate the W± and Z masses and break

electroweak symmetry. Although this duplication of QCD is appealing, precise electroweak mea-

surements have made it difficult to find a viable candidate theory. It is also necessary to enlarge the

theory (extended technicolor) to generate quark masses, without generating large flavor-changing

neutral currents, which is challenging.

Technicolor theories have lately enjoyed a resurgence, due to the exploration of various tech-

niquark representations [3]. Feasible candidates have fewer new flavors, reducing tension with

electroweak constraints. If a theory is almost conformal, it is possible this generates additional

energy scales, which could help in building the extended technicolor sector. There are estimates

of which theories are conformal for various representations, shown in Fig. 1. For SU(N) gauge

theory, if the number of techniquark flavors is less than some critical number, conformal and chiral

symmetries are broken and the theory is QCD-like. For future model-building, it is crucial to go be-

yond these estimates and determine precisely where the conformal windows are. There have been

a number of recent lattice simulations of technicolor theories, attempting to locate the conformal

windows for various representations [4, 5, 6, 7, 8].

2. Dirac eigenvalues and chiral symmetry

The connection between the eigenvalues ! of the Dirac operator and chiral symmetry breaking
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  our group: mass-deformed theory close to m=0 critical surface and m->0 limit:

- two strategies complement: (1) inf volume conform scaling 
                                  (2) mass-deformed FSS
                                  (1) is used in sextet model

- direct access to effective anomalous dimension 

- similar to tests of RG scaling laws of moments of current correlator functions 
  (in progress)

γ

status of SU(3) Nf=2 sextet model 
minimal composite Higgs model?
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M (L) = M  + cM g1(M  L)

cM(1 loop) = M2/64 2 F2 

M =  0.1350 ! 0.0012

cM=  0.0699 ! 0.014

2/dof= 0.86

fitted volumes:  243" 48, 323" 64, 483" 96 

M (L)  sextet rep with finite volume fit (m=0.003)
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cF(1 loop) = M2/16 2 F2 

F =  0.03727 ! 0.00018

cF=  0.0237 ! 0.0034

2/dof= 0.44

M  = 0.135

fitted volumes:  243" 48, 323" 64, 483" 96 

F (L)  sextet rep with finite volume fit (m=0.003)
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〈Ψ̄Ψ〉L,T = c0 + c1 · g1(MπL, η) fitted η = T /L

〈Ψ̄Ψ〉L,T = 〈Ψ̄Ψ〉(1 − N2−1
NF 2 · g1(MπL, η)) 1 − loop

c0=  0.03238 ! 0.00036

c1=  0.0103 ! 0.0029

2/dof= 3.8

M  = 0.135

fitted volumes:  243" 48, 323" 64, 483" 96 

〈Ψ̄Ψ〉L,T sextet rep with finite volume fit (m=0.003)

mass-deformed theory 
close to m=0 critical surface
inf volume extrapolated chiral and 
conform scaling tests in sextet model

for L·Mπ > 5 one percent level reached

β=3.2

β=3.2

β=3.2
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2/dof= 3.82
483" 96 and 323" 64
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〈Ψ̄Ψ〉 = c0 + c1 · m + c3 · m3

c0=  0.01141 ! 0.00032

c3=  2.2e+04 ! 1e+03

2/dof= 2.99

483" 96 and 323" 64 fitted 

m range:  0.003  0.008

(1 − mq
d

dmq
|conn) · 〈Ψ̄Ψ〉 = c0 + c3 · m3

〈Ψ̄Ψ〉 subtracted Nf = 2 sextet β = 3.2

- two independent determinations of the chiral condensate
- consistently non-vanishing in chiral limit
- all sextet results are treated as inf volume (only m=0.003 is truly extrapolated)

β=3.2
β=3.2

Nf=2 SU(3) sextet chiral condensate
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 sextet model Goldstone pion in PCAC channel with quadratic chiral fit

 

 

m fit range:  0.003  0.008

inputs from: 243! 48, 323! 64, 483! 96 

M2 = c
1
 m  + c

2
 m2      =3.2

c
1
=  6.43 " 0.095

c
2
=  48.2 " 15

2/dof= 1.6

24x48 not fitted
32x64 fitted
inf volume point fitted
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sextet model F  in PCAC channel with linear chiral fit 

 

 

m fit range:  0.003  0.006

inputs from: 243! 48, 323! 64, 483! 96 

F  = F0 + c1 m     =3.2

F0=  0.02805 " 0.00052

c1=  3.08 " 0.12

2/dof= 0.87

m fit range:  0.003  0.006

inputs from: 243! 48, 323! 64, 483! 96 

F  = F0 + c1 m     =3.2

F0=  0.02805 " 0.00052

c1=  3.08 " 0.12

2/dof= 0.87

24x48 not fitted
32x64 not fitted
32x64 fitted
inf volume point fitted

β=3.2β=3.2

m=0.003-0.006 range close to chiral log regime?     Nf=2 helps!
     log detection will require even more precise data

Nf=2 SU(3) sextet chiral fits Mπ and Fπ

χSB

the Goldstone boson of TC

setting the EW scale F0
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sextet model Rho meson in cRho4 channel with linear chiral fit  
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fitted volumes:  243! 48, 323! 64, 483! 96 

Mrho = M0 + c1 m      =3.2

M0=  0.1892 " 0.0061

c1=  24.7 " 0.92

2/dof= 0.56

24x48 fitted
32x64 fitted
48x96 fitted
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 sextet model MHiggs in scPion channel with linear chiral fit 

 

 

m fit range:  0.003  0.008

plotted volumes:  243! 48, 323! 64, 483! 96 

MHiggs = M0 + c1 m

M0=  0.1699 " 0.0077

c1=  22.4 " 1.45

2/dof= 0.48

24x48 not fitted
32x64 fitted
48x96 not fitted

β=3.2 β=3.2

Nf=2 SU(3) sextet chiral fits Mρ and MH

m=0.003-0.006 range close to chiral log regime?     Nf=2 helps!
     log detection will require even more precise data

MH/F0 ~ 6
without disconnected diagram Mrho/F0 ~ 7
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m fit range:  0.003  0.006

F  = cm m1/1+

cm=  0.237 ! 0.024

=  2.13 ! 0.18

2/dof= 2.04

24x48 not fitted
32x64 not fitted
32x64 fitted

   conformal hypothesis breaks down in global fits:

β=3.2 β=3.2

inconsistent large critical exponents γ

large anomalous dimension!

Mrho/F ~ 7

LHC peak shown earlier

inconsistent and large anomalous 
dimension!
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2 sum (F )= 79.07
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c1= 0.38 ! 0.09

= 1.47 ! 0.26

m fit range:  0.003  0.006

sextet conformal fit: F  residuals 

   conformal hypothesis breaks down in global fits:

large and inconsistent critical exponents γ
are we close enough to the critical surface?
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Other directions
technicolor & Dark Matter:

• lightest technibaryon can be 
  stable by analog of U(1)B

• an initial matter/anti-matter asymmetry gets shared 
among baryons, leptons, technibaryons via 
sphalerons

• can get observed ΩDM/ ΩB easily for ~ TeV scale DM

must be electrically neutral, EW singlets to avoid direct detection
Then leading operators are charge radius and polarizability:

(Chivukula, Barr, Fahri, Nussinov)

B∗B vµ ∂νFµν

Λ2
TC

B∗B FµνFµν

Λ3
TC

ex.) lattice input?,

17Friday, May 4, 2012

from Adam Martin

working on baryon spectrum
dark matter candidate



EW phase transition in sextet Higgs model  - early universe

16

sextet model (Kogut-Sinclair)

potential implications in early cosmology

finite temperature 
EW phase transition?

SU(3) gauge theory with sextet fermions

Figure 4: The chiral susceptibility on Nt = 8 and Nt = 12 lattices from [6] and [7] respectively.

to a given Nt = 1/(aT ), β is used to change the temperature and the continuum limit is achieved

via Nt →∞. A thermal phase transition corresponds to a critical βc(Nt) coupling for each Nt which

for large Nt scales according to the continuum β -function; in particular βc → ∞. A bulk phase

transition on the other hand is characterized by critical βc(Nt) couplings which do not scale and for

large Nt approach a fixed value.

As always with any thermodynamics study finite volume effects needs to be under control and

the quark mass needs to be small enough. Since staggered fermions are used the lattice spacing

also needs to be small enough in order to avoid dangerous taste violation effects especially because

the low energy dynamics is very sensitive to the number of massless flavors.

The critical coupling βc was determined in [5] from the peak of the chiral susceptibility on

Nt = 4 lattices for two values of the quark mass. The location of the peaks appear to be mass

independent and is around βc ≈ 6.3, see left panel of figure 3. The Nt = 6 result at the same two

quark masses also from [5] is shown on the right panel of figure 3. The critical coupling moved

to βc ≈ 6.6. On even finer lattices [6], at Nt = 8, the critical coupling moved further, to around

βc = 6.7 with additional small quark masses added, see left panel of figure 4. Again the quark

mass dependence is quite small. Finally the Nt = 12 lattices are preliminary [7] at the moment but

seem to indicate further increase in βc, see the right panel of figure 4. If indeed βc scales with Nt

correctly the located phase transitions would correspond to a continuum phase transition indicating

chirally broken symmetry at zero temperature.

A priori it is not clear how large Nt needs to be in order to be in the scaling regime. Most

importantly the thin link action suffers from possible large taste violation. Unfortunately, these

effects are not quantified yet. One could in principle reduce them by using smeared actions. In any

case a continuum extrapolation is necessary.

6

finite temperature 
EW phase transition?



Nf=2 SU(3) sextet rep summary:



- No inconsistency with        in Nf=2 SU(3) sextet model 

- We find inconsistency with conformal symmetry in all tests 

- The effective anomalous dimension is inconsistent and large γ is in 1-2 range 

- Kogut and Sinclair: looking for finite temperature        phase transition

χSB

χSB



SU(3) gauge theory with sextet fermions
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Figure 2: The step scaling function from [4] using fat links for the fermion action only (blue) and fat links
for both the fermion and gauge actions (black). The fixed point is visible again; see the text for more details.

Figure 3: The chiral susceptibility on Nt = 4 and Nt = 6 lattices from [5].

structure with various types of phase transitions and phase boundaries most of which however hap-
pens to be regularization specific and as such an artifact with no consequence to the continuum.
Bulk phase transitions are an example. A careful continuum extrapolation of the findings is hence
again essential.

The thermodynamic study of the Nf = 2 sextet model was initiated in [5]. Using unimproved
rooted staggered fermions in the fixed−Nt approach the Polyakov loop and the chiral condensate
was measured at various quark masses. In the fixed−Nt approach one lattice spacing corresponds

5

- DeGrand et al. find: Nf=2 sextet beta function might have an IRFP zero? 
- uninteresting model with small anomalous dimension ?
  γ < 0.45   controversy is not resolved
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Figure 1: The step scaling function calculated in [2] (left) with thin links indicating an infrared fixed point.

Using fat links for the fermion action (right) the fixed point disappears [3]. See the text for more details.

The calculatation of the running coupling in the Schroedinger functional scheme using Wilson

fermions was started in [2] for the Nf = 2 sextet model. Using an unimproved (think link) Wilson

action a zero of the step scaling function was measured at one lattice spacing corresponding to

4
4 → 8

4
, see left panel of figure 1. Two more lattice spacings corresponding to 6

4 → 12
4

and

8
4→ 16

4
were then added [3] using an improved (fat link) Wilson action, see right panel of figure

1. The fixed point disappeared with a possible interpretation that the rougher lattice spacing result

was an artifact. The gauge action was the same in the two calculations. However changing not only

the fermion action but the gauge action as well to use fat links resulted in a step scaling function

with a zero for the lattice spacing corresponding to 6
4→ 12

4
, see figure 2. A possible interpretation

is that the absence of the zero previously was the artifact after all [4].

Changing the action and/or the lattice spacing led to results so far which show that discretiza-

tion effects are still there. Clearly a careful continuum extrapolation is necessary with a given

action in order to decide which finite lattice spacing result is the one prevailing all the way to the

continuum. A good check of the procedure would be the reproduction of the 2-loop β -function for

small renormalized coupling, carefully extrapolated to the continuum.

As a cross-check it would be helpful if the running coupling would be calculated in a different

non-perturbatively well-defined scheme. Reproducing the 2-loop β -function for small coupling is

always a good test for any scheme. For larger coupling two schemes can disagree on the value of

the coupling but if a fixed point exist for one scheme a fixed point should exist for the other scheme

too.

2.2 Thermodynamics

Another way of addressing the infrared behavior of the model is studying it at finite tempera-

ture. If chiral symmetry is broken at T = 0 one expects a chiral symmetry restoration temperature

Tc. If the model is conformal in the infrared then as far as chiral symmetry is concerned there

is no phase transition at all for T > 0. Lattice investigations of thermodynamical properties are

complicated by the fact that the lattice system at finite lattice spacing typically has a rich phase

4

IRFP disappearing? 

(DeGrand et al.)

IRFP re-appearing? 

- No inconsistency with        in Nf=2 SU(3) sextet model 

- We find inconsistency with conformal symmetry in all tests 

- The effective anomalous dimension is inconsistent and large γ is in 1-2 range 

- Kogut and Sinclair: looking for finite temperature        phase transition

χSB

χSB
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Bulk phase transitions are an example. A careful continuum extrapolation of the findings is hence
again essential.

The thermodynamic study of the Nf = 2 sextet model was initiated in [5]. Using unimproved
rooted staggered fermions in the fixed−Nt approach the Polyakov loop and the chiral condensate
was measured at various quark masses. In the fixed−Nt approach one lattice spacing corresponds

5

SU(3) gauge theory with sextet fermions

15 20 25 30 35
u = K/g2 (44)

-2

-1

0

1

2

B
(u

,2
)

0.2 0.4 0.6

u = 1/g2 (44, 64, or 84)

-0.04

-0.02

0

0.02

0.04

B(
u,

2)

thin links 4->8
fat links 6->12
fat links 8->16
2 loops

Figure 1: The step scaling function calculated in [2] (left) with thin links indicating an infrared fixed point.

Using fat links for the fermion action (right) the fixed point disappears [3]. See the text for more details.

The calculatation of the running coupling in the Schroedinger functional scheme using Wilson

fermions was started in [2] for the Nf = 2 sextet model. Using an unimproved (think link) Wilson

action a zero of the step scaling function was measured at one lattice spacing corresponding to

4
4 → 8

4
, see left panel of figure 1. Two more lattice spacings corresponding to 6

4 → 12
4

and

8
4→ 16

4
were then added [3] using an improved (fat link) Wilson action, see right panel of figure

1. The fixed point disappeared with a possible interpretation that the rougher lattice spacing result

was an artifact. The gauge action was the same in the two calculations. However changing not only

the fermion action but the gauge action as well to use fat links resulted in a step scaling function

with a zero for the lattice spacing corresponding to 6
4→ 12

4
, see figure 2. A possible interpretation

is that the absence of the zero previously was the artifact after all [4].

Changing the action and/or the lattice spacing led to results so far which show that discretiza-

tion effects are still there. Clearly a careful continuum extrapolation is necessary with a given

action in order to decide which finite lattice spacing result is the one prevailing all the way to the

continuum. A good check of the procedure would be the reproduction of the 2-loop β -function for

small renormalized coupling, carefully extrapolated to the continuum.

As a cross-check it would be helpful if the running coupling would be calculated in a different

non-perturbatively well-defined scheme. Reproducing the 2-loop β -function for small coupling is

always a good test for any scheme. For larger coupling two schemes can disagree on the value of

the coupling but if a fixed point exist for one scheme a fixed point should exist for the other scheme

too.

2.2 Thermodynamics

Another way of addressing the infrared behavior of the model is studying it at finite tempera-

ture. If chiral symmetry is broken at T = 0 one expects a chiral symmetry restoration temperature

Tc. If the model is conformal in the infrared then as far as chiral symmetry is concerned there

is no phase transition at all for T > 0. Lattice investigations of thermodynamical properties are

complicated by the fact that the lattice system at finite lattice spacing typically has a rich phase

4

IRFP disappearing? 

(DeGrand et al.)

IRFP re-appearing? 

- We expect: the Nf=2 sextet model with SU(3) color is an interesting 
  candidate for the composite Higgs mechanism 

- But viability requires confirmation, studies of the running coupling, the 
  S-parameter, and composite Higgs physics  

- No inconsistency with        in Nf=2 SU(3) sextet model 

- We find inconsistency with conformal symmetry in all tests 

- The effective anomalous dimension is inconsistent and large γ is in 1-2 range 

- Kogut and Sinclair: looking for finite temperature        phase transition

χSB

χSB



  our group: mass-deformed theory close to m=0 critical surface and m->0 limit:

- two strategies complement: (1) inf volume conform scaling 
                                  (2) mass-deformed FSS
                                  (2) is used in Nf=12 fundamental SU(3) rep

- direct access to some effective anomalous dimension 

- similar to tests of RG scaling laws of moments of correlator functions (in progress)

status of SU(3) Nf=12 fundamental rep 
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Finite Temperature

Our results

The Chiral Condensate
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finite T transition at β=2.2?
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Our results

The Polyakov Loop
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zero temp confinement - running coupling without IRFP ? 

m --> 0 and a --> 0 limits?    finite volume effects?
useful to compare with other methods:
 - SF?
 - MCRG?
 - two new methods we are developing: 
   current correlator moments and wilson flow
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〈Ψ̄Ψ〉 = c0 + c1 · m + c2 · m2(fitted)
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  small chiral symmetry breaking condensate  

- two independent extrapolation
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conformal scaling test with FSS 
heavy use of RG theory

LM = f (x) + L−ωg(x)
x = m1/1+γ L
ω = ′β (g*)
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is this glass half full or half empty?

can chiral symmetry breaking fake scaling form?



Deceptions of            FSS behavior:

(a) (b) (c)

Figure 11: Pictures illustrating various physical situations in finite volume. (a) Hadrons in a
large volume, (b) a qq̄ meson in a box of size L ! 2 fm, and (c) quarks in the femto-universe.

7 QCD in finite volume and the femto-universe

In quantum field theory the physical information is encoded in the correlation func-
tions of local operators and these are hence the primary quantities to consider. From
statistical mechanics one knows, however, that certain properties of the system can
often be determined more easily by studying its behaviour in finite volume. The
calculation of critical exponents is a classical case where such finite-size techniques
are being applied.

The questions one would like to answer in QCD are not the same as in statistical
mechanics, but the general idea to probe the system through a finite volume proves
to be fruitful here too. In this section our aim mainly is to provide a qualitative
understanding of what happens when the volume is decreased. Unless stated oth-
erwise, periodic boundary conditions are assumed and the lattice spacing is taken
to be much smaller than the relevant physical scales so that lattice effects can be
ignored.

7.1 Physical situation from large to small volumes

Let us first consider the case where the spatial extent L of the lattice is significantly
greater than the typical size of the hadrons (box (a) in fig. 11). Single hadrons are
practically unaffected by the finite volume under these conditions except that their
momenta must be integer multiples of 2π/L. For multi-particle states the situation
is a bit more complicated, because the particles cannot get very far away from
each other. Two-particle energy eigenstates, for example, really describe stationary
scattering processes. If there are no resonances the corresponding energy values
differ from the spectrum calculated for non-interacting particles by small amounts
proportional to 1/L3 [60–63].
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To see the significance of (3)  and (4) let us consider 
a typical example a lattice of a size of 1 2 fm In thts 
case the m i n i m u m  non-zero m o m e n t u m  2n /L  ts of  
the order of 1 GeV Although it may be debated which 
form should be taken for the form factor, 1 GeV is a 
relanvely large momen tum and the form factor should 
gave a rather strong suppression Therefore in the re- 
gime where the size L ts of the order of 1 fm one could 
expect the n = 0 contribution to be the dominant  term 
in the summat ion  in (3) In  this intermediate regime 
one then expects a finite-size correction to the mass 
of hadrons proportional to 1/L 3 As we saw in fig 1 
the hadron mass data fit the 1 /Z  3 c u r v e  remarkably 
well 

One may add that a 1/L 3 correction is also ex- 
pected for many-parttcle states, on a rather small box 
a hadron is not very different from a two- or three- 
particle (quark)  state (on large boxes the quarks feel 
the effect of the confining force and the 1/L 3 behav- 
lour is not expected) 

Let us illustrate the size effect predicted by ( 3 ), (4) 
by an example appropriate to the numerical  data in 
fig 1 the case of p-meson exchange ( m = 0  77 GeV 
in (4 ) )  for latttce of size up to 20 and an inverse lat- 
tice spacing a - ~ = 2 GeV For the form factor we take 

1 
F(k )  = 1 + 1 09 (k /GeV)  2 '  (5a)  

or 

F(k )  = exia [ - 3 (k /GeV)2  ] (5b)  

In th"e case (5a)  the form factor is chosen such that 
F ( k )  / (k 2 .~ m 2 ) IS very stmtlar to the nucleon elec- 
tromagnetic form factor The case (5b) ts rather ex- 
treme the hadron is extremely soft as a consequence 
of the exponential  decay o f F ( k )  for large momenta  
(the~shape o f F ( k )  itself is similar to the nucleon form 
factor) 

The result for the self-energy 8E for the case (5a) 
is shown (apart from an overall mult iphcattve con- 
stant)  in fig 2a as a functton of the lattice size L One 
sees that the 1/L 3 behavlour  holds up to L ~ 8 In the 
region L >  6, on the other hand, the data are well fit- 
ted by the usual one-particle exchange potential  
exp ( - m L ) / L  (see fig 2b) In fig 3a we show the 
~ffect of p exchange for the case (5b) Here the 1/L 3 
behavlour holds up to L g  16, and the data are not 
fitted so well by e x p ( - m L ) / L  in the region 
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Fig 2 (a) Dependence of self-energy on lattsce size L due to p 
exchange computed with the form factor eq (5a) displaying a 
power-law behavlour at small L (b) Plot of same data as in (a) 
fitted with the Yukawa potentxal exp ( -mL) /L  for a point par- 
ncle (sohd curve) 

6 < L < 20 (fig 3b) This exercise shows that the size 
where the 1/L 3 c o r r e c t i o n  disappears and the expo- 
nenttal correction sets in depends upon the behav- 
tour of the form factor although it would seem nat- 
ural to suppose that the 1/L 3 correction to the masses 
(or masses squared) disappears for sizes L larger than 
about 1 fm, it is easy to think of models in which this 
does not hold and consequently it is possible that the 
asymptotic regtme for an exponenttal finite lattice 
correction starts only for large lattices (e g 1 5-2 fm) 

The argument above produces a power law by tak- 
ing into account modifications of the propagation of 
virtual particles around the latttce through a finite 
extension of hadron wave functions For small lat- 
tices the power law may also be understood In the 
following non-relativistic picture Let us suppose that 
quarks are bound  by some confining potential and let 
ro be the length scale characterlslng the decrease of 
the wave function ~/(r) for large r One may mimic 
the finite-size effect for the wave function by squeez- 
ing the characteristic length ro as r'oocL A steeper 
variat ion of the squeezed wave function then leads to 
an increase of the kinetic energy of the ground state 
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large volume
hadrons point-like 

π exchange ~ exp(-mL)

squeezed wavefunction crossover to femto world

volume dep. ~ 1/L3 

L-1 ·exp(-mL) fit

hadron with form-factor

volume dep. ~ 1/L3 

 

δE = V (nL)
n
∑              hadrom self energy from interaction with images

δE =
1
L3 V̂ (n 2π

L
)

n
∑     Poisson resummation, V̂ (


k ) is the Fourier transform

V̂ (

k ) = 1

k 2 + m2    ⇒   V(r)= e
−mr

r
 for large r in point-like approximation

 δE ≈V (0) + 6V (L)     δE ≈
e−mL

L
 point-like interaction for large L (non-relativistic)

Luscher made it relativistic using field theory

Leutwyler put in the chiral vertices, hence the g(mL) form in chiral PT

 
V̂ (

k ) = F(


k )2


k 2 + m2      extended hadron with form factor F(


k )

 
F(k) = 1

1+ c ⋅

k 2

 
F(k) = 1

1+ c ⋅

k 2

the size where the 1/L3 correction to the masses disappears and the exponential 
behavior sets in depends on the behavior of the hadron form factor

the size where the 1/L3 correction to the masses disappears and the exponential 
behavior sets in depends on the behavior of the hadron form factor

the characteristic inverse power vs. exponential behavior can 
frustrate at limited lattice sizes the analysis of chiral vs. 
conformal hypotheses 
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Nf=12 SU(3) fundamental rep summary:



- We run in the weak coupling phase

- At fixed coupling and very small fermion mass we see confining potential
  and finite temp         transition

- The effective anomalous dimension γ is not consistent across channels
  can be explaind by scaling violation effects or underestimated errors?

χSB



- Running coupling methods like TPL and SF have problems to control
  systematics 
  no comment on MCRG

- We run in the weak coupling phase

- At fixed coupling and very small fermion mass we see confining potential
  and finite temp         transition

- The effective anomalous dimension γ is not consistent across channels
  can be explaind by scaling violation effects or underestimated errors?

χSB



Running coupling problems in 
TPL and SF schemes:

- Running coupling methods like TPL and SF have problems to control
  systematics 
  no comment on MCRG

- We run in the weak coupling phase

- At fixed coupling and very small fermion mass we see confining potential
  and finite temp         transition

- The effective anomalous dimension γ is not consistent across channels
  can be explaind by scaling violation effects or underestimated errors?

χSB



Continuum extrapolation 
on TPL scheme

The systematic error is small in the strong coupling region.

Σ(g2(L), L/a; s)

(a/L)2

2 loop prediction 
in this region is

σ(u = 2.48) ∼ 2.54

s=1.5 step scaling
 L/a=6   -> L/a=9
 L/a=8   -> L/a=12
 L/a=10 -> L/a=15
 L/a=12 -> L/a=18
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Running coupling problems in 
TPL and SF schemes:

no IRFP?

- Running coupling methods like TPL and SF have problems to control
  systematics 
  no comment on MCRG

- We run in the weak coupling phase

- At fixed coupling and very small fermion mass we see confining potential
  and finite temp         transition

- The effective anomalous dimension γ is not consistent across channels
  can be explaind by scaling violation effects or underestimated errors?
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Running coupling problems in 
TPL and SF schemes:

no IRFP?

- Running coupling methods like TPL and SF have problems to control
  systematics 
  no comment on MCRG

- We are working on two new running coupling methods with massless fermions 
  using moments of current correlators and wilson flows  both are g(L)

- Difficult decision on the Nf=12 model:  we would probably prefer to
  put all the resources into the sextet model without the community
  controversies at Nf=12

- But sextet project benefitted directly from what we have learned from Nf=12 

- We run in the weak coupling phase

- At fixed coupling and very small fermion mass we see confining potential
  and finite temp         transition

- The effective anomalous dimension γ is not consistent across channels
  can be explaind by scaling violation effects or underestimated errors?
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if model had conformal IRFP 
 
two interchangeable RT descriptions?

continuum mass deformed conformal theory is on RT coming 
out of IRFP

I worked out as an example all the details of 3D scalar theory 
(Ising model) with IRFP

textbook material

critical surface (massless) irrelevant 

g2  

m (fermion 

RT massless continuum physics (gapless)
UVF

IRFP 

RT mass deformed 

RT group A RT B

        conformal scaling and scaling violations

f (u1,u2 ,...) = g(u1,u2 ,...) +  b−d fs (b
y1u1,b

y2u2 ...)

 free energy on RT:

 analytic           singular

 y1  > 0 only relevant exponent in our case
 u1  = t ~ m identified,  y1 = ym in Technicolor notation

 y2  controls scaling violations,   leading correction term

 analytic function which can have terms like ~mk are typically sub-leading
 

 RG scaling of 2-point function:

 

G (2) (r,m,u2 ,...) = b−2dG(r / b,bym m,by2u2 ,...)
from  G (2) (r,m,u2 ,...)  e−Mr  asymptotics with M  m1/ym  scaling follows
leading correction to the scaling term should be  mω  where ω = ′β (g∗)
analysis would change with second relevant operator at IRFP!

- analytic terms exists, but no reason to be leading conformal  
  scaling correction

- correlators of composite operators require inhomogeneous RG!
 similarly, in conformal finite size scaling analysis:

ξ / L = f1(x) + L−ω f2 (x)  with  x = Lm1/ym

 correlation length measured in L units

This directly transcribes to hadron masses and Fπ
finite size scaling correction terms require 
very accurate data

 Fisher and  Brezin  worked out most of what we know!

Del Debbio and collaborators
early conform apps



(Mπ
2 )LO = 2B ⋅m + a2ΔB

(Mπ
2 )NLO = (Mπ

2 )LO + (δMπ
2 )1− loop + (δMπ

2 )
m2

+ (δMπ
2 )

a2m
+ (δMπ

2 )
a4

 would require more data

(δMπ
2 )1− loop = [(Mπ

2 )LO + a2 ]2 ln(Mπ
2 )LO

  a2m

chiral logs not reached yet! 
(Nf=8, or Nf=12)  Nf=2 sextet easier reach

  m2

kept   cutoff term in B  see  LO a2 term
  a4

Mπ
2 = c1m + c2m

2   + logs fitted function for all Goldstones 

nucleon states, rho, a1, higgs, ...Mnuc = c0 + c1m +  logs 

(Fπ )LO = F,    (δFπ )1− loop = [(Mπ
2 )LO + a2 ]ln(Mπ

2 )LO    

Fπ = F + c1m + logs fitted function  

 (δFπ )
m2  m,    (δFπ )

a2m
= a2    

kept     cutoff term in F

ψψ = ψψ 0 + c1m + c2m
2+logs chiral condensate 

        Chiral hypothesis         (in)complete analysis on both sides      Conformal hypothesis

Mπ = cπ ⋅m
1/ym ,      ym = 1+ γ

leading conformal scaling 
functional form for all hadron masses 

Fπ = cF ⋅m
1/ym ,       ym = 1+ γ

chiral log regime was not reached in fermion mass range

same critical exponent 

ψψ = cγ ⋅m
(3−γ )/ym + c1m

infinite volume conformal scaling violation analysis ?

conformal finite size scaling analysis and its scaling 
violations ? 

Del Debbio and Zwicky

Asymptotic infinite volume limit has not been reached 
yet in important candidate models for conformal window

Strategy I:  L=∞ extrapolation first and then scaling test in m
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Project: 1998 – Present

SWME Collaboration
Staggered ε′/ε Project
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Project: 1998 – Present

SWME Collaboration

Seoul National University (SNU):
Prof. Weonjong Lee
Jon Bailey and Nigel Cundy (Research Assistant Prof’s)
10 graduate students.

Brookhaven National Laboratory (BNL):
Dr. Chulwoo Jung.
Dr. Hyung-Jin Kim (Postdoc).

University of Washington, Seattle (UW):
Prof. Stephen R. Sharpe.

KISTI: Dr. Taegil Bae (Postdoc).

University of Arizona: Dr. Jongjeong Kim (Postdoc).
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Testing the Standard Model Indirect CP violation and BK
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Testing the Standard Model Indirect CP violation and BK

ε and B̂K

ε = (2.228± 0.011)× 10−3 × e iπ/4 in experiment.

Relation between ε and B̂K in standard model.

ε = exp(iφε)
√

2 sin(φε) Cε Imλt X B̂K + ξ

X = Reλc [η1S0(xc)− η3S3(xc , xt)]− Reλtη2S0(xt)

λi = V ∗isVid , xi = m2
i /M

2
W , Cε =

G 2
FF

2
KmKM

2
W

6
√

2π2∆MK

ξ = exp(iφε) sin(φε)
ImA0

ReA0

Definition of BK in standard model.

BK =
〈K̄0|[s̄γµ(1− γ5)d ][s̄γµ(1− γ5)d ]|K0〉

8
3〈K̄0|s̄γµγ5d |0〉〈0|s̄γµγ5d |K0〉

B̂K = C (µ)BK (µ), C (µ) = αs(µ)
− γ0

2b0 [1 + αs(µ)J3]
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BK BK on the lattice

BK on the lattice
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BK BK on the lattice

BK definition in standard model

BK =
〈K̄0|[s̄γµ(1− γ5)d ][s̄γµ(1− γ5)d ]|K0〉

8
3〈K̄0|s̄γµγ5d |0〉〈0|s̄γµγ5d |K0〉

B̂K = C (µ)BK (µ),

C (µ) = αs(µ)
− γ0

2b0 [1 + αs(µ)J3]
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BK BK on the lattice

What do we calculate on the lattice?
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BK Data Analysis for BK

Data Analysis for BK
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BK Data Analysis for BK

Data for BK with amd = ams = 0.025 (203 × 64)
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BK Data Analysis for BK

BK in Nf = 2 + 1 QCD

a (fm) aml/ams geometry ens×meas round production

0.12 0.03/0.05 203 × 64 564× 9 2nd done (SNU)
0.12 0.02/0.05 203 × 64 486× 9 2nd done (SNU)
0.12 0.01/0.05 203 × 64 671× 9 2nd done (SNU)
0.12 0.01/0.05 283 × 64 274× 8 2nd done (BNL)
0.12 0.007/0.05 203 × 64 651× 10 2nd done (SNU)
0.12 0.005/0.05 243 × 64 509× 9 2nd done (SNU)

0.09 (F1) 0.0062/0.031 283 × 96 995× 9 2nd done (SNU)
0.09 0.0031/0.031 403 × 96 805× 1 2nd SNU(*)

0.06 0.0036/0.018 483 × 144 744× 2 2nd SNU/JLAB(*)
0.06 0.0025/0.018 563 × 144 700× 1 1st KISTI(*)
0.06 0.0018/0.018 643 × 144 700×− − −
0.045 (U1) 0.0030/0.015 643 × 192 705× 1 2nd SNU(*)
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BK Data Analysis for BK

SU(2) SChPT Fitting for BK

(a) X-fit (b) Y-fit

Fit type = SU(2) SχPT, 4X3Y, NNNLO, Bayesian, FV

Weonjong Lee (SNU) Lattice QCD 05/15/2012 12 / 33



BK Data Analysis for BK

BK vs. a2: Discretization Error

 0.52

 0.54

 0.56

 0.58

 0  0.5  1  1.5

B
K

a2 [x100]

Fit type = SU(2) SChPT; const, 3pt:g4-a2g2-a4,
4pt:g4-a2g2-a4 fits
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BK Data Analysis for BK

Error Budget of BK [ SU(2)-SChPT, 4X3Y, NNNLO]

cause error (%) memo

statistics 0.59 4X3Y-NNNLO-BAYES + const

matching factor 4.4 ∆B
(2)
K (U1)

discretization 1.9 diff. of const and constrained fits
X-fits 0.33 varying Bayesian priors (S1)
Y-fits 0.07 diff. of linear and quadratic (C3)
aml extrap 1.5 diff. of (C3) and linear extrap
ams extrap 1.3 diff. of (C3) and linear extrap
finite volume 0.5 diff. of V =∞ and FV fits
r1 0.14 r1 error propagation (C3)
fπ 0.4 132 MeV vs. 124.4 MeV
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BK Data Analysis for BK

Current Status of BK (1)

Lattice QCD (SWME):

BK (RGI) = B̂K = 0.727± 0.004(stat)± 0.038(sys)

Experiments: (most updated version in 2012)

BK (RGI) =

{
1.01± 0.11 for exclusive Vcb

0.824± 0.060 for inclusive Vcb

Hence, we observe 2.6σ difference between the SM theory and
experiments (exclusive Vcb) and 1.6σ difference (inclusive Vcb). Is this
substantial?
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BK Data Analysis for BK

Current Status of BK (2)

 0.6  0.7  0.8  0.9  1  1.1
BK(RGI)

Aubin et al (2010)

RBC-UKQCD (2011)

BMW (2011)

SWME (this work)
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BK Data Analysis for BK

Current Status of BK (3)

SWME (Stag):

B̂K = 0.727± 0.004(stat)± 0.038(sys)

Laiho / Van de Water (DWF + Stag):

B̂K = 0.724± 0.008(stat)± 0.028(sys)

RBC / UKQCD (DWF):

B̂K = 0.749± 0.007(stat)± 0.026(sys)

BMW (Wilson):

B̂K = 0.773± 0.008(stat)± 0.009(sys)
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BK Data Analysis for BK

Preliminary Theoretical Expectation for εK

Inclusive Vcb:

εK =

{
2.07± 0.16 (Lat Avg)
1.95± 0.19 (SWME)

Exclusive Vcb:

εK =

{
1.66± 0.21 (Lat Avg)
1.56± 0.22 (SWME)

Experiment:
εK = 2.228± 0.011 (PDG)

We observe about 3.0σ tension in the exclusive Vcb channel of εK .
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BK Data Analysis for BK

Preliminary check for CKM unitarity

CKM unitarity:
[VV †]ct = 0

Exclusive Vcb: Lattice 2012 (Yong-Chull Jang)

[VV †]ct = 0.00153(48) (preliminary)

Inclusive Vcb: Lattice 2012 (Yong-Chull Jang)

[VV †]ct = 0.00128(47) ∼ 0.0084(47) (preliminary)

We observe about 3.2σ tension in the exclusive Vcb channel of the
CKM unitarity.
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BK Data Analysis for BK

Preliminary error analysis with inclusive Vcb

Lattice 2012: Yong-Chull Jang

Lat. Avg.: 
η̄ 27%
η3 19%
mc 16%
· · · · · ·

SWME: 
B̂K 34%
η̄ 18%
η3 12%
mc 11%
· · · · · ·
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BK Data Analysis for BK

Preliminary error analysis with exclusive Vcb

Lattice 2012: Yong-Chull Jang

Lat. Avg.: 
Vcb 58%
η̄ 11%
η3 9%
mc 8%
· · · · · ·

SWME: 

Vcb 49%

B̂K 18%
η̄ 9%
η3 8%
mc 7%
· · · · · ·
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BSM corrections for BK BSM corrections to BK on the lattice
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BSM corrections for BK BSM corrections to BK on the lattice

BSM operators for BK

BSM operators:

O2 = s̄a(1− γ5)das̄b(1− γ5)db

O3 = s̄a(1− γ5)db s̄b(1− γ5)da

O4 = s̄a(1− γ5)das̄b(1 + γ5)db

O5 = s̄a(1− γ5)db s̄b(1 + γ5)da

B parameters:

Bj(µ) =
〈K̄0|Oj(µ)|K0〉

Nj〈K̄0|P(µ)|0〉〈0|P(µ)|K0〉
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BSM corrections for BK BSM corrections to BK on the lattice

What do we calculate on the lattice?
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BSM corrections for BK Data Analysis for BSM corrections to BK

Data Analysis for BSM corrections to BK
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BSM corrections for BK Data Analysis for BSM corrections to BK

Data analysis for B2 with amd = ams = 0.025 (203 × 64)

(c) raw data (d) X-fit

Preliminary !!!
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BSM corrections for BK Data Analysis for BSM corrections to BK

Data analysis for B3 with amd = ams = 0.025 (203 × 64)

(e) raw data (f) X-fit

Preliminary !!!
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BSM corrections for BK Data Analysis for BSM corrections to BK

Data analysis for B4 with amd = ams = 0.025 (203 × 64)

(g) raw data (h) X-fit

Preliminary !!!
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BSM corrections for BK Data Analysis for BSM corrections to BK

Data analysis for B5 with amd = ams = 0.025 (203 × 64)

(i) raw data (j) X-fit

Preliminary !!!
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BSM corrections for BK Data Analysis for BSM corrections to BK

Current Status of BSM corrections to BK

We are in the middle of data analysis at the tree level. Hence the
results are very preliminary.

We plan to complete the first round data analysis at the one-loop
level by Lattice 2012. We will present the preliminary results in
Lattice 2012. [Dr. Hyung-Jin Kim]

We plan to complete the second round data analysis using the NPR
matching by the end of 2012.
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Conclusion and Future Plan

Summary

We plan to reduce the overall error of BK below the 2% level. (at
least for SWME). We have to reduce the overall error of exclusive Vcb

below the 0.5% level.

How?
Answer: NPR, or two-loop matching.

Lattice 2012: Jangho Kim (NPR).

Lattice 2012: Kwangwoo Kim (two-loop matching ???).
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Conclusion and Future Plan

Future Theoretical Perspectives (1)

Hansen & Sharpe (2012): multiple-channel scattering phase shift
formula

This directly applied to staggered π − π scattering case: N = 5
channels.

There is a remaining difficulty in the unitarity ansatz of the S-matrix.

We will overcome this difficulty using the guidance of staggered chiral
perturbation theory (SChPT).

It could be very likely to calculate the π − π scattering phase shift
with the systematic errors under control in near future.

This will make it possible to calculate the K → ππ decay amplitude
using staggered fermions.
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Conclusion and Future Plan

Future Theoretical Perspectives (2)

We have extended the SChPT calculation to non-Goldstone pion
sectors for pion mass and decay constants fπ, fK .

We plan to extend the horizon to the mixed action case (HYP
stag/asqtad or HYP/HISQ) in 2012.

We plan to find the best channels to calculate the π − π scattering
phase shift using staggered fermions. The SChPT will be the main
tool for this mission.
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Lattice study of the phase structure

of the strong Yukawa model

arXiv:1111.4544 (with updates)

C.-J. David Lin

National Chiao-Tung University

BNL

14/05/2012



The collaboration

• Germany

– NIC, DESY Zeuthen and Humboldt University Berlin
John Bulava (CERN), Philipp Gerhold (→ d-Fine), Karl Jansen, At-
tila Nagy.

• Japan

– Kobayashi-Maskawa Institute, Nagoya University
Kei-Ichi Nagai.

• Taiwan

– National Chiao-Tung University, Hsinchu
C.-J.David Lin, Kenji Ogawa.

– National Taiwan University, Taipei
George W.-S. Hou, Bastian Knippschild, Brian Smigielski (→ U.S.).



Motivation

Heavy fermions beyond SM3?

• Not much is known for strong (non-perturbative) Yukawa theory.

• Heavy extra generation of fermions may

– enhance CP violation.

G.W.S. Hou, 2008

– offer an alternative way to break EW symmetry dynamically and in-
duces bound states to unitarise WW scattering.

B. Holdom, 2007

– UV stablise the SM.

P.Q. Hung, C. Xiong, 2009



Outline

• Goals, general issues and recent developments.

• Simultation setup.

• The phase structure.

• Exploratory numerical studies.

– VEV.

– Susceptibility and critical exponents.

– Binder’s cumulant.

• Future plan.



Targets for the bare strong-Yukawa regime

• The nature of the phase transitions.

⇒ Connection to the continuum world (next slide).

• Possible bound states.

⇒ Computation of the spectrum.

• Possible new mechanism for dynamical symmetry breaking.

⇒ Heavy scalar with fermion condensate?



General issues and strategy

• The triviality (Landau-pole) problem.

⇒ Non-trivial to take the lattice spacing to zero.

• Look for 2nd-order phase transitions via ”scanning simulations”.

⇒ ξ → ∞.

• Problem: Finite-volume effects.

⇒ Phase transitions are washed out.

⇒ Severe near the critical points since L = L̂a.

• Chiral fermions required.



New ingredients in current work

• Previous studies (circa 1990):
Lee, Shigemitsu, Shrock; Bock et al.,. . .

– Use fermions without exact chiral symmetry.

⇒ Ambiguity in defining chiral fermions.

– Small (∼ 83 × 16) volumes and no L → ∞ limit taken.

• Current new-generation simulations:

– Use the overlap fermion (exact chiral symmetry).

– Several large volumes and L → ∞ limit taken.

⇒ Test finite-size scaling behaviour.

⇒ Determine the order of the phase transition.



Reminder: Notaion for scalar field theory

• The discretised Euclidean scalar action (a = 1)

Sϕ = −
∑

x,µ

ϕα
xϕα

x+µ̂ +
∑

x

[
1

2
(2d + m2

0)ϕ
α
xϕα

x +
1

4
λ0(ϕ

α
xϕα

x)
2

]
.

• ϕ =
√

2κφ, m2
0 = 1−2λ̂

κ
− 2d, λ0 = λ̂

κ2

Sφ = −2κ
∑

x,µ

φα
xφα

x+µ̂ +
∑

x

[
φα

xφα
x + λ̂(φα

xφα
x − 1)2

]
,

Zφ =

∫ ∏

x,α

dφα
x exp(−Sφ) =

∫ ∏

x,α

dµ(φα
x) exp

(
2κ
∑

x,µ

φα
xφα

x+µ̂

)
,

dµ(φα
x) = dφα

x exp
[
−φα

xφα
x − λ̂(φα

xφα
x − 1)2

]
.

• “staggered symmetry”: κ → −κ and φα
x → (−1)x1+x2+...+xdφα

x.



Fermions and the Yukawa couplings

• Use the overlap Dirac operator with exact lattice chiral symmetry.

• The Yukawa terms SHY =
∑

x y(t̄x, b̄x)LΦxbx,R + y(t̄x, b̄x)LΦ̃xtx,R + h.c..

– Φ is a complex scalar doublet and Φ̃ = iτ2Φ
∗.

• Results presented in this talk are from 83 × 16, 123 × 24 and 163 × 32.



Phase diagram of the H-Y model (qualitative)

Fixed Λ
`

<Φ>¹0, <Φ>s=0

FM HBrokenL

<Φ>=0
<Φ>s=0

SYM

<Φ>=0
<Φ>s=0

SYM

<Φ>=0

<Φ>s¹0
AFM

<Φ>=0

<Φ>s¹0
AFM

<Φ>¹0
<Φ>s¹0

0 5 10 15 20 25 30
-0.3

-0.2

-0.1

0.0

0.1

y

Κ

∗ From earlier work using Wilson fermions.
⇒ Controversy from staggered-fermion calculations.



Evidence of a symmetric phase at large y

Consistent with recent results in P. Gerhold and K. Jansen, 2007.



The bare scalar vev at large Y



Finite-size scaling of susceptibility

• Susceptibility: χ = V4

(
〈φ2〉 − 〈φ〉〈φ〉

)
.

• The scaling behaviour from solving the RGE,

– Universal function χL
−γ/ν
s ∼ g(t̃L

1/ν
s ), where t̃ = (y/ycrit − 1).

– critical exponents γ and ν.

– Modelling the scaling violation from

M. Fisher and M. Barber, 1972

⇒χL
−γ/ν
s ∼ g(tL

1/ν
s ), where t = (y/(ycrit − A4/Lb

s) − 1).

– Fit all the data to the (partly empirical) function at fixed κ

K. Jansen and P. Seuferling, 1990

χ = A1

{
L−2/ν

s + A2,3

(
y − ycrit − A4/Lb

s

)2}−γ/2
.



Finite-size fit of susceptibility

χ
 (

y
)

y

Susceptibility, κ=0.00
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Finite-size scaling of susceptibility
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Finite-size scaling of Binder’s cumulant

L=16
L=12
L=8

unscaled Binders cumulant for κ = 0.06

bare Yukawa coupling y

b
in

d
e
rs

c
u
m

u
la

n
t

1 2

[
3
−

<
m

4
>

<
m

2
>

2

]

222120191817161514

1.05

1

0.95

0.9

0.85

0.8

0.75

0.7

L=16
L=12
L=8

Rescaled Binders cumulant, ν = 0.650000, yc = 18.200000

y−yc

yc

· L1/ν

B
in

d
e
rs

c
u
m

u
la

n
t

1 2

[
3
−

<
m

4
>

<
m

2
>

2

]

151050-5-10-15

1

0.95

0.9

0.85

0.8

0.75

0.7



Probing the phase structure using susceptibility

κ = 0.00 κ = 0.06 O(4) scalar model

ycrit 16.57 ± 0.06 18.11 ± 0.06 N/A

γ 0.97 ± 0.02 1.08 ± 0.01 1

ν 0.52 ± 0.01 0.66 ± 0.02 0.5

b 2.18 ± 0.09 2.04 ± 0.20 ?

• Quoted errors are statistical.

• Estimate systematics by changing the fit range in y.

• Systematic effects

– ycrit is very stable.

– γ can change by ∼ 2%.

– ν can vary by ∼ 8%. ⇒ Different from O(4) scalar model?



Outlook

• Improving results by

– running more at large lattices, 243 × 48. (finishing soon.)

– using more sophisticated procedure to investigate the susceptibility.

– studying the details of the scaling behaviour of Binder’s cummulant.

• More information:

– Compute three renormalised couplings to “trade” with κ, λ̂ and y.

– Study the spectrum in the strong Yukawa regime.

A lot more to do and to understand.
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Medium Modification 
§ Parton structure function in nuclear medium 

 The famous EMC effect 

 Significant deviations between 

 heavy nuclei and deuterium 

Many models: 

 pion enhancement 

 nucleon expansion 

 multiquark clusters 

 rescaling 

 shadowing 

 local correlations 

 … 

§ No universal understanding 

J. J. Aubert et al. 
Phys. Lett.  123, 275 (1983)  
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Medium Modification 
§ Not  only significant for heavy nuclei, 

 also important for light-nuclear systems 
 J. Seely et al., Phys. Rev. Lett. 103, 202301 (2009)  
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Applications 
§ Important for tests of Standard Model  

§ For example, NuTeV anomaly  
Weak mixing angle experiment  
 3 sigma away from SM → “NuTeV anomaly” 

 
 

Some slide from Ian’s talk  

G. P. Zeller et al. 
Phys. Rev. Lett. 88, 091802 
(2002) 
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Applications 
§ Important for tests of Standard Model  

§ For example, NuTeV anomaly  
Weak mixing angle experiment  
 3 sigma away from SM → “NuTeV anomaly” 

I. Cloët, W. Bentz, A. Thomas, 
Phys. Lett. B693, 462 
(2010)  

 Evidence for 

medium modification? 

Correction looks 

consistent 

with SM 
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§ Interesting physics with multi-baryon systems 
 Study with nonzero μB  

   notorious “sign” problem in Monte Carlo calculation 

Add nucleons to the system  

   complicated quark contraction and noise/signal issue 

Medium Modification 

§ Take a step back and look at 
 nonzero-isospin/multi-meson systems 
Many studies: “QCD at Finite Isospin Density”, Son & Stephanov 

Gain insight and experience for how to deal with nuclear systems 

   Number of contractions: 
    (A+Z)!× (2A−Z)! 
 Triton: 2880 → 93  


4He: 518400 → 1107 

Signal Quality 
What you want:  What you get: 
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We do it all the time... 
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We do it all the time... 
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§ First lattice π-π calculation in ’92 
§ Meson number > 2 system is first studied on the lattice  

S. Beane et al., PRL 100: 082004 (2008)   

§ Followed by more complicated systems for  
 scattering length and 3-body interactions 

W. Detmold et al., PRD 78: 014507 (2008); W. Detmold et al., PRD 78: 054514 
(2008); W. Detmold et al., PRL 102: 032004 (2009); W. Detmold et al., 
1103.4362 (2011) 

§ Effective theory      
S. Beane, PRD 76: 074507 (2007); W. Detmold et al., PRD 77: 057502 (2008); 
Smigielski, PRD 79: 054506 (2009) 

§ Color-screening effects 
W. Detmold et al., PRL 102: 032004 (2009) 

§ Study for n≥13 system  
W. Detmold et al., PRD 82: 014511 (2010); Z. Shi and W. Detmold, PoS (2011) 

Multi-Meson System 
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§ The tool: Lattice gauge theory  
§ The actions 
Domain-wall fermions on staggered sea 

 Free forward propagators from LHPC and NPLQCD 

 Chiral symmetry preserved at finite lattice spacing; 

   good for spin physics and weak matrix elements   

§ The parameters 

 

 

 

   tsep    C’s ∈ {16, 20, 24, 28, 32} 
     F’s ∈ {24, 32, 48} 

Boring Details 
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§ We calculate  
 

 
§ Contractions 
 Examples from 3-π+ system  

π+ in Medium 
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§ We calculate  
 

 
§ Contractions 
 Simplified with recursion relation  

          W. Detmold et al., Phys.Rev.D82:014511 (2010) 

π+ in Medium 

§ Energy extraction from n-π+ system  
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§ Can we simplify the analysis? 
 Examples from n-π+ system 

  Fit 1:  
 

  Fit 2: l = m only (ignore the thermal states) 

n-π+ Energy 

a= 0.12 fm, Mπ≈490 MeV a= 0.09 fm, Mπ≈320 MeV 
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§ Fitted energies and effective-mass plot 
 Examples 

a= 0.09 fm,  
Mπ≈320 MeV 

n-π+ Energy 

log( C(t) / C(t+1) ) 
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§ How pion mass shifts in K+, π+ medium 

Mπ in Medium 

K+, π+ medium 
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§ We calculate 
 
 

 

   where 

§ Contractions 
 Examples from 3-π+ system  

Pion Structure Function 
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§ We calculate 
 
 

 

   where 

§ Wick contractions 
Use mixed-meson recursion relations 

         W. Detmold, B. Smigielski, Phys.Rev.D84:014508 (2011)  

Pion Structure Function 

Treated as diff.  

meson spices  
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§ We calculate 
 
 

 

   where 

§ Wick contractions 
 Examples from n-π+ system  

Pion Structure Function 

§ Matrix elements extraction (naively) 

, 
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§ xπ,N/x π,0 without thermal-state degrees of freedom 
 tsep=T/2  

Pion Momentum Fraction 

pion medium 
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§ Significant for n-π+ system through amplitudes 
§ For example, a=0.12 fm ensemble, T=64 

Thermal Contamination 

a = 0.12 fm, Mπ= 290 MeV, MπT = 11.6 a = 0.12 fm, Mπ= 490 MeV, MπT = 19.9 

§ Matrix elements extraction for p=0 (in reality)  
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§ xπ,N/x π,0 with thermal-state degrees of freedom 
 multiple tsep used 

Pion Momentum Fraction 
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§ xπ,N/x π,0 with thermal-state degrees of freedom 
 multiple tsep used 

Pion Momentum Fraction 
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§ First lattice-QCD attempt to measure EMC effects 
 Pion momentum fraction in pion medium 

With mπ≈ 290–490 MeV, 2 lattice spacings 

Summary and Outlook 

New Horizons 
§ Nucleon structure  in meson and light-nuclear media 

Huey-Wen Lin — New Horizons for Lattice Computations with Chiral Fermions 



Motivation LSD Calculations with Domain Wall Fermions Summary

Many-Flavor Domain Wall Fermions
and Fixed Topology

Meifeng Lin

New Horizons for Lattice Computations with Chiral Fermions
BNL, May 14 - 16, 2012

Many-Flavor Domain Wall Fermions and Fixed Topology Meifeng Lin



Motivation LSD Calculations with Domain Wall Fermions Summary
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Motivation

LSD Calculations with Domain Wall Fermions
Recap: Results for Nf = 2, 6
New: Results for Nf = 10

Summary
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Motivation LSD Calculations with Domain Wall Fermions Summary

Motivation
I SU(N) gauge theories with many flavors of fermions may exhibit

behaviors that are fundamentally different from QCD.

I Increasing Nf causes the gauge coupling to run slowly, and
“walking” may occur, which could lead to some properties
desirable for Technicolor model building.

I Specifically, we are interested in
I enhanced chiral condensate
I small S parameter
I new pattern in hadron spectrum

I When Nf > Nc
f , the theory becomes conformal, and spectrum

vanishes at the chiral limit. Also on our wishlist is to
I locate Nc

f non-perturbatively

Many-Flavor Domain Wall Fermions and Fixed Topology Meifeng Lin
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Gauge Ensembles
I Fermion action: domain wall fermions.
I Gauge action: Iwasaki.
I Ensemble size: Typically ∼ 1200 MD trajectories.

[Cost grows as N3/2
f ]

Nf Volume Ls β amf amres

2 323 × 64 16 2.70 0.005...0.030 2.5× 10−5

6 323 × 64 16 2.10 0.005...0.030 8.2× 10−4

10 323 × 64 16 1.95 0.005...0.030 1.7× 10−3

I For Nf = 2, aMV ≈ 0.21 ⇒ a−1 ≈ 3.7 GeV.
I For Nf = 6 and 10, match aMV to within 10% of Nf = 2.
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Recap: Results for Nf = 2, 6

Condensate Enhancement

Rm ≡
M2

m

2mFπ (Nf =6)
/

M2
m

2mFπ (Nf =2)

0 0.005 0.01 0.015 0.02
m

1

1.5

2

R
m

N
f
=6 / N

f
=2

T. Appelquist et al. (LSD Collaboration), PRL104:071601,2010
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Recap: Results for Nf = 2, 6

The S Parameter

4 Nf = 2 • Nf = 6.
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FIG. 3: S parameter for Nf = 2 (red triangles) and Nf = 6
(blue circles). For each of the solid points, MP L > 4. The bands
correspond to fits explained in the text.

m is strongly Nf -dependent. The value of MV 0, to be dis-
cussed later, is roughly 0.2 in lattice units for both Nf = 2
and 6. For each of the solid points, MP L > 4. As an-
ticipated from the data in Fig. 1, Π′

V −A(0) at Nf = 6
drops below Π′

V −A(0) at Nf = 2 for the smaller M2
P

values, suggesting a suppression of S at Nf = 6. This
interpretation requires care, however, since the extrapola-
tion M2

P ∝ m → 0 is dominated by chiral logs for both
Nf = 2 and 6.

S-Parameter Results The S parameter (Eq. 1) is sim-
ply the correlator slope multiplied by the number of elec-
troweak doublets, with the SM subtraction. We estimate
the SM subtraction by evaluating the ∆SSM integral in
Eq. 1 with an infrared cutoff at s = 4M2

P , and taking
mH = MV 0. For the case 2MP < MV 0,

∆SSM(MP ) =
1

12π

[
11
6

+ log
(

M2
V 0

4M2
P

)]
. (3)

We use values for MP and MV 0 determined in Ref. [1].
The choice mH = MV 0 corresponds roughly to a 1 TeV
value for the reference Higgs mass.

In Fig. 3, we plot S ≡ 4π(Nf/2)Π′
V −A(0) − ∆SSM .

For Nf = 2, the results are consistent with previous lattice
simulations [12, 13]. The SM subtraction at Nf = 2 is
small, reaching a value ∼ 0.04 for the lowest solid mass
point, corresponding to mf = 0.010. A smooth extrap-
olation to M2

P = 0 is expected since the LO chiral logs
eventually appearing in Π′

V −A(0) are canceled by the SM
subtraction, Eq. 3. Given the linearity of the solid data
points, we include a linear fit to the three solid points with
M2

P /M2
V 0 < 1. In this range, where chiral perturbation

theory should begin to be applicable, there can also be an
NLO term of the form M2

P logM2
P , but it is not visible in

our data so we disregard it. The fit, with error band, is
shown in Fig. 3, giving Sm=0 = 0.32(5), consistent with
the value obtained using scaled-up QCD data [10].

The Nf = 6 results for S are also shown in Fig. 3. The
SM subtraction is again very small. For the higher mass
points, S is consistent with a value obtained by simply scal-
ing up the Nf = 2 points by a factor of 3. The value of S

at the lower mass points, where M2
P /M2

V 0 < 1, begins to
drop well below its value at the higher mass points. This
trend has appeared at Nf = 6 even though 6 & N c

f . As
M2

P is decreased further at Nf = 6, S as computed here
will eventually turn up since the SM subtraction leaves the
chiral-log contribution (1/12π)[N2

f /4 − 1] log M−2
P . To

estimate where this turn-up sets in, we include a simple fit
of the form S = A + BM2

P + (2/3π) log(M2
V 0/M

2
P )

to the three points with M2
P /M2

V 0 < 1, disregarding a
possible M2

P logM2
P term. This fit, with error band, is

also shown in Fig. 3. In a realistic context, of course, the
PNGBs receive mass even in the limit m → 0 from SM
and other interactions not included here, and these masses
provide the infrared cutoff in the logs.

Resonance Spectrum A question of general interest
for an SU(N) gauge theory is the form of the resonance
spectrum as Nf is increased toward N c

f . A trend toward
parity doubling, for example, would provide a striking con-
trast with a QCD-like theory. If the gauge theory plays
a role in electroweak symmetry breaking, then this trend
could be associated with a diminished S parameter.

We have so far computed the masses, MV and MA, and
decay constants, FV and FA, of the lowest-lying vector and
axial resonances. We plot the masses along with their ra-
tio in Fig. 4. Since the solid data points (MP L > 4) are
quite linear with a small slope for each case except MA at
Nf = 6, and since in each case, the NLO term in chiral
perturbation theory is linear in M2

P ∝ m, we include a
linear fit to all the solid points. The error bars on the ex-
trapolations are also shown. For Nf = 2, MV extrapolates
to 0.215(3) and for Nf = 6 it extrapolates to 0.209(3). As
noted above, the equality within errors of these two masses
in lattice units was arranged by the choice of the lattice
coupling in each case.

For Nf = 2, the extrapolated value of MA/MV =
1.476(40) is roughly consistent with the experimental re-
sult of 1.585(52) [14]. The Nf = 6 data points for MA

do not yet allow a simple fit and extrapolation, However,
they do indicate a substantial decrease in MA/MV for
M2

P /M2
V 0 < 1, the same range for which the S parameter

begins to drop for Nf = 6, indicating that the decrease in
S is indeed associated with a trend toward parity doubling.

Our simulation results for FV and FA, using the nor-
malization conventions of Ref. [10], will be presented in
a future paper. The dependence on M2

P /M2
V 0 is mild, and

for each case except the FA at Nf = 6, quite linear with
a small slope. Although there is known to be an NLO chi-
ral log for the decay constants, it is not visible in these
cases, so we have performed a linear fit to the data. We
simply report here that for Nf = 2 the linearly extrapo-
lated values, converted to physical units using the lattice
scale determined from MV 0, are FV = 141.8(3.8) MeV
and FA = 138.9(8.2) MeV, agreeing well with the mea-
sured QCD results [11, 15].

Discussion The relation between a diminished S pa-
rameter and the spectrum can be explored through the dis-

T. Appelquist et al. (LSD Collaboration), PRL 106 (2011) 231601
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New: Results for Nf = 10

A New Observation for Nf = 10
I Two independent ensembles for each quark mass, with ordered and disordered

start.
I The ensembles thermalize to different values
I NOT observed for Nf = 2 or 6.
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New: Results for Nf = 10

Starting-Config. Dependence
Statistically significant diffference between the ordered-start and
disordered-start ensembles are observed for almost all the
ensembles.
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New: Results for Nf = 10

Slowly-moving/Fixed Topology
mf start trajectory range Q

0.005 O 500 - 1319 0
0.005 D 500 - 919 3
0.010 O 500 - 1373 0
0.010 D 500 - 1259 1
0.015 O 500 - 1204 0
0.015 D 500 - 1450 -1
0.020 O 500 - 1239 0
0.020 D 500 - 1221 12
0.025 O 500 - 1256 0
0.025 D 500 - 609 -19

610 - 942 -18
943 - 1095 -17
1096-1097 -16

1098 - 1382 -17
1383 - 1484 -16

0.030 O 500 - 1415 0
0.030 D 500 - 1227 9
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New: Results for Nf = 10

Effects of Fixed Topology

I The slight topological tunneling at mf = 0.025 (D) allows us to analyze the data
for different topological sectors separately.

I Given the limited number of measurements for each topology, we only block
every trajectory, hence the errors will be underestimated.

I Nevertheless, such analysis will give us a crude idea how much the fixed
topology may affect our results.

R. Brower, S. Chandrasekharan, John W. Negele, and U.J. Wiese. 2003 has the
following formula for the Q-dependence

MQ = M(0) +
1
2

M(2)(0)
1

Vχt

„
1−

Q2

Vχt

«
+ O

„
1

V3

«
.

χt is the topological susceptibility, M(2)(0) is the second derivative with respect to θ at
θ = 0, and M(0) is the mass at θ = 0 (or equivalently, at non-fixed Q).
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New: Results for Nf = 10

Observed Q-Dependence
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I The discrepancy between ordered and disordered ensembles can be described
by the dependence on the fixed topology.

I To get results at θ = 0, we still need to know the topological susceptibility
→ work in progress.

I Large discrepancies⇒ small χt? V too small?
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New: Results for Nf = 10

Combining Datasets

Lacking the results for the topological susceptibility, can we still
combine the two ensembles and obtain some best estimates of the
“true" value, M(0)?

I From our fits, M(2)(0) is negative, so M(0) is between the results
for Q = 0 and Q 6= 0.

I Take M = (M0 + MQ)/2 as the central value.
I Take the largest relative difference between MQ and M0 as

systematic error.
I Combine statistical and systematic errors as final error.
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New: Results for Nf = 10

Testing Conformality - Qualitatively
In a conformal theory with a small finite mass,

MX = CXm1/(1+γ∗)

so the vector-to-pseudoscalar meson mass ratio MV/MP should look roughly constant.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035
amf

1

1.5
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2.5

3

M
V

/M
P

Nf=2
Nf=6
Nf=10

I The Nf = 2 data are diverging as
m → 0, as expected since MP → 0.

I Similaryly for Nf = 6, though not as
fast as Nf = 2.

I For Nf = 10 the ratios seem to be
roughly constant.
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New: Results for Nf = 10

Testing Conformality - Quantitatively3

this expansion, all scales vanish as a common power of
m at leading order, so that ratios of observables remain
fixed as m is varied. The mf = 0.015 and mf = 0.010
points show small and large displacements, respectively,
which may indicate finite-volume effects becoming large
at mf = 0.010. The fits described in the next section, for
mf � 0.010, � 0.015 and � 0.020, are consistent with
these conclusions.

The lack of scaling with m of the points on this plot
is not itself sufficient evidence that the mass-deformed
conformal framework is an adequate description of the
Nf = 10 results. For a theory in a heavy-quark regime
with all observables showing linear dependence on m, the
ratios shown are also expected to approach a constant value
for large m. However, the consistency of this plot with ex-
pectations from the conformal hypothesis motivates further
study within that framework. It is also clear from Fig. 1
that chiral perturbation theory cannot provide an accurate
description of our Nf = 10 results: there are no signs of
the expected decrease of MP with respect to FP , and the
numerical size of MP /FP is too large for the chiral expan-
sion to be convergent.

Infrared conformal hypothesis If the Nf = 10 theory
is conformal in the infrared limit, then the chiral symmetry
is broken only by the explicit fermion mass, and the ex-
pected mass dependence of the spectrum is determined by
the emergent conformal symmetry. This possibility is sup-
ported by evidence from running-coupling studies [16, 17]
that the gauge coupling g2(µ) evolves slowly at long dis-
tances. Therefore, we fit the spectrum using the infrared
conformal hypothesis, assuming that g2(µ) remains at its
fixed-point value g?2, and that the data can therefore be de-
scribed by mass-deformed conformal field theory [9, 19–
22] with mass anomalous dimension �?.

When an explicit fermion mass m ⌘ m(⇤) ⌧ ⇤ is
introduced, the running mass for scales below ⇤ is given by
m(µ) = m(⇤/µ)�?

. For some energy scale M ⌧ ⇤ ⇠
1/a, the running mass thus satisfies the equality m(M) =
M , so that at scales small compared to M the fermions
decouple from the theory, leaving an effective pure-gauge
theory which confines as the gauge coupling flows away
from the fixed-point value g?2. So long as g?2 is reasonably
strong, the induced confinement scale will be of order M .
The mass of all fermion bound states is then given by [9]

MX = CX m[1/(1+�?)] + DX m, (1)

where we have included a small correction term. With the
masses expressed in units of the cutoff ⇤, CX and DX are
dimensionless coefficients. Since the explicit breaking of
chiral symmetry is of order M , there is no approximate chi-
ral symmetry to be broken spontaneously. Thus this scaling
law applies as well to the pseudoscalar mass.

The pseudoscalar, vector, and axial-vector decay con-
stants as we define them are expected to scale in the same
way as bound-state masses [22]. The chiral condensate has

0.0 0.5 1.0 1.5 2.0

100
200

500
1000
2000

5000
1¥104
2¥104

g*

c2
HN do

f=
29
L

Nf = 2

S
V

N
F

C
total

S
V

N
F

C
total

Nf = 10
0.0 0.5 1.0 1.5 2.0

0.1
0.2
0.5
1
2
5
10
20
50
100

g*

c2

FIG. 2. �2 scans as a function of �? for our Nf = 2 results
(top) and Nf = 10 results in the range mf � 0.015 (bot-
tom). Contours shown are, from bottom to top at �? = 0 and
Nf = 10: h  i (red), MN⇤ (orange, dashed), FP (purple), MA
(blue, dashed), MN (orange), MV (blue), MP (green, dashed),
and total �2 (black). At Nf = 2, the pseudoscalar mass shows
the expected scaling behavior M2

P ⇠ m, which appears as a min-
imum at �? ⇡ 1 in this analysis.

a more complicated dependence on the fermion mass [9]:

h ̄ i = ACm + BCm[(3��?)/(1+�?)]

+ CCm[3/(1+�?)] + DCm3. (2)

The above expressions vanish as m ! 0 with the scal-
ing determined by a single parameter �?, a behavior qual-
itatively different from that of a theory with spontaneous
chiral symmetry breaking.

Results for global fits to the combined simulation data
for the ranges mf � 0.010, mf � 0.015 and mf � 0.020
are shown in Table I. Since we have a relatively small num-
ber of mass points to work with, we here consider only fits
with the D-terms set to zero. As anticipated, the fit quality
is reasonably good for the restrictions mf � 0.015 and
mf � 0.020. Including the mf = 0.010 data changes the
fit parameters significantly, matching our expectation that
finite-volume corrections become large for these points.
The other two fits lead to an anomalous dimension �? con-
sistent with 1, as anticipated for a theory with Nf at the
edge of the conformal window [25–27].

4

Obs. mf � 0.010 mf � 0.015 mf � 0.020

�? 1.45(+1.02)(-57) 0.94(+50)(-26) 1.18(+51)(-17)

CP 0.978 1.44 1.21
CV 1.168 1.70 1.42
CA 1.429 2.14 1.79
CN 1.749 2.53 2.10
CN? 2.232 3.35 2.87
CFP 0.121 0.190 0.164

�2/d.o.f. 69/31 14/23 3/15

TABLE I. Global fit results for the conformal hypothesis of
Eqs. (1) and (2), based on combined ordered/disordered data as
described in the text. The labels P, V, A, N, N?, FP correspond
to the pseudoscalar, vector, axial-vector, nucleon, nucleon-prime,
and pseudoscalar decay constant, respectively. For �?, one-sigma
error bands are obtained by marginalizing over all other param-
eters. The mf � 0.010 fit (left column) has significantly worse
�2/d.o.f., possibly due to the presence of finite-volume effects.

To better understand our fit results, we show in Fig. 2
scans over �2 as a function of �?, broken up for each in-
dividual observable included in the fit. We use the mf �
0.015 fits at Nf = 10. Several of the observables show an
individual minimum in �2 compatible with the global best-
fit value �? ⇡ 0.94. The chiral condensate (shown in red)
has no clear minimum and contributes very little to overall
�2, so we omit it from the global fits in Table I. Because �?

is strongly correlated with the coefficients CX , the standard
Hessian error estimate derived from the fit does not convey
the full range of possible �? values. We estimate a confi-
dence interval on �? directly, using the �2 contour shown
in Fig. 2; the results for each mass range as shown in Ta-
ble I. For fits with �2/d.o.f. < 1, likely overestimation of
the error bars on the data is compensated for by rescaling
all fit errors by

p
�2/d.o.f.. In all cases we find �? & 0.7

at one sigma.
A similar plot using our Nf = 2 results is shown for

comparison. As expected the Nf = 2 theory shows gen-
erally very poor power-law fits for any �? < 2, with the
exception of the pseudoscalar mass (green, dashed), which
scales as M2

P ⇠ m in accordance with chiral perturbation
theory.

Chirally Broken Hypothesis Despite the quality of fits
obtained under the infrared-conformal hypothesis, it re-
mains possible that the Nf = 10 theory is chirally broken.
A rigorous test of this possibility would involve chiral per-
turbation theory to extrapolate to m = 0. But as discussed
in the context of Fig. 1, we do not expect this expansion
to be convergent for mf � 0.015. We have nevertheless
attempted to fit our Nf = 10 results using NLO chiral per-
turbation theory, as done previously for Nf = 2 [1] and
Nf = 6 [28], finding (at Nf = 10) generally large values
of �2/d.o.f. and best-fit values pointing to a poorly conver-
gent expansion. We omit the details of these fits here, but

Obs. mf � 0.010 mf � 0.015 mf � 0.020

�? 1.45(+1.02)(-57) 0.94(+50)(-26) 1.18(+51)(-17)

CP 0.978(9) 1.44(21) 1.21(42)
CV 1.168(10) 1.70(25) 1.42(49)
CA 1.429(13) 2.14(32) 1.79(63)
CN 1.749(16) 2.53(37) 2.10(73)
CN? 2.232(25) 3.35(56) 2.87(1.02)
CFP 0.121(12) 0.190(29) 0.164(57)

�2/d.o.f. 69/31 14/23 3/15

TABLE II. Global fit results for the conformal hypothesis of
Eqs. (1) and (2), based on combined ordered/disordered data as
described in the text. The labels P, V, A, N, N?, FP correspond
to the pseudoscalar, vector, axial-vector, nucleon, nucleon-prime,
and pseudoscalar decay constant, respectively. Errors shown on
all CX are purely statistical, and ignore correlations between
observables. For �?, one-sigma error bands are obtained by
marginalizing over all other parameters. The mf � 0.010 fit
(left column) has significantly worse �2/d.o.f., possibly due to
the presence of finite-volume effects.

Obs. mf � 0.010 mf � 0.015 mf � 0.020

�? 1.45(15) 0.94(16) 1.18(44)
[68% CI] [0.88,2.47] [0.68,1.44] [1.01,1.69]

CP 0.978(9) 1.44(21) 1.21(42)
CV 1.168(10) 1.70(25) 1.42(49)
CA 1.429(13) 2.14(32) 1.79(63)
CN 1.749(16) 2.53(37) 2.10(73)
CN? 2.232(25) 3.35(56) 2.87(1.02)
CFP 0.121(12) 0.190(29) 0.164(57)

�2/d.o.f. 69/31 14/23 3/15

TABLE III. Global fit results for the conformal hypothesis of
Eqs. (1) and (2), based on combined ordered/disordered data as
described in the text. The labels P, V, A, N, N?, FP correspond
to the pseudoscalar, vector, axial-vector, nucleon, nucleon-prime,
and pseudoscalar decay constant, respectively. Errors shown on
all quantities are purely statistical, and ignore correlations be-
tween observables. For �?, a marginalized one-sigma confidence
interval is also shown. The mf � 0.010 fit (left column) has sig-
nificantly worse �2/d.o.f., possibly due to the presence of finite-
volume effects.

will present them in a future work.
An alternative, crude approach is to use the extrapola-

tion formula MP ⇠ bP m1/2 for the pseudoscalar mass,
and the linear expression MX ⇠ aX + bXm for the other
masses and decay constants. In Fig. 3, we compare fits of
this type for the vector and axial-vector masses to mass-
deformed conformal fits with fixed �? = 1, a value within
the errors of our global conformal fit. Within the range of
fermion masses considered, we cannot clearly distinguish
this simple linear dependence from the power-law behavior

Finite volume effects may be large for

amf ≤ 0.01.

Many-Flavor Domain Wall Fermions and Fixed Topology Meifeng Lin



Motivation LSD Calculations with Domain Wall Fermions Summary

Summary
I First SU(3) lattice simulations with Nf = 6 and 10 domain wall fermions have

been performed.
I Hints of condensate enhancement and reduced S paramter have been seen with

Nf = 6.
I With increasing Nf , the topology becomes more difficult to evolve. Effects of fixed

topology are big for Nf = 10.
I Spectrum for Nf = 10 is consistent with conformality. But cannot rule out the

chirally-broken scenario, as the masses are too heavy to make use of ChPT.

Future Work
I Calculate topological susceptibility at fixed Q for Nf = 10.

S. Aoki et al., 2007, 2008

I Quantative studies of finite volume effects
I Smaller quark masses

Many-Flavor Domain Wall Fermions and Fixed Topology Meifeng Lin
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Progress with Overlap Fermions  

 

 

• Overlap on 2+1 flavor DWF configurations with deflation 
and low-mode sustituion          quark loops with LMA 

• Improvement of nucleon correlator  

• Strangeness content in nucleon and other FF 

• Glue momentum and angulalr momentum in nucleon 

• Roper resonance with wall source   

 

 
   QCD Collaboration: 
A. Alexandru, Y. Chen, M. Deka, T. Doi, S.J. Dong, T. Draper, M. Gong,  
I. Horvath,  B. Joo, F. Lee, A. Li, H.W. Lin, K.F. Liu, N. Mathur,  H. Thacker, 
Y. Yang, J.B. Zhang 

New Horizons for Lattice Calculations with Chiral Fermions,  BNL, May 14-16, 2012 
 

http://eagle.phys.gwu.edu/~fxlee/chiQCD.html 
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Overlap on 2+1 Flavor DWF configurations 
with HYP Smearing 

• Mixed action 

• For chirally symmetric valence, it is a generalization of 
partial quenching with one extra low-energy constant in 
valence-sea mass  

 

 

 

 

 

• Mixed action partially quenched chiral PT at NLO 

1 2 1 2

1 2 1 2

2
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m B m m m

 

    

  

  M. Lujan et al., 1204.6256 
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24^3 x 32, a =0.115 fm     

La ~ 2.8 fm            

mπ ~ 330 MeV 

La ~ 4.5 fm               

mπ ~ 180 MeV 

32^3 x 64, a =0.085 fm  

32^3 x 64, a =0.12 fm  

2+1 flavor DWF configurations (RBC-UKQCD) 

La ~ 2.7 fm   

mπ ~ 295 MeV 

(O(a2) extrapolation) 

DSDR  



 
 

    Calculating eigenmodes is relatively easy 
 

 
  

 
 
 
 

  
•   Normality and  
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•   Normality (D†D=DD†) and GW relation 
  Eigenvalues are on a unit circle and  
     λ = 0, 2 are chiral modes.  
    The rest are complex pairs. 

Some Desirable Features of Overlap  



Overlap with Deflation 

(multimass with same eigenvectors) 
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Speedup with deflation and HYP smearing 

No critical slowing down 

Multii-mass inversion (30 masses) 

16^3 x 32 24^3 x 64 32^3 x 64 

res w/o D D D+S w/o D D D+S w/o D D D+S 

Low mode 10-8 

 

0 200 200 0 200 200 0 400 400 

Inner iter 10-11 

 

340 321 108 344 341 107 309 281 101 

Outer iter 10-8 

 

627 72 85 2931 147 184 4028 132 156 

Speedup 23 51 79 

Overhead 5 prop 5 prop 8 prop 

5 5 5 22
1

( )
(0, ) 1 1 1
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n
W i

W

i W iW

H b
D H
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A. Li, et al, PRD 82, 114501 (2010) 



Z3 grid (64) source with low-mode substitution 

323 x 64 lattice, ml (sea)= 0.004 at mΠ ~ 200 MeV, 50 conf. 



Nucleon with LLL and HLL substitution 
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Hadron Structure with Quarks and Glue  

• Quark and Glue Momentum and Angular Momentum in 
the Nucleon 

 

0t ft


( )( , , )D t u d s  

0t ft


( )( )u D u d D d t    

0t ft

21

4
F F F  
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Status of Projects in Progress 

• Charmonium and DS spetra, fD, fDs, are under global analysis with three sea 

masses and two lattice spacings.   
 

•  Improvement of nucleon correlator with low-mode substitution 

 
 

 

 

  

  

 

        

 

3

3

Point source:      1.13(14) GeV;

Z  grid source:   1.08(5) GeV;

Z  grid smeared source:   1.14(2) GeV;

Variation:          1.16(1) GeV   

N

N

N

N

m

m

m

m









3 124 64 lattice with 331 MeV, a = 1.73 GeV

47 configurations

m

 



• Quark loop with low-mode averaging and Z4 noise 

estimate of high modes with grids and time dilution 

constant + m | |s N ss N t 
 243 x 64,  ml = 0.005,  ms = 0.04, 50 conf.          25 - 30% error     

 

M. Gong  

Lattice 2011 



 on different time slices

50 configurations: Low+High modes 150 configurations: Low modes only 



                                        

 Momenta and Angular Momenta of Quarks and Glue  

  Energy momentum tensor operators decomposed in quark and 

     glue parts gauge invariantly  --- Xiangdong Ji (1997) 

 

 

 

 

 

  Nucleon form factors 

 

 

 

 

 Momentum and Angular Momentum 
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T1 (q
2) and T2 (q

2)  

 3-pt to 2-pt function ratios 

 

 

 

 

 Need both polarized and unpolarized 

nucleon and different kinematics (pi, qj, s) 

to separate out T1 (q
2),  T2 (q

2) and T3 (q
2)  

2 1

1 2

2 1 1

3

2 1 2 2

,

( )3 2 2

2 1 1 2

( , ; , ) 0 | ( , ) (0) ;

Tr ( 0, ; , ) ( ) ( )

ip x iq xpt

N N

x x

m t t Etpt

m

G p t q t e T x t T

G p t q t We e T q T q

 



    

  

   

         





   

Status of Proton Spin 

• Quark spin ΔΣ ~ 20 - 30% of proton spin  

   (DIS, Lattice) 

• Quark orbital angular momentum?       
(lattice calculation (LHPC,QCDSF) ~ 0) 

• Glue spin ΔG/G small (COMPASS, STAR) ?   

• Glue orbital angular momentum is small 
(Brodsky and Gardner) ?               

Dark Spin ? 
15 



   

• Field strength tensor from overlap operator 
 
 
 
 
 
 
 

    where,  
 
    Liu, Alexandru, Horvath – PLB 659, 773 (2007) 
 
•  Noise estimation 
     with Z4  noise with color-spin dilution and some dilution  
     in space-time as well. 

 
   Quark and Glue momenta and angular momenta in the 
      nucleon (quenched approximation) 
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Disconnected Insertions of T1 (q
2) and T2 (q

2) for u/d  Quarks 



   

 

Glue  T1 (q
2) and T2 (q

2)  



Renormalization and Quark-Glue Mixing 
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Momentum and Angular Momentum Sum Rules 
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Matching and Mixing 
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M. Glatzmaier 



   CI(u) CI(d) CI(u+d)  DI(u/d) DI(s)   Glue 

<x> 
0.428     
(40) 

0.156 
(20) 

0.586 
(45) 

0.038 
(6) 

0.024 
(6)    

  0.313 
(56)   

T2(0)  

 

0.297 
(112) 

-.218 
(80) 

0.064 
(22) 

-0.002 
(2) 

-.001 
(3) 

 -.059 
(52) 

2J 
0.726 
(128) 

-.072 
(82) 

0.651 
(51) 

0.036 
(7) 

0.023 
(7) 

0.254 
(76) 

Renormalized results:   Zq = 1.05, Zg = 1.05 

2 2 2(0) (0) (0) 0.002(56)CI DI gT T T  

S. Brodsky et al. NPB 593, 311(2001) →  no anomalous gravitomagnetic 

                                                                   moment 

E. Leader, arXiv:1109.1230 →  transverse angular momentum 



   CI(u) CI(d) CI(u+d)  DI(u/d) DI(s)   Glue 

2J 
0.726 
(128) 

-.072 
(82) 

0.651 
(51) 

0.036 
(7) 

0.023 
(7) 

0.254 
(76) 

gA 

0.95 

(11) 

-0.32 
(12) 

0.65 
(8) 

-0.12 
(1) 

-0.12 
(1) 

2 L 
-0.25 
(18) 

0.26 
(14) 

0.00 
(10) 

0.17 
(2) 

0.15 
(2) 

Renormalized results: 
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K.F. Liu et al., 1203.6388 
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Beijing, 2004,  page 23 

Glozman and Riska Challenge Phys. Rep. 268, 263 (1996) 

Hyperfine Interaction of Quarks in Baryons 

• Color-spin 

 

• One-gluon exchange 

• Flavor-spin 

 

• Goldstone boson exchange 
 2121

  
CC

 2121
  

FF
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Quenched Roper Calculation 



Status of Projects in Progress 

• Charmonium and DS spetra, fD, fDs, are under global analysis with three sea 

masses and two lattice spacings.   

 

•  Improvement of nucleon correlator with low-mode substitution 
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3

Point source:      1.13(14) GeV;

Z  grid source:   1.08(5) GeV;

Z  grid smeared source:   1.14(2) GeV;

Variation:          1.16(1) GeV   

N

N

N

N

m

m

m

m









3 124 64 lattice with 331 MeV, a = 1.73 GeV

47 configurations

m

 



•  Roper resonance from Coulomb wall source 

3 124 64 lattice with 331 MeV(sea), a = 1.73 GeVm
 

2 3 4 2 2

0 1 2 3(mixed)+c ln( / ) ...Nm m c m c m m m       



Vector meson effective mass from 

Coulomb wall source 
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n

n

C t W e We
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Summary of overlap on DWF config.  

• Good:  same fermion for charm and light, eigenmodes, 
inversion with deflation and multimass, correlators with 
low-mode substitution, quark loop with low-mode 
averaging, glue field strength tensor.  

• Not so good:  residual mass, oscillatory behavior at short 
time slices (DWF sea), not unitary (mixed action),  

    auto-correlation.  

• Can and should get better: precise approximation of the 
matrix sign function, reduced auto-correlation. 
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Gauge Operators from the Overlap Dirac Operator 

• Overlap operator   
 
 

• Index theorem on the lattice  (Hasenfratz, Laliena,  
Niedermayer, Lüscher) 

 
                         

• Local version (Kikukawa & Yamada, Adams, Fujikawa, 
Suzuki) 

                                       
 

• Study of topological structure of the vacuum   

 
 Sub-dimensional long range order of coherent charges   

   (Horvàth et al; Thacker talk in Lattice 2006)  
 Negativity of the local topological charge correlator (Horvàth et al)  
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Some Desirable Features of Overlap  
• Renormalization with chiral Ward identity 

•  Light mesons 

 

 

•  Heavy-light meson 

 

 

 Gellmann-Oaks-Renner relation  

  

 

 

 

 

 

/23 1

3

( 0, )
2   lim  2  e

m tPP
A S P

t a

G p t
Z A Z mZ P f m

m


  



 
     

1 1

1 2 12 1 1 2 2 1 2 12( , ) ( ( ) ( ) ) ( , )A S S PZ m m A Z m m Z m m Z m m P 

   

1 1 2 24 †

12 12

1 2

21
 ( ) (0)  (renormalized and unrenormalized)a ad x x

V m m
 

       


1 1 1 2 2 2 1 2
1 2 1 1

1 1 2 21 1 2 2

( ) ( )
( , )

( ) ( )

S S

P

S S

Z m Z m m m
Z m m

Z m m Z m m 

     


    

K.F. Liu and S.J. Dong, Int.J.Mod.Phys. A20 (2005) 7241 



Robert Mawhinney
Columbia University

Decaying Pseudoscalars from DWF LQCD

New Horizons for Lattice Computations with Chiral Fermions
Brookhaven National Laboratory

May 15, 2012



Generic Process Examples Experiment LQCD calculates

Kl2
K+ → µ+νµ 
K+ → e+νe

fK fK

Kl3 K+ → π0 l+ νl 
K0 → π− l+ νl

|Vusf
+(0)|2 f+(0)

Kl4 K → π π l ν̄l ??

K → ππ
(CP conserving)

K0 → π+ π− 
K+ → π+ π0

|A0| 
|A2|

|A0|  |A2| 
(SMcpc inputs)

∆mK 
(CP conserving)

K0 ↔ π π ↔ K
0
 

(long distance physics) 
K0 ↔ O∆S=2 ↔ K

0
 

(short distance physics)

∆mK
∆mK 

(SMcpc inputs)

K0 → π π 
(indirect CP violation)

KL → π π�
K0 ↔ K

0
�
→ π π

 
independent of π π isospin

� =
B̂KF 2

K SM

∆mK
B̂K

K0 → π π 
(direct CP violation)

KL → π π 
depends on π π isospin

Re(��/�) 
= f(A0, A2, SM)

A0  A2 
(SMcpc inputs)

SMcpc = Standard Model CP-conserving parameters



RBC/UKQCD 2+1 flavor DWF ensembles

Thermalizing on BNL BGQProposed
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Improving Domain Wall Fermions

• When underlying gauge field changes 
topology, the DWF modes can extend 
farther in the fifth dimension

• This gives a non-perturbative contribution 
to residual chiral symmetry breaking

• Becomes problematic at strong coupling

• Add ratio of determinants of twisted Wilson 
fermions to suppress these gauge field 
dislocations

• Tune to minimize residual mass while still 
preserving toplogical ergodicity
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Force Gradient Integrator

• Proposed by Clark and Kennedy.  Implemented (and simplified) in CPS by Hantao Yin

• For 163 × 32 × 16 volumes, no speed-up compared to O(δτ2) Omelyan 
 

Scaling behavior of Integrators
We implemented the force gradient integrator and tested it on a
163 × 32× 16 lattice with 420MeV pion.

1e-4
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1e-2

0.1

1
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0.05 0.1 0.15 0.2 0.25 0.33 0.4

dH

dt

force gradient
Omelyan

Figure: Scaling behavior Omelyan 2.44± 0.21 Force Gradient 4.16± 0.21• For larger volumes, where δH grows with volume, force gradient may be helpful

• Tests on 483 × 64 × 16 with 220 Mev pions using force gradient and retuning Hasen-
bush masses, 184 minutes/accepted configuration went down to 108 minutes/accepted 
configuration.



MADWF Solver
• Other chiral fermion formulations may achieve a smaller mres for smaller Ls

• Mobius is one example: similar to DWF, but same mres for ~ Ls/2

• We have many simulations at different lattice spacings to put into our global fits, so 
not easy to change actions.  May also change topological tunneling, ...

• Idea:  use Mobius fermions to accelerate the linear solver for DWF 
                                      MADWF = Mobius Accelerated DWF

• Developed and implemented by Hantao Yin

• Gives 2× or more speed-up in quark propagator solves for current measurements.

Direct CG solve Möbius Accelerated DWF

operation Op. count time(s) operation Op. count time(s)
initial DWF(1e-2) 16*32 3

DWF(1e-5) 121*32 28
Möbius(1e-5) 4447*12 275
DWF(1e-5) 106*32 25
DWF(1e-5) 101*32 24
Möbius(1e-5) 4581*12 284
DWF(1e-5) 106*32 25
DWF(1e-5) 102*32 24
Möbius(1e-5) 4775*12 296
DWF(1e-5) 106*32 25

CG solve(1e-10) 11290*32 2672

final DWF(1e-10) 517*32 121

total 3.61e5 2672 total 2.03e5 1138

Table 1: Comparison of MADWF CG solver with a regular (zero started) CG solver. L = 32, L′ = 12, with
b = 1.841556,c = 0.841556. Data obtained from a 512 node partition on BG/P, both solve to 1e-10.

5 Parameter Usability
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Figure 3: Parameter usability test: The black and blue circles show the comparison of the CG counts. Black
circles are from a direct solve. Blue circles show the CG counts from the final fix up solve in MADWF. The
black and blue triangles show the wall clock time for both a direct solve and MADWF. Both solve to 1e-10
for all configurations. A wall source is used for all solves.

The Möbius accelerated domain wall fermion (MADWF) is useful only in the case that the same set of
parameters (L′, b and c) produces good guesses for all (or most) configurations from the same ensemble and
all (or most) source vectors in question. Since it is generally not practical to tune the parameters for each
lattice configuration or each source vector. In practice we found that the same set of Möbius parameters can

6



Scaling at unphysical light quark mass
63
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FIG. 26: Ratios of dimensionless combinations of lattice quantities Q (listed in the figure) between the 323

and 243 lattices at the matching point corresponding to ml = 0.006, mh = 0.03 on the 323 lattice. A value of

unity indicates perfect scaling. The ratios mll/mhhh and mlh/mhhh (and consequently mll/mlh) are defined

to scale perfectly at these quark masses as a consequence of our choice of scaling trajectory.

the quark masses used in the matching procedure above. The figure shows that we can expect only

small scaling violations on the order of 1–2% for the other quantities used in our global fits, and

also confirms that other dimensionless combinations of lattice quantities would be equally suitable

choices for the definition of the scaling trajectory.

E. Results of combined scaling and chiral fits

Using the matching factors Zl , Zh and Ra determined as described in the previous section we are

ready to perform a simultaneous fit of all our pion, kaon and Ω mass and decay constant data

to either the NLO forms in chiral perturbation theory, Eq. (41) to Eq. (45), or the analytic forms

Eq. (49) to Eq. (55). We also correct for finite volume effects in NLO PQChPT by substituting the

chiral logarithms with the corresponding finite-volume sum of Bessel functions [44]. The iterative

procedure is the same for each of these three fit ansätze. For each iteration i, we:

1 estimate the physical strange-quark masses, mis, from the (i−1)th iteration;

2 interpolate and reweight the data to mis;

3 fit the mx,my,ml dependence of the light pseudoscalar mass and decay constant;

4 fit the mx,ml dependence of kaon quantities at mh =mis;
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FIG. 10. Ratios of various dimensionless combinations of observables between the 32I and 32ID ensemble

sets. The combination of physical quantities is given above or below the corresponding point. A ratio of

unity indicates perfect scaling between the two ensemble sets.

simulated quark masses on a common scale, and draw a line to indicate the physical point as

determined in section V. These plots are shown in figure 11.

C. Chiral/Continuum Fitting Strategy

The chiral/continuum fit forms are obtained via a joint expansion in a2 and m̃ f . As in ref. [1] we

consider both an NLO expansion around the SU(2) chiral limit using partially-quenched chiral per-

turbation theory (PQChPT) and also a leading-order analytic expansion about an unphysical light-

quark mass. Including finite-volume effects in the ChPT, this provides three fit ansätze, which we

label ‘analytic’, ‘ChPT’ and ‘ChPTFV’, where the latter two refer to the chiral perturbation the-

ory forms without and with finite-volume corrections respectively. For each ansatz we expand the

heavy-quark mass dependence to leading order in the vicinity of the physical strange-quark mass.

We use a power-counting scheme whereby terms of order m̃ f a2 and higher are neglected. This

truncation leaves only a single a2 term arising from the expansion of the leading order parameter.

For example, the analytic form for the pion decay constant fll in physical units is as follows:

fll =C fπ
0

(
1+C fπ

a a2
)
+C fπ

1 (mRv −mRl0)+C
fπ
2 (mRl −mRl0)+C

fπ
3
(
mRh −mRh0

)
, (24)

where the superscript R indicates a renormalized physical quark mass (in a general scheme), and

mRl0 and m
R
h0 are the expansion points for the light and heavy quark masses respectively. In our

power counting scheme, a term in the lattice spacing arises only in the expansion of the leading

Compare
• DWF+I:  1/a = 2.28 GeV

• DWF+I:  1/a = 1.73 GeV
(Phys. Rev. D83 (2011) 074508)

Compare
• DWF+I: 1/a = 2.28 GeV

• DWF+ID: 1/a = 1.37 GeV
(RBC/UKQCD to appear)

2%

5%

See few percent scaling errors from / .a1 1 73 GeV"3= , with larger %O 5_ i errors from 1/a 
= 1.37 GeV



Parameters in DWF+I and DWF+ID Global Fits

• Simultaneous fit to mπ
2, mK

2, fπ, fK, and mΩ 

• mπ, mK and mΩ chosen to be quantities without O(a2) corrections

• Parameters in SU(2) chiral expansion:

* mπ
2 and fπ:  8 parameters − 2 LO, 4 NLO, 2O(a2)

* mK
2 and fK:  6 parameters − 2 LO, 4 NLO, 2O(a2)

* mΩ:  1 LO, 1 NLO

* Total: 18 parameters

• Fits also determine 

* 3 lattice spacings

* 2 ratios of light quark mass renormalization factors

* 2 ratios of strange quark mass renormalization factors

* ms



Global Fits to Multiple Ensembles

• Fit mπ
2, fπ, mK

2, fK and mΩ to an expansion in powers of a2 and ml, 
including SU(2) logs where appropriate.  Examples are 
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2. SU(2)

m2ll = χl
[
1+ cBa

2
]
+ χl ·

{
16

f 2

(
(2L

(2)
8 −L

(2)
5 )+2(2L

(2)
6 −L

(2)
4 )

)
χl +

1

16π2 f 2
χl log

χl

Λ2χ

}

(11)

fll = f
[
1+ c f a

2
]
+ f ·

{
8

f 2
(2L

(2)
4 +L

(2)
5 )χl −

χl

8π2 f 2
log

χl

Λ2χ

}

. (12)

3. SU(2) for kaons

m2xy = B(K)(mh) m̃y
[
1+ cB(K)a

2
]
+ B(K)(mh) m̃y

{
λ1(mh)

f 2
χl +

λ2(mh)

f 2
χx

}
(13)

fxy = f (K)(mh)
[
1+ c f (K)a

2
]

+ f (K)(mh)

{
λ3(mh)

f 2
χl +

λ4(mh)

f 2
χx

−

1

(4π f )2

[
χx+χl

2
log

χx+χl

2Λ2χ
+
χl−2χx

4
log

χx

Λ2χ

]}

(14)

4. Omega baryon

For a given choice of the valence strange mass my and the dynamical strange mass mh, we simply

fit to

mΩ(a2,ml,mh) = mΩ(0,0,mh)
[
1+ cmΩ,aa

2+ cmΩ,mlml
]

(15)

5. Counting parameters for fits

We want to do simultaneous fits of our data to Eqs. 11 to 15 for two ensembles, i.e.. using SU(2)

fits for the light quarks, SU(2) for kaons for the kaon and a linear fit for mΩ. The following

parameters will enter the fits and, after listing them, we discuss various choices one can make for

• Note different O a2` j coefficients used for DWF+I and DWF+ID

• Fit all partially quenched data, including SU(2) ChPT finite volume  
corrections in fit

• Reweight data from simulation mh to self-consistently determined ms (Jung)

• Interpolate valence propagators to self-consistently determined ms

• Use mπ mK and mΩ set scale.
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FIG. 13. Global fits obtained using NLO SU(2) chiral perturbation theory with finite-volume corrections

for the pion mass (top) and fπ (bottom) on the 32ID ensembles. Here the left-hand plot of each pair show

the data at the simulated strange-quark mass and the corresponding fit curves on the ml = 0.001 ensemble,

and the right-hand plots those on the ml = 0.0042 ensemble. The plots of the pion mass have m2π/(m̃x+ m̃y)

on the ordinate axis, a quantity used traditionally to emphasize the chiral curvature of the data.
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FIG. 43: Dependence of the kaon decay constant on the mass of the light valence quark. The left panel

shows the results from the 243, ml = 0.005 ensemble and the right panel from the 323,ml = 0.004 ensemble.

In each case the results are for the physical strange quark mass. There are two curves plotted. The orange

curve is the result one infers for the infinite volume, while the red curve is the result we obtain on the finite

volume. As we do not adjust our data for finite volume effects, the red curve should go through our data.

The orange curve also goes through our data which is an indication that the finite volume effects in our

data are substatistical, and the difference between the orange and red curves at lighter masses indicates that

one should expect substantial finite volume effects if one were to simulate at these lighter masses without

changing our present volume.

f continuumπ = 124(2)(5)MeV (61)

f continuumK = 149(2)(4)MeV (62)

( fK/ fπ)continuum = 1.204(7)(25) , (63)

where we display the statistical and systematic errors separately. We note that the known, exper-

imental value of fπ influenced our choice to take the central value of physical quantities as the

average of the results from the analytic and finite-volume NLO ChPT ansätze. The prediction for

fπ cannot therefore be considered unbiased, however as our aim is to select the most likely central

value for phenomenologically important quantities such as fK/ fπ and BK our procedure is both

appropriate and contains a prudent systematic error.

Applying the same procedure to obtain predictions for the physical bare quark masses for the

β = 2.25 323 ensembles, we find:

m̃ud = 2.35(8)(9)MeV and m̃s = 63.7(9)(1)MeV, (64)

39

In the previous section we demonstrated that the ChPTFV fit forms describe our data reliably over

a considerably larger range of pion masses than the linear ansatz. For the final predictions given

in the following sections we therefore take the ChPTFV results for our central values and use the

analytic ansatz only to estimate the chiral systematic. However, we continue to find it striking that

a linear ansatz appears capable of describing QCD at the 1% level from the 260 MeV pion-mass

regime down to the physical point, and at the 2% level if that range is extended to 350 MeV.

C. Global Fit Predictions

Applying the procedure detailed above, we present our predictions for the pion and kaon decay

constants:

fπ = 127.1(2.7)(0.7)(2.5)MeV, (27)

fK = 152.4(3.0)(0.1)(1.5)MeV, (28)

fK/ fπ = 1.1991(116)(69)(116) . (29)

Here the errors are statistical, chiral and finite-volume respectively. Note that by restricting the

ChPTFV fit to mπ < 350 MeV rather than mπ < 420 MeV used in the 2010 analysis (a 30% cut

in the light quark mass), we obtain a value for fπ that is now highly consistent with the known

physical value, justifying our assertion that the previously observed deviation was mainly due to

the influence of higher order terms in the chiral expansion.

For the inverse lattice spacings we obtain:

a−1(32I) = 2.310(37)(15)(9) GeV, (30)

a−1(24I) = 1.747(31)(4)(4) GeV, (31)

a−1(32ID) = 1.3709(84)(8)(3) GeV. (32)

For comparison, in the 2010 analysis we obtained a−1(32I)= 2.282(28)(1)(1)GeV and a−1(24I)=

1.730(25)(1)(0) GeV by fitting only to the Iwasaki data. These results are highly consistent, al-

though we find a considerable enhancement in the systematic errors. Upon further investigation

we determined that these differences arise almost entirely because the scaling factors Zl , Zh and

Ra are now allowed to vary between the fits (generic scaling), as opposed being fixed to the values

obtained at some unphysical mass point (fixed trajectory) as in the 2010 analysis: In the fixed

trajectory case the prediction for the physical Omega baryon mass, which we use to set the overall
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very interesting to see how the different ansätze for the chiral extrapolation become constrained or

invalidated as we perform simulations with even lighter masses. We point out that the difference

in the results from the analyses using the finite-volume ChPT and analytic ansätze is much smaller

for the other quantities studied in this paper than for fπ .

The main physical results of this study are:

fπ = 124(2)(5)MeV {Eq.(61)}; fK = 149(2)(4)MeV {Eq.(62)};
fK
fπ

= 1.204(7)(25) {Eq.(63)};

mMSs (2GeV) = (96.2±2.7)MeV {Eq.(95)}; mMSud (2GeV) = (3.59±0.21)MeV {Eq.(94)};

[ΣMS(2GeV)]1/3 = 256(6)MeV {Eq.(98)};

r0 = 0.487(9) fm and r1 = 0.333(9) fm {Eq.(66)} . (103)

For convenience we also display the equation number where the results were presented earlier in

this paper to help the reader find the corresponding discussion. All the results in Eq. (103) were

obtained after reweighting the strange-quark mass to its physical value at each β , and the renor-

malized quark masses were obtained using non-perturbative renormalization with non-exceptional

momenta as described in SectionVI. The low-energy constants obtained by fitting our data to

NLO chiral perturbation theory can be found in Sec. VE.

The configurations and results presented in this paper are being used in many of our current stud-

ies in particle physics phenomenology, including the determination of the BK parameter of neutral

kaon mixing in the continuum limit [34]. In parallel to these studies we are exploiting config-

urations generated at almost physical pion masses on lattices with a large physical volume (∼

4.5 fm) but at the expense of an increased lattice spacing. Preliminary results obtained for the

meson spectrum and decay constants and for ΔI = 3/2 K → ππ decay amplitudes were recently

presented in Refs. [48, 69]. Having access to data with excellent chiral and flavor properties with a

range of lattice spacings and quark masses makes this an exciting time indeed for studies in lattice

phenomenology.
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B. Renormalized quark masses

After the detailed discussion of the quark-mass renormalization, it is now straightforward to com-

bine the renormalization constants in Eqs. (92) and (93) with the physical bare quark masses on

the 323 lattice in Eq. (64) to obtain the light and strange quark masses renormalized in MS scheme:

mMSud (2GeV) = ZMS(32)cml (µ = 2GeV,n f = 3) · m̃ud(323) ·a−1(323)

= 3.59(13)stat(14)sys(8)ren MeV, (94)

mMSs (2GeV) = ZMS(32)cmh (µ = 2GeV,n f = 3) · m̃s(323) ·a−1(323)

= 96.2(1.6)stat(0.2)sys(2.1)ren MeV, (95)

where the three errors on the right-hand side correspond to the statistical uncertainty, the system-

atic uncertainty due to the chiral extrapolation and finite volume, and the error in the renormaliza-

tion factor. We recall that for the error due to the chiral extrapolation we conservatively take the

full difference of the results obtained using the finite-volume NLO SU(2) and analytic fits and for

the central value we take the average of these results. We estimate the finite-volume effects from

the difference of the results obtained using finite volume and infinite-volume NLO ChPT fits and

combine these errors in quadrature. The finite-volume errors prove to be small. The error in the

renormalization factor includes those in Eqs. (92) and (93).

The ratio of the s and ud quark masses is

ms
mud

= 26.8(0.8)stat(1.1)sys. (96)

We end this section by presenting our results for the leading-order LEC B and the chiral conden-

sate. Using the finite-volume NLO ChPT fits we find

BMS(2GeV) = ZMS(32)−1ml (µ = 2GeV,n f = 3) ·B(323) ·a−1(323) = 2.64(6)stat(6)sys(6)ren GeV.

(97)

Combining this result with the pion decay constant in the chiral limit, also obtained using the

finite-volume NLO ChPT fits the chiral condensate is found to be

[ΣMS(2GeV)]1/3 = [ f 2B(2GeV)/2]1/3 = 256(5)stat(2)sys(2)ren MeV. (98)

In Eqs. (97) and (98) the second error is only due to finite volume corrections estimated from the

difference of finite and infinite volume NLO ChPT fits.

58

are negligable compared to the truncation error on our final results, it is illustrative to consider

at what point they enter into our calculations. The RI/(S)MOM schemes are actually defined in

the limit µ2 � Λ2QCD, at which the behavior is purely perturbative. The momentum schemes that

we actually implement on our lattice can be therefore be regarded as different schemes that take

into account the non-perturbative behavior. We therefore consider the aforementioned errors not

as properties of the numerical renormalization factors, but rather as additional errors on the per-

turbative conversion to the MS-scheme, arising from the fact that the scheme-change factors are

calculated using a slightly different scheme than the numerical results.

There are two final sources of systematic error on the renormalization conditions – those arising

from the chiral extrapolation and finite-volume errors on the lattice spacings used in the scale-

setting and the continuum extrapolation. In the previous section, we repeated the analysis using

the lattice spacings obtained from our global fits with the three different chiral ansätze. We can

therefore estimate these errors using the procedure discussed in section VB, namely taking the

central values from the ChPTFV ansatz, the chiral error from the difference between this and the

analytic results, and the finite-volume error from the difference of the ChPTFV and ChPT results.

The final values for the quark mass renormalization factors are:

Zcml(MS,3 GeV) = 1.361(26)(17)(2)(16) ,

Zcmh(MS,3 GeV) = 1.343(17)(3)(1)(16) .
(53)

Here the errors are due to statistical, chiral, finite-volume and truncation effects.

B. Results for the Physical Quark Masses

Multiplying Zml and Zmh by the physical quark masses in the matching scheme, we obtain

mu/d(MS,3 GeV) = 3.05(8)(6)(1)(4)MeV, ms(MS,3 GeV) = 83.6(1.7)(0.7)(0.4)(1.0)MeV,
(54)

where the errors are statistical, chiral, finite-volume and from the perturbative matching. In the

2010 analysis we obtained the following values in the MS-scheme at 2 GeV:

mu/d(MS,2 GeV) = 3.59(13)(12)(6)(8)MeV, ms(MS,2 GeV) = 96.2(1.5)(0.2)(0.1)(2.1)MeV ,

(55)

where the errors are as above. Although the central values are not directly comparable, we note

that the renormalization error is considerably smaller as a fraction of the mass than the previous
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are negligable compared to the truncation error on our final results, it is illustrative to consider

at what point they enter into our calculations. The RI/(S)MOM schemes are actually defined in

the limit µ2 � Λ2QCD, at which the behavior is purely perturbative. The momentum schemes that

we actually implement on our lattice can be therefore be regarded as different schemes that take

into account the non-perturbative behavior. We therefore consider the aforementioned errors not

as properties of the numerical renormalization factors, but rather as additional errors on the per-

turbative conversion to the MS-scheme, arising from the fact that the scheme-change factors are

calculated using a slightly different scheme than the numerical results.

There are two final sources of systematic error on the renormalization conditions – those arising

from the chiral extrapolation and finite-volume errors on the lattice spacings used in the scale-

setting and the continuum extrapolation. In the previous section, we repeated the analysis using

the lattice spacings obtained from our global fits with the three different chiral ansätze. We can

therefore estimate these errors using the procedure discussed in section VB, namely taking the

central values from the ChPTFV ansatz, the chiral error from the difference between this and the

analytic results, and the finite-volume error from the difference of the ChPTFV and ChPT results.

The final values for the quark mass renormalization factors are:

Zcml(MS,3 GeV) = 1.361(26)(17)(2)(16) ,

Zcmh(MS,3 GeV) = 1.343(17)(3)(1)(16) .
(53)

Here the errors are due to statistical, chiral, finite-volume and truncation effects.

B. Results for the Physical Quark Masses

Multiplying Zml and Zmh by the physical quark masses in the matching scheme, we obtain

mu/d(MS,3 GeV) = 3.05(8)(6)(1)(4)MeV, ms(MS,3 GeV) = 83.6(1.7)(0.7)(0.4)(1.0)MeV,
(54)

where the errors are statistical, chiral, finite-volume and from the perturbative matching. In the

2010 analysis we obtained the following values in the MS-scheme at 2 GeV:

mu/d(MS,2 GeV) = 3.59(13)(12)(6)(8)MeV, ms(MS,2 GeV) = 96.2(1.5)(0.2)(0.1)(2.1)MeV ,

(55)

where the errors are as above. Although the central values are not directly comparable, we note

that the renormalization error is considerably smaller as a fraction of the mass than the previous
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result. This is mainly due to the reduction of the truncation errors when going from 2 GeV, which

we estimated to be ∼ 2.1% [1], to 3 GeV where the error is ∼ 1.2%. The removal of the O(4)-

symmetry breaking artifacts in our present analysis does not affect the matching systematic as it

was formerly treated by inflating the statistical error.

For completeness we also calculate the ratios of the strange and up/down quark masses:

ms
mu/d

= 27.36(39)(30)(22)(0) , (56)

where the errors are again as above.

In contrast, in our intermediate mass-dependent matching scheme (cf. section VC) we obtain
ms
mu/d

= 27.74(22)(3)(25), which differs from the above due to the small differences between Zl
and Zh on the 24I ensemble set. As we discussed in ref. [1], these quantities are related as

Z24Ih = Z24Il
(
1+ cmΛ2QCD

[
(a24I)2− (a32I)2

])
,

where cm is some coefficient, hence the differences in the quark mass ratios can be considered as

a discretization effect, which we have eliminated by switching to a continuum scheme.

VII. CHIRAL/CONTINUUM FITS AND PHYSICAL RESULTS FOR BK

In this section we present our results for the neutral kaon mixing parameter BK . Continuum re-

sults are obtained by performing chiral/continuum fits over our three ensemble sets following the

strategy outlined in section IV. This analysis extends that in ref [2] through the inclusion of the

32ID ensemble set.

As BK is a scheme-dependent quantity we must perform our fits to renormalized data. We de-

termine the renormalization factors again using variants of the RI/MOM scheme with symmetric

kinematics. We first outline this calculation, then discuss the application of our chiral fitting tech-

niques to this quantity. Finally we present the continuum results in the MS scheme at 3 GeV.

A. Non-perturbative Renormalization Factors

Unlike in the case of the quark mass renormalization, we require renormalization factors for BK
on both the Iwasaki and Iwasaki+DSDR ensemble sets. In this case, the option of calculating

our lattice renormalization factors directly at 3 GeV is not an option since we cannot simulate
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In the 2010 analysis we obtained:

BK(MS,3 GeV) = 0.529(5)(15)(2)(11) . (70)

This is highly consistent with the result of the present analysis. In our new result we see a large

improvement in the chiral extrapolation systematic, which results from lowering the pion mass cut

to 350 MeV from the 420 MeV used in the previous analysis.

VIII. CHIRAL/CONTINUUM FITS AND PHYSICAL RESULTS FOR THE SOMMER SCALES

In this section we present the results of applying our global fit technique to the Sommer scales, r0
and r1. In ref. [1] we determined continuum values for these parameters using global fits to our

Iwasaki ensemble sets. In this paper we extend these fits to include the 32ID ensemble set and

observe the effect of lowering the pion mass cut. The values of r0 and r1 measured on the 32ID

ensemble sets can be found in section III.

Assuming a linear dependence on the quark masses and a2, we performed our chiral/continuum

fits using the following form:

r1i = cri,0(1+ cA(1)ri,a [a1]2)+ cri,ml m̃
1
l + cri,mh(m̃

1
h−mh0) (71)

on the primary lattice 1.

For convenience, we simultaneously fit both r0 and r1, even though they do not share any common

parameters other than the scaling parameters. The lattice spacings and scaling factors were fixed

to those obtained in the main analysis, with the fits repeated for each of the three chiral ansätze.

For each fit we applied the same cuts as were performed to the data in section V; this corresponds

Ansatz χ2/dof χ2/dof

Uncut Cut

Analytic 1.45(66) 0.141(71)

ChPT 1.47(67) 0.41(40)

ChPTFV 1.47(67) 0.42(40)

TABLE XXIV. Fit ansatze and the associated uncorrelated χ2/dof obtained by fitting to r0 and r1 over the

full data set (second column) and to the cut data set (third column). The upper bounds on the pion mass in

the cut data sets are mπ = 350 MeV for the ChPT and ChPTFV fits and mπ < 260 MeV for the analytic fit.
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1. Systematic Errors

For our central values and statistical errors of our final MS prediction, we follow the 2010 analysis

in taking the results obtained using the SMOM(/q,/q) intermediate scheme, which is best described

by one-loop perturbation theory. Following section V we estimate the finite-volume and chiral

extrapolation systematics on this quantity from the differences between the ChPTFV result (which

we take as our central value) and the ChPT and analytic results respectively. As we propagated

the differences between the lattice spacings through our analysis in section VIIA 4, the aforemen-

tioned systematics on the renormalization factors are automatically included in the differences

above.

The remaining systematic errors are associated with the perturbative conversion into the MS

scheme. The largest of these is the perturbative truncation error. To determine this we again

follow the 2010 analysis strategy of taking the difference between the values of BK in the MS-

scheme at 3 GeV obtained using the SMOM(/q,/q) and SMOM(γµ ,γµ) intermediate schemes,

the latter of which is also well-described by perturbation theory. As discussed in section VIA 5

and above, there are non-perturbative effects associated with the spontaneous chiral symmetry

breaking and the presence of additional energy-scales (ΛQCD, ms, etc.), that contribute to the per-

turbative systematic. In ref. [2] we found that in the non-exceptional schemes these effects are tiny

compared to the truncation systematic, therefore we do not include these effects in our systematic

error budget.

2. Final Results

Using the ChPTFV result in the SMOM(/q,/q) for the central value and statistical error, and obtain-

ing the chiral and finite-volume systematic errors as above, we find:

BK(SMOM(/q,/q),3 GeV) = 0.540(8)(7)(3)(11) . (68)

where the errors are associated with the statistical, chiral, and finite-volume respectively. Convert-

ing this to the MS-scheme at 3 GeV using one-loop perturbation theory we obtain

BK(MS,3 GeV) = 0.535(8)(7)(3)(11) , (69)

where the first three errors are as before, and the final error is that associated with the truncation

of the perturbative series.

  (stat, chiral, finite V, pert. theory)

Some physical results

Chiral extrapolation errors markedly reduced



Non-perturbative Renormalization
• Many of the quantities discussed in this talk require renormalization

• Needed to match to continuum schemes where low energy effective Hamiltonians 
are determined to NnLO and renormalized at some scale μ

• Schrodinger functional and RI-MOM NPR schemes well understood

• RI-MOM is primarily used for kaons - simplicity?

• Recent improvements in RI-MOM

* Non-exceptional symmetric momenta - RI-SMOM

* Twisted b.c. to allow selection of continuous range of momenta

* Volume sources reduce statistical error dramatically

* Compute non-perturbative continuum running from fine lattices, use for coarse 
lattices (Rudy Arthur, Peter, Boyle, PRD 83 (2011) 114511).   

* Implemented for K " rr (N. Garron) for RBC-UKQCD 
simulations on coarse lattices (1/a = 1.37 GeV). 

                 

Our strategy

In the lattice scheme:

lim
a1→0

�
Z(µ1, a1)Z

−1(µ0, a1)
�

� �� �
fine lattice

× Z(µ0, a0)� �� �
coarse lattice

= Z(µ1, a0)

The Rome-Southampton condition becomes

L−1
0 � µ0 �

π

a0
[µ0 ∼ 1.5 GeV]

ΛQCD � µ1 �
π

a1
[µ1 ∼ 3 GeV]

µ0 can be non-perturbative

No discretization errors associated with a0 × µ1

even better: the discretization effects coming from high momentum disappear since we
take the continuum limit.

Can use different actions for the coarse and the fine lattices.

Nicolas Garron (University of Edinburgh) NPR with step scaling matrix July 12, 2011 11 / 26



Some K " r r physics
A neutral kaon beam will contain only long-lived KL

 far enough from source.
Dominant decay is KL " r r r, small phase space gives long lifetime. 

Experiments measure decay amplitudes for KL compared to KS (2 complex numbers).
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56 CHAPTER 1. COMMON THEORETICAL ISSUES

ε′K =
η+− − η00

3
=

εK√
2

[〈(ππ)I=2|KL〉
〈(ππ)I=0|KL〉

− 〈(ππ)I=2|KS〉
〈(ππ)I=0|KS〉

] [
1 + O

(
A2

A0

)]

=
A2

A0

1√
2

[
1 − λ2

1 + λ0
− (1 − λ0)(1 + λ2)

(1 + λ0)2

]
. (1.175)

Next we use
λ2 = λ0 e2 i (Φ0−Φ2) , (1.176)

and expand to first order in the small phases:

ε′K =
1

2
√

2

A2

A0
(λ0 − λ2) + O

(
A2

2

A2
0

,φ2 , (Φ0 − Φ2)
2

)

=
1√
2

A2

A0
i (Φ2 − Φ0) . (1.177)

A non-vanishing value of ε′K implies different CP violating phases in the two isospin am-
plitudes and therefore |∆S| = 1 CP violation. Since experimentally Re ε′K > 0, one finds
Φ2 > Φ0. The phase of ε′K is 90◦ + δ2 − δ0 � 46◦ and ε′K/εK is almost real and positive.

Since (1.177) does not depend on q/p, there is no contribution from CP violation in
mixing to ε′K . The strong phases drop out in the combination

Im
A0

A2
ε′K � 1

2
√

2
(Im λ0 − Im λ2) . (1.178)

Since we work to first order in φ, we can set |λI | = 1, and therefore (1.178) purely measures
interference type CP violation. From the definition in (1.175) one further finds that

Re ε′K � 1

6

(

1 −
∣∣∣∣∣
Aπ0π0 Aπ+π−

Aπ0π0 Aπ+π−

∣∣∣∣∣

)

� 1√
2

|A2|
|A0|

sin (δ0 − δ2) (Φ2 − Φ0) (1.179)

originates solely from |Af/Af | �= 1. Hence Re ε′K measures CP violation in decay.

Experimentally the quantity |η00/η+−|2 = 1− 6Re ε′K/εK has been determined. Recent
results are

Re
ε′K
εK

= (20.7 ± 2.8) × 10−4 (KTeV) [88] ,

Re
ε′K
εK

= (15.3 ± 2.6) × 10−4 (NA48) [89]. (1.180)

We therefore find from (1.177) that the difference of the CP violating phases is tiny:

Φ2 −Φ0 = (1.5± 0.2) · 10−4 (KTeV) , Φ2 −Φ0 = (1.1± 0.2) · 10−4 (NA48) . (1.181)

1.6.2 Phenomenology of εK and ε′
K

In order to exploit the precise measurement of φ = − arg M12/Γ12 from εK in (1.173) one
must calculate the phases of

M12 =
1

2mK
〈K0|H |∆S|=2|K0〉 − Disp

i

4mK

∫
d4x 〈K0|H |∆S|=1(x)H |∆S|=1(0)|K0〉 .

(1.182)
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and

Γ12 = Abs
i

2mK

∫
d4x 〈K0|H |∆S|=1(x)H |∆S|=1(0)|K0〉 (1.183)

=
1

2mK

∑

f

(2π)4δ4(pK − pf )〈K0|H |∆S|=1|f〉 〈f |H |∆S|=1|K0〉 � 1

2mK
A∗

0 A0 .

Here Abs denotes the absorptive part of the amplitude. It is calculated by retaining only
the imaginary part of the loop integration while keeping both real and imaginary parts of
complex coupling constants. Analogously, the dispersive part Disp is obtained from the real
part of the loop integral.

The second term in (1.182) shows that, at second order, also the |∆S| = 1 Hamiltonian
contributes to M12. In the B system the corresponding contribution is negligibly small.
The Standard Model |∆S| = 2 Hamiltonian reads

H |∆S|=2 =
G2

F

4π2
MW

[
λ∗2

c η1 S(xc) + λ∗2
t η2 S(xt)

+ 2λ∗
c λ∗

t η3 S(xc, xt)
]
bK(µ)QK(µ) + h.c. (1.184)

It involves the |∆S| = 2 operator

QK(µ) = dLγνsL dLγνsL . (1.185)

In (1.184) λq = VqdV
∗
qs, xq = m2

q/M
2
W and S(x) is the Inami-Lim function introduced in

(1.120). The third function S(xc, xt) comes from the box diagram with one charmed and
one top quark. One finds S(xc) � xc, S(xc, xt) � xc(0.6 − ln xc) and S(xt) � 2.4 for
mt � 167GeV in the MS scheme. Short distance QCD corrections are contained in the ηi’s.
In the MS scheme the next-to-leading order results are η1 = 1.4± 0.3, η2 = 0.57± 0.01 and
η3 = 0.47 ± 0.04 [90]. η1 strongly depends on mc and αs, the quoted range corresponds to
mc = 1.3GeV. A common factor of the QCD coefficients is bK(µ), the kaon analogue of
bB(µ) encountered in (1.119). The matrix element of QK is parameterized as

〈K0|QK(µ)|K0〉 =
2

3
f2

K m2
K

B̂K

bK(µ)
, (1.186)

where fK is the kaon decay constant.

CP violation in the kaon system is related to the squashed unitarity triangle with sides
|λu|, |λc| and |λt|. In the limit λt = 0 all CP violation vanishes, thus CP violation is
governed by the small parameter Im (λt/λu). This explains the smallness of the measured
phases in (1.173) and (1.181). This pattern is a feature of the CKM mechanism of CP
violation and need not hold in extensions of the Standard Model. Hence kaon physics
provides a fertile testing ground for non-standard CP violation related to the first two
quark generations.

The presence of the second term in (1.182) impedes the clean calculation of the mixing
phase φM = arg M12 in terms of the CKM phases. It constitutes a long distance contri-
bution, which is not proportional to B̂K . Since both terms in (1.182) have different weak
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BK and corrections to ε
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Long distance physics 
hep-ph/0201071 (page 58, Nierste) 

Buras, Guadagnoli (PRD 78 (2008) 033005
Buras, Guadagnoli, Isidori 

(PLB 688 (2010) 309

• Norman Christ:  measure these by extending Lellouch-Lüscher finite volume methods

• Jianglei Yu:  numerical investigation of signal and renormalization for connected graphs
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Direct calculations of K"rr ΔI = 3/2 amplitudes
• RBC-UKQCD DWF+ID (Iwasaki + DSDR gauge action) ensemble 

 

    

The DSDR Term

Christopher Kelly () Continuum Results for Light Hadronic Quantities using Domain Wall Fermions with the Iwasaki and DSDR GaugeJuly 2011 5 / 12

Introduce a weighting factor to the gauge action

W(M; εf ; εb) =
det

[

DW(−M + iεbγ
5)†DW(−M + iεbγ

5)
]

det [DW(−M + iεf γ5)†DW(−M + iεf γ5)]
=

∏

i

λ2
i + ε2f

λ2
i + ε2b

where DW is the Wilson Dirac operator and λ are eigenvalues of γ5DW .

MD force for eigenmode i

Fi (εf , εb) =
d

dλi

(

− log
λ2
i + ε2f

λ2
i + ε2b

)

Parameters εf and εb tune peak and
tail of force dist.

Suppress near-zero modes while
keeping very-near-zero modes required
for topology change.

‘Dislocation Suppressing Determinant
Ratio’ (DSDR)

• 170m MeVdyn =r , 32 64 163 # #  lattice volume, .4 60 fm 3^ h  physical volume, 
1/a = 1.37(2) GeV (a = 0.146(2) fm), ( ) .m 2 3 7GeV MeVMS

res n = =

• ( )m 142 2 MeVPQ =r , ( )m 508 9 MeVK = , ( )p 199 4 MeV=rv

• Physical decays have m 140MeV=r , m 500MeVK = , p 200MeV=rv 281

Figure 19: Quark flow diagram of the ∆I = 3/2 K → ππ correlator computed in

this report. The time tK of the kaon source, tπ of the pion sink, and t of the weak

operator, are indicated. The times tK and tπ are fixed at the values shown for a given

calculation, while the time t is varied.

M. Lightman and E. Goode, Lattice 2010
M. Lightman, Columbia PhD thesis, 2011
E. Goode, talk Lattice 2011

Single wall source for π's on given lattice
Multiple kaon locations, since inexpensive
Results from 62 configurations



Results for K"rr ΔI = 3/2 amplitudes
• Simulations also done on quenched lattices, at many kinematic points, which help to 

estimate errors from extrapolations to physical kinematics on unquenched lattices
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Figure 115: Plot of Re(A2) vs. number of twists (ntw) for the 323 coarse lattices, and

extrapolation to energy conserving kinematics.

Extrapolation of Re(A2) to physical kinematics Error estimates (M. Lightman thesis)

• N. Garron and A. Lytle have NPR results now, using 4 RI-SMOM schemes.

• Reweighting to physical light dynamical mass 

     

Reweighting Results

� Reweight from msea
l = 0.001 → 0.0001 in order to match

valence mass

� Reweight in 30 increments, each of size 3× 10−5

0.0001 (rw) 0.0005 0.001 (sim)1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6 x 10−8

ml (sea)

Re(A2)

0.0001 (rw) 0.0005 0.001 (sim)

−6.2

−6

−5.8

−5.6

−5.4

x 10−13

ml (sea)

Im(A2)

Re(A2) = 1.397(81)× 10−8GeV
reweighting−−−−−−→ 1.46(15)× 10−8GeV

Im(A2) = −5.65(31)×10−13GeV
reweighting−−−−−−→ −5.79(39)×10−13GeV

Elaine Goode and Matthew Lightman K to ππ Decays on the Lattice
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FIG. 1: R(tQ) for the 3 operators which contribute to K → (ππ)I=2 decay amplitudes: (a) (sd)L (ud)L, (b) (sd)L (ud)R and

(c) (sidj)L (ujdi)R, where (sd)L (ud)L,R = (siγµ(1− γ5)di) (ujγµ(1∓ γ5)dj). i, j are color labels and tK and tππ are 0 and 24.

The various sources of systematic error are analysed
in detail in [1] and our conclusions are summarised in
Tab. II. The dominant source of uncertainty is due to
lattice artefacts, and since we have a relatively coarse
lattice and the matrix elements are proportional to a−3,
these errors are substantial. The estimate of 15% is ob-
tained in two ways: from the variation in the value of
a obtained using mΩ, fπ, fK and r0 to set the scale
and from the a2 term in global chiral-continuum fits of
the BK parameter of neutral kaon mixing (fits are per-
formed using both IDSDR and Iwasaki lattices). The
finite-volume uncertainties are estimated from the differ-
ences of infinite- and finite-volume one-loop chiral per-
turbation theory. The uncertainties in the Wilson coeffi-
cients are conservatively taken as the difference between
the leading and next-to-leading order terms as defined
in [22]. We estimate the truncation errors in the pertur-
bative factors converting the operators to the MS-NDR
scheme from the variation of the results obtained using
different RI-SMOM intermediate schemes. We note also,
that in contrast to ∆I = 1/2 decays, all the quarks par-
ticipating directly in ∆I = 3/2 decays are valence quarks
and in such cases the effect of using partially quenched
or partially twisted boundary conditions are small [23].
For more details and for a discussion of the remaining
uncertainties, due to the small difference from physical
kinematics, and in the evaluation of the Lellouch-Lüscher
factor and the step-scaling functions, we refer the reader
to [1].
Our result for ImA2 can be combined with the experi-

mental results for ReA2, ReA0 = 3.3201(18)×10−7GeV
and ε′/ε to obtain the unknown ratio:

ImA0

ReA0
= −1.63(19)stat(20)syst × 10−4 . (12)

This ratio allows us to determine in full QCD the ef-
fect of direct CP violation in KL → ππ on ε, customarily
denoted by κε [3], (κε)abs = 0.923±0.006. where the sub-
script “abs” denotes that at present only the absorptive
long-distance contribution (Im Γ12) is included [4] (the

ReA2 ImA2

lattice artefacts 15% 15%

finite-volume corrections 6.2% 6.8%

partial quenching 3.5% 1.7%

renormalization 1.7% 4.7%

unphysical kinematics 3.0% 0.22%

derivative of the phase shift 0.32% 0.32%

Wilson coefficients 7.1% 8.1%

Total 18% 19%

TABLE II: Systematic error budget for ReA2 and ImA2.

error is now dominated by the experimental uncertainty
in ε′/ε). The analogous contribution from the disper-
sive part (Im M12) [4] is yet to be determined in lattice
QCD, but we describe progress towards being able to do
this in [24].
Using our value of ImA2 in Eq. (11) and taking the ex-

perimental value given above for ReA2 from K+ decays
we obtain the EWP contribution to ε′/ε, Re(ε′/ε)EWP =
−(6.52± 0.49stat ± 1.24syst)× 10−4.

Conclusions and Outlook

The ab initio calculation of the complex K → (ππ)I=2

decay amplitude A2 described above builds upon sub-
stantial theoretical advances, achieved over many years
as outlined in the introduction. It is encouraging that the
value we find for ReA2 is in good agreement with experi-
ment and we are also able to determine ImA2 for the first
time. It will be important to repeat this calculation us-
ing a second lattice spacing so that a continuum extrap-
olation can be performed thus eliminating the dominant
contribution to the error, reducing the total uncertainty
to about 5%. We expect that the dominant remaining
errors in A2 will then come from the omission of electro-
magnetic and other isospin breaking mixing between the



 

3

mK+ mπ+ Eππ mK − Eππ

Simulated 511.3(3.9) 142.9(1.1) 492.6(5.5) 18.7(4.8)

Physical 493.677(0.016) 139.57018(0.00035) mK+ 0

TABLE I: mK+ , mπ+ and Eππ in the simulation and the corresponding physical values. The results are given in MeV.

0.0014606 − 0.00060408i), Qi are four-quark operators
and Ci are the Wilson coefficients. The calculation of
A2 requires the evaluation of the matrix elements of
three operators, classified by their transformations un-
der SU(3)L × SU(3)R chiral symmetry:

Q(27,1) = (s̄idi)L (ūjdj)L, Q(8,8) = (s̄idi)L (ūjdj)R,

Q(8,8)mix = (s̄idj)L (ūjdi)R , (3)

where i, j are color labels which run from 1 to 3. (Q(8,8)

andQ(8,8)mix are the EWP operators contributing mainly
to ImA2.) The main achievement being reported here
is the successful determination of the matrix elements

I=2〈ππ|Qi|K〉. This starts with the evaluation of the
correlation function

Ci
Kππ(tK , tQ, tππ) = 〈0|Jππ(tππ)Qi(tQ)J

†

K(tK)|0〉

= e−mK(tQ−tK) e−Eππ(tππ−tQ)〈 0 | Jππ(0) |ππ〉 ×

〈ππ|Qi(0)|K〉 〈K|J†

K(0)| 0 〉+ · · · (4)

where J†

K and Jππ are interpolating operators for the
kaon and two-pion states, which are summed over space
and hence have zero momentum. The energy of the two-
pion state, Eππ , is a little larger than 2

√
m2

π + n(π/L)2

because of finite-volume effects (in the isospin 2 state the
two-pion potential is repulsive). Here n is the number of
spatial directions in which anti-periodic boundary con-
ditions have been imposed on the d-quark. The ellipses
represent the contributions of heavier states, which are
suppressed if tQ − tK and tππ − tQ are sufficiently large.
The sources for the kaon and two-pions are placed at
fixed times, tK and tππ (in lattice units), and we vary
the position of the operator tQ.
The required 〈ππ|Qi|K〉 matrix element is one of the

factors in Eq. (4) and we need to remove the remain-
ing factors. This is achieved by evaluating two-point
correlation functions CK(t) = 〈 0 | JK(t)J†

K(0) | 0 〉 and
Cππ(t) = 〈 0 | Jππ(t)J†

ππ(0) | 0 〉, and calculating the ratio

R(tQ) ≡
CKππ(tK , tQ, tππ)

CK(tQ − tK)Cππ(tππ − tQ)
(5)

�
〈ππ|Qi|K〉

〈 0| Jππ(0) |ππ 〉 〈K | J†

K(0) | 0 〉
, (6)

where the factors in the denominator of Eq. (6) are deter-
mined by fitting the correlation functions CK and Cππ.
R(tQ) is independent of tQ if all the time intervals are
sufficiently large. For illustration of the plateaus we

present in Fig. 1 the tQ behavior for the 3 operators for
tππ − tK = 24 . (We also have results for tππ = 20, 28
and 32.)

Having obtained the matrix elements of the bare lattice
operators 〈ππ|QLatt

i |K〉, in order to obtain A2 we must
renormalize the operators and apply finite-volume correc-
tions. The latter are given by the Lellouch-Lüscher factor
in terms of the s-wave ππ-phase shift [2] (the phase-shift
can be obtained from Eππ [16]). In order to combine
our results with the Wilson coefficients calculated in the
MS-NDR scheme [17–19], we perform the renormaliza-
tion in 3 steps. We start by obtaining the renormaliza-
tion constants in four RI-SMOM schemes using the pro-
cedures described in [5]. Because the lattice is coarse the
renormalization scale is chosen to be low, 1.145GeV, to
avoid lattice artefacts. We determine the universal, non-
perturbative continuum step scaling function required to
evolve the operators to 3 GeV using our Iwasaki lat-
tices [20, 21]. Finally at 3GeV we convert the results
to the MS-NDR scheme using one-loop perturbation the-
ory.

Our final results for the matrix elements in the MS-
NDR scheme at a renormalization scale of 3GeV are:

M(27,1) = (3.20± 0.13stat ± 0.58syst) 10
−2GeV3 , (7)

M(8,8) = (5.85± 0.89stat ± 1.11syst) 10
−1GeV3 , (8)

M(8,8)mix = (2.75± 0.12stat ± 0.52syst)GeV3, (9)

where for each operator Qi, Mi = 〈π+π+|Qi |K+〉 .
In terms of these matrix elements, A2e

iδ2 =√
3/2(GF /

√
2)

∑
i (VCKM)i Ci Mi, where the Wilson co-

efficients correspond to operators for the physical K+ →
π+π0 decays with the normalization (s̄d)L [(ūu)L −
(d̄d)]L+(s̄u)L(ūd)L for the (27, 1) operator and similarly
for the EWP operators.

Combining the results in Eqs. (7) - (9) with the Wilson
coefficients, CKM matrix elements and GF we find:

ReA2 = (1.436±0.062stat±0.258syst) 10
−8GeV (10)

ImA2 =−(6.83±0.51stat±1.30syst) 10
−13GeV. (11)

The result for ReA2 agrees well with the experimental
value of 1.479(4)× 10−8GeV obtained from K+ decays
and 1.573(57)×10−8GeV obtained from KS decays (the
small difference arises from the unequal u and d quark
masses and from electromagnetism, two small effects not
included in our calculation). ImA2 is unknown so that
the result in Eq. (11) provides its first direct determi-
nation. For the phase of A2 we find ImA2/ReA2 =
−4.76(37)stat(81)syst 10

−5.
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Results for K"rr ΔI = 3/2 amplitudes

• 63 configurations analyzed, in ongoing calculation.

• PRL 108 (2012) 141601



Some observations and opinions
• With DWF (or Mobius) plus BGQ, 2+1 flavor simulations with m 140 MeV=r  are un-

derway

* 48 96 323# #  DWF+I with 1/a = 1.74 GeV gives ( . )5 5 fm 3 box 
70 time units/BGQ-rack-month -> 500 time units/BGQ-rack-month

* 64 128 163# #  DWF+I with 1/a = 2.28 GeV gives ( . )5 5 fm 3 box 
2x to 4x harder than 1/a = 1.74 GeV

* Many hundreds of configurations with a few BGQ rack-years

* Ideal for many physics measurements

• No chiral extrapolations!

* Still interesting in their own right, for better determination of LEC's

* Might need even lighter pions to know more about convergence of ChPT

* Not an issue for real-world QCD physics

• Adding DSDR term gives viable action for finite temperature studies

• We have reached the point where 2+1 flavor QCD with full continuum symmetries, 
physical pions, physical kaons and large volumes can be done!















BGQ at BNL
• BNL currently has 3+ racks of preproduction BGQ hardware

* 1 rack is owned by BNL

* 2 complete racks are owned by the RIKEN-BNL Research Center (RBRC)

* A fourth partially populated RBRC rack will be used to hold a few small BGQ 
partitions for code development and testing.
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Heavy-hadron chiral perturbation theory

Effective field theory combining heavy-quark symmetry and chiral
symmetry [M. Wise 1992, T. M. Yan et al. 1992, G. Burdman and
J. F. Donoghue 1992, P. Cho 1992]

pions:
ξ =
√

Σ = exp(iΦ/f )

heavy-light mesons with sl = 1/2:

(P i ) =

(
B+

B0

)
, (P∗i )µ =

(
B∗+

B∗0

)

µ

combined into a single field

H i =
[
−P iγ5 + P∗iµ γ

µ
] 1− /v

2



Heavy-hadron chiral perturbation theory

heavy-light baryons with sl = 1:

(B ij) =

(
Σ+

b
1√
2

Σ0
b

1√
2

Σ0
b Σ−b

)
, (B∗ij)µ =

(
Σ∗+b

1√
2

Σ∗0b
1√
2

Σ∗0b Σ∗−b

)

µ

combined into a single field

S ij
µ =

√
1

3
(γµ + vµ)γ5B

ij + B∗ijµ

heavy-light baryons with sl = 0:

(T ij) =
1√
2

(
0 Λb

−Λb 0

)



Heavy-hadron chiral perturbation theory

At leading order in chiral- and heavy-quark expansion,

L =
f 2

8
(∂µΣ†)ij∂µΣji − iTr

(
H iv ·DH i

)
− iS

µ

ij v ·DS ij
µ + ∆S

µ

ijS
ij
µ + iT ijv ·DT ij

+g1Tr
(
H i (A

µ)ijγµγ5H
j
)

−ig2εµνσλS
µ

kiv
ν(A σ)ij(S

λ)jk

+
√

2g3

[
S
µ

ki (Aµ)ijT
jk + T ki (A

µ)ijS
jk
µ

]
,

where

A µ =
i

2

(
ξ†∂µξ − ξ∂µξ†

)
= −1

f
∂µΦ + ...

This gives the vertices

π

B*
g
1

B(  )*

π

Σb
(  )*

g
2

Σb
(  )* Λb

π

Σb
(  )*

g
3

[g1 ∼ g ∼ ĝ ∼ gπ ∼ gB∗Bπ]



Heavy-hadron chiral perturbation theory

Example application 1: strong decay Σb → Λbπ

Λb

π

Σb
(  )*

g
3

Γ(Σ+
b → Λbπ

+)LO =
g2

3

6πf 2
|pπ|3

Example application 2: quark-mass dependence of fB in SU(2) χPT:

B

π

B

π

B
g
1

BB*
g
1

+ +

fB = A

[
1 +

3

4
(1 + 3g2

1)
m2
π

(4πf )2
log

(
m2
π

(4πf )2

)]
+ B m2

π



Previous knowledge of g1, g2, g3:

Reference Method g1 g2 g3

Yan et al., 1992 Nonrelativistic quark model 1 2
√

2
Colangelo et al., 1994 Relativistic quark model 1/3 . . . . . .
Bećirević, 1999 Quark model with Dirac eq. 0.6± 0.1 . . . . . .
Guralnik et al., 1992 Skyrme model . . . 1.6 1.3
Colangelo et al., 1994 Sum rules 0.15 - 0.55 . . . . . .
Belyaev et al., 1994 Sum rules 0.32± 0.02 . . . . . .
Dosch and Narison, 1995 Sum rules 0.15± 0.03 . . . . . .
Colangelo and Fazio, 1997 Sum rules 0.09 - 0.44 . . . . . .

Pirjol and Yan, 1997 Sum rules . . . <
√

6− g2
3 <

√
2

Zhu and Dai, 1998 Sum rules . . . 1.56± 0.30± 0.30 0.94± 0.06± 0.20
Cho and Georgi, 1992 B[D∗ → D π,D γ] 0.34± 0.48 . . . . . .
Arnesen et al., 2005 B[D∗(s) → D(s)π,D(s)γ] 0.51 . . . . . .

Li et al., 2010 dΓ[B → π`ν] < 0.87 . . . . . .
Cheng, 1997 Γ[Σ∗c → Λc π], NRQM 0.70± 0.12 1.40± 0.24 0.99± 0.17

De Divitiis et al., 1998 nf = 0 Lattice QCD 0.42± 0.09 . . . . . .
Abada et al., 2004 nf = 0 Lattice QCD 0.48± 0.11 . . . . . .
Negishi et al., 2007 nf = 0 Lattice QCD 0.517± 0.016 . . . . . .
Ohki et al., 2008 nf = 2 Lattice QCD 0.516± 0.052 . . . . . .

Bećirević et al., 2009 nf = 2 Lattice QCD 0.44± 0.03+0.07
−0.00 . . . . . .

Bulava et al., 2010 nf = 2 Lattice QCD 0.51± 0.02 . . . . . .



This work

Complete calculation of g1, g2, g3 from lattice QCD, controlling all
systematic uncertainties

RBC/UKQCD ensembles with 2+1 flavors of domain-wall fermions

227 MeV ≤ mπ ≤ 352 MeV (three unitary, three partially quenched)

L = 2.7 fm

NLO SU(4|2) chiral fits including finite-volume effects

continuum extrapolation using two lattice spacings a = 0.112 fm,
a = 0.085 fm

chiral symmetry simplifies nonperturbative renormalization, provides
automatic O(a) improvement



How can we calculate g1, g2, g3 from QCD?

We compute suitable hadronic observables both in HHχPT and in
lattice QCD.

The expressions derived from HHχPT are then fitted to the lattice
data, and in these fits the axial couplings are parameters.

The simplest quantities that depend on the axial couplings already
at leading order are the matrix elements of the axial current
between single-hadron states.

〈P∗d |Aµ|Pu〉 = −2 (g1)eff ε∗µ,

〈Sdd |Aµ|Sdu〉 = −(i/
√

2) (g2)eff vσ εσµνρ U
ν
Uρ,

〈Sdd |Aµ|T du〉 = −(g3)eff Uµ U



How can we calculate g1, g2, g3 from QCD?

In SU(2) chiral perturbation theory and for mu = md , one finds

(g1)eff = g1

[
1− 2

f 2
I (mπ) +

4g 2
1

f 2
H(mπ, 0) + analytic terms

]
,

(g2)eff = g2

[
1− 2

f 2
I (mπ) +

3g 2
2

2f 2
H(mπ, 0)

+
g 2

3

f 2

{
H(mπ,−∆)− 2K(mπ,−∆, 0)

}
+ analytic terms

]
,

(g3)eff = g3

[
1− 2

f 2
I (mπ) +

g 2
2

f 2

{
− 2H(mπ,∆) + H(mπ, 0)

}
+

g 2
3

2f 2

{
H(mπ,−∆) + 9H(mπ,∆)− 2K(mπ,∆, 0)

}
+analytic terms

]
Derived in our paper arXiv:1108.5594, also for SU(4|2), SU(6|3),
and in finite volume

http://arxiv.org/abs/1108.5594


Lattice calculation of axial-current matrix elements

Use the interpolating fields

P i = (γ5)αβ Qaα q̃iaβ ,

P∗iµ = (γµ)αβ Qaα q̃iaβ ,

S ij
µ α = εabc (Cγµ)βγ q̃

i
aβ q̃jbγ Qcα,

T ij
α = εabc (Cγ5)βγ q̃

i
aβ q̃jbγ Qcα,

Aµ = ZA daα(γµγ5)αβuaβ .

Static heavy quark Q: Eichten-Hill action with HYP smearing

Light quarks u, d , s: domain wall action. Nonperturbative ZA (thanks to
chiral symmetry) from RBC/UKQCD [Aoki et al., 2011]

ZA =

{
0.7019(26) for a = 0.112 fm,
0.7396(17) for a = 0.085 fm



Three-point correlators

For example

〈Sdd µ(x, t)
∑

x′

Aµ(x′, t ′) T du(x, 0)〉

Static heavy quark propagator requires
hadron interpolating fields to be at same
spatial point x.

We generate pairs of light-quark propa-
gators with sources at (x, 0) and (x, t)
for multiple values of t.

x'

t'

t

x

x



Correlator ratios

Simple ratios for mass-degenerate P∗ → P and S → S matrix elements

R1(t, t ′) = −1

3

∑3
µ=1〈 P∗d µ(t) Aµ(t ′) P†u(0) 〉

〈 Pu(t) P†u(0) 〉
−→

t,t′,|t−t′|→∞
(g1)eff ,

R2(t, t ′) = i

∑3
µ,ν,ρ=1 ε0µνρ 〈 Sdd µ(t) Aν(t ′) S

ρ

du(0) 〉
∑3
µ=1〈 Sdd µ(t) S

µ

dd(0) 〉
−→

t,t′,|t−t′|→∞
(g2)eff ,

Double ratio for S → T transition matrix element

R3(t, t ′) =

[
1

3

∑3
µ,ν=1〈 Sdd µ(t) Aµ(t ′) T du(0) 〉〈 T du(t) Aν†(t ′) S

ν

dd(0) 〉
∑3
µ=1〈 Sdd µ(t) S

µ

dd(0) 〉 〈 T du(t) T du(0) 〉

]1/2

−→
t,t′,|t−t′|→∞

(g3)eff



Lattice parameters

RBC/UKQCD ensembles with 2+1 flavors of domain wall fermions

L3 × T m
(sea)
u/d m

(val)
u/d a (fm) m

(vs)
π (MeV) m

(vv)
π (MeV)

243 × 64 0.005 0.005 0.1119(17) 336(5) 336(5)
243 × 64 0.005 0.002 0.1119(17) 304(5) 270(4)
243 × 64 0.005 0.001 0.1119(17) 294(5) 245(4)

323 × 64 0.006 0.006 0.0848(17) 352(7) 352(7)
323 × 64 0.004 0.004 0.0849(12) 295(4) 295(4)
323 × 64 0.004 0.002 0.0849(12) 263(4) 227(3)



Examples of ratios
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Examples of ratios
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Extrapolation to infinite source-sink separation

Fit t-dependence including first excited-state contamination using

Ri (t) = (gi )eff − Ai e
−δi t
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Chiral-continuum fits using SU(4|2) HHχPT

(g1)eff = g1

[
1 + f1(g1,m

(vv)
π ,m(vs)

π , L) + d1,nHYP
a2

+ c
(vv)
1 [m(vv)

π ]2 + c
(vs)
1 [m(vs)

π ]2
]
,

(g2)eff = g2

[
1 + f2(g2, g3,m

(vv)
π ,m(vs)

π ,∆, L) + d2,nHYP
a2

+ c
(vv)
2 [m(vv)

π ]2 + c
(vs)
2 [m(vs)

π ]2
]
,

(g3)eff = g3

[
1 + f3(g2, g3,m

(vv)
π ,m(vs)

π ,∆, L) + d3,nHYP
a2

+ c
(vv)
3 [m(vv)

π ]2 + c
(vs)
3 [m(vs)

π ]2
]

(∆ = 200 MeV)



Fits using SU(4|2) HHχPT

Plotted at L =∞, m
(vs)
π = m

(vv)
π :
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Final results for axial couplings

Final results:

g1 = 0.449± 0.047 stat ± 0.019 syst = 0.449± 0.051,

g2 = 0.84 ± 0.20 stat ± 0.04 syst = 0.84 ± 0.20,

g3 = 0.71 ± 0.12 stat ± 0.04 syst = 0.71 ± 0.13.

Systematic uncertainties:

Source g1 g2 g3

NNLO terms in fits of mπ- and a-dep 3.6% 2.8% 3.7%
Higher excited states in fits to Ri (t) 1.7% 2.8% 4.9%

Unphysical value of m
(sea)
s 1.5% 1.5% 1.5%

Total 4.2% 4.3% 6.3%



g1: comparison with previous lattice results

Reference nf , action [m
(vv)
π ]2 (GeV2) g1

De Divitiis et al., 1998 0, clover 0.58 - 0.81 0.42± 0.04± 0.08
Abada et al., 2004 0, clover 0.30 - 0.71 0.48± 0.03± 0.11
Negishi et al., 2007 0, clover 0.43 - 0.72 0.517± 0.016
Ohki et al., 2008 2, clover 0.24 - 1.2 0.516± 0.005± 0.033± 0.028± 0.028
Bećirević et al., 2009 2, clover 0.16 - 1.2 0.44± 0.03+0.07

−0.00

Bulava et al., 2010 2, clover 0.063 - 0.49 0.51± 0.02

This work 2 + 1, DW 0.052 - 0.12 0.449± 0.047 stat ± 0.019 syst

Note: none of the previous works use correct NLO χPT (linear extrapolation or
tadpole missing)



Impact of NLO χPT corrections

In SU(2):

Strong decay: M(P∗ → P π) ∝ g1

[
1− 4g 2

1
m2
π

(4πfπ)2 log
m2
π
µ2 + c̃ m2

π

]
.

Axial current m. elt.: (g1)eff = g1

[
1− (2 + 4g 2

1 )
m2
π

(4πfπ)2 log
m2
π
µ2 + c m2

π

]
.

0.000 0.025 0.050 0.075 0.100 0.125 0.150

m2
π (GeV2)

0.44

0.46

0.48

0.50

0.52

0.54

(g
1
) e

ff

Linear fit
Fit without tadpole
Correct SU(4|2) HHχPT fit



Comparison with other results

Reference Method g1 g2 g3

Yan et al., 1992 Nonrelativistic quark model 1 2
√

2
Colangelo et al., 1994 Relativistic quark model 1/3 . . . . . .
Bećirević, 1999 Quark model with Dirac eq. 0.6± 0.1 . . . . . .
Guralnik et al., 1992 Skyrme model . . . 1.6 1.3
Colangelo et al., 1994 Sum rules 0.15 - 0.55 . . . . . .
Belyaev et al., 1994 Sum rules 0.32± 0.02 . . . . . .
Dosch and Narison, 1995 Sum rules 0.15± 0.03 . . . . . .
Colangelo and Fazio, 1997 Sum rules 0.09 - 0.44 . . . . . .

Pirjol and Yan, 1997 Sum rules . . . <
√

6− g2
3 <

√
2

Zhu and Dai, 1998 Sum rules . . . 1.56± 0.30± 0.30 0.94± 0.06± 0.20
Cho and Georgi, 1992 B[D∗ → D π,D γ] 0.34± 0.48 . . . . . .

Stewart, 1998 B[D∗(s) → D(s)π,D(s)γ] 0.27+0.04+0.05
−0.02−0.02 . . . . . .

Li et al., 2010 dΓ[B → π`ν] < 0.87 . . . . . .
Cheng, 1997 Γ[Σ∗c → Λc π], NRQM 0.70± 0.12 1.40± 0.24 0.99± 0.17

This work Lattice QCD 0.449± 0.051 0.84± 0.20 0.71± 0.13

Our QCD results are MUCH smaller than the quark-model predictions
(even for gud

A = 0.75, as needed to get correct nucleon gA)



Heavy baryon decays



S → T strong decays: leading-order width

At LO in chiral and heavy quark expansion, HHχPT predicts

Γ[S → T π] = c2
f

1

6πf 2
π

g2
3

MT

MS
|pπ|3

where

cf =





1 for Σ
(∗)
Q → ΛQ π

±,

1 for Σ
(∗)
Q → ΛQ π

0,

1/
√

2 for Ξ
′(∗)
Q → ΞQ π

±,

1/2 for Ξ
′(∗)
Q → ΞQ π

0,

and

|pπ| =

√
[(MS −MT )2 −m2

π][(MS + MT )2 −m2
π]

2MS

(kinematic factors not expanded in 1/mQ here)



S → T strong decays: including 1/mQ correction

LO in chiral expansion is precice enough, because physical mπ is so small.

LO in HQ expansion is not good enough. Include generic 1/mQ correction

Γ[S → T π] = c2
f

1

6πf 2
π

(
g3 +

κJ
mQ

)2
MT

MS
|pπ|3

Determine κ1/2 and κ3/2 by fitting experimental data for Σ++
c , Σ0

c and

Σ∗++
c , Σ∗0c with g3 constrained to LQCD value, and mQ = 1

2MJ/ψ.



S → T strong decays: including 1/mQ correction

170 180 190 200 210 220 230

M
Σ

(∗)
c
−MΛc
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0
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Γ
[ Σ

(∗
)

c
→

Λ
c
π
±

]
(M

eV
)

PDG, Σc → Λc π
±

PDG, Σ∗c → Λc π
±

Fit, J = 1/2
Fit, J = 3/2

Result:

κ1/2 = 0.55(21) GeV, Cov(κ1/2, g3) = −0.025 GeV,

κ3/2 = 0.47(21) GeV, Cov(κ3/2, g3) = −0.025 GeV.



S → T strong decays: including 1/mQ correction

Effective coupling vs 1/mQ :

0.0 0.2 0.4 0.6 0.8 1.0

m−1
Q [GeV−1]

0.6

0.8

1.0

1.2

1.4
g 3

+
κ
J
/m

Q

(
1
2mΥ

)−1 (
1
2mJ/ψ

)−1

J = 1/2
J = 3/2

→ Evaluate for mQ = 1
2MΥ to make predictions for bottom baryons



S → T strong decays: predictions for bottom baryons

140 150 160 170 180 190 200 210 220

M
Σ

(∗)
b
−MΛb

(MeV)

0
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12

14

16

Γ
[ Σ

(∗
)

b
→

Λ
b
π
±

]
(M

eV
)

This work, J = 1/2
This work, J = 3/2

CDF, Σ±b → Λb π
±

CDF, Σ∗±b → Λb π
±

Also: Ξ∗0b , recently discovered by CMS
Γ[Ξ∗0b ] = 2.1± 1.7 MeV (CMS), Γ[Ξ∗0b ] = 0.51± 0.26 MeV (this work)



Conclusions

First complete lattice QCD determination of heavy-hadron axial
couplings, Results are g1 = 0.449± 0.051, g2 = 0.84± 0.20,
g3 = 0.71± 0.13

Systematic uncertainties very small, statistical uncertainties by far
dominant

Chiral expansion of axial-current matrix elements well-behaved here,
better than for light baryons

g1, g2, g3 are much smaller than NRQM prediction, but ratios close
to NRQM

Compare to gA ≈ 1.26, |gN∆| ∼ 1.6 and g∆∆ ∼ −1.9

1/mQ corrections in Γ[Σ
(∗)
Q → ΛQπ] are significant even for Q = b

Calculated Γ[Σ
(∗)
b → Λbπ] widths agree with experiment

Many future applications (e.g. chiral extrapolations for
spectroscopy)



Extra slides



Systematic uncertainties from higher excited states

Ri (t) = (gi )eff − Ai e
−δi t

Fit (g1)eff δ(g1)eff (g2)eff δ(g2)eff (g3)eff δ(g3)eff
Original 0.499(11) 0 0.993(29) 0 0.810(36) 0
t/a = 4 removed 0.496(13) 0.0030(76) 0.975(35) 0.016(19) 0.783(43) 0.026(15)
t/a = 4, 5 removed 0.494(12) 0.0041(76) 0.984(41) 0.009(26) 0.807(54) 0.003(30)
Second exp. added 0.498(11) 0.0009(77) 0.988(30) 0.005(21) 0.796(40) 0.014(36)

Conservative estimate of uncertainty:

√
[δ(gi )eff ]2 + [σδ(gi )eff ]2

g1 : 1.7%
g2 : 2.8%
g3 : 4.9%



Summation Method

Summed ratio:

Si (t) = a
t∑

t′=0

Ri (t, t
′)

For large t:
Si (t)→ ci + (gi )eff t

Use slope to extract (gi )eff :

Rsum
i (t) =

d

dt
Si (t)

Expect (if off-diagonal excited state contrib 6= 0):

Ri (t)− (gi )eff = O(e−
1
2 δi t),

Rsum
i (t)− (gi )eff = O(t e−δi t)

[Maiani et al 1987, Gusken et al. 1989, Bulava et al. 2011]



Summation Method
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Summation Method
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Fits using SU(4|2) HHχPT: estimates of systematic
uncertainties

Add higher-order analytic terms.

(gi )
(NLO+HO)
eff (a,m, nHYP)

= (gi )
(NLO)
eff (a,m, nHYP)

+gi

[
c

(vv,vv)
i [m(vv)

π ]4 + c
(vs,vs)
i [m(vs)

π ]4 + c
(vv,vs)
i [m(vv)

π ]2[m(vs)
π ]2

+ d
(vv)
i, nHYP

a2 [m(vv)
π ]2 + d

(vs)
i, nHYP

a2 [m(vs)
π ]2 + hi, nHYP a4

]



Fits using SU(4|2) HHχPT: estimates of systematic
uncertainties

Constrain with Gaussian priors. In terms of the natural scales,

c
(vv,vv)
i = 0 ± w/Λ4

χ,

c
(vs,vs)
i = 0 ± w/Λ4

χ,

c
(vv,vs)
i = 0 ± w/Λ4

χ,

d
(vv)
i, nHYP

= 0 ± w Λ2
QCD/Λ2

χ,

d
(vs)
i, nHYP

= 0 ± w Λ2
QCD/Λ2

χ,

hi, nHYP
= 0 ± w Λ4

QCD.

w is the width



Fits using SU(4|2) HHχPT: estimates of systematic
uncertainties

w g1 δσ(g1) g2 δσ(g2) g3 δσ(g3)

0 0.449(47) 0 0.84(20) 0 0.71(12) 0
1 0.449(47) 0.0020 0.84(20) 0.0023 0.71(12) 0.0045
5 0.452(48) 0.0089 0.84(20) 0.014 0.70(12) 0.017

10 0.455(50) 0.016 0.84(20) 0.024 0.70(12) 0.026
50 0.464(72) 0.054 0.82(22) 0.099 0.68(15) 0.094

100 0.452(94) 0.082 0.78(26) 0.17 0.63(21) 0.17

Conservative estimate: with w = 10, use

δσ(gi ) =
√
σ2(gi )(NLO+HO) − σ2(gi )(NLO)

g1 : 3.6%
g2 : 2.8%
g3 : 3.7%



Fits using SU(4|2) HHχPT: finite-volume corrections

m
(vs)
π (MeV) m

(vv)
π (MeV)

(g1)
(∞)
eff −(g1)

(L)
eff

(g1)
(∞)
eff

(g2)
(∞)
eff −(g2)

(L)
eff

(g2)
(∞)
eff

(g3)
(∞)
eff −(g3)

(L)
eff

(g3)
(∞)
eff

294 245 0.0057 0.015 0.0074
304 270 0.0040 0.0070 0.0027
336 336 0.0016 0.00037 −0.00079

263 227 0.0072 0.028 0.013
295 295 0.0031 0.00027 −0.0012
352 352 0.0013 0.00033 −0.00071
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ#=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.
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it has been reported in the study of the Gross-Neveu model that the symmetry enhancement

would take place at the central branch (the third branch) of Wilson-type fermions [18].

The aim of this paper is to shed light on the structures of underlying continuous symme-

tries and their spontaneous breakdown in four types of lattice fermions formulation: the naive

fermion, the Wilson fermion and two kinds of minimally doubled fermion. For this purpose,

we rewrite lattice fermion actions in “the spin-flavor representation” [43,44], in which the spin

and doubler-multiplet structures of the lattice fermions become manifest. We first re-express

the U(4) × U(4) symmetry of the naive fermion in [7, 42] using the spin-flavor representation.

We then apply the same method to the Wilson fermion action, which is invariant under only

the ordinary U(1) vector transformation for general values of the mass parameter m. We show,

however, that an additional U(1) vector symmetry is realized by tuning m and this symmetry

is spontaneously broken by pion condensation. Finally, we explore the Karsten-Wilczek and

the Boriçi-Creutz minimally doubled fermion and discover that a similar type of symmetry

enhancement and its spontaneous breakdown occur.

This paper is organized as follows. In section 2, we revisit the symmetries of the naive

lattice fermion via the spin-flavor representation. In section 3, we discuss the symmetries of the

Wilson fermion with emphasis on the symmetry enhancement and its spontaneous breakdown.

We also explore minimally doubled fermions in section 4. Section 5 is devoted to a summary

and discussions. Some technical details are given in appendixes.

2 Naive fermion and Spin-flavor representation

In this section, we first review the U(4)×U(4) symmetries of the naive fermion [7,42]. Then we

introduce the spin-flavor representation, which simplifies the identification of symmetry in the

case of the Wilson fermion and the minimally doubled fermions.

The action of the naive fermion is given by

Snf =
1

2

∑

n,µ

(ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn) + m
∑

n

ψ̄nψn . (1)

Throughout this paper, we consider the nondimensionalized action. As is discussed in [7, 42],

the kinetic term of this action has larger symmetry than the action of the continuum theory:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
ψn ,

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
.

(2)

2
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We also explore minimally doubled fermions in section 4. Section 5 is devoted to a summary

and discussions. Some technical details are given in appendixes.
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1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ#=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.
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Revisiting symmetries of lattice fermions

via spin-flavor representation
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Here it has only two zeros located at p = (0, 0, 0, 0), (0, 0, 0,π). These two species are not

equivalent since the gamma matrices are differently defined between them as γ′
µ = Γ−1γµΓ.

In the above case it is given by Γ = iγ4γ5. This means the chiral symmetry possessed

by this action is identified as a flavored one given by γ5 ⊗ τ3. This lattice fermion breaks

discrete rotational symmetry, or hypercubic symmetry. The residual symmetry is spatial

cubic symmetry, corresponding to the permutation of spatial three axes. As a result, it

possesses only CT and P symmetry.

(1) U(1)V × U(1)A

(2) P

(3) CT

(4) Cubic symmetry

Now let us look into symmetries of the naive lattice fermion with complex chemical

potential. The massless action is given by

Sn(µ) =
1

2

∑

x

[
3∑

j=1

ψ̄xγj (Ux,x+jψx+j − Ux,x−jψx−j)

+ ψ̄xγ4

(
eµRe+iµImUx,x+4ψx+4 − e−µRe−iµImUx,x−4ψx−4

)
]

(3)

The action obviously breaks the hypercubic symmetry into the spatial cubic symmetry. It

also breaks C,P and T symmetries into CT and P symmetry. We line up symmetries of this

case below.

(1) U(4) × U(4) (residual flavor symmetry among 16 species)

(2) P

(3) CT

(4) Cubic symmetry

These discrete symmetries are the same as those of Karsten-Wilczek fermion. From

the viewpoint of the universality class, these two theories belong to the same class. It is

reasonable since the Karsten-Wilczek term proportional to r in Eq.(1) works to assign O(1/a)

imaginary chemical potential to 14 species while 2 species has zero imaginary chemical

potential. More precisely, in weak-coupling limit, two of 16 species have zero imaginary
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U(4)×U(4)

Symmetries and Spectrum of
lattice fermions with flavored-mass terms

Tatsuhiro Misumi

April 12, 2012

1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ#=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.

1

Naive
25

FIG. 8: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field case in mo-

mentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn − (MP + 0.1MA). (c)

Dn − (MP +MV +MT +MA).

where
∑

perm. means summation over permutations of the space-time indices.

Now we derive the flavored mass terms required to detect the index from the spectral

flow of the Hermitean operator. As in the d = 2 case, it should be constructed so that the

associated Hermitean operator has a flavor-singlet mass part as γ5M ∼ γ5⊗ (1⊗1⊗1⊗1).

Such a mass term is just the P-type mass (A7). Thus the flavored mass term for the

Hermitean operator is given by

MP = mP

∑

sym.

4
∏

µ=1

Cµ. (A8)

With the Hermitean operator Hn = γ5(Dn − MP), we reveal the index theorem with the

naive fermion as in the d = 2 case. Here we only show the figure for eigenvalues of the free

Dirac operator Dn −MP in Fig. 8(a). The mass term splits the modes into two branches,

which are 8 fold degenerate. If we introduce other types of mass terms, the degeneracy is

lifted as seen in Fig. 8(b).

Next we show the flavored mass term to yield a single-flavor naive overlap fermion in 4d.

As in the case of 2d there are some possibilities to realize it. The simplest example of the

mass term to yield a single-flavor naive overlap fermion with hypercubic symmetry is given

by

MP +MV +MT +MA. (A9)

The eigenvalues of the Dirac operator with this mass term is depicted in Fig. 8(c). Here

8 8

Wilson’ 
�

sym.

C1C2C3C4
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Figure 3.3: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field
case in momentum space with 164 grids of the brillouin zone. (a) Dn − MP. (b) Dn −
(MP + 0.1MA). (c) Dn − (MP + MV + MT + MA).

terms of the original fermion field are given by

MS = 1, (3.25)

MV =
∑

µ

Cµ, (3.26)

MT =
∑

perm.

∑

sym.

CµCν , (3.27)

MA =
∑

perm.

∑

sym.

∏

ν

Cν , (3.28)

MP =
∑

sym.

4∏

µ=1

Cµ, (3.29)

where
∑

perm. means summation over permutations of the space-time indices. Note we
define

∑
perm. and

∑
sym. as containing factors, for example, 1/4! for MP .

Here again the non-trivial flavored-mass terms with a proper mass shift result in the
second-derivative terms proportional to a near the classical continuum limit as in the
usual Wilson fermion. For example,

∑

n

ψ̄n(MP − 1)ψn → −a

∫
d4xψ̄(x)D2

µψ(x) + O(a2), (3.30)

It is consistent with the criterion for the Wilson fermion. The deviation from the usual
Wilson fermion starts from O(a2) discretization errors. Thus, as long as we look at the
physical branch, the difference of discretization errors between the generalized Wilson
and the usual Wilson fermions is just O(a2). However the naive expansion about a = 0 is
not valid for the other species. In fact the difference between the generalized and usual
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where
∑

perm. means summation over permutations of the space-time indices.

Now we derive the flavored mass terms required to detect the index from the spectral

flow of the Hermitean operator. As in the d = 2 case, it should be constructed so that the

associated Hermitean operator has a flavor-singlet mass part as γ5M ∼ γ5⊗ (1⊗1⊗1⊗1).

Such a mass term is just the P-type mass (A7). Thus the flavored mass term for the

Hermitean operator is given by

MP = mP

∑

sym.

4
∏

µ=1

Cµ. (A8)

With the Hermitean operator Hn = γ5(Dn − MP), we reveal the index theorem with the

naive fermion as in the d = 2 case. Here we only show the figure for eigenvalues of the free

Dirac operator Dn −MP in Fig. 8(a). The mass term splits the modes into two branches,

which are 8 fold degenerate. If we introduce other types of mass terms, the degeneracy is

lifted as seen in Fig. 8(b).

Next we show the flavored mass term to yield a single-flavor naive overlap fermion in 4d.

As in the case of 2d there are some possibilities to realize it. The simplest example of the

mass term to yield a single-flavor naive overlap fermion with hypercubic symmetry is given

by

MP +MV +MT +MA. (A9)

The eigenvalues of the Dirac operator with this mass term is depicted in Fig. 8(c). Here
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Here again the non-trivial flavored-mass terms with a proper mass shift result in the
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usual Wilson fermion. For example,
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µψ(x) + O(a2), (3.30)
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with (Vµ)xy = Ux,µδy,x+µ. Here ε is represented as Γ55 = γ5 ⊗ γ5 in the spin-flavor
representation while ηµ followed by the transporter Cµ is represented as γµ ⊗ 1 up to
discretization errors, which we sometimes denote Γµ. Thus it is obvious that the MA

stands for (1⊗γ5)+O(a) while MH stands for (1⊗
∑

σµν)+O(a). We refer to MA as the
Adams-type [30] and MH the Hoelbling-type [32]. By diagonalizing γ5 or

∑
σµν , we find

that the Adams type splits 4 tastes into two branches with positive (m = +1) and the
other two with negative(m = −1) mass while the Hoelbling type splits them into three
branches with positive(m = +2), two with zero (m = 0) and the other one with negative
mass(m = −2). The divided Hoelbling flavored-mass terms (3.36)(3.37)(3.38) correspond
to divided types in the tensor-types mass for naive fermions (3.30)(3.31)(3.32) . They
have flavored structure as ∼ (1 ⊗ (σ12 + σ34)) + O(a). By diagonalizing it, we find the
flavor structure diag[0, 0,−2, 2]. They again split 4 taste into three branches with (1, 2, 1)
fermion modes. We will later discuss about whether these divided types have enough
discrete symmetries to restore euclidian Lorentz symmetry in the continuum limit.

We here check all these staggered flavored-mass terms (3.34)(3.35)(3.36)(3.37)(3.38)
lead to the second derivative terms proportional to a near the continuum. Near the
classical continuum limit, these staggered flavored-mass terms Mf are given by

Mf ∼ a

∫
d4xχ̄D2

µχ + O(a2) (3.43)

with proper mass shift. It is compatible with the criterion for the lattice fermion con-
struction. We now can construct the two types of staggered-WIlson fermions with these
flavored-mass terms which also lead to the staggered-overlap fermions.

Now let us compare these flavored-mass terms with the MP and M (i)
T for the naive

fermions in Fig. 3.6. It is obvious that the Adams-type flavored-mass term MA corresponds
to MP while the divided Hoelbling-type terms M (i)

H corresponds to M (i)
T . It is also possible

to see that MP and M (i)
T are decomposed into the Adams and the divided Hoelbling-

type terms through the spin diagonalization which we discussed in chapter 2 as χx =
γx4

4 γx3
3 γx2

2 γx1
1 ψx, χ̄x = ψ̄xγ

x1
1 γx2

2 γx3
3 γx4

4 . MP is decomposed into MA through this spin-
diagonalization as

ψ̄xC1C2C3C4ψx → ±χ̄x(εη1η2η3η4C1C2C3C4)χx.

Here the signs in front of χ̄x come from the residual γ5 which remain in the process of
the spin diagonalization of MP . By diaonalizing γ5, we find two Adams types terms with
positive sign and two with negative signs. Such signs are not relevant for the species-
splitting, and we can neglect them. M (i)

T is decomposed into M (i)
H through the spin-

diagonalization. For example, M (1)
H is derived from M (1)

T as

ψ̄x[(C1C2 + C2C1) + (C3C4 + C4C3)]ψx

→ ±χ̄x[iε12η1η2(C1C2 + C2C1) ± iε34η3η4(C3C4 + C4C3)]χx. (3.44)

The two types of signs come from σ12 = γ1γ2 and σ34 = γ3γ4, which remain after the
usual spin diagonalization process. The point is that they commute with each other as
[σ12,σ34] = 0, and they can be diagonalized simultaneously. If σ12 is diagonalized as

43

spin diag. Staggered flavored-mass

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 6, 2012

1 Introduction

Snf(M
(i)
T ) → Sst(M

(i)
H ) (1)

x → R(µν)R(ρσ)x (2)

Dnf − (MV + MT + MA + MP ) (3)

M (i)
H (4)

Snf(MP) → Sst(MA) (5)

H = γ5(Dnf − rM (i)
T ) (6)

Index(D) = 2d−1(−1)d/2Q (7)

λ(r) (8)

Dnf − M (i)
T (9)

ψ̄xψx+1̂+2̂+3̂+4̂ = χ̄xγx4
4 γx3

3 γx2
2 γx1

1 γx1+1
1 γx2+1

2 γx3+1
3 γx4+1

4 χx+1̂+2̂+3̂+4̂

= (−1)x2+x4 χ̄xγ5χx+1̂+2̂+3̂+4̂

→ ±χ̄xεη1η2η3η4χx+1̂+2̂+3̂+4̂ (10)

ψ̄xψx+1̂+2̂ + ψ̄xψx+3̂+4̂ = (−1)x2 χ̄xγ1γ2χx+1̂+2̂ + (−1)x4 χ̄xγ3γ4χx+3̂+4̂

→ ±χ̄xiε12η1η2χx+1̂+2̂ ± χ̄xiε34η3η4χx+3̂+4̂ (11)

1

de Forcrand, Kurkela, Panero(2012)

Golterman, Smit (1984)   Adams(2009)

◆Staggered-Wilson

・could reduce numerical costs in 2-flavor overlap
・could reduce influence of taste-breaking for 2-flavor

group reflecting U(2) × U(2). For pseudo-scalar mesons, pions form a 63-plet of flavor SU(8)
and are degenerate in the chiral and continuum limit. At finite lattice spacing, flavor symmetry
is not U(8) but U(2)×U(2). The question is what irreps of this group 63 pions fall into. We do
not study this point further here, but note that this situation is similar to the staggered fermion
with flavored mass as we will show.

Spin diagonalization decomposes (11) into four equivalent staggered fermions with Adams-
type flavored mass [3]. MP is decomposed through spin-diagonalization as

ψ̄xC1C2C3C4ψx → ±χ̄x(εη1η2η3η4C1C2C3C4)χx, (13)

where we define Adams-type flavored mass as

MA = ε
∑

sym

η1η2η3η4C1C2C3C4 = (1 ⊗ ξ5) + O(a), (14)

with

Cµ = (Tµ + T †
µ)/2, (15)

(ηµ)xy = (−1)x1+...+xµ−1δx,y, (16)
(ε)xy = (−1)x1+...+x4δx,y. (17)

Here signs in front of χ̄x in (13) come from γ5 which remains after the spin diagonalization of
MP . By diaonalizing γ5, we find two with positive sign and two with negative signs. Such signs
are not relevant for species-splitting. Now we derive staggered fermion with flavored mass: (8)
is decomposed into

SA0 =
∑

xy

χ̄x[ηµDµ + MA]xyχy, (18)

and (11) is decomposed into

SA1 =
∑

xy

χ̄x[ηµDµ + r(1 + MA)]xyχy, (19)

where Dµ = 1
2(Tµ − T−µ). Lower flavor symmetry (U(2) × U(2)) in (8)(11) leads to breaking

of shift and spatial inversion symmetries into a combined one in both cases (18) (19) as we will
show later. However the action without non-hopping terms (18) possesses more symmetries as
remnant of Γ̄(−), which we call ”special-charge shift” and ”special-charge inversion”. In Sec. 3
we investigate symmetries and spectrum of these deformed staggered fermion.

2 Symmetries of Staggered fermions

We begin with review of original staggered fermions [4,5]. Symmetries of staggered fermions are
given by

{C0, Ξµ, Is, Rµν} × {U ε(1), C ′
T }m=0. (20)

Each of transformations is written as following:

(1) C0 is lattice charge conjugation, which is given by

C0 : χx → εχ̄T
x , χ̄x → −εχT

x , Uµ,x → U∗
µ,x. (21)

3

 ξ5=-1  ξ5=+1

§ Potential advantages of

・Index theorem  Adams (09), Creutz,Kimura,Misumi(10), Follana, et.al.(11)      
・Aoki phase  Creutz, Kimura Misumi (11) 
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FIG. 3: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 1,

δ = 0.25 background configuration on a 16 × 16 lattice. Two single crossings with positive slopes

are seen in (a), which means the index is −2. Two doubled crossings with positive slopes are seen

in (b), which means the index is −4.

FIG. 4: Spectral flows of (a) Minimally doubled and (b) naive Hermitean operators with a Q = 2,

δ = 0.2 background configuration on a 16 × 16 lattice. Six single crossings with positive slopes

and two single crossings with negative slopes are seen in (a), which means the index is −4. Six

doubled crossings with positive slopes and two doubled crossings with negative slopes are seen in

(b), which means the index is −8.

which contains a factor 2 reflecting two species. This relation is also satisfied by cases with

other topological charges, as shown in Fig. 4(a) for the case for Q = 2. Here the net number

of crossings counted with ± depending on the slopes is 4. It means the corresponding index

is −4, which is consistent with (31). We also emphasize that there is a clear separation

between low- and high-lying crossings in Fig. 3(a) where low-lying ones are localized about
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∼ (1⊗ ξ5)
 ξ5=-1 → physical sector : 

 ξ5=+1 → decoupled sector : 

 ・With mass shift

Spectral flow

Aoki phase
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(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,
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C ′
T Ξµ Iµ C ′

T Ξµ C ′
T Iµ ΞµIµ

Sst ◦ ◦ ◦ ◦ ◦ ◦
SA × × × ◦ ◦ ◦
SH ◦ × × × × ◦
Sm × ◦ ◦ × × ◦

Table 1: Invariance (◦) or non-invariance (×) of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations.

with Aµ = 0 or 1 and
∑

µ A #= 0. Ref. [6] shows by classifying operators by timeslice group
that these pions fall into 7 irreducible representations of symmetry group of the corresponding
transfer matrix at finite lattice spacing:

1 : ξ4, ξ45, ξ5, (32)
3 : ξi, ξi5, ξij ξi4. (33)

Here we take the 4th direction as time. Moreover, it is shown from staggered chiral perturbation
theory in Ref. [7] that SO(4) flavor and Lorentz symmetries hold in the O(a2) chiral perturbation
(pion) potential. Thus 15-plet falls into 4 irreducible representations up to O(a4), O(a2m) and
O(a2p2) as

1 : ξ5, (34)
4 : ξµ, ξµ5, (35)
6 : ξµν . (36)

It means that there are three degeneracies in lattice-pseudo pion spectrum in the leading dis-
cretization errors.

3 Staggered fermions with flavored mass

In this section we investigate symmetries of staggered-Wilson fermions and the spectrum of
pseudo-scalar states.

(18) has Adams-type flavored mass but no flavor-singlet mass terms. Here the staggered
symmetries are broken into

{C0, C ′
T Ξµ, C ′

T Is, Rµν}. (37)

There is no longer shift and inversion symmetries. Instead, we have combined symmetries with
special charge conjugation, which we call “special charge shift” and “special charge inversion”.
These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
Table. 1 we show invariance or non-invariance of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH [8] and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations. For example, (18) is given by Sst + SA.
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(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,

6
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SA × × × ◦ ◦ ◦
SH ◦ × × × × ◦
Sm × ◦ ◦ × × ◦

Table 1: Invariance (◦) or non-invariance (×) of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations.
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Here we take the 4th direction as time. Moreover, it is shown from staggered chiral perturbation
theory in Ref. [7] that SO(4) flavor and Lorentz symmetries hold in the O(a2) chiral perturbation
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special charge conjugation, which we call “special charge shift” and “special charge inversion”.
These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
Table. 1 we show invariance or non-invariance of the staggered kinetic term Sst, Adams-type
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special charge conjugation, which we call “special charge shift” and “special charge inversion”.
These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
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term SA, Hoelbling-type term SH [8] and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations. For example, (18) is given by Sst + SA.
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Another U(1) !

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms
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1 Introduction

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (1)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (2)

MH = M (1)
H + M (2)

H + M (3)
H , (3)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (4)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (5)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (6)

MT $→ MH (7)

M (i)
T → M (i)

H (8)

[σµν ,σνρ] $= 0 (9)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (10)

x → R(µν)R(ρσ)x (11)

Dnf − (MV + MT + MA + MP ) (12)

M (i)
H (13)

1
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Symmetries and Spectrum of
lattice fermions with flavored-mass terms

Tatsuhiro Misumi

April 12, 2012

1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ#=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.

1

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 7, 2012

1 Introduction

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (1)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (2)

MH = M (1)
H + M (2)

H + M (3)
H , (3)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (4)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (5)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (6)

MT $→ MH (7)

M (i)
T → M (i)

H (8)

[σµν ,σνρ] $= 0 (9)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (10)

x → R(µν)R(ρσ)x (11)

Dnf − (MV + MT + MA + MP ) (12)

M (i)
H (13)

1

・Wilson w/o onsite term

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 7, 2012

1 Introduction

MW ≡ m + 4r = 0 (1)

ψ̄ψ ↔ ψ̄γ5ψ (2)

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (3)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (4)

MH = M (1)
H + M (2)

H + M (3)
H , (5)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (6)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (7)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (8)

MT &→ MH (9)

M (i)
T → M (i)

H (10)

[σµν ,σνρ] &= 0 (11)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (12)

x → R(µν)R(ρσ)x (13)

1



・Wilson w/o onsite term

Another U(1) !

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 7, 2012

1 Introduction

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (1)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (2)

MH = M (1)
H + M (2)

H + M (3)
H , (3)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (4)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (5)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (6)

MT $→ MH (7)

M (i)
T → M (i)

H (8)

[σµν ,σνρ] $= 0 (9)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (10)

x → R(µν)R(ρσ)x (11)

Dnf − (MV + MT + MA + MP ) (12)

M (i)
H (13)

1

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 7, 2012

1 Introduction

MW ≡ m + 4r = 0 (1)

ψ̄ψ ↔ ψ̄γ5ψ (2)

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (3)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (4)

MH = M (1)
H + M (2)

H + M (3)
H , (5)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (6)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (7)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (8)

MT &→ MH (9)

M (i)
T → M (i)

H (10)

[σµν ,σνρ] &= 0 (11)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (12)

x → R(µν)R(ρσ)x (13)

1

!"##$

%&##$

Symmetries and Spectrum of
lattice fermions with flavored-mass terms

Tatsuhiro Misumi

April 12, 2012

1 Naive fermions with flavored mass

In this section we study how U(4)×U(4) symmetries of the naive fermion is broken by flavored-
mass terms. This investigation helps us understand the case of staggered fermions. The free
action of the naive fermion is given by

Snf =
1
2

∑

n,µ

ψ̄nγµ(ψn+µ̂ − ψn−µ̂) + m
∑

n

ψ̄nψn . (1)

The kinetic term of this action has the following flavor and chiral symmetry:

ψn → ψ′
n = exp

[
i
∑

X

(
θ(+)
X Γ(+)

X + θ(−)
X Γ(−)

X

) ]
ψn , (2)

ψ̄n → ψ̄′
n = ψ̄n exp

[
i
∑

X

(
−θ(+)

X Γ(+)
X + θ(−)

X Γ(−)
X

) ]
. (3)

Here, Γ(+)
X and Γ(−)

X are site-dependent 4 × 4 matrices:

Γ(+)
X ∈

{
14 , (−1)n1+...+n4γ5 , (−1)ňµγµ , (−1)nµiγµγ5 , (−1)nµ,ν

[γµ , γν ]
2

}
, (4)

Γ(−)
X ∈

{
(−1)n1+...+n414 , γ5 , (−1)nµγµ , (−1)ňµγµγ5 , (−1)ňµ,ν

[γµ , γν ]
2

}
, (5)

where ňµ =
∑

ρ#=µ nρ, nµ,ν = nµ + nν and ňµ,ν =
∑

ρ#=µ,ν nρ. Although the kinetic term is

invariant under the transformations with arbitrary complex θ(±)
X , the link reflection positivity

constrains θ(±)
X to be real [1]. In other words, only if θ(±)

X are real numbers, the transformations
commute with the following anti-linear operation Θ:

Θ[ψn] = ψ̄ni,−n4+1 γ4 , Θ[ψ̄n] = γ4ψni,−n4+1 . (6)

The symmetry group (2)(3) is U(4) × U(4) (The so-called “doubling symmetry” is a discrete
subgroup of U(4) × U(4).), which is broken by chiral condensate or a mass term down to the
diagonal U(4) generated by Γ(+)

X . Therefore, there appear sixteen Nambu-Goldstone bosons
(NG bosons) when the symmetry is spontaneously broken. The existence of these sixteen NG
bosons is explicitly verified from the strong coupling analysis.
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◆ Strong-coupling QCD

In the case of the Wilson fermion, M̂ = (m + 4r)14 ≡ MW14 and P±
µ =

γµ ± r

2
. By taking

M0 = σ14 + iπγ5, we have





σ =
−MW ±

√
M2

W + 8(1 − r2)

4(1 − r2)
, π = 0 , M2

W ≥ M2
c

σ =
MW

4r2
, π2 =

1

16r4(1 + r2)
(8r4 − M2

W (1 + r2)) , M2
W < M2

c

(32)

where M2
c =

8r4

1 + r2
.

As discussed in the previous subsection, at MW = 0 we have an additional U(1) symmetry,

U(1)−V . Since this parameter regime resides in the parity broken phase, in which π2 $= 0 and

M2
W < M2

c , U(1)−V is spontaneously broken by the VEV of π in this case.

To compute the meson mass, we hereafter take r2 = 1 for simplicity. Because D(p) is block-

diagonal, we concentrate on its submatrix DXY (p) with X, Y ∈ {S, P, Aα}. Then, by setting

p = (π, π,π, π + imSPA ), we find that the S-P -Aα sector mass mSPA is given by

cosh(mSPA ) = 1 +
20M2

W

6 − 7M2
W

. (33)

Note that since the transformation (22) involves the site-dependent quantity (−1)n1+···+n4 , it

is natural to expand the momentum p around (π, π,π, π). Eq. (33) tells us that the meson

becomes a massless NG boson at MW = 0 as expected. If we use the exact form of f(x) in the

large Nc limit, we then obtain

cosh(mSPA ) = 1 +
2M2

W (16 + M2
W )

16 − 15M2
W

, (34)

which again shows that a massless NG boson appears at MW = 0.

Before closing this subsection, it is worth noting that MW = 0 corresponds to the cen-

tral cusp in the parity broken phase, at which six fermion modes with momentum shift,

p = (π, π, 0, 0), (π, 0,π, 0), (π, 0, 0,π), (0,π, π, 0), (0,π, 0, π) and (0, 0,π,π), are expected to

appear in the continuum limit. Although we have not yet known much about the continuum

limit for this cusp, it is expected to correspond to QCD with six flavors, which is still asymp-

totically free. Therefore, if an appropriate continuum limit exists, we expect the theory in the

limit will be Lorentz-symmetric as in the “physical” branch because the Wilson fermion ac-

tion itself possesses the hypercubic symmetry6 which is likely to lead to the Lorentz symmetry

6Although the 3rd term in (16) looks hypercubic non-invariant, it is just an expression artifact: As is argued
in [46], the spin-taste representation does not respect translational invariance, leading to apparent Lorentz non-
invariance in this case. Actually such a term is prohibited by imposing this invariance. The expression is not
suitable for study of Lorentz symmetry although it gives good insight into other symmetries.
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change of mass base・No additive mass renormalization (no fine-tuning)
・SSB of U(1) and massless NG boson

§ Advantages

§ Potential drawbacks

Aoki phase

・sign problem
・U(1) problem
・Quark mass 

�ψ̄ψ� = 0

�ψ̄γ5ψ� �= 0

Twisted-mass works ?

・Pion (eta) condensate

・No chiral condensate

→ 12-flavor massless QCD
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New possibility of many-flavor lattice QCD !
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3. Flavored chemical potential
・Real type  →   Sign problem
・Imaginary type  →  No sign problem
   “Minimal-doubling” Karsten(81)Wilczek(87)Creutz, 

Borici(07)Creutz&Misumi(10)

◆ Advantage

・U(1) chiral symmetry
・2 flavor possible

◆ Drawbacks
・O(1/a) chemical potential renormalization
・Tuning a parameter even for finite-µ QCD
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Aoki phase-like structure

Creutz & Misumi(2012)

�

µ

(1− cos pµ)

Finite-mass system(Wil) ⇆ Finite-density system(FCP) 

(i) γ4

3�

j=1

(1− cos pj)

Misumi (2012)

cf.)Bedaque, Buchoff, Tiburzi, Walker-Loud(08)

action is obtained by introducing a Wilson-like term proportional to iγ4 as

SKW =
∑

x

[
1
2

4∑

µ=1

ψ̄xγµ (Ux,x+µψx+µ − Ux,x−µψx−µ)

+r
i

2

3∑

j=1

ψ̄xγ4 (2ψx − Ux,x+jψx+j − Ux,x−jψx−j)

]
(1)

where the link variables satisfy Uxy = U †
yx and r is the minimal-doubling

parameter which should be taken as r > 1/2. For the free theory, the
associated Dirac operator in momentum space is given by

Dmd(p) = i
4∑

µ=1

γµ sin pµ + irγ4

3∑

j=1

(1 − cos pj). (2)

Here it has only two zeros located at p = (0, 0, 0, 0), (0, 0, 0, π). These two
species are not equivalent since the gamma matrices are differently defined
between them as γ′

µ = Γ−1γµΓ. In the above case it is given by Γ = iγ4γ5.
This means the chiral symmetry possessed by this action is identified as a
flavored one given by γ5⊗ τ3. This lattice fermion breaks discrete rotational
symmetry, or hypercubic symmetry. The residual symmetry is spatial cubic
symmetry, corresponding to the permutation of spatial three axes. As a
result, it possesses only CT and P symmetry.

(1) U(1)V × U(1)A

(2) P
(3) CT
(4) Cubic symmetry

Now let us look into symmetries of the naive lattice fermion with complex
chemical potential. The massless action is given by

Sn(µ) =
1
2

∑

x

[
3∑

j=1

ψ̄xγj (Ux,x+jψx+j − Ux,x−jψx−j)

+ ψ̄xγ4
(
eµRe+iµImUx,x+4ψx+4 − e−µRe−iµImUx,x−4ψx−4

)
]

(3)

The action obviously breaks the hypercubic symmetry into the spatial cubic
symmetry. It also breaks C,P and T symmetries into CT and P symmetry.
We line up symmetries of this case below.
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◆ Finite (T, µ) QCD with FCP

Figure 1: Contour plot of σ with r = 1. Vertical and horizontal axes mean T and

µ, respectively. Blue and Grean lines mean 2nd and 1st phase boundary of the chiral

transition. Red point shows the tricritical point (µtri, Ttri) = (0.090, 0.125). End

points of the boundary are given by Tc(µ = 0) = 14393/145305 = 0.09905... and

µc(T = 0) = 0.22.

A Formulas

A.1 Cosine function

cos2 θ =
1

2
(cos 2θ + 1) (19)

cos3 θ =
1

4
(cos 3θ + 3 cos θ) (20)

cos4 θ =
1

8
(cos 4θ + 4 cos 2θ + 3) (21)

A.2 Determinant formulas for Nc = 3

det





Qn Qn+1 Qn+2

Qn−1 Qn Qn+1

Qn−2 Qn−1 Qn



 = Q3
n + Qn−2Q

2
n+1 + Q2

n−1Qn+2

−2Qn−1QnQn+1 −Qn−2QnQn+2 (22)
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§ Strong-coupling study

11

!

!"!#

!"$

!"$#

!"%

!"%#

! !"$ !"% !"& !"' !"#
!

!"%

!"'

!"(

!")

$

*
+,
-.
,/
01
.

2
.,
/3
14

5064+,7*8.93:0;7<+1.,130;

!

!"!#

!"$

!"$#

!"%

!"%#

! !"$ !"% !"& !"' !"#
!

!"%

!"'

!"(

!")

$

*
+,
-.
,/
01
.

2
.,
/3
14

5064+,7*8.93:0;7<+1.,130;

!

!"!#

!"$

!"$#

!"%

!"%#

! !"$ !"% !"& !"' !"#
!

!"%

!"'

!"(

!")

$

*
+,
-.
,/
01
.

2
.,
/3
14

5064+,7*8.93:0;7<+1.,130;

!

!"!#

!"$

!"$#

!"%

!"%#

! !"$ !"% !"& !"' !"#
!

!"%

!"'

!"(

!")

$

*
+,
-.
,/
01
.

2
.,
/3
14

5064+,7*8.93:0;7<+1.,130;

FIG. 2: Chiral condensate σ and the baryon density ρB for (left) T = 0.08 and (right) T = 0.06.

Top and bottom panels show the massless m = 0 and massive m = 0.05 cases. There are 1st and

2nd phase transitions for σ. In the case of m != 0, there appears the crossover behavior instead of

the 2nd order transition.

phase diagram for r = 0.75.

FIG. 3: Phase diagram for the chiral transition with r = 0.75, d3 = 0 and m = 0. The transition

order is similarly changed from 2nd to 1st at the tricritical point (µtri, Ttri) = ...

related to effective imaginary chemical potential generated by the Karsten-Wilczek term:

How much the effective imaginary chemical potential can be read from π4 condensate in

T = 0 and µB = 0 limit although for large T and µB we cannot distinguish the condensates

from physical (T, µB) and artifacts of this formulation. We are then able to control the

effective imaginary chemical potential.

The question is how π4 condensate depends on d3 in T = 0 and µ = µRe = 0 limit. In

Fig. 5 we change d3 and depict three-dimensional chiral phase diagram for T , µB and d3. It

shows that the critical temperature and chemical potential varies with d3. We also show how

Smd =
�

x

�
1
2

3�

j=1

ψ̄xγj (Ux,x+jψx+j − Ux,x−jψx−j) +
1
2
ψ̄xγ4

�
eµUx,x+4ψx+4 − e−µUx,x−4ψx−4

�

+
i

2

3�

j=1

ψ̄xγ4 (2ψx − Ux,x+jψx+j − Ux,x−jψx−j) + id3ψ̄xγ4ψx

�

Chiral phase structure

Misumi, Kimura, Ohnishi (2012)

Effective potential of σ as a function of T, µ and d3

Feff(σ;m,T, µ, d3) =
9
2
σ2 − 3

2
log

�
1 + (d3 + 3)2

�

−max

�
3 arcsinh

�
3
√

2σ

2
�

1 + (d3 + 3)2

�
, µB

�
.

・1st and 2nd phase transition (m=0)
・1st, critical point and crossover (m≠0)
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2nd phase transitions for σ. In the case of m != 0, there appears the crossover behavior instead of

the 2nd order transition.
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order is similarly changed from 2nd to 1st at the tricritical point (µtri, Ttri) = ...

related to effective imaginary chemical potential generated by the Karsten-Wilczek term:

How much the effective imaginary chemical potential can be read from π4 condensate in

T = 0 and µB = 0 limit although for large T and µB we cannot distinguish the condensates

from physical (T, µB) and artifacts of this formulation. We are then able to control the

effective imaginary chemical potential.

The question is how π4 condensate depends on d3 in T = 0 and µ = µRe = 0 limit. In

Fig. 5 we change d3 and depict three-dimensional chiral phase diagram for T , µB and d3. It

shows that the critical temperature and chemical potential varies with d3. We also show how

New possibility of (T,µ) lattice QCD !



4. Summary

1. Flavored-mass terms give us new types of  Wilson and   
    overlap fermions.   
 
2. Staggered-Wilson can be an alternative Wilson and overlap for  
     2-flavor QCD  (3 degenerate pion spectrum)

3. Central-branch fermion is a new possibility of use of Wilson   
    for many-flavor QCD without fine-tuning of parameters.  
    
4. Flavored-chemical-potential fermion would be useful for
    finite-temperature & density lattice QCD.  
                                                                    



Back-up slides



(1,2,1)(4,8,4)

Hoelbling-type flavored mass

・spin diagonalization

Aoki Phases in the Lattice Gross-Neveu Model
with Flavored Mass terms

February 6, 2012

1 Introduction

Snf(M
(i)
T ) → Sst(M

(i)
H ) (1)

M (i)
H (2)

Snf(MP) → Sst(MA) (3)

H = γ5(Dnf − rMT) (4)

Index(Dnf) = 2d−1(−1)d/2Q (5)

λ(r) (6)

Dnf − M (i)
T (7)

ψ̄xψx+1̂+2̂+3̂+4̂ = χ̄xγx4
4 γx3

3 γx2
2 γx1

1 γx1+1
1 γx2+1

2 γx3+1
3 γx4+1

4 χx+1̂+2̂+3̂+4̂

= (−1)x2+x4 χ̄xγ5χx+1̂+2̂+3̂+4̂

→ ±χ̄xεη1η2η3η4χx+1̂+2̂+3̂+4̂ (8)

ψ̄xψx+1̂+2̂ + ψ̄xψx+3̂+4̂ = (−1)x2 χ̄xγ1γ2χx+1̂+2̂ + (−1)x4 χ̄xγ3γ4χx+3̂+4̂

→ ±χ̄xiε12η1η2χx+1̂+2̂ ± χ̄xiε34η3η4χx+3̂+4̂ (9)

[σ12,σ34] = 0 (10)
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※ two terms simultaneously diagonalizable : 

Hoelbling (2010),   de Forcrand (2010)

Hoelbling, PLB696, 422(2011) [1009.5362].

→

Figure 3.3: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field
case in momentum space with 164 grids of the brillouin zone. (a) Dn − MP with species
split into (8, 8). (b) Dn − (MP + 0.1MA) with species split into (2, 2, 4, 4, 4). (c) Dn −
(MP + MV + MT + MA) with species split into (1, 15).
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Figure 3.4: Complex spectra of non-Hermitean Dirac operators for the d = 4 free field case
in momentum space with 164 grids of the brillouin zone for Dn − M (i)

T where i = 1, 2, 3.
16 species are split into (4, 8, 4)
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3.3 Flavored mass for staggered fermions

In this section we study staggered versions of the Wilson term, in which the flavored-
mass terms lift the four degenerate tastes in a manner similar to the usual Wilson term.
The concrete examples of the flavored-mass terms for the staggered fermions were first
discussed in [59], and revisited in [30, 31, 32]. Thus the contents of this section are not
a contribution from this thesis. However, as we will see later, I contribute much to this
topic by studying the symmetries of them and the phase structure. Thus in this section
we need to review details of this topic.

As we have seen, the Wilson term splits the degenerate 16 species into 5 branches
where 1, 4, 6, 4 and 1 fermions live, which is just one example of the flavored-mass terms
for the naive fermions [29, 75]. The significant condition for flavored-mass terms to yield
physical fermions is that they should commute with γ5 so that the Dirac operator satisfies
the γ5 hermiticity. We here note the natural definition of γ5 in the naive fermion is flavored
such as γ5 ⊗ (τ3 ⊗ τ3 ⊗ τ3 ⊗ τ3) in the spin-flavor representation. We have seen there are
4 types of non-trivial flavored-mass terms for the naive fermion which split species and
satisfy γ5 hermiticity. All these terms result in the same O(a) form as ∼ a

∫
d4xψ̄D2

µψ
near the continuum limit.

In a parallel way the staggered fermions also have non-trivial flavored-mass terms
which split 4 tastes and commute with γ5. In this case, the γ5 is expressed in spin-taste
representation as γ5 ⊗ γ5, which we sometimes denote as Γ55. Therefore we only have two
choices of possible flavored-mass terms to satisfy the above conditions: 1⊗γ5 and 1⊗σµν

(σµν = iγµγν). Actually these spin-flavor structures of flavored-mass terms are realized
for one-component staggered fermions up to O(a) discretization errors as

MA = ε
∑

sym

η1η2η3η4C1C2C3C4 = [1 ⊗ γ5] + O(a), (3.34)

and

MH = M (1)
H + M (2)

H + M (3)
H ,

=
2√
3
[1 ⊗ (σ12 + σ34 + σ13 + σ42 + σ14 + σ23)] + O(a), (3.35)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (3.36)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (3.37)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (3.38)

where

Cµ = (Vµ + V †
µ )/2, (3.39)

(ηµ)xy = (−1)x1+...+xν−1δx,y, (3.40)

(ε)xy = (−1)x1+...+x4δx,y, (3.41)

(εµν)xy = −(ενµ)xy = (−1)xµ+xνδx,y (µ < ν), (3.42)
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MH = M (1)
H + M (2)

H + M (3)
H , (12)

M (1)
H =

i

2
√

3
[ε12η1η2(C1C2 + C2C1) + ε34η3η4(C3C4 + C4C3)], (13)

M (2)
H =

i

2
√

3
[ε13η1η3(C1C3 + C3C1) + ε42η4η2(C4C2 + C2C4)], (14)

M (3)
H =

i

2
√

3
[ε14η1η4(C1C4 + C4C1) + ε23η2η3(C2C3 + C3C2)]. (15)

MT "→ MH (16)

M (i)
T → M (i)

H (17)

[σµν ,σνρ] "= 0 (18)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (19)

x → R(µν)R(ρσ)x (20)

Dnf − (MV + MT + MA + MP ) (21)

M (i)
H (22)

Snf(MP) → Sst(MA) (23)

H = γ5(Dnf − rM (i)
T ) (24)

Index(D) = 2d−1(−1)d/2Q (25)

λ(r) (26)

Dnf − M (i)
T (27)

ψ̄xψx+1̂+2̂+3̂+4̂ = χ̄xγx4
4 γx3

3 γx2
2 γx1

1 γx1+1
1 γx2+1

2 γx3+1
3 γx4+1

4 χx+1̂+2̂+3̂+4̂

= (−1)x2+x4 χ̄xγ5χx+1̂+2̂+3̂+4̂

→ ±χ̄xεη1η2η3η4χx+1̂+2̂+3̂+4̂ (28)

2

Adams-type flavored mass

MT !→ MH (13)

M (i)
T → M (i)

H (14)

[σµν ,σνρ] != 0 (15)

Snf(M
(i)
T ) → Sst(M

(i)
H ) (16)

x → R(µν)R(ρσ)x (17)

Dnf − (MV + MT + MA + MP ) (18)

M (i)
H (19)

Snf(MP) → Sst(MA) (20)

H = γ5(Dnf − rM (i)
T ) (21)

Index(D) = 2d−1(−1)d/2Q (22)

λ(r) (23)

Dnf − M (i)
T (24)

ψ̄xψx+1̂+2̂+3̂+4̂ = χ̄xγx4
4 γx3

3 γx2
2 γx1

1 γx1+1
1 γx2+1

2 γx3+1
3 γx4+1

4 χx+1̂+2̂+3̂+4̂

= (−1)x2+x4 χ̄xγ5χx+1̂+2̂+3̂+4̂

→ ±χ̄xεη1η2η3η4χx+1̂+2̂+3̂+4̂ (25)

(γ5 diagonalized) (26)

ψ̄xψx+1̂+2̂ + ψ̄xψx+3̂+4̂ = (−1)x2 χ̄xγ1γ2χx+1̂+2̂ + (−1)x4 χ̄xγ3γ4χx+3̂+4̂

→ ±χ̄xiε12η1η2χx+1̂+2̂ ± χ̄xiε34η3η4χx+3̂+4̂ (27)
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          broken to 2-link shift for SA 
          broken to 4-link shift for SH 

・Axis reversal                broken to shifted axis reversal 

  remain in SA

  broken to subgroup in SH 

・Conjugation                                   

In the QCD simulation we will tune the mass parameter M to take a chiral
limit. For some negative value of the mass parameter: −1 < M < 0 for
Adams-type and −2 < M < 0 for Hoelbling-type, we obtain two-flavor and
one-flavor overlap fermions respectively by using the overlap formula.

3 Symmetry

In this section we discuss the discrete symmetry of the staggered-Wilson
fermions. Most of conclusions we will show in this section were already
shown in the old reference [25, 27] and the recent two papers [9, 10]. The
potential problem for staggered-Wilson fermions in lattice QCD is the dis-
crete symmetry breaking. As discussed in [9, 10], the discrete symmetries
possessed by the original staggered fermion is broken to their subgroups both
in the Adams-type and Hoelbling-type actions. One of the broken discrete
symmetries is the shift symmetry, whose transformation is given by

Sρ : χx → ζρ(x)χx+ρ̂, χ̄x → ζρ(x)χ̄x+ρ̂, Uµ,x → Uµ,x+ρ̂, (9)

with ζ1(x) = (−1)x2+x3+x4 , ζ2(x) = (−1)x3+x4 , ζ3(x) = (−1)x4 and ζ4(x) = 1.
The Adams-type fermion is invariant under the subgroup x → x + 1̂ ± µ̂
while the Hoelbling-type fermions is invariant under x → x + 1̂ ± 2̂ ± 3̂ ± 4̂.
Note that these subgroups include the doubled shift x → x + 2µ̂ as their
subgroup. The axis reversal invariance is also broken in both cases, whose
transformation is given by,

Iρ : χx → (−1)xρχIx, χ̄x → (−1)xρχ̄Ix, Uµ,x → Uµ,Ix, (10)

with I = Iρ is the axis reversal xρ → −xρ, xτ → xτ , τ #= ρ. In addition, the
Hoelbling-type fermion loses the original rotational symmetry of the stag-
gered fermion while it holds in the Adams-type fermion. The staggered
rotational transformation is given by

Rρσ : χx → SR(R−1x)χR−1x, χ̄x → SR(R−1x)χ̄R−1x, Uµ,x → Uµ,Rx, (11)

where Rρσ is the rotation xρ → xσ, xσ → −xρ, xτ → xτ , τ #= ρ,σ and
SR(x) = 1

2 [1 ± ηρ(x)ησ(x) ∓ ζρ(x)ζσ(x) + ηρ(x)ησ(x)ζρ(x)ζσ(x)] with ρ <> σ.
As shown in [25, 26], these transformations yield rotations in spinor

and flavor spaces. Here we use the momentum space method shown in
[25, 26] to identify the spinor and flavor labels in these: We first define
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transformation is given by,

Iρ : χx → (−1)xρχIx, χ̄x → (−1)xρχ̄Ix, Uµ,x → Uµ,Ix, (10)

with I = Iρ is the axis reversal xρ → −xρ, xτ → xτ , τ #= ρ. In addition, the
Hoelbling-type fermion loses the original rotational symmetry of the stag-
gered fermion while it holds in the Adams-type fermion. The staggered
rotational transformation is given by
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2 [1 ± ηρ(x)ησ(x) ∓ ζρ(x)ζσ(x) + ηρ(x)ησ(x)ζρ(x)ζσ(x)] with ρ <> σ.
As shown in [25, 26], these transformations yield rotations in spinor

and flavor spaces. Here we use the momentum space method shown in
[25, 26] to identify the spinor and flavor labels in these: We first define
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C : χx → εxχ̄T
x , χ̄x → −εxχ̄T

x , Uµ,x → U∗
µ,x (1)

MA, MH, M (i)
H (2)

MA, MH (3)

ψ̄[1 ⊗ (τ3 ⊗ τ3 ⊗ τ3 ⊗ τ3)]ψ (4)

ψ̄[1 ⊗ γ5]ψ (5)

MA = ζ5

∑

sym.

4∏

µ=1

Cµ (6)

M1L =
∑

µ

ξµCµ ∼
∑

µ

(1 ⊗ γµ) + O(a) (7)

MW ≡ m + 4r = 0 (8)

ψ̄ψ ↔ ψ̄γ5ψ (9)

ψx → eiθ(−1)x1+x2+x3+x4
, ψ̄x → ψ̄xeiθ(−1)x1+x2+x3+x4 (10)

S =
1
2

∑

x,µ

ψ̄x[γµ(ψx+µ − ψx−µ) − (ψx+µ + ψx−µ)] (11)

1

6

flavor spaces respectively, which are given by two sets of 16×16 matrices Γµ and Ξµ. We note

they possess the properties {Γµ, Γν} = 2δµν , {Ξµ, Ξν} = 2δµν and {Γµ, Ξν} = 0. By using

these definitions the Dirac operator for the staggered fermion is given by Dst = iΓµ sin pµ

for the 16 multiplet φ(p) [30] while the shift transformation is given by essentially flavor

rotation as

Sµ : φ(p) → exp(ipµ)Ξµ φ(p). (12)

The axis reversal is given by spinor and flavor rotations as

Iρ : φ(p) → ΓρΓ5ΞρΞ5 φ(Ip). (13)

The rotational transformation is also given by both the spinor and flavor rotations as

Rρσ : φ(p) → exp(
π

4
ΓρΓσ) exp(

π

4
ΞρΞσ) φ(R−1p). (14)

By using this representation, we can clearly figure out the properties of the residual discrete

symmetry of the staggered-Wilson fermions. What we here want to emphasize is that

the staggered-Wilson fermions are invariant under the essential subgroup of the combined

transformations: Both the staggered-Wilson fermions are invariant under (4th-direction shift

with spatial axis reversal) as

IsS4 ∼ exp(ip4)Γ1Γ2Γ3Γ5 φ(−p, p4) ∼ exp(ip4)Γ4 φ(−p, p4), (15)

with Is ≡ I1I2I3. This is essentially the parity transformation as shown in section 3 of the

ref. [25]. Indeed, if we consider the theories on one- or two-flavor branches in the staggered-

Wilson fermions in the continuum limit, this transformation results in the usual parity as

ψ(p) → γ4ψ(−p, p4) for the Dirac fermion. Besides, by following the arguments in [27, 28] it

is also shown that the present actions still hold invariance under the parity transformation for

the 4-degenerate staggered fermion IsΞ4φ(−p, p4) = Γ4φ(−p, p4). Anyhow we can conclude

these fermion actions possess physically well-defined parity symmetry. We here note the

simple product of the µ-direction shift and the µ-direction axis reversal (shifted-axis reversal)

is also symmetry of both the fermions. The charge conjugation can be also shown to be

symmetry of these fermions by modifying the original charge conjugation transformation for

the case with the flavored-mass terms [25].

As is well-known, the usual “staggered hypercubic symmetry” means invariance under the

staggered rotation (11)(14) and the axis reversal (10)(13). Although both of the staggered-

Wilson fermions themselves do not have this symmetry, theories on the two- or one-flavor
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Wilson fermions themselves do not have this symmetry, theories on the two- or one-flavor

As shown in [25, 26], these transformations yield rotations in spinor
and flavor spaces. Here we use the momentum space method shown in
[25, 26] to identify the spinor and flavor labels in these: We first define
the 16 species-fields in the momentum space as φ(p)A ≡ χ(p + πA) (−π/2 ≤
pµ < π/2) where πA (A = 1, 2, ..., 16) being 4-dim vectors whose compo-
nents take 0 or π. For convenience, we here consider a 16-multiplet field as
φ(p) = (φ(p)1,φ(p)2, · · · ,φ(p)16)T . As this 16-multiplet field has both the
spinor(space-time) and the flavor(taste) indices, we can construct the two
sets of generators acting on the spinor and flavor spaces respectively, which
are given by two sets of 16 × 16 matrices Γµ and Ξµ. We note they possess
the properties {Γµ, Γν} = 2δµν , {Ξµ, Ξν} = 2δµν and {Γµ, Ξν} = 0. By using
these definitions the Dirac operator for the staggered fermion is given by
Dst = iΓµ sin pµ for the 16 multiplet φ(p) 1 while the shift transformation is
given by essentially flavor rotation as

Sµ : φ(p) → exp(ipµ)Ξµ φ(p). (13)

The axis reversal is given by spinor and flavor rotations as

Iρ : φ(p) → ΓρΓ5ΞρΞ5 φ(Ip). (14)

The rotational transformation is also given by both the spinor and flavor
rotations as

Rρσ : φ(p) → exp(
π

4
ΓρΓσ) exp(

π

4
ΞρΞσ) φ(R−1p). (15)

C : φ(p) → φ̄(−p)T (16)

By using this representation, we can clearly figure out the properties of the
residual discrete symmetry of the staggered-Wilson fermions. What we here
want to emphasize is that the staggered-Wilson fermions are invariant under
the essential subgroup of the combined transformations: Both the staggered-
Wilson fermions are invariant under (4th-direction shift with spatial axis
reversal) as

IsS4 ∼ exp(ip4)Γ1Γ2Γ3Γ5 φ(−p, p4) ∼ exp(ip4)Γ4 φ(−p, p4), (17)

with Is ≡ I1I2I3. This is essentially the parity transformation as shown
in section 3 of the ref. [25]. Indeed, if we consider the theories on one- or

1The origin of the discrepancy between this form and the usual spin-taste representation
is clearly elaborated in the reference, G. P. Lepage, [arXiv:1111.2955].
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(2) Ξµ is called ”shift”, which is given by

Ξµ : χx → ζµχx+µ̂, µ̄x → ζµχ̄x+µ̂, Uµ,n → Uµ,n+µ̂, (22)

with ζ1(x) = (−1)x2+x3+x4 , ζ2(x) = (−1)x3+x4 , ζ3(x) = (−1)x4 and ζ4(x) = 1. In spin-flavor
representation it forms ”flavor reflection” up to phase factor as

Ξµ : Q(p) → exp(ipµ)(1 ⊗ ξµ)Q(p). (23)

(3) Is is called ”spatial inversion”, which is given by

Is : χx → (−1)x1+x2+x3χx′ , χ̄x → (−1)x1+x2+x3χ̄x′ , Uµ,x → Uµ,x′ , (24)

where x′ ≡ Isx is xi → −xi, x4 → x4, (i = 1, 2, 3). In spin-flavor representation it gives
spin-flavor rotation by γ4 as

Is : Q(p) → (γ4 ⊗ ξ4)Q(p′). (25)

(4) Rµν is hypercubic rotation, which is given by

Rµν : χx → SR(x′)χx′ , χ̄x → SR(x′)χ̄x′ , Uµ,x → Uµ,x′ , (26)

where x′ ≡ R−1
µν x is xµ → xν , xν → −xµ, xρ → xρ, ρ %= µ, ν and SR(x) = 1

2 [1 ± ηµ(x)ην(x) ∓
ζµ(x)ζν(x) + ηµ(x)ην(x)ζµ(x)ζν(x)] with µ <> ν. In spin-flavor representation it gives spin-flavor
rotation as

Rµν : Q(p) → exp[
π

4
(γµγν ⊗ ξνξµ)]Q(p′). (27)

(5) U ε(1) is residual chiral symmetry, which is subgroup of SU(4) chiral symmetry in the
continuum theory. The transformation is given by

U ε(1) : χx → eθεxχx, χ̄x → χ̄xeθεx , Uµ,x → Uµ,x. (28)

(6) C ′
T is “special charge conjugation”, which is independent from (1). It is given by

C ′
T : χx → χ̄T

x , χ̄x → χT
x , Uµ,x → U∗

µ,x. (29)

Regarding flavor and rotation symmetries, we can rephrase them as

U ε(1) × (Γ4 ×|SW4,diag). (30)

Γ4 is a Clifford group operating as flavor reflection, which is formed by the shift Ξµ. SW4,diag

is diagonal part of hypercubic subgroups of euclidian rotation group SO(4) and flavor group
SU(4). It causes simultaneous hypercubic rotation in Lorentz and flavor spaces. From this we
can elucidate splitting of pion spectrum at finite lattice spacing. Pions are degenerate and form
a 15-plet of flavor SU(4) in the continuum:

Q̄(γ5 ⊗ ξA)Q, with ξA = ξA1
1 ξA2

2 ξA3
3 ξA4

3 , (31)
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Details of StWil symmetries

Physical-sector symmetry

Ξ�
jΞ

�
4R

2
j4 = ΞjΞ4 ∼ (1⊗ σj)

Ξ�
4R

2
34R

2
12 = Ξ4Is ∼ (γ4 ⊗ 1)

C0Ξ�
2Ξ

�
4R

2
24 ∼ C

{Ξµ, Is, Rµν} → Γ4 � SW4

{Ξ�
µ, Rµν} → Γ3 � SW4



Ξ2
µ = 1

Details of timeslice symmetries

Enlarged staggered sym :

Timeslice sym :

{C0,Ξµ, Is, Rµν , T 1/2
µ }

Relevant group at rest

Γ4,1 � W3 ∼ [{Rij ,Ξij}× {C0,Ξ4,Ξ123, Is}]/Z2

= [{Rij , R̃4i ≡ �ijkRjkΞkj}× {C0,Ξ4,Ξ123, C0Ξ4Is}]/Z2

= [SW4 × Γ2,2]/Z2

T 1/2
µ � [{C0,Ξµ} � {Rij , Is}] = (⊗jZNj ) � [Γ4,1 � W3]

T 1/2
µ � [{C0,Ξµ} � {Rµν , Is}] = (⊗jZNµ) � [Γ4,1 � W4]

{C0,Ξ�
µ, Rµν , T �1/2

µ }
Staggered-Wilson

∼ [{Rij ,Ξ�
ij}× {C0,Ξ�

4,Ξ
�
123, Is}]/Z2

= [{Rij , R̃4i ≡ �ijkRjkΞ�
kj}× {C0,Ξ4,Ξ123]/Z2

= [SW4 × Γ1,2]/Z2



Dim3, 4 :

Dim5 O(a):

Dim6 O(a ) : 2 types of four-fermi operators

No unphysical term nor taste-breaking term up to O(a)

Q̄(γµ ⊗ ξF )DµQ for ξF = 1 or ξ5 �̄γµDµ�, �̄�

�̄iσµνFµν�Q̄(iσµνFµν ⊗ ξF )Q for ξF = 1 or ξ5

Q̄(1⊗ ξF )Q

(19) has both Adams-type flavored mass and flavor-singlet mass. In this case the staggered
symmetries are broken into

{C0, Ξ′
µ, Rµν}. (38)

where Ξ′
µ ≡ ΞµIµ. Note that the action is invariant under parity transformation Ξ4Is ∼ (γ4⊗1).

This action thus possesses charge conjugation, parity and euclidean Lorentz symmetry.
Regarding flavor symmetry, although there is no shift symmetry, we instead have modified

shift symmetry Ξ′
µ (38). We also note that tastes with ξ5 = ± are separated into light and heavy

two-flavor branches due to the flavored-mass term (∼ (1⊗ ξ5)). The difference between (19) and
original staggered fermion is just that there is mixing between ξ5 pairs in operators classified
by timeslice symmetry group. For example, the mixing of 7 staggered irreps and flavor-singlet
pseudo-scalar operators is given by

Q̄(γ5 ⊗ 1)Q and Q̄(γ5 ⊗ ξ5)Q, (39)
Q̄(γ5 ⊗ ξ4)Q and iQ̄(γ5 ⊗ ξ45)Q, (40)
iQ̄(γ5 ⊗ ξi4)Q and Q̄(γ5 ⊗ ξi45)Q, (41)
Q̄(γ5 ⊗ ξi)Q and iQ̄(γ5 ⊗ ξi5)Q. (42)

Here (39) and (41) create light-light and heavy-heavy operators while (40) and (42) create light-
heavy and heavy-light operators. We here define # as a two-flavor field in the light sector and
focus only on light-light operators. A flavor-singlet operator from (39) is given by

#̄(γ5 ⊗ 1)#, (43)

which corresponds to η′ meson in 2-flavor QCD. And a flavor-nonsinglet operator from (41) is
given by

#̄(γ5 ⊗ σi)#, (44)

which corresponds to three π mesons. We note that both ξi4 and ξi45 in (41) are in 3-dimensional
irreducible representations of original staggered transfer matrix. Since the mixing of ξ5 pairs is
the only change produced by the flavored-mass term, the three pion states (44) are still in the
3-dimensional irreps. It means that three pions are degenerate in the mass spectrum. We can
rephrase that the discrete symmetry (38) in (19) is large enough to prohibit mass splitting of
the pion triplet. (There could be possibility that the three states would are mixed nontrivially
due to indirect coupling through light-heavy and heavy-light operators.)

This degenerate pion triplet can be checked by constructing the chiral perturbation po-
tential from the continuum effective Lagrangian. The leading flavor breaking in the effective
Lagrangian comes from dimension 6 four-fermi operators corresponding to O(a2) discretiza-
tion errors. There are two types of four-fermi operators LFF (A)

6 and LFF (B)
6 in the non-chiral-

symmetric Lagrangian: In LFF (A)
6 the spin and flavor independently forms scalar, leading to 25

operators. We however need to take into account the inversion symmetry breaking, and there
is a ξ5 pair for each of 25 operators. Therefore LFF (A)

6 contains 50 operators. In LFF (B)
6 the

spin and flavor are not independent. There are 10 such operators, which are doubled to be
20 operators by ξ5 pairing. We can classify all the four-fermi operators by projecting these 70
operators onto the ξ5 = 1 sector.

Now we construct O(a2) potential in the chiral effective Lagrangian from these operators.
Here we denote VFF (A)

6 and VFF (B)
6 as the potential terms corresponding to LFF (A)

6 and LFF (B)
6 .

As in the case of the staggered fermion, a flavor-breaking takes place only in VFF (B)
6 , where spin

and flavor are correlated. On the other hand, these correlated terms require derivative in VFF (B)
6 ,

6

2
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・ For other naive flavored mass terms 

MA  :  U(1) restored  

MT  :  U(2) restored

MP  :  U(2)×U(2) restored

・For staggered flavored mass terms 

MA  : CTΞ, CTI restoed
MH  :  CT restored

In the QCD simulation we will tune the mass parameter M to take a chiral
limit. For some negative value of the mass parameter: −1 < M < 0 for
Adams-type and −2 < M < 0 for Hoelbling-type, we obtain two-flavor and
one-flavor overlap fermions respectively by using the overlap formula.

3 Symmetry

In this section we discuss the discrete symmetry of the staggered-Wilson
fermions. Most of conclusions we will show in this section were already
shown in the old reference [25, 27] and the recent two papers [9, 10]. The
potential problem for staggered-Wilson fermions in lattice QCD is the dis-
crete symmetry breaking. As discussed in [9, 10], the discrete symmetries
possessed by the original staggered fermion is broken to their subgroups both
in the Adams-type and Hoelbling-type actions. One of the broken discrete
symmetries is the shift symmetry, whose transformation is given by

Sρ : χx → ζρ(x)χx+ρ̂, χ̄x → ζρ(x)χ̄x+ρ̂, Uµ,x → Uµ,x+ρ̂, (9)

with ζ1(x) = (−1)x2+x3+x4 , ζ2(x) = (−1)x3+x4 , ζ3(x) = (−1)x4 and ζ4(x) = 1.
The Adams-type fermion is invariant under the subgroup x → x + 1̂ ± µ̂
while the Hoelbling-type fermions is invariant under x → x + 1̂ ± 2̂ ± 3̂ ± 4̂.
Note that these subgroups include the doubled shift x → x + 2µ̂ as their
subgroup. The axis reversal invariance is also broken in both cases, whose
transformation is given by,

Iρ : χx → (−1)xρχIx, χ̄x → (−1)xρχ̄Ix, Uµ,x → Uµ,Ix, (10)

with I = Iρ is the axis reversal xρ → −xρ, xτ → xτ , τ #= ρ. In addition, the
Hoelbling-type fermion loses the original rotational symmetry of the stag-
gered fermion while it holds in the Adams-type fermion. The staggered
rotational transformation is given by

Rρσ : χx → SR(R−1x)χR−1x, χ̄x → SR(R−1x)χ̄R−1x, Uµ,x → Uµ,Rx, (11)

where Rρσ is the rotation xρ → xσ, xσ → −xρ, xτ → xτ , τ #= ρ,σ and
SR(x) = 1

2 [1 ± ηρ(x)ησ(x) ∓ ζρ(x)ζσ(x) + ηρ(x)ησ(x)ζρ(x)ζσ(x)] with ρ <> σ.

C : χx → χ̄T
x , χ̄x → χT

x , Uµ,x → U∗
µ,x, (12)
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◆ Central cusps for other flavored masses progress in NTFL workshop (2012)
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C ′
T Ξµ Iµ C ′

T Ξµ C ′
T Iµ ΞµIµ

Sst ◦ ◦ ◦ ◦ ◦ ◦
SA × × × ◦ ◦ ◦
SH ◦ × × × × ◦
Sm × ◦ ◦ × × ◦

Table 1: Invariance (◦) or non-invariance (×) of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations.

with Aµ = 0 or 1 and
∑

µ A #= 0. Ref. [6] shows by classifying operators by timeslice group
that these pions fall into 7 irreducible representations of symmetry group of the corresponding
transfer matrix at finite lattice spacing:

1 : ξ4, ξ45, ξ5, (32)
3 : ξi, ξi5, ξij ξi4. (33)

Here we take the 4th direction as time. Moreover, it is shown from staggered chiral perturbation
theory in Ref. [7] that SO(4) flavor and Lorentz symmetries hold in the O(a2) chiral perturbation
(pion) potential. Thus 15-plet falls into 4 irreducible representations up to O(a4), O(a2m) and
O(a2p2) as

1 : ξ5, (34)
4 : ξµ, ξµ5, (35)
6 : ξµν . (36)

It means that there are three degeneracies in lattice-pseudo pion spectrum in the leading dis-
cretization errors.

3 Staggered fermions with flavored mass

In this section we investigate symmetries of staggered-Wilson fermions and the spectrum of
pseudo-scalar states.

(18) has Adams-type flavored mass but no flavor-singlet mass terms. Here the staggered
symmetries are broken into

{C0, C ′
T Ξµ, C ′

T Is, Rµν}. (37)

There is no longer shift and inversion symmetries. Instead, we have combined symmetries with
special charge conjugation, which we call “special charge shift” and “special charge inversion”.
These two symmetries are remnants of Γ̄(−) symmetries (10) in the naive fermion with Pseudo-
scalar type flavored mass (8). Practically speaking, this choice of a mass parameter cannot give
any physical quarks but just O(1/a) massive quarks. If we consider overlap formulation with
the kernel of this fermion, however, this choice would be acceptable. There is thus possibility
that these two special symmetries would do some good in the staggered overlap fermion. In
Table. 1 we show invariance or non-invariance of the staggered kinetic term Sst, Adams-type
term SA, Hoelbling-type term SH [8] and the usual mass term Sm under C ′

T , Ξµ, Iµ and their
combinations. For example, (18) is given by Sst + SA.
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3.1 Action and symmetries

The action for the Wilson fermion [1] is given by

S = Snf + SW with SW = −r

2

∑

n,µ

ψ̄n (ψn+µ̂ − 2ψn + ψn−µ̂) . (15)

In terms of the spin-flavor representation, the Wilson term SW is written as

SW = −r

2

∑

N,µ

[
2Ψ̄(N)

(
14 ⊗ γT

µ ⊗ γµ

)
Ψ(N) + Ψ̄(N)

(
14 ⊗ γT

µ ⊗ γµ

)
∇2

µΨ(N)

+Ψ̄(N)
(
γµγ5 ⊗ γT

5 ⊗ γµ

)
∇µΨ(N)

]
+ 4r

∑

N

Ψ̄(N) (14 ⊗ 14 ⊗ 14) Ψ(N) . (16)

The first three terms in (16) are invariant under the ordinary U(1) vector transformation, U(1)V ,

which is defined by

Ψ(N) → Ψ′(N) = exp [iθ(14 ⊗ 14 ⊗ 14)] Ψ(N) , (17)

Ψ̄(N) → Ψ̄′(N) = Ψ̄(N) exp [−iθ(14 ⊗ 14 ⊗ 14)] , (18)

ψn → ψ′
n = eiθψn , ψ̄n → ψ̄′

n = e−iθψ̄n , (19)

and the site-dependent U(1) vector transformation, U(1)−V , defined by

Ψ(N) → Ψ′(N) = exp
[
iθ(γ5 ⊗ γT

5 ⊗ 14)
]
Ψ(N) , (20)

Ψ̄(N) → Ψ̄′(N) = Ψ̄(N) exp
[
iθ(γ5 ⊗ γT

5 ⊗ 14)
]

, (21)

ψn → ψ′
n = ei(−1)n1+...+n4θψn , ψ̄n → ψ̄′

n = ei(−1)n1+...+n4θψ̄n . (22)

By contrast the last term in (16) is invariant only under the U(1)V transformation. Therefore,

the total Wilson fermion action possesses only the U(1)V symmetry for general values of m and

r. Interestingly enough, however, the additional U(1)−V symmetry appears if m and r satisfy

m+4r = 0, at which the on-site terms cancel out between the mass term and the Wilson term.

As we will show in the next subsection, this symmetry is spontaneously broken by the pion

condensate, 〈ψ̄γ5ψ〉.

3.2 Strong coupling analysis

Now we employ the strong coupling analysis to show that there appears an NG boson associated

with the U(1)−V symmetry breaking in the presence of the pion condensate. An effective action

for mesons in the strong coupling limit [42,9, 10] can be written in general as

Seff(M) = Nc

∑

n

[
∑

µ

Tr f(Λn,µ) + tr M̂M(n) − tr log M(n)

]
, (23)
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In the case of the Wilson fermion, M̂ = (m + 4r)14 ≡ MW14 and P±
µ =

γµ ± r

2
. By taking

M0 = σ14 + iπγ5, we have





σ =
−MW ±

√
M2

W + 8(1 − r2)

4(1 − r2)
, π = 0 , M2

W ≥ M2
c

σ =
MW

4r2
, π2 =

1

16r4(1 + r2)
(8r4 − M2

W (1 + r2)) , M2
W < M2

c

(32)

where M2
c =

8r4

1 + r2
.

As discussed in the previous subsection, at MW = 0 we have an additional U(1) symmetry,

U(1)−V . Since this parameter regime resides in the parity broken phase, in which π2 $= 0 and

M2
W < M2

c , U(1)−V is spontaneously broken by the VEV of π in this case.

To compute the meson mass, we hereafter take r2 = 1 for simplicity. Because D(p) is block-

diagonal, we concentrate on its submatrix DXY (p) with X, Y ∈ {S, P, Aα}. Then, by setting

p = (π, π,π, π + imSPA ), we find that the S-P -Aα sector mass mSPA is given by

cosh(mSPA ) = 1 +
20M2

W

6 − 7M2
W

. (33)

Note that since the transformation (22) involves the site-dependent quantity (−1)n1+···+n4 , it

is natural to expand the momentum p around (π, π,π, π). Eq. (33) tells us that the meson

becomes a massless NG boson at MW = 0 as expected. If we use the exact form of f(x) in the

large Nc limit, we then obtain

cosh(mSPA ) = 1 +
2M2

W (16 + M2
W )

16 − 15M2
W

, (34)

which again shows that a massless NG boson appears at MW = 0.

Before closing this subsection, it is worth noting that MW = 0 corresponds to the cen-

tral cusp in the parity broken phase, at which six fermion modes with momentum shift,

p = (π, π, 0, 0), (π, 0,π, 0), (π, 0, 0,π), (0,π, π, 0), (0,π, 0, π) and (0, 0,π,π), are expected to

appear in the continuum limit. Although we have not yet known much about the continuum

limit for this cusp, it is expected to correspond to QCD with six flavors, which is still asymp-

totically free. Therefore, if an appropriate continuum limit exists, we expect the theory in the

limit will be Lorentz-symmetric as in the “physical” branch because the Wilson fermion ac-

tion itself possesses the hypercubic symmetry6 which is likely to lead to the Lorentz symmetry

6Although the 3rd term in (16) looks hypercubic non-invariant, it is just an expression artifact: As is argued
in [46], the spin-taste representation does not respect translational invariance, leading to apparent Lorentz non-
invariance in this case. Actually such a term is prohibited by imposing this invariance. The expression is not
suitable for study of Lorentz symmetry although it gives good insight into other symmetries.
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Λn,µ =
Vn,µV̄n,µ

N2
c

, M(n)αβ =

∑
a ψ̄a,α

n ψa,β
n

Nc
,

where Nc is the number of colors, Tr ( tr ) means a trace over color(spinor) index, and M(n)

is a meson field. The explicit form of the function f is determined by performing a one-link

integral of the gauge field. More explicitly we can write

V ab
n,µ = ψ̄b

nP
−
µ ψa

n+µ̂ , V̄ ab
n,µ = −ψ̄b

n+µ̂P
+
µ ψa

n , (24)

Tr f(Λn,µ) = −tr f
(
−M(n)(P+

µ )TM(n + µ̂)(P−
µ )T

)
, (25)

where 4× 4 matrices P±
µ are specified later. In the large Nc limit, it is known that f(x) can be

analytically evaluated as

f(x) =
√

1 + 4x − 1 − ln
1 +

√
1 + 4x

2
= x + O(x2) . (26)

However, in the following part of this paper, we will approximate f(x) as f(x) = x unless

otherwise stated because qualitative features such as an appearance of NG bosons remain

unchanged by this approximation.

To calculate meson masses we expand the meson field as5

M(n) = MT
0 +

∑

X

πX(n)ΓT
X , X ∈ {S, P, Vα, Aα, Tαβ} , (27)

where M0 is the vacuum expectation value (VEV) of M(n), and

ΓS =
14

2
, ΓP =

γ5

2
, ΓVα =

γα

2
, ΓAα =

iγ5γα

2
, ΓTαβ

=
γαγβ

2i
(α < β). (28)

Then the effective action at the second order of πX is given by

S(2)
eff = Nc

∑

n

[
1

2
tr (M−1

0 ΓXM−1
0 ΓY ) πX(n)πY (n) +

∑

µ

tr (ΓXP−
µ ΓY P+

µ )πX(n)πY (n + µ̂)

]

= Nc

∫
d4p

(2π)4
πX(−p)DXY (p)πY (p) , (29)

where

DXY (p) =
1

2

(
D̃XY (p) + D̃Y X(−p)

)
, (30)

D̃XY (p) =
1

2
tr (M−1

0 ΓXM−1
0 ΓY ) +

∑

µ

tr (ΓXP−
µ ΓY P+

µ )eipµ . (31)

5In eq. (27), S, P, Vα, Aα and Tαβ stand for scalar, pseudo-scalar, vector, axial-vector and tensor respectively.
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V ab
n,µ = ψ̄b

nP
−
µ ψa

n+µ̂ , V̄ ab
n,µ = −ψ̄b

n+µ̂P
+
µ ψa

n , (24)

Tr f(Λn,µ) = −tr f
(
−M(n)(P+

µ )TM(n + µ̂)(P−
µ )T

)
, (25)

where 4× 4 matrices P±
µ are specified later. In the large Nc limit, it is known that f(x) can be

analytically evaluated as

f(x) =
√

1 + 4x − 1 − ln
1 +

√
1 + 4x

2
= x + O(x2) . (26)

However, in the following part of this paper, we will approximate f(x) as f(x) = x unless

otherwise stated because qualitative features such as an appearance of NG bosons remain

unchanged by this approximation.

To calculate meson masses we expand the meson field as5

M(n) = MT
0 +

∑

X

πX(n)ΓT
X , X ∈ {S, P, Vα, Aα, Tαβ} , (27)

where M0 is the vacuum expectation value (VEV) of M(n), and

ΓS =
14

2
, ΓP =

γ5

2
, ΓVα =

γα

2
, ΓAα =

iγ5γα

2
, ΓTαβ

=
γαγβ

2i
(α < β). (28)

Then the effective action at the second order of πX is given by

S(2)
eff = Nc

∑

n

[
1

2
tr (M−1

0 ΓXM−1
0 ΓY ) πX(n)πY (n) +

∑

µ

tr (ΓXP−
µ ΓY P+

µ )πX(n)πY (n + µ̂)

]

= Nc

∫
d4p

(2π)4
πX(−p)DXY (p)πY (p) , (29)

where

DXY (p) =
1

2

(
D̃XY (p) + D̃Y X(−p)

)
, (30)

D̃XY (p) =
1

2
tr (M−1

0 ΓXM−1
0 ΓY ) +

∑

µ

tr (ΓXP−
µ ΓY P+

µ )eipµ . (31)

5In eq. (27), S, P, Vα, Aα and Tαβ stand for scalar, pseudo-scalar, vector, axial-vector and tensor respectively.

6
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QCD with the fermions. The strong-coupling lattice QCD study with minimally doubled

fermions has been first done by some of the present authors in [29], where spontaneous

chiral symmetry breaking due to chiral condensate is observed in zero temperature and

density case. We here extend this study to finite-temperature and finite-density cases by

following the method taken in [10–12], and elucidate how the chiral condensate depends

on temperature and chemical potential. We will find a phase structure consistent with

phenomenologically believed one as in the case of staggered fermions.

A. Effective potential

We first need to derive effective potential of meson fields including scalar one σ from

(4) in the strong-coupling limit (g2 → ∞). We here consider general color number as Nc

for SU(Nc) gauge group and general space-time dimensions as D + 1. For the purpose

we perform the 1-link integral for the gauge field in the D-dimensional spatial part, and

introduce auxiliary fields to eliminate the 4-point interaction as

∫
DU1 · · · DUD exp

[
−

∑

x

D∑

j=1

(
ψ̄xP

+
j Uj(x)ψx+ĵ − ψ̄x+ĵP

−
j U †

j (x)ψx

)]

= exp

[
Nc

∑

x

(
D∑

j=1

trM(x)(P+
j )TM(x + ĵ)(P−

j )T

)
+ O(1/

√
D)

]

=

∫
DσDπ4 exp

[
− Nc

∑

x

(
D

(
(1 + r2)σ2 + (1 − r2)π2

4

)

− D

2
tr

(√
1 + r2σ − i

√
1 − r2π4γ4

)
M(x)

)]
, (5)

with

P±
µ =





(γµ ± irγ4)/2 (µ %= 4)

γ4/2 (µ = 4)
(6)

where we introduce the mesonic field as

Mαβ(x) =
1

Nc
δabψ̄

a,α
x ψb,β

x . (7)

We note that two auxiliary fields σ and π4 are required to get rid of four-fermi interactions

in this case because of the Karsten-Wilczek term. π4 condensate can be a signal of nonzero

effective imaginary chemical potential, and we will discuss on this later. We also note that
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with k̄(a)
n = kn + φa/Nτ − iµ. By integrating the temporal gauge field φa we derive

∫
DU4

∏

"x

A4NcNτ

Nc∏

a=1

(2 cosh NτE + 2 cos (φa − iNτµ))4 =
∏

"x

[
∑

n∈Z

det (Qn+i−j)1≤i,j≤Nc

]
,

(14)

Qn =

∫ π

−π

dφ

2π
(2 cosh NτE + 2 cos θ)4 e−inφ, θ = φ − iNτµ. (15)

For Nc = 3 these Qn are explicitly given as

Q0 = 2(8 cosh4 NτE + 24 cosh2 NτE + 3)

Q±1 = 8 cosh NτE(4 cosh2 NτE + 3)e±Nτ µ

Q±2 = 4(6 cosh2 NτE + 1)e±2Nτ µ

Q±3 = 8 cosh NτE e±3Nτ µ

Q±4 = e±4Nτ µ

Q|n|≥5 = 0 (16)

As a result, the effective free energy is given by

Feff(σ,π4; m,T, µ, d3) =
NcD

4

(
(1 + r2)σ2 + (1 − r2)π2

4

)
− Nc log A

−T

4
log

(
∑

n∈Z

det (Qn+i−j)1≤i,j≤Nc

)
. (17)

Here we redefine the free energy 4Feff → Feff . The calculation of the determinant part for

Nc = 3 is moved to Appendix A2. We here show only the result as

∑

n∈Z

det (Qn+i−j)1≤i,j≤Nc

= 8

(
1 + 12 cosh2 E

T
+ 8 cosh4 E

T

)(
15 − 60 cosh2 E

T
+ 160 cosh4 E

T
− 32 cosh6 E

T
+ 64 cosh8 E

T

)

+64 cosh
µB

T
cosh

E

T

(
−15 + 40 cosh2 E

T
+ 96 cosh4 E

T
+ 320 cosh8 E

T

)

+80 cosh
2µB

T

(
1 + 6 cosh2 E

T
+ 24 cosh4 E

T
+ 80 cosh6 E

T

)

+80 cosh
3µB

T
cosh

E

T

(
−1 + cosh2 E

T

)
+ 2 cosh

4µB

T
. (18)

with

µB = 3µ. (19)

7

we dropped next-leading order of O(1/
√

D) expansions in (5), which corresponds to large

D limit. We now have an intermediate form of the effective action from (4),

Seff =
∑

x

[
1

2

(
ψ̄xe

µU4(x)γ4ψx+4̂ − ψ̄x+4̂e
−µU †

4(x)γ4ψx

)
+ ψ̄x (m1 + i(d3 + Dr)γ4) ψx

+NcD
(
(1 + r2)σ2 + (1 − r2)π2

4

)
+

Nc

2
D tr

(√
1 + r2σ − i

√
1 − r2π4γ4

)
M(x)

]
.

(8)

We here defined complex chemical potential as µ ≡ µRe + iµIm. We make fourier transfor-

mation of the temporal direction (µ = 4) by introducing Matsubara modes as,

ψτ,"x =
1√
Nτ

Nτ∑

n=1

eiknτ ψ̃n,"x, ψ̄τ,"x =
1√
Nτ

Nτ∑

n=1

e−iknτ ˜̄ψn,"x, kn =
2π

Nτ

(
n − 1

2

)
. (9)

We here take Polyakov gauge and the link variable in the temporal direction is given by,

U4(%x) =





eiφ1("x)/Nτ

eiφ2("x)/Nτ

. . .

eiφNc ("x)/Nτ




,

Nc∑

a=1

φa(%x) = 0. (10)

with φa defined as components of gauge fields. It enables us to calculate fermionic determi-

nant analytically as,

det D =
∏

"x

Nc∏

a=1

Nτ∏

n=1

det

[(
m +

D

2

√
1 + r2σ

)
1 + iγ4

(
sin k̄(a)

n + d3 + Dr − D

2

√
1 − r2π4

)]

≡
∏

"x

Nc∏

a=1

Nτ∏

n=1

det
[
B + iγ4A sin k̃(a)

n

]

=
∏

"x

Nc∏

a=1

Nτ∏

n=1

(
A2 sin2 k̃(a)

n + B2
)2

=
∏

"x

A4NcNτ

Nc∏

a=1

(2 cosh NτE + 2 cos (φa − iNτµ))4 , (11)

where we define

A2 = 1 +

(
d3 + Dr − D

2

√
1 − r2π4

)2

, B = m +
D

2

√
1 + r2σ, (12)

E = arcsinh

(
B

A

)
= log



B

A
+

√

1 +

(
B

A

)2


 , (13)
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Chiral transition in QCD

SUL(2) ⊗ SUR (2) ⊗ UA(1) ⊗UB(1)

SUL(2) ⊗ SUR (2) ⊗ UB(1)

SUv (2) ⊗ UB(1)

ψ : e−iα γ5 ψaxial
anomaly

χSM
breaking ψ : e−iα γ5 τi ψ restores 

at high T

ms
phys > ms

tc

ms
phys

< ms
tc
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Chiral transition in QCD

BNL-BI: Phys Rev D80, 094505 (2009)

BNL-BI, Phys Rev D83, 014504 (2011)

staggered fermions: intertwined chiral & continuum limit

a≠0, m→0 : O(2), instead of continuum O(4)

chiral fermions: Domain Wall Fermions

need exact chiral symmetry for a≠0
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Thermodynamics with DWF: problem and progress

coarse lattice spacings: mres ∼ 1/Ls

mres : residual quark mass

Ls
: extent of 5th direction

mres ∼ e−#Lsinstead of:

large residual mass

RBC-LLNL:  PRD 81, 054510 (2010)

8×163×Ls , a
−1≈1.3 GeV
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Thermodynamics with DWF: problem and progress

coarse lattice spacings: mres ∼ 1/Ls

mres : residual quark mass

Ls
: extent of 5th direction

mres ∼ e−#Lsinstead of:

large residual mass

DSDR
Dislocation Suppressing Determinant Ratio

RBC-LLNL:  PRD 81, 054510 (2010)

8×163×Ls , a
−1≈1.3 GeV

det [ DW


(−M5+iϵf γ5 )DW (−M5+iϵ f γ5 ) ]
det [ DW


(−M5+iϵbγ5 )DW (−M5+iϵbγ5 ) ]

suppresses gauge field dislocations,
but ensures topological tunneling,
minimally affects the UV modes

small residual mass for coarser lattices
and moderate extent of the 5th direction

 HotQCD: 8×163
×32(48), mπ=200 MeV , mK=phys. , T=135−200 MeV

 RBC-LLNL: 8×323
×32(48)



6

Chiral crossover with DWF

susceptibilities: χi =∑
x

Ci(x)

χSM ⇒
χπ= χσ

χdisc = χ5, disc

HotQCD: in preparation
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Chiral crossover with DWF

HotQCD: in preparation

disconnected 
chiral susceptibility

re-normalized at scale 
2 GeV in MS scheme

8×163
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Chiral crossover with DWF

HotQCD: in preparation

disconnected 
chiral susceptibility

re-normalized at scale 
2 GeV in MS scheme

8×163

RBC-LLNL: preliminary

8×323

Tc = 155−165 MeV
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Axial anomaly in hot QCD

T > Tc
χ : UA (1)                        is broken due to presence of topologically non-trivial 

              configurations (e.g. instantons)

vacuum: non-zero            breaks 〈 ψ̄ ψ〉 UA(1)

high T: exponential suppression of instanton density due to screening 
            chromo-electric fields leads to exponentially small            
            breaking, dilute instanton gas approximation

UA (1)

complex non-perturbative mechanism for axial symmetry breaking ?
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Axial anomaly in hot QCD

T > Tc , ml→0

χπ−χδ= χdisc = χ5,disc =
χtop

ml
2
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Axial anomaly in hot QCD

T > Tc , ml→0

χπ−χδ= χdisc = χ5,disc =
χtop

ml
2

8×163
HotQCD: in preparation
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Axial anomaly in hot QCD & the Dirac spectrum

χSM: 〈 ψ̄ ψ〉 =∫
0

∞

dλ
2mlρ(λ)

ml
2
+λ

2 UA (1): χπ− χδ=∫
0

∞

dλ
4ml

2
ρ(λ)

(ml
2
+λ

2 )
2

a gap in the Dirac spectrum for T > Tc

χSM: 〈 ψ̄ ψ〉 = 0 UA (1): χπ− χδ= 0 ?!

one obvious resolution: dilute instanton gas approximation

ρ(λ) ∼ ml
2
δ(λ)

lim
ml→0

〈 ψ̄ψ〉 = πρ(0)Banks-Casher:
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Axial anomaly in hot QCD & the Dirac spectrum

T=168 MeV T=177 MeV

T=195 MeV

8×163

no clear evidence of a gap 

or              behavior in ml
2
δ(λ) ρ(λ)

visible finite-volume and cut-off effects

HotQCD: in preparation
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Axial anomaly in hot QCD & the Dirac spectrum

〈 ψ̄ ψ〉 =∫
0

∞

dλ
2mlρ(λ)

ml
2+λ2

= 0

χπ− χδ=∫
0

∞

dλ
4ml

2
ρ(λ)

(ml
2
+λ

2)
2
≠0

χπ= 〈ψ̄ψ〉 /ml = finite

χdisc =∫
0

∞

dλ
2ml(dρ(λ)/dml)

ml
2
+λ

2 = χπ−χδ

χδ=∫
0

∞

dλ 2ρ(λ)
d

dml [
2ml

ml
2+λ2 ]= finite

(simple) mechanisms for axial anomaly
in the chirally symmetric phase ?? 

ml→0 :

 ρ(λ)∼ ml
2
δ(λ)

 ρ(λ) ∼ ml

 ρ(λ) ∼ λ

λ → 0:

need to confirm using 
chiral / domain wall fermions

requires many quark masses 
and larger volumes
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Summary

chiral fermions are essential for deeper insight into the nature of the QCD 
    chiral transition   

chiral fermions are required to understand the mechanism of the axial 
    anomaly in QCD   

RBC-LLNL + HotQCD have started serious efforts to address these 
questions using Domain Wall Fermions

immense technical progress for DWF thermo

more physics results coming soon ...
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Gauge action:

Fermion
action:

H is the massive Hermitian 
Wilson Dirac operator 

is the inverse lattice ‘t Hooft coupling

f is the number of Dirac flavors

We can ignore gauge field topology in the large N limit and assume all gauge fields are in 
the zero topological sector

Due to the chiral symmetry obeyed by the overlap-Dirac operator, the eigenvalues of Ho(0) come in 
doubly degenerate positive-negative pairs. 

The determinant is positive definite and we can set f to any real value

The single site model

μ is the fermion mass



Weak Coupling Perturbation Theory

Polyakov loop
eigenvalues Perturbation

Leading order result

If all then But, if thenμ=0



Single site Polyakov loop eigenvalues
and momenta on the infinite lattice

At lowest order in weak coupling perturbation theory
adjoint fermions on a single site lattice see momentum modes

,

The angles, , approach a continuum of momenta, , as N approaches infinity

We want the measure to be in order to reproduce correct infinite volume perturbation theory

Naive fermions

Momenta, , will spoil the uniform measure in the large N limit.

Why do we need overlap fermions on a single site lattice?



Massless overlap fermions

Unlike naive fermions, momenta and are not identified

We need for the mode corresponding to that momentum to be massless

is the naive fermion limit and so we cannot make it too large

Making it too small will restrict the region inside the Brillouin zone, 

where we have massless fermions and therefore the correct momentum measure



Correlated versus uncorrelated momenta

Correlated momenta in all four directions : action

Uncorrelated momenta is a permutation of : action

is a good
choice



Distribution of Polyakov loop eigenvalues 



A numerical proposal

• Use Hybrid Monte Carlo Algorithm with Pseudo-fermions.
• Works for integer number of Dirac flavors.
• A direct fermion HMC algorithm for non-integer Dirac flavors.
• Pick N and b such that we are in the large N limit for that b.
•We expect N to increase as b increases.
• Pick a quantity to set the scale.
• Lowest positive eigenvalue of the overlap Dirac operator.
• Strong to weak coupling transition.
• Find the region of b where we observe scaling.
• Measure physically interesting quantities.

We will report on progress toward this goal by 
showing some results with

single Dirac flavor
massless fermions

N=18
b from 0.32 to 0.70



beta function
Let t = ln a(b) be a logarithmic scale where a(b) could be the square root of the string tension at the 

lattice coupling, b.

beta function: Perturbation theory:

Higher order coefficients depend on the choice 
of a(b) and the form of the lattice action

The perturbative beta function 
has a zero at

if

If f is close to 11/4, the zero occurs at very weak coupling and we can 
expect the zero in perturbation theory to remain essentially unaltered.

If f is close to 17/16, the zero occurs at very strong coupling and it is quite possible that it depends 
on the choice of a(b) and the form of the lattice action

Since a zero of the beta function could be an infra-red or ultra-violet fixed point, we need to study the 
behavior of the coupling close to this zero in order to see if we can define a continuum theory at the 

location of this zero.
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b

b
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p± > 1

p± > 1

p± < 1

p± < 1



Folded Wilson loop operators

An LXL Wilson loop operator is given by

Eigenvalues of this operator are gauge invariant and lie on a unit circle in the complex plane

All eigenvalues will be close to +1 if the loop is small and there will be gap around -1

Eigenvalues will be distributed over the full unit circle for large loops

There is a critical size, Lc(b,N), where the gap will close

We can define as a scale

Eigenvalues of the Hermitian massless overlap Dirac operator

± λk

We can define as another scale

If chiral symmetry is broken, 
we expect the ratios

to be independent of coupling for 
small k at finite N



0.3 0.4 0.5 0.6 0.7
b

0.5

0.55

0.6

0.65

0.7

0.75

0.8

<P
>

1 - 17/(144 b) -0.0178/b2 + 0.0049/b3

Polyakov loop observables

Average value of the plaquette

Polyakov loop observables show that we are in the continuum phase
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Two loop perturbative running

Running of the scale obtained from the 
folded Wilson loop operator
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Distribution of the Wilson loop operator eigenvalues at , above and below criticality



-6.6 -6.4 -6.2 -6 -5.8
ln(!(b))

0.2

0.3

0.4

0.5

0.6
b
ta
d

Two loop perturbative running

Running of the scale obtained from the lowest 
positive eigenvalue of the Dirac operator
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b=0.32
b=0.55
b=0.70

Full distribution of the eigenvalues of the overlap Dirac 
operator at three different couplings
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Ratios of the eigenvalues of the overlap Dirac operator



Results for the f=1 massless theory

using a(b) as the scale

using λ(b) as the scale

Combining the two results, we say that is a location of non-analyticity

All powers are less than unity and so we cannot define a continuum 
theory at b* for the f=1 theory



• We can use matrix model in the large N limit to numerically study gauge theories coupled to 
adjoint fermions.

• We can look at conformal and near-conformal theories by extending f, the number of 
fermion flavors, to take on any real value.

• One can use exact HMC algorithm (compute the fermion force exactly) or use pseudo-
fermion HMC algorithm.

• The beta function is expected to show non-analytical behavior at the infra-red/ultra-violet 
fixed point.

• It is possible to add a mass term and study the theory.

Conclusions
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Abstract

We regularize conformal field theories in radial quantization
using lattice techniques. Only angular separations matter.
Scale is logarithmically discretized in equal intervals. As an
application, we set out to compute the critical exponent η for the
3D Ising model and present some preliminary results.

Lattice Radial Quantization. 2/20 ,



Outline

Beautiful theories

Conformal theories

Foliations

The icosahedral Transfer matrix

Spectrum

Regularization

Velocity of light renormalization

Preliminary numerical results

Lattice Radial Quantization. 3/20 ,
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Beautiful theories

Conformal theories

Foliations

The icosahedral Transfer matrix

Spectrum

Regularization

Velocity of light renormalization

Preliminary numerical results

Lattice Radial Quantization. 4/20 ,



Being a snob
“Beauty” = nr. of nontrivial results

nr. of free continuos parameters . To be worthwhile of our
time, a beautiful theory ought to be relevant to Nature. Such
beautiful theories never are exactly soluble, nor are they
completely perturbative. The top examples for particle
physicists are

I The most relevant beautiful particle theory is QCD with a
moderate number of massless quarks.

I The most beautiful unparticle theory is SU(N) gauge
theory with massless fermionic matter in the conformal
window. Maybe it is relevant to Nature.

QCD is essentially a single scale theory, and lattice techniques
work and are in principle exact. Walking technicolor type of
theories are harder because they have too wide a range of
scales for an ordinary lattice approach. One can make
progress however by considering their conformal cousins. Of
primary importance are the anomalous dimensions of some
composite scaling fields in the IR.

Lattice Radial Quantization. 5/20 ,



Outline

Beautiful theories

Conformal theories

Foliations

The icosahedral Transfer matrix

Spectrum

Regularization

Velocity of light renormalization

Preliminary numerical results

Lattice Radial Quantization. 6/20 ,



Main point and application

In a conformal theory there is no scale and only angles matter.
Rather than uniformly discretizing scales one should uniformly
discretize their logarithm as per AMR logic. Simulating a
conformal theory by uniformly discretizing scales might be
impractical. What to do in the “almost conformal” case is
another topic.
There is no point in further generalities. I’ll focus on the critical
3D Ising model because one can simulate it very efficiently
using cluster algorithms. The objective would be to exploit it
being a CFT in order to extract the anomalous dimension of the
magnetization operator. Our numerical results are preliminary.

Lattice Radial Quantization. 7/20 ,
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Preliminary numerical results
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Radial quantization and its cousins

In radial quantization one views R3 as a sequence of 2D
concentric spherical shells whose radial density is uniform in
the logarithm of the radius measured from the common center.
The coordinates on the shells are angles. By a conformal
transformation flat R3 gets mapped into an infinite cylinder
raised on top of a 2D sphere. One quantizes by defining a
transfer matrix along the cylinder. The logarithm of the
eigenvalues of this transfer matrix provide the spectrum of
dimensions of all operators.
We could foliate R3 in other ways. We choose to foliate it into
concentric 2D icosahedral shells, again at uniform density in
the logarithm of the distance from the common center. The
shells have 20 flat equilateral triangular faces and 12 corners.
One can define now an icosahedral transfer matrix.

Lattice Radial Quantization. 9/20 ,
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The icosahedral Transfer matrix

Spectrum
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Preliminary numerical results
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Spectrum and states

The icosahedral transfer matrix T has the same spectrum as
the radial one: it consists of the exponent of all the eigenvalues
of the dilatation operator in the Wilson-Fisher CFT.
The eigenstates of T are different from the radial case. Most
spectral regularities would seem accidental because the SO(3)
invariance is hidden. Regularities reflecting the discrete
symmetry group I of the icosahedron remain evident. A
multiplet of angular momentum l under SO(3) would transform
irreducibly under I if l = 0,1,2 because the icosahedron has
3-fold and 5-fold symmetry axes. The remaining 2 irreps of I
appear in the decomposition of l = 3; their degeneracy would
seem accidental if we did not know about the hidden SO(3).
Let M(x) be the exact scaling field corresponding to the highest
eigenvalue of T in the Z2-odd sector. One can construct out of
it 5 orthogonal multiplets transforming irreducibly under I in
representations subduced from the l = 1,2,3 irreps of SO(3).

Lattice Radial Quantization. 11/20 ,
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Descendants

Let m0 be the dimension of M(x) and ml the dimensions of the
descendants constructed from M(x) for l = 0,1,2. One has

ml = m0 + l

At this point we went beyond just using scaling, which reflects
only dilatation invariance. The integer spacing is a
consequences of full conformal invariance. Our regularization
preserves (if present in the continuum) the crucial discrete
inversion transformation which extends the symmetry in the flat
case to the full conformal group.

Lattice Radial Quantization. 13/20 ,
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The lattice

Each equilateral triangle is replaced by a fine triangular mesh
defined by adding s − 1 extra points at equal distance on each
icosahedral edge. The total number of sites per shell is
10s2 + 2. Our UV cutoff Λ will be ∝ s for large s because the
size of a shell is some fixed number in terms of angular extent.
The UV cutoff is dimensionless in radial quantization.
On each site we place an Ising spin. To all intra- and inter- links
connecting sites i and j we attach the standard weight

ebσiσj

b > 0 is the Ising coupling and needs to be tuned to bc to get
into the domain of attraction of the Wilson Fisher fixed point.
The SW cluster update algorithm only needs the abstract graph
of the structure in order to proceed.

Lattice Radial Quantization. 15/20 ,
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Fixing homogeneity
Except at the corners, the shells are locally a flat triangular
lattice. Neighboring shells are connected chain like. There is
local regularity, but the approximate local discrete rotational
invariance around a vertex does no mix in-shell with intra-shell
directions.
For a given s, the eigenvalues corresponding to ml are µl and
the near shell separation is ∆τ = 1. The continuum shell
separation is ∆t . We define κ so that ml = κµlΛ. Then, t = τ

Λ to
ensure ml t = κµlτ .
We can extract κΛ from

µ′l − µl =
l ′ − l
κΛ

Then we can extract m0 from m0 = κΛµ0. The anomalous
dimension of M(x), η is defined by

m0 =
1 + η

2

Lattice Radial Quantization. 17/20 ,
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The refinement level is s and the number of shells is 16s; at
b = bc , κΛ ∝ s must hold to leading order in s. b = 0.16107.

b s µ2−µ1
µ1−µ0

s
κΛ η

0.16107 6 0.966(5) 0.724(2) 0.084(2)
0.16107 7 0.966(5) 0.728(1) 0.066(2)
0.16107 8 0.958(2) 0.7288(2) 0.052(1)
0.16107 9 0.954(2) 0.7311(2) 0.036(1)
0.16107 10 0.957(2) 0.7298(2) 0.044(1)
0.16107 11 0.961(2) 0.7267(2) 0.064(1)
0.16107 12 0.973(2) 0.7181(2) 0.123(1)

Previous simulations, using cubic shells and a different
approach, gave, after extrapolation to infinite cutoff,
η = 0.002± 0.010; the expected value is η ≈ 0.036.
Maybe we found the correct value of η at s = 9 not by accident.

Lattice Radial Quantization. 19/20 ,



“Masses” or more correctly dimensions
We probably are not at b = bc(∞). Something is happening at
s = 9. Maybe we are in the would-be Z2 broken side of bc(∞).
Maybe periodic boundary conditions are better. So far, our
analysis has been rough.
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Hadron Interactions

Challenge: Compute properties of nuclei from 
QCD

Spectrum and structure

Confirm well know experimental observation 
for two nucleon systems

Explore the largely unknown territory of 
hyper-nuclear physics

Provide input for the equation of state for 
nuclear matter in neutron stars

Provide input for understanding the  
properties of multi-baryon systems

Goals:
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Hadronic Interactions

Nuclear physics

QCD

Hadron structure
and spectrum

Figure by W. Nazarewicz



What does it take?
Hadronic Scale: 1fm ~ 1x10-13 cm

Lattice spacing << 1fm

take a=0.1fm

Lattice size  La >> 1fm 

take La = 3fm

Lattice 324

Gauge degrees of freedom: 8x4x324 = 3.4x107 

color
dimensions

sites



~1/mπ~1.4fmThe pion mass is an 
additional small scale

Smaller scale: Binding momentum of the deuteron ~ 40MeV

Volume corrections

6 -7 fm boxes might be needed 
at the physical point 

Nuclear energy level splittings are a few MeV

Box sizes of  about 10fm will be needed

∼ e−mπL



Scattering on the Lattice 

Elastic scattering amplitude (s-wave):

A(p) =
4π

m

1

p cotδ − i p

π/

p ! mπ =⇒

p
mπ

L = − C0 (N†N)2 − C2 (N†∇2N)(N†N) + h.c. + . . .

V (p) = C0 + C2 p2 + . . . ≡

A(p) = + + ...+

OCTP 6/2005 – p.13/30

domain-wall [22–25] propagators generated by LHPC 1 at the Thomas Jefferson National
Laboratory (JLab).

This paper is organized as follows. In Section II we discuss Lüscher’s finite-volume method
for extracting hadron-hadron scattering parameters from energy levels calculated on the
lattice. In Section III we describe the details of our mixed-action lattice QCD calculation.
We also discuss the relevant correlation functions and outline our fitting procedures. In
Section IV we present the results of our lattice calculation, and the analysis of the lattice
data with χ-PT. In Section V we conclude.

II. FINITE-VOLUME CALCULATION OF SCATTERING AMPLITUDES

The s-wave scattering amplitude for two particles below inelastic thresholds can be deter-
mined using Lüscher’s method [2], which entails a measurement of one or more energy levels
of the two-particle system in a finite volume. For two particles of identical mass, m, in
an s-wave, with zero total three momentum, and in a finite volume, the difference between
the energy levels and those of two non-interacting particles can be related to the inverse
scattering amplitude via the eigenvalue equation [2]

p cot δ(p) =
1

πL
S

(
p2L2

4π2

)

, (1)

where δ(p) is the elastic-scattering phase shift, and the regulated three-dimensional sum is

S ( η ) ≡
|j|<Λ∑

j

1

|j|2 − η
− 4πΛ . (2)

The sum in eq. (2) is over all triplets of integers j such that |j| < Λ and the limit Λ → ∞
is implicit [26]. This definition is equivalent to the analytic continuation of zeta-functions
presented by Lüscher [2]. In eq. (1), L is the length of the spatial dimension in a cubically-
symmetric lattice. The energy eigenvalue En and its deviation from twice the rest mass of
the particle, ∆En, are related to the center-of-mass momentum pn, a solution of eq. (1), by

∆En ≡ En − 2m = 2
√

p2
n + m2 − 2m . (3)

In the absence of interactions between the particles, |p cot δ| = ∞, and the energy levels
occur at momenta p = 2πj/L, corresponding to single-particle modes in a cubic cavity.
Expanding eq. (1) about zero momenta, p ∼ 0, one obtains the familiar relation 2

∆E0 = − 4πa

mL3

[

1 + c1
a

L
+ c2

(
a

L

)2
]

+ O
(

1

L6

)
, (4)

1 We thank the MILC and LHP collaborations for very kindly allowing us to use their gauge configurations
and light-quark propagators for this project.

2 We have chosen to use the “particle physics” definition of the scattering length, as opposed to the “nuclear
physics” definition, which is opposite in sign.
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At finite volume one can show:

Luscher Comm. Math. Phys 105, 153 ʼ86

p cot δ(p) =
1

a
+

1

2
rp2 + ....

En = 2
�

p2
n + m2

Small p:  

a is the scattering length 



p2 < 0

Bound States

Eb =
�

p2 + m2
1 +

�
p2 + m2

2 −m1 −m2

κ = |p|

κ is the “binding momentum” and µ the reduced mass

Eb ≈
p2

2µ
= −κ2

2µ

Luscher Comm. Math. Phys 104, 177 ʼ86

Finite volume corrections:

∆Eb = −3|A|2
e−κL

µL
+ O

�
e−
√

2κL
�

A+
1

cubic group  irrep:



Two Nucleon spectrum
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Signal to Noise ratio for correlation functions

The signal to noise ratio drops exponentially with time

The signal to noise ratio drops exponentially with decreasing pion mass

For two nucleons: StoN(2N) = StoN(1N)2

var(C(t)) = �NN̄(t)NN̄(0)� ∼ Ae−2MN t + Be−3mπt

C(t) = �N(t)N̄(0)� ∼ Ee−MN t

StoN =
C(t)�

var(C(t))
=∼ Ae−(MN−3/2mπ)t
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We need to fit for several low lying states for reliable 
estimation of the ground state of the two particle system in 
a finite box. 

We need very high statistics to be able to resolve excited 
state contamination 

Use “variational methods”



We need to fit for several low lying states for reliable 
estimation of the ground state of the two particle system in 
a finite box. 

We need very high statistics to be able to resolve excited 
state contamination 

We really need better algorithms to deal with an 
exponentially hard problem

Use “variational methods”



1. Hyperon-Hyperon Interactions

2. Hyperon-Nucleon Interactions



H-dibaryon 

S=-2, 
B=2, 
Jp=0+

R. L. Jaffe, Phys. Rev. Lett. 38, 195 (1977)

A. L. Trattner, PhD Thesis, LBL, UMI-32-54109 (2006).

C. J. Yoon et al., Phys. Rev. C 75, 022201 (2007).

Proposed by R. Jaffe 1977

Perturbative color-spin interactions are attractive for 
(uuddss)

Diquark picture of scalar diquarks  (ud)(ds)(su)

Experimental searches of the H have not found it

BNL RHIC (+model): Excludes the region  [-95, 0] MeV 

KEK: Resonance near threshold 

Several Lattice QCD calculations have been addressing the 
existence of a bound H



Lattice QCD
 P. B. Mackenzie and H. B. Thacker, Phys. Rev. Lett. 55,2539 (1985)

Did not find it

Y. Iwasaki, T. Yoshie and Y. Tsuboi, Phys. Rev. Lett. 60, 1371 (1988)

Found it

A. Pochinsky, J. W. Negele and B. Scarlet, Nucl. Phys. Proc. Suppl. 73, 255 (1999)

Concluded H is not bound in the infinite volume limit

I. Wetzorke and F. Karsch Nucl. Phys. Proc. Suppl. 119, 287 (2003)

Concluded the H is not bound



Lattice QCD

NLPQCD  Phys.Rev.Lett.106.162001 2011

HALQCD Phys.Rev.Lett.106.162002 2011

Luo, Loan and Liu arXiv:1106.1945

Anisotropic Clover (quenched)

Multiple lattice spacings and volumes

Result: BH = 70(11)(15)MeV



NPLQCD: lattice set up

Anisotropic 2+1 clover fermion lattices 

a ~ 0.125fm (anisotropy of ~ 3.5)

pion mass ~ 390 MeV

Volumes 163 x 128, 203 x 128,  243 x 128, 323 x 256

Smeared source - 3 sink interpolating fields

Interpolating fields have the structure of s-wave Λ-Λ system

I=0,  S=-2, A1 , positive parity 

Hadron Spectrum/JLAB

largest box 4fm



NPLQCD methods
Compute the ground state energy using Euclidian correlators

Use a single source operator with three sinks operator (varied 
smearing)

“Diagonalize” the correlators to isolate the ground state

Matrix Prony and Multi-exponential fits

Extract the binding momentum

Extrapolate to infinite volume using multiple volumes

Use very high statistics O(500K) correlation functions
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 BH= 16.6 ± 2.1 ± 4.6 MeV 

statistical systematic

NPLQCD: H-dibaryon

NPLQCD: arXiv:1012.3812

Phys. Rev. Lett. 106, 162001 
(Published April 20, 2011)

Mπ=390MeV
2+1 Clover anisotropic fermions



 BH= 16.6 ± 2.1 ± 4.6 MeV 

statistical systematic

Continuum limit?

Physical pion mass?

Isospin breaking?

Electromagnetism?

NPLQCD: H-dibaryon

NPLQCD: arXiv:1012.3812

Phys. Rev. Lett. 106, 162001 
(Published April 20, 2011)

Mπ=390MeV
2+1 Clover anisotropic fermions



 BH= 16.6 ± 2.1 ± 4.6 MeV 

statistical systematic

Continuum limit?

Physical pion mass?

Isospin breaking?

Electromagnetism?

NPLQCD: H-dibaryon

NPLQCD: arXiv:1012.3812

Phys. Rev. Lett. 106, 162001 
(Published April 20, 2011)

Mπ=390MeV
2+1 Clover anisotropic fermions



Chiral extrapolation
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The H may not be  bound



Chiral extrapolation
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H-dibaryon: Towards the physical point

HALQCD nf�3
NPLQCD nf�2�1
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[ S. Beane et.al. arXiv:1103.2821 Mod. Phys. Lett. A26: 2587, 2011]

 Is bound at heavy quark masses. May be unbound at the physical point 
H-dibaryon:

HALQCD:Phys.Rev.Lett.106:162002,2011



H-dibaryon: Towards the physical point
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 Is bound at heavy quark masses. May be unbound at the physical point 
H-dibaryon:
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Two baryon bound states
[ S. Beane et.al. arXiv:1108.2889  submitted to Phys.Rev.D]

NPLQCD

 gauge fields  2+1 flavors (JLab)
anisotropic clover mπ~ 390MeV

G. A. Miller, 
arXiv:nucl-th/0607006

V. G. J. Stoks and T. A. Rijken
Phys. Rev. C 59, 3009 (1999)
[arXiv:nucl-th/9901028

J. Haidenbauer, Ulf-G. Meisner
Phys.Lett.B684,275-280(2010)
arXiv:0907.1395

nf=0:
Yamazaki, Kuramashi, Ukawa 
Phys.Rev. D84 (2011) 054506
arXiv: 1105.1418



Hyperon-Nucleon interactions
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hyper-nuclear physicsequation of state for nuclear matter in neutron stars
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√
2e−

√
2γL

�
Finite volume scaling:
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γ2
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Hyperon-Nucleon
[ S. Beane et.al. arXiv:1204.3606 submitted to Phys. Rev. Lett.]

NPLQCD

0 100 200 300 400 500
pLAB (MeV)

0

10

20

30

40

50

60

δ 
 (d

eg
re

es
)

NSC97f
Juelich '04
EFT

0 100 200 300 400 500
pLAB (MeV)

-60

-50

-40

-30

-20

-10

0

10

20

30

δ 
 (d

eg
re

es
)

NSC97f
Juelich '04
EFT

gauge fields  2+1 flavors ( JLab)
anisotropic clover

 mπ~ 390MeV

n-Σ  spin singlet n-Σ  spin triplet



Yamazaki, Kuramashi, Ukawa (PACS-CS) 
Phys.Rev.D81:111504 (2010) 
Phys.Rev.D84:054506 (2011)

Observables related to Hadronic interactions are now being computed

Meson-Meson sector: Precision results already exist

Progress in the Baryon sector

Calculation of deuteron and He binding energy on the way

Petaflop computing is here

Significant aid in achieving precision  in the baryon sector

Will take us a long way in understanding how the nuclear force emerges 
from QCD

Conclusions
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The anomaly triangle and muon g − 2

SANTI PERIS (SFSU and UAB)

The anomaly triangle and muon g − 2 – p.1/7
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2-loop EW contribution to g − 2 Kukhto et al. ’92

SP, Perrottet, de Rafael ’95

Czarnecki, Krause, Marciano ’95, ’96

Knecht, SP, Perrottet, de Rafael ’02

Czarnecki, Marciano,Vainshtein ’03

µ µ

γ

γZ

f

g−2

2
∝ α

π

Gµ

8π2

m2

µ√
2

∫∞
m2

µ
dQ2

[

wL(Q
2) +

M2
Z

M2
Z
+Q2

wT (Q
2)

]

︸ ︷︷ ︸

wL=2 wT =2
Nc
Q2

(one−loop, mf=0)

g−2

2
|e,u,d ∼ 2× 10−11

Q2 = −q2, “Gluon-irreducible” triangle

Wµνρ(q, k) = T
(3)

f
Q2
f

[

wL(Q
2) qν ǫµραβq

α kβ +

wT (Q
2) kσ

(

q2ǫµνρσ + qνǫµρλσq
λ + qµǫρνλσq

λ
) ]

+O(k2)

• wL(Q
2) related to the chiral anomaly =⇒

∑

ν,e,u,d wL = 0.

• wT (Q
2) not but...
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Theorem
Vainshtein ’02

Knecht, SP, Perrottet, de Rafael, ’03

In the massless limit, to all orders in αs:

wL(Q
2) = 2 wT (Q

2)

and, since anomaly does not get renormalized: wL = 2Nc

Q2
( Adler,Bardeen ’69; Witten ’83)

⇒ neither does 2wT = 2Nc

Q2
, to all orders in αs.

Using L(3)
µ =

∑

ℓ=ν,e ℓLγµT
(3)ℓL +

∑

q=u,d qLγµT
(3)qL, etc...in SU(2)L × U(1)Y :

Q2
[
wL(Q

2)− 2wT (Q
2)
]
∝

∫

d4xd4y eiqx (y−x)λǫ
µνρλ

〈

T
{

L
(3)
µ (x)V

(Y )
ν (y)R

(Y )
ρ (0)

}〉

︸ ︷︷ ︸

∄ 1L

⊗
1R

• i.e., wL − 2wT has no pert. contributions in αs, it is like, e.g., 〈LR〉 = 〈V V −AA〉.
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Non-perturbative effects
1) Adler-Bardeen-Witten : wL(Q

2) = 2Nc

Q2
(exact for all Q !)

2) However, for wT (Q2):

• Large Q2:

2wT (Q
2) ≈ 2

Nc

Q2

(
1 +NO αs

)
+ (const.) αs χ

〈ψψ〉2

Q6
+O(1/Q8)

Magnetic susceptibility, χ =
ΠV T (0)

〈ψψ〉 , very poorly known.

• Small Q2:

2wT (Q
2) ≈ (const.) C

(p6)
22 +O(Q2) , C

(p6)
22 ∼ 1/M2

Hadron (unknown)

Chiral Pert. Theory, Leff (parity-odd):

LO(p6) = C
(p6)
22 ǫµναβ Tr

(

uµ
{

∇γf
γν
+ , fαβ+

})

︸ ︷︷ ︸

π,η,...

+... (SUNF
× SUNF

→ SUNF
)
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Conjectures
• Conjecture 1: wL(Q

2)− 2 wT (Q
2) = −2 Nc

f2π
ΠLR(Q

2) (Son-Yamamoto ’10)

in wide class of “AdS/QCD” models (chiral limit, Nc →∞)
(not without caveats, e.g. OPE is exponential; mismatch in pert. theory if treated as a WI)

( Knecht, SP, de Rafael ’11)

Chiral log’s respect this relation. (Gorsky, Kopnin,Krikun, Vainshtein ’12)

Test: C
(p6)
22 (µ) = − Nc

32π2f2π
L
(p4)
10 (µ) ??

If true at one µ⇒ true at all µ

• Conjecture 2: χ = − Nc

4π2f2π
∼ −9 GeV−2 (Magnetic susceptibility) ??

(Vainshtein ’02):

Other results: χ ∼ −3 GeV−2 , sum rules, VMD, (Ioffe, Fadin, Lipatov ’10; Balitsky et al. ’85; Belyaev et al.

’84; Ball et al. ’02)
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Another Perturbative Surprise
Up to now, special kinematic configuration in 〈V V A〉.

Jegerlehner,Tarasov ’06

However, it has been found at two loops for all momenta that :

Wµνρ(q, k) = Wµνρ(q, k)|one−loop (1 +O(αs)
︸ ︷︷ ︸

=0 !!

)

i.e., no renormalization, not just for the anomaly, but for the whole triangle !

Given the non-trivial momentum dependence,

can this be just a coincidence ?

could this be true to all orders in αs ?

The anomaly triangle and muon g − 2 – p.6/7



Summary

• VVA is a very interesting theoretical laboratory for QCD

• Most results obtained in chiral limit: can lattice help/check ?

• The LbL←→ 〈V V A〉 connection:
( Melnikov, Vainshtein ’04; Prades, de Rafael, Vainshtein ’09)

k1 ≈ k2 ≫ k3

k

k k

q 01

2 3

q 0

k3

γ γγ 5H
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The new Fermilab muon (g-2) experiment: 

A challenge for experiment and theory 

Lee Roberts 

Department of Physics 

Boston University 

roberts @bu.edu            

http://physics.bu.edu/show/roberts 



Last year’s good news: the lattice can do it! 

B. Lee Roberts, BNL - New Horizions – 14 May  2012 - p. 2 



B. Lee Roberts, BNL - New Horizions – 14 May  2012 - p. 3 

In the beginning there was Dirac 

predicted electron magnetic moment 

However,  experimentally g > 2;  need to add a Pauli term 

where a is the 

anomaly,  

dimension 5 operator 

(only from loops) 
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In the QED, a becomes an expansion in (a/p) from loops 

New Physics contribution to a at some scale L 

where C could be  

in weak coupling loop scenarios 

or 
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Magnetic and Electric Dipole Interactions 

• Muon Magnetic Dipole Momoment am 

 

 

 

 

• Muon EDM 

 

 

chiral changing 
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The SM Value for am   from e+e- → hadrons (Updated 

6/09) 

• Lowest order hadronic from data and a 

dispersion relation 

– More data to come 

• KLOE setting up to measure g*g* → p p  to 

determine the amplitudes and remove some of 

the theoretical uncertainty on the HLBL 

 

well known  significant work ongoing 
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contribution 
error2 

(from T. Teubner) 

am
had(LO)  Analyticity  +  Optical Theorem 

• Future efforts will reduce errors 

– CMD3 at VEPP2000, up to 2.0 GeV (next 5 years) 

– perhaps Belle   

(w/o BaBar) 

r, w 

r, w 
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Measured Cross section for e+e- →p+ p- 

new KLOE data (not 

shown) agree with 

the earlier data 
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The SM Value for am   from e+e- → hadrons (Updated 9/09) 

# Davier et al, Eur. Phys. J. C (2011) 71:1515 

well known  significant work ongoing 

w. BaBar, no KLOE LA 



I will return the the theory issue soon, but  

first a word about the experimental value 

• I’ll give the cartoon version of the experiment for 

theorists 

B. Lee Roberts, BNL - New Horizions – 14 May  2012 - p. 10 
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We measure the difference frequency between 

the spin and momentum precession 

0 With an electric quadrupole field for vertical focusing 
without vertical focussing 

- 

+ 

+ 

- 
E 

B. Lee Roberts, BNL - New Horizions – 14 May  2012 
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Inflector 

Kicker  

Modules 
Storage 

ring 

Central  orbit 

Injection orbit 

mm -
Pions 

-π

p=3.1GeV/c 

Experimental Technique 

B


• Muon polarization 

• Muon storage ring 

• injection & kicking 

• focus with  Electric Quadrupoles 

• 24 electron calorimeters  

 
R=711.2cm 

d=9cm 

(1.45T) 

Electric Quadrupoles 

xc ≈ 77 mm 

b ≈ 10 mrad 

B·dl ≈ 0.1 Tm 

xc 

R 

R b 

Target 

25ns bunch of       

5 X 1012 protons 

from AGS 
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m    PRL, 92, 161802 (2004) 

muon more sensitive to 

heavier physics by 

and interpretation of the electron anomaly limited by precision of 

independent measurements of a, ~4.5 ppb. 

        e  PRL 100, 120801 (2008 



To determine am  we measure two numbers: 

B. Lee Roberts, BNL - New Horizions – 14 May  2012 - p. 14 

The muon spin frequency:  wa 

The magnetic field normalized to the 

Larmor frequency of the free proton: wp 



- p. 15 

To measure wa, we used Pb-scintillating fiber 
calorimeters.       

Count number of e- with 

Ee ≥ 1.8 GeV 
400 MHz digitizer 

gives  t, E 

B. Lee Roberts, BNL - New Horizions – 14 May  2012 
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Arrival time spectrum 

Count number of e- with 

Ee ≥ 1.8 GeV 
400 MHz digitizer 

gives  t, E 

B. Lee Roberts, BNL - New Horizions – 14 May  2012 
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The magnetic field is measured and controlled using 
pulsed NMR and the free-induction decay. 

• Calibration to a spherical water 
sample that ties the field to the 
Larmor frequency of the free 
proton wp. 
 

•  We measure wa and wp 

B. Lee Roberts, BNL - New Horizions – 14 May  2012 
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E821 achieved ± 0.54 ppm. The e+e- based theory is at the 

~0.4 ppm level. Difference is >3s 

e
+
e

-  t
h

e
o

ry
 

 SM: Davier et al, , Eur. 

Phys. J. C (2011) 71:1515 

Hagiwara, et al., J.Phys. G 

38 (2011) 085003 
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Muon g-2 is a powerful discriminator between models; 

chiral-changing, flavor and CP conserving interaction. 

Snowmass points and 

slopes (SUSY) 

from D. Stöckinger 

2s 

 

1s 

Sfitter 

SPS1a; LHC 

100 fb-1 at   

14 TeV 

 

tan b sensitivity 

e.g. Super Symmetry 

Future 

- p. 19 
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Other Models 

• Technicolor 

– small Dam     

• Littlest Higgs with T-parity 

– small Dam     

• Universal Extra Dimensions 

– small Dam     

• Randall Sundrum 

– could accommodate large Dam  

• Two Higgs doublets, shadow Higgs 

–  small Dam     

• Additional light bosons that can affect EM interactions 

(difficult to study at LHC) 

– secluded U(1),etc., could have significant Dam  

 

g - 2 

Natalia Toro, Aspen 2011 

- p. 20 



B. Lee Roberts, BNL - New Horizions – 14 May  2012 

How to clarify this 3.3 – 3.6 s 

situation? 

Good question! 

- p. 21 



3.3 – 3.6 s:  Theory & Experiment must do better  

• Experiment: E989 at Fermilab  ≥ X4 better 

– move the storage ring to Fermilab 

– use the p-bar debuncher (now called the delivery ring) 

as a long decay line.   

B. Lee Roberts, BNL - New Horizions – 14 May  2012 - p. 22 



Fermilab Muon Campus 

B. Lee Roberts, BNL - New Horizions – 14 May  2012 - p. 23 

g-2 
Mu2e 



Recycler Ring 

Beam Transfer and 

Delivery Ring 

Target 

Station 

Booster 

Muon 

Campus 

Fermilab Muon Beam 

g2 

- p. 24 

me 

B. Lee Roberts, BNL - New Horizions – 14 May  2012 
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Polarized muons delivered and stored in the 
ring at the magic momentum, 3.094 GeV/c 

n Uses 6/20 batches*  

u parasitic to  program 

n Proton plan up to AP0 target is 
almost the same as for Mu2e 

n Modified AP2 line (+ quads) 

n New beam stub into ring 

*Can use all 20 if MI program is off 

beam 

rebunched in 

Recycler 

4 x (1 x 1012)  p 



Theory:  It’s the hadronic contribution 

                 sH-LO = 42         sH-LBL = 26     sTot = 49        

• The lowest-order hadronic comes from e+e- data 

and a dispersion relation 

– can’t they just take more data? 

• It’s not so simple because of the t-decay data 

 

B. Lee Roberts, BNL - New Horizions – 14 May  2012 - p. 26 

Dispersion 

relation and data? 
Models 

Are data relevant? 



So what’s the problem 

B. Lee Roberts, BNL - New Horizions – 14 May  2012 - p. 27 

• It looks like data can determine the lowest-order 

hadronic just fine 



Clarifying the t problem for H-LO 

B. Lee Roberts, BNL - New Horizions – 14 May  2012 - p. 28 

• It is claimed that if r-g mixing is correctly 

included the t-e+e-  difference goes away. 

• What’s the path forward 

– More e+e- data? 

–The Lattice! 
• The lattice can make an                                                                          

important contribution in the                              

determination of the lowest-                                                

order hadronic contribution 

• The proof of principle was published last year 

 



Even more urgent: Hadronic light-by-light 

B. Lee Roberts, BNL - New Horizions – 14 May  2012 - p. 29 

• Model calculation  

– (Prades, de Rafael, Vainshtein compilation) 

 

• Here the lattice can make an extremely important 

calculation.   

– even 10 to 20% would be fabulous 



Summary and Conclusions 

• Fermilab E989 will improve g-2 by at least X4 

• Additional data for the dispersion relation will be 

taken at CMD3 (Novosibirsk), BESS3, and 

Super Belle. 

• The Lattice has the opportunity to play an 

important role in the confrontation between the 

Standard Model and experiment 

– lowest-order hadronic 

– hadronic light-by-light 

• It’s an opportunity to make a huge impact in the 

search for physics beyond the standard model. 

B. Lee Roberts, BNL - New Horizions – 14 May  2012 - p. 30 



Prospects for the computation of rare
kaon-decay amplitudes

Chris Sachrajda
(based on discussions with P.Boyle, E.Goode, P.Kassel and A.Lytle)

School of Physics and Astronomy
University of Southampton
Southampton SO17 1BJ

UK

(RBC-UKQCD)

New Horizons for Lattice Computations with Chiral Fermions
Brookhaven National Laboratory, 14 – 16 May 2012
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Motivation and Introduction

Lattice simulations are contributing to a wide variety of fundamental issues in
particle physics and increasingly to nuclear physics.

For me personally, a major motivation is the important complementarity of
high-energy experiments (most notably the LHC) and precision flavour physics in
discovering and unraveling the next layer of fundamental physics.

If, as expected/hoped the LHC experiments discover new elementary
particles, then precision flavour physics will be necessary to understand the
underlying framework.
The discovery potential of precision flavour physics should also not be
underestimated. (In principle, the reach is about two-orders of magnitude
deeper than the LHC!)
Precision flavour physics requires control of hadronic effects for which lattice
QCD simulations are essential.

For many years we have been calculating matrix elements of the forms:

〈0 |O(0) |h〉 → fP , for example

〈h2 |O(0) |h1〉 → BP, semileptonic form factors, · · · .

⇒ unitarity triangle tests of the SM, determination of CKM matrix elements etc.

Chris Sachrajda New Horizons, 15/05/2012 2



Extending the reach of Lattice Simulations

Recent RBC-UKQCD extensions to the above include the evaluation of K→ ππ

decay amplitudes. arXiv:1106.2714, arXiv:1111.1699

More recently we have began to consider long-distance contributions to physical
quantities. These are not given in terms of matrix elements of local operators, but
require the evaluation for example of:∫

d4x
∫

d4y 〈h2 |T{O1(x)O2(y)}|h1〉 .

The most advanced of our projects is on the evaluation of long-distance
contributions to the KL−KS mass difference.

Jianglei Yu, arXiv:1111.6953; paper in preparation.∫
d4x

∫
d4y 〈 K̄0 |T{HW(x)HW(y)}|K0〉 .

Here instead, I will present some preliminary thoughts about the rare kaon
decays K→ πνν̄ and K→ π`+`−:∫

d4xe−iq·x
∫

d4y 〈π |T{Jµ (x)HW(y)}|K0〉 .

Up to now, the main theoretical tool for these processes has been Chiral
Perturbation Theory with its many limitations and uncertainties.

Chris Sachrajda New Horizons, 15/05/2012 3



Example: KL→ π0`+`−

F.Mescia, C,Smith, S.Trine hep-ph/0606081

Rare kaon decays which are dominated by short-distance FCNC processes,
K→ νν̄ in particular, provide a potentially valuable window on new physics at
high-energy scales.

The decays KL→ π0e+e− and KL→ π0µ+µ− are also considered promising
because the long-distance effects are reasonably under control using ChPT.

They are sensitive to different combinations of short-distance FCNC effects
and hence in principle provide additional discrimination to the neutrino
modes.
A challenge for the lattice community is therefore either to calculate the
long-distance effects reliably or at least to determine the Low Energy
Constants of ChPT.

Chris Sachrajda New Horizons, 15/05/2012 4



KL→ π0`+`− cont.

There are three main contributions to the amplitude:
1 Short distance contributions: F.Mescia, C,Smith, S.Trine hep-ph/0606081

Heff =−
GFα√

2
V∗tsVtd{y7V(s̄γµ d)( ¯̀γµ`)+ y7A(s̄γµ d)( ¯̀γµ

γ5`)}+h.c.

Direct CP-violating contribution.
In BSM theories other effective interactions are possible.

2 Long-distance indirect CP-violating contribution

AICPV(KL→ π
0`+`−) = ε A(K1→ π

0`+`−) .

3 The two-photon CP-conserving contribution KL→ π0(γ∗γ∗→ `+`−) .

γ,Z

u,c,t

s

d

KS

π 0

KL

ε

γ

KL

π0

γ

γ

W
s

d
W

u,c,t ν

(a)

(b) (c)

W

−

+

−

+

−

+

−

+
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KL→ π0`+`− cont.

The current phenomenological status for the SM predictions is nicely summarised
by: V.Cirigliano et al., arXiv1107.6001

Br(KL→ π
0e+e−)CPV = 10−12 ×

{
15.7|aS|2±6.2|aS|

(
Imλt

10−4

)
+2.4

(
Imλt

10−4

)2
}

Br(KL→ π
0
µ
+

µ
−)CPV = 10−12 ×

{
3.7|aS|2±1.6|aS|

(
Imλt

10−4

)
+1.0

(
Imλt

10−4

)2
}

λt = VtdV∗ts and Im λt ' 1.35×10−4.
|aS|, the amplitude for KS→ π0`+`− at q2 = 0 as defined below, is expected
to be O(1) but the sign of aS is unknown. |aS|= 1.06+0.26

−0.21.
For `= e the two-photon contribution is negligible.
Taking the positive sign (?) the prediction is

Br(KL→ π
0e+e−)CPV = (3.1±0.9)×10−11

Br(KL→ π
0
µ
+

µ
−)CPV = (1.4±0.5)×10−11

Br(KL→ π
0
µ
+

µ
−)CPC = (5.2±1.6)×10−12 .

The current experimental limits (KTeV) are:

Br(KL→ π
0e+e−)< 2.8×10−10 and Br(KL→ π

0
µ
+

µ
−)< 3.8×10−10 .

Chris Sachrajda New Horizons, 15/05/2012 6



CPC Decays: KS→ π0`+`− and K+→ π+`+`−

G.Isidori, G.Martinelli and P.Turchetti, hep-lat/0506026

We now turn to the CPC decays KS→ π0`+`− and K+→ π+`+`− and consider

Tµ

i =
∫

d4xe−iq·x 〈π(p) |T{Jµ
em(x)Qi(0)}|K(k)〉 ,

where Qi is an operator from the effective Hamiltonian.

Gauge invariance implies that

Tµ

i =
ωi(q2)

(4π)2

{
q2(p+ k)µ − (m2

K −m2
π )qµ

}
.

Within ChPT the Low energy constants a+ and aS are defined by

a =
1√
2

V∗usVud

{
C1ω1(0)+C2ω2(0)+

2N
sin2

θW
f+(0)C7V

}
where Q1,2 are the two current-current GIM subtracted operators and the Ci are
the Wilson coefficients. (C7V is proportional to y7V above).

G.Ambosio, G.Ecker, G.Isidori and J.Portoles, hep-ph/9808289

Phenomenological values: a+ =−0.578±0.016 and |aS|= 1.06+0.26
−0.21.

Can we do better in lattice simulations?

Chris Sachrajda New Horizons, 15/05/2012 7



The fiducial volume

Ideas developed (or being developed) from our ∆MK project.

How do you prepare the states h1,2 in∫
d4x

∫
d4y 〈h2 |T{O1(x)O2(y)}|h1〉 ,

when the time of the operators is integrated.

The practical solution is to integrate over a large subinterval in time tA ≤ tx,y ≤ tB,
but to create h1 and to annihilate h2 well outside of this region:

h1 h2

ti t f

n

O1 O2

tA tB

t1 t2

This is the natural modification of standard field theory for which the asymptotic
states are prepared at t→±∞ and then the operators are integrated over all time.

This approach has been successfully implemented in the ∆MK project.
N.Christ arXiv:1012.6034; Jianglei Yu arXiv:1111.6953; paper in preparation

Chris Sachrajda New Horizons, 15/05/2012 8



Minkowski and Euclidean Correlation Functions

The generic non-local matrix elements which we wish to evaluate is

X ≡
∫

∞

−∞

dtx d3x 〈π(p) |T [J(0)H(x) ] |K〉

= i ∑
n

〈π(p) |J(0) |n〉〈n |H(0) |K〉
mK −En + iε

− i ∑
ns

〈π(p) |H(0) |ns〉〈ns |J(0) |K〉
Ens −Eπ + iε

,

{|n〉} and {|ns〉} represent complete sets of non-strange and strange sets.

In Euclidean space we envisage calculating correlation functions of the form

C ≡
∫ Tb

−Ta

dtx 〈φπ (~p, tπ )T [J(0)H(tx) ] φ
†
K(tK)〉 ≡

√
ZK

e−mK |tK |

2mK
XE
√

Zπ

e−Eπ tπ

2Eπ

,

where

XE− = −∑
n

〈π(p) |J(0) |n〉〈n |H(0) |K〉
mK −En

(
1− e(mK−En)Ta

)
and

XE+ = ∑
ns

〈π(p) |H(0) |ns〉〈ns |J(0) |K〉
Ens −Eπ

(
1− e−(Ens−Eπ )Tb

)
.

Chris Sachrajda New Horizons, 15/05/2012 9



Removing the single-pion intermediate state

Chiral ward identities imply that we can add a term proportional to the scalar
density s̄d to the Hamiltonian without changing physical results. We can therefore
subtract the single pion intermediate state by imposing 〈π|H+ cS s̄d|K〉= 0.
It is instructive to see how this works in the present case at lowest order in chiral
perturbation theory. The scalar density in the effective theory can be written as

Ssd = Tr
[
λ

sd
(

Σ+Σ
†
)]

where λ
sd =

0 0 0
0 0 0
0 1 0

 .

The em current is of the form

Jµ = i
f 2

4
Tr
[
Q(Σ∂

µ
Σ

† +Σ∂
µ

Σ)
]

The cS term leads to additional diagrams:

pK pK pπ
K π

Ssd Jµ
π

pK pπ pπ
K π

SsdJµ
K

which are proportional to

(pπ +pK)
µ

p2
K −m2

π

+
(pπ +pK)

µ

p2
π −m2

K
.

On shell, when p2
K = m2

K and p2
π = m2

π , the sum of the two terms indeed gives zero.
Chris Sachrajda New Horizons, 15/05/2012 10



Rescattering effects in the computation of ∆MK

K0 K
0

ti t f

π

π

HW HW

tA tB

t1 t2

In the ∆MK computation, there is, of course, a two-pion intermediate state
and we have had to control the corresponding finite-volume effects.
This has been done on the assumption that the dominant intermediate
states below mK are the two-pion states.

Chris Sachrajda New Horizons, 15/05/2012 11



Rescattering Effects in rare kaon decays

We have seen that we can remove the single pion intermediate state.

Which intermediate states contribute?

Are there any states below MK?
We can control q2 and stay below the two-pion threshold.

π

K
π−

π+

γ

π

γ

Are there two-pion intermediate states as a result of the Wess-Zumino term?
Do we need to consider three-pion intermediate states?
Answers to the above questions will affect what the finite-volume corrections
are?
The ChPT-based phemomenology community neglect such possibilities.

All to be investigated further!

It looks as though the FV corrections are much simpler than for ∆MK and may be
exponentially small?

Chris Sachrajda New Horizons, 15/05/2012 12



Short Distance Effects

Tµ

i =
∫

d4xe−iq·x 〈π(p) |T{Jµ (x)Qi(0)}|K(k)〉 ,

Each of the two local Qi operators can be normalized in the standard way and J
can be normalized.
Calculation of long-distance effects⇒ must treat additional divergences as x→ 0.

Z0, γ

K π
s d

u, c

Quadratic divergence is absent by gauge invariance⇒ Logarithmic divergence.
Checked explicitly for Wilson and Clover at one-loop order.

G.Isidori, G.Martinelli and P.Turchetti, hep-lat/0506026

Absence of power divergences does not require GIM.
Logarithmic divergence cancelled by GIM.
For DWF the same applies for the axial current.

Control of short-distance effects also appears to be much simpler than for ∆MK .
To be investigated further!

Chris Sachrajda New Horizons, 15/05/2012 13



Lots of diagrams to evaluate!

Sample diagrams:

K π K π

K π K π

K π K π

+ lots more

The last two diagrams are examples of disconnected diagrams.

Chris Sachrajda New Horizons, 15/05/2012 14



Summary and Conclusions

Our community must continue to strive to

1 improve the precision of computations of quantities we know well how to
compute;

2 extend the range of quantities which can be computed.

This is necessary of precision flavour physics is to play a complementary rôle to
large p⊥ experiments in exploring the limits of the standard model and unravelling
the basic framework of new physics.

I have reviewed one such possible future extension, that of the calculation of
long-distance physics in rare kaon decays.

There are many similarities to our calculation of the long-distance
contributions to ∆MK which is further advanced.
Although much still remains to be done, the theoretical background appears
to be simpler than for ∆MK (both finite-volume effects and short distance
subtractions).
The calculations will rely on progress in the computation of disconnected
diagrams.

There are many important rare B-decays which should be studied but

I still don’t know how to tackle nonleptonic B decays, even in principle.

Chris Sachrajda New Horizons, 15/05/2012 15
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Physics Prospects and 

  Status of SuperKEKB/Belle II 

BNL 2012.05.15 

Y.Sakai 

         Outline 

• Introduction 

• KEKB and Belle 

• Physics Achievement 

          and Prospects  

• SuperKEKB and Belle II 

• Physics at Super B Factory [arXiv:1002.5012] 

• SuperB Progress Report [arXiv:1008.1541] 
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SuperKEKB project 

        Upgrade of KEKB/Belle 

          KEKB          SuperKEKB 

Luminosity : 2.1x1034   8x1035 (x 40) 

Total Data:        1 ab-1     >50 ab-1 (x50) 

Detector :       Belle        Belle II 



High Energy Physics 

3 

Mainly using particle Accelerators 

Goal :  

Ultimate nature of Matter  

Fundamental law 

    Elementary particle 

    Interactions, Symmetries 



Particle Physics & Universe  
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? H
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to
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Ultimate nature  
    of matter 

Early history  
of the Universe 

Key to 

understand both 



“Standard Model” 
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Elementary Particles in SM 

Quark 

Lepton 

   Matter 

(Fermions) 

3 Generations 

 Force  

(Bosons) 

EM 

Strong 

Weak 

+ Anti-particles 

Latest 

 “missing piece” 

 CP Violation 

   Kobayashi-Maskawa 

 Higgs 

1897 Discovery of  

                   electron ~ 

( LHC) 

( B-Factory) 

Search for New Physics 



Goal/Milestones of B-factory 
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Discovery of CPV in B decays 

Precise test of KM and SM 

Search for NP 

Step1 

Step2 

Step3 

2001 summer ! 

Hints of NP 

Establish procedures  

2008 

~50 times more data  

  (higher luminosity) 

(SUSY, Extra-dim…) 



CP Violation 
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Difference between particle & anti-particle 

Universe: almost “matter” only (no anti-matter) 

Big-Bang   N(particles) = N(anti-particles) 

Andrei Sakharov (1921-1989) 

CPV is a key for Existence of Universe & us ! 

Sakhalov’s 3 conditions (1967): 

   1. baryon number violation 

   2. CP violation 

   3. existence of non-equiblium 

(matter  & anti-matter) 



Kobayashi-Maskawa 
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Weak interaction 

dj 

uk 

W- 

Vkj 

CKM Matrix 

Irreducible 

Complex  

Phase 
（3 Generation） 

（Unitarity Triangle） 

（１９７３）

Mechanism of CPV quark sector 

d 

u 

s 

c 

b 

t 

1(b) 

2 (a) 

3 (g) 

Vtd Vtb 

Vcd Vcb 

Vud Vub 
* 

* 

* 

ＣＰＶ 
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KEKB accelerator 

e-（8GeV) 
e+（3.5GeV) 

Luminosity 

    2.11 x 1034 cm-2s-1 ! 

 

Produces 2M BB/year 

• Asymmetric energy collider 

   (8 GeV e- x 3.5 GeV e+) 

• Finite angle beam crossing 

    (22mrad)  

e+ source 

Ares RF  

cavity 

Belle detector 

http://jp.f35.mail.yahoo.co.jp/ym/ShowLetter/ringanimation2M.gif?box=Inbox&MsgId=2406_9445966_98224_1696_384623_0_1738_499387_3403004772&bodyPart=1.4&filename=ringanimation2M.gif&tnef=&YY=43275&order=down&sort=date&pos=0&view=a&head=b
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KEKB Peak Luminosity 

2.11x1034  

1.21x1034  

>1fb-1/day 

~2 M BB 
_ 



Data at KEKB/Belle 
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(fb-1) 

487MBB 

772MBB 
_ 

_ 

> 1000 fb-1 ! 
(1ab-1) 



CPV in B0 decays 
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B0 

B0 fcp fcp B0 

B0 

A 

A 
- 

= 
mixing 

Initial: B0  
B0 

B0 

_ 
Oscillation 

Interference  

  Direct decay 

  Mixing + Decay 

Decay: A 

Decay-time dependent CPV 

Sanda 

Bigi 

Carter 

Weak  
Phase 
difference 

_ 
A 

V*td 

V*td 
_ _ 

t 

d t 

b 

b 

d _ 

w w B0 
B0 

_ 
_ 

d 

b 
_ c 

c 

s 

d 

_ w B0 
J/y 

K0 

V*cb 

frequency: Dmd  

(BH, BL) 



CPV in B0 decays 

13 Dt  (decay time)[ps] 

B0 

B0 fcp fcp B0 

B0 

A 

A 
- 

= 
mixing 

Decay: A 

Sanda 

Bigi 

Carter 

_ 
A 

1(b) 

2(a) 

3(g) 

Vtd Vtb 

Vcd Vcb 

Vud Vub 
* 

* 

* -hf  sin21 sin(Dmd Dt) 

B0 B0 

_ 

(hf  : CP eigenvalue) 

mixing 

Decay sin21 

P
ro

b
. 

ACP 
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Time-dep CPV Measurement 

Flavor-tag  

(B0 or B0 ?) 

J/y(,h’) 

KS 

e- 

e 

Dz t=0 
fCP 

Vertexing 

Reconstruction 

                       

Extract 

CPV 

fit B0 
B0 

B0-tag 
B0-tag 

Dt  Dz/cbg 

eeff ~30% 

sDt~140ps 

bg=0.425 (KEKB) 
       0.56  (PEP-II) 

same analysis method applied for all modes 



Discovery of CPV in B decays 
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0 0/B J Ky

2001(31M BB) 

0 0

0 0

1

( ) - ( )
( )

( ) ( )

sin 2 sin

CP CP
CP

CP CP

f

B f B f
A t

B f B f

m t 

   
D 

    

 - D D

sin21= 0.667 ±0.023 (stat) ±0.012 (syst) 

Discovery! 

Precise Measurement [PRL 108, 171802] 

772M BB 

25700 
signals 

2012 : final 

B0 tag 
_ B0 tag 



Complete Test of KM & SM 
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1 

2 

3 

Vtd Vtb 

Vcd Vcb 

Vud Vub 
* 

* 

* 

(a) 

(b) (g) 

 Measurements of CKM 

B experiments can provide all measurements ! 

Determination of UT 

B0-mixing (Dmd) 

B rg 

B0  (cc)K(*)0 

B0  D*+D(*)-(K) 

B  D(*)l n 

b  c l-n  

B-  DcomK- 

B0 D(*)+p- 

B p/r l n 

b u l-n  

B pp, rp, rr 

Over constraint ! 

LQCD: important 
            roles 



Verification of KM for CPV 
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All consistent 

CPV: 

 caused by a    

 single phase of 

 CKM matrix  

2008 Physics Nobel Prize 

Verified by B-factory 

experiments 



Next Challenge 
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In spite of Great Success of SM, there must be  

         New Physics beyond SM at High Energy scale 

         (SM is valid effective theory at current E-scale) 

Observed CPV in SM is not enough  

to explain matter dominance of Universe 
                                                               [>O(1010)] ! 

New Source of CPV should exists (beyond SM) 

One of Next important goals of Flavor Physics 

Note) NP effects appear in Flavor Physics in various way ! 

Energy Frontier 
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Rare B decays  

CPV in B  

Search for New Physics 

 provide Powerful tool for Search NP ( New Phase )   

excellent opportunities for NP search 

Loop diagram 

Decays involving t ( H) 

t Decays (Lepton Flavor Violation = NP) : B-factory = t-factory 

Penguins [bs(d) g, bs(d) l+l-]  

Key 

ANP ~ ASM (small/forbidden) 

[ bsqq tCPV] 

Establish analyses 

Hint of NP 



p p 

c ~ g ~ 
q ~ n ~ 

q l- q 
_ 

Direct Production by High Energy Coll. 

b s 

g 

q ~ 

Virtual Production via Quantum Eff. 

Tunnel effect 

Energy Frontier vs Flavor Physics 

Energy Frontier 
Luminosity 

 Frontier 

c ~ 

( )2

q ij
m 

2

11m 2

12m 2

13m

2

21m 2

22m 2

23m
2

31m 2

32m 2

33m

Off-diagonal terms  Diagonal terms 

Higher Energy Scale 

Can be searched 

(even if LHC finds 

 no New Physics) 

20 



LHC vs SuperKEKB 
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NP flavor violating  

couplings( 1 in MFV) 

N
P

 r
e
a
c
h
 i
n
 t
e
rm

s
  

o
f 
m

a
s
s
 

Illustrative reach of NP searches 

LHCb vs SuperKEKB 

LHCb is producing nice 

   Flavor Physics results 

 SuperKEKB: can do  

      Missing-E, Inclusive 

      Neutrals 

Single measurement only 

     Confirmation is important 

[ similar in LQCD ] 



Hints/Sensitive to NP 
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A(B  Kp) Puzzle 

CPV in b  s Penguin？ 

Large D0-mixing 

T
h
e

o
re

ti
c
a

l c
a

lc
u
la

ti
o

n
s
  

u
s
in

g
 V

u
b
, 
D

m
d
,e

K
 

Direct 

measurement 

CKM  Unitarity Triangle 

SM 

C7=−C7
SM 

Forwad-Backword Asy,.B  K*ℓ+ℓ− 

tree 

penguin 

fL(B  VV) ≠ 1 

….. 



NP search : Precise CKM 
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50ab-1 

Still ~10% room 

for NP 



New Source of CPV: 

24                                                                  24 

b 

d 
s 
d 

X s 
s 

,h’.. 

KS 

b 

d 
s 
d 

t s 
s 

,h’.. 

KS 

 _ 
B0 + 

 b  sqq  
- 

+ New Physics  
   with New Phase 

Sbs  Sbc , ADCP can  0 
_ 

SM: bs Penguin 
 phase = (cc) K0 - 

“b  ccs: sin21” (SM reference)           deviation  

Vts Vtb * 

http://www.dex.ne.jp/mantan/search/std2_search_preview.jhtml?start=10&lastServiceTime=1090676093961&number=1


Summary of New CPV search 

25 

B0 J/yK0  

Reference point of SM 

No clear deviation seen 

in all modes (1~2s) 

New CPV effect can be 

seen with much larger 

data 

Super B-factory 



SuperKEKB prospect 
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J/yK0 

K0 

MC 

This would establish the 
existence of a NP phase in bs 
penguins. 

bs 

B  K0 at 50/ab with ~2010 WA values 

 δ(Sbs) ~ 0.012 @ 50ab–1 Prospect 



Charged Higgs Hunting 

27 

Variety of Modes sensitive to Charged Higgs 

B-Factory: 

Some are only possible at B-Factory 



Inclusive b  s g  

28 

Data 
Background 
subtracted 

Fully Inclusive measurement 657M BB 

SM 



b  s g Summary 

29 

M. Misiak et al., PRL98, 022002 (2007) 

Belle, 50 ab-1 

+ existing meas. 

Belle, 0.6 ab-1 s(Br) 

HFAG,2006 

HFAG, ICHEP’10 

possible range of  

central values 

Br 



  

Sensitivity to 

new physics 

from charged 

Higgs 

The B meson decay constant 

H+ Search: B+
t + t 

(Decays with Large Missing Energy) 

|Vub| : from indep. measurements. 
30 

SM: 

LQCD 

      W+  H+ 



B->tn : Experimental Challenge  

31 

(4S) B- B+ 
nt 

e+ 

nt 

ne 

B+t+nt,  

     t+e+nent 

B-X 

Always > 2 neutrinos appear  

     in B  t n decay 

_ 

Signature : 1 track +invisible 

Experimental Challenge !  



B->tn : Experimental Challenge  

(4S) B- B+ 
nt 

e+ 

nt 

ne 

B+t+nt,  

     t+e+nent 

B-X 

32 Can be measured only by B-Factory ! 

Also for 

 B  D(*)tn 

 B  Knn 
_ 

Tag-side:  

Full reconstruction 

(*)0 (*)

1/ / / SB D a Dp r     
0 0 0/D Dp g sD g



B->tn Results 
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2.8s 

5       10     15    20     25    30    35     40     45     50   L[ab-1] 

 

0.4 

 

0.3 

 

0.2 
 

 

0.1 

s(B)·10-4 

expected accuracy on B(B+ →tn) 

at Belle II, semileptonic tag 



B  D(*)tn 

34 

• B  D* tn : Lepton (t) polarization info.  
   Expected B ~ 1.4% in SM (large) 

   But, large background (D*(**)ln, D*X) 

[e.g. D.S.Hwang EPJ C14,271(2000)] 

 Always involve > 2 n (Missing E):  



B  D(*)tn  Results 

35 

657M BB 

[PRL 99, 191807(2007)] 

[PRD 82, 0720005(2010)] 

B0  D*-t+n  

First Observation ! 



B  D(*)tn  Summary 

36 

[M.Tanaka Z.Phys. C67,321(1995)] 



Constraints on charged Higgs 

U. Haisch, hep-ph/0805.2141; ATLAS curve 

added by Steve Robertson 

Also see (MSSM),D. 

Eriksson,F.Mahmoudi and 0.Stal 

37 



New Physics Prospects 

38 

B(B →Xsg)                                                                                                    6%          Super-B 

B(B →Xdg)                                                                                                   20%        Super-B 

S(B →rg)                                                                                                     0.15        Super-B 

B(t →mg)                                                                                                      3 ·10-9     Super-B (90% U.L.) 

B(B+ →Dtn)                                                                                                  3%          Super-B 

B(Bs →gg)                                                                                                 0.25 ·10-6    Super-B (5 ab-1) 

 sin2qW @ U(4S)                                                                                           3 ·10-4     Super-B  

G. Isidori et al.,  

Ann.Rev.Nucl.Part.Sci. 60, 355 (2010) 

theory uncertainty 

matches the expected 

exp. precision 

theory uncertainty will 

match the expected 

exp. precision with  

expected progress in  

LQCD 

Complemantarity 

Super B factory 

LHCb 

K experiments 



Identification of NP type 
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mSU

GRA 

MSSM+nR SU(5)+nR U(2)  

FS degenerate 

 

non-
degenerate 

degenerate 

 

non-
degenerate 

ACP(sg) ✔ 

S(K*g) ✔ ✔ ✔ 

S(rg) ✔ ✔ ✔ 

S(KS) ✔ ✔ ✔ 

S(BsJ/y ) ✔ ✔ ✔ 

meg ✔ ✔ ✔ ? 

tmg ✔ ✔ ✔ ✔ ? 

teg ✔ ✔ ? M
e

a
s
u
re

m
e
n
ts

 

…
 

… 

[based on T.Goto et.al. PRD77, 095010(2008)] ✔: deviation from SM 

SUSY models 

Identify by the pattern of deviations from SM 



Physics at Super B-factory 
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Split fermions in large extra dimensions

Universal extra dimensions

Universal extra dimensionsKK graviton exchange

mSUGRA (moderate tan )b

mSUGRA ( large tan )b

SU(5) SUSY GUT with   nR

Effective SUSY

Bd
 unitarity

Time-dependent 
 violation

CP

Rare  decays
B

Other signals

 D. Hitlin 

is “DNA chip of 

              New Physics”  

+ LHC,… 



New Hadron Structures: QCD  
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hc’ & e+e-
cccc 

D0*0 & D1*0  

X(3872) 

Sc* baryon triplet 

X(3940), Y(3940) 

cc2’ 

Y(4660)  
Y(4008) 

DsJ(2700) 
Xcx(3090) 

Z(4430) 

DsJ(2317/2460) 

DsJ(2860) 

Y(4260) 

Y(4320) 

In
te

g
ra

te
d

 L
u

m
in

o
s
ity

 

Neutral 

u 
c 

u 
c 

d 
c 

u 
c 

u u 

c c 

c 

c 
g 

Hybrid 

cluster Tetraquark 

“Exotic Hadrons” X(3915), Y(4350) 

Z(4050),Z(4250) Yb 
Charged 

LQCD: important 
            roles 

Another Layer of  
            “New” Physics 
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SuperKEKB 
8x1035  

~100fb-1/day 

~100 M BB 
_ 

(x40)  



To High Luminosity 
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• Increase beam current, I 

• Larger beam-beam par, y   

• Smaller b*y   

 x 2 

 ~ same 

<1/20   +low emmittance 

(long bunch) 

Lorentz factor 

Classical electron radius Beam size ratio 

Geometrical reduction factors  

due to crossing angle and  

hour-glass effect 

Nano-beam approach 



Nano-Beam Scheme 
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present KEKB 

SuperKEKB 

 

L 
NN- f

4ps x

*s y

*
RL
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5mm 

1mm 

100mm 

(w/o crab) 
L 

Hourglass condition:  

                       βy
*>~ L=sx/ 

Half crossing 
angle:  

1mm 

5mm 
100mm 

~50nm 

83mrad 

22mrad 



e- 2.3 A 

e+ 4.0 A 

x 40 Gain in Luminosity 

 SuperKEKB Colliding bunches 

Damping ring 

Low emittance gun 

Positron source 

New beam pipe 

& bellows 

Belle II 

New IR 

TiN-coated beam pipe with 

antechambers 

Add / modify RF systems 

for higher beam current 

New positron target / 

capture section 

New superconducting 

/permanent final focusing 

quads near the IP 

Low emittance electrons 

to inject 

Low emittance positrons 

to inject 

 L=8·1035 s-1cm-2 

Redesign the lattices of HER & 

LER to squeeze the emittance  

Replace short  dipoles 

with longer ones (LER) 



IR Design 
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IR is one of crucial items of SuperKEKB  

QCS and Compensation Solenoids 

Beam Focusing,  Orbit Stability 

Background to detector 

collaboration 

KEK/BNL 



Luminosity Prospects 
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Milestone of Belle II/SuperKEKB 

We will reach 50 ab-1 

              in early 2020s 

9 months/year 

20 days/month 

Commissioning starts 

in late 2014. 

Shutdown 

for upgrade 
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 L=8·1035 s-1cm-2 





Construction work going 
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New LER Dipole 

Relocate ARES cavities 

Straight section 

   dismantled 

Beam pipe 

   @BINP 



Belle II Collaboration 
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2004.06  SuperKEKB LoI 

2008.01  KEK Roadmap 

2008.03 1st Proto collaboration meeting 

2008.10 Detector study report 

2008.12  New collaboration, Belle-II, started 

     ~400 collaborators from 57 institutions in 13 countries 

     Peter Krizan (Ljubljana) elected as the first spokesperson 

~2012.03  Series of open collaboration meetings 

 



International Collaboration 
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19 countries, 65 institutes, ~400 collaborators 

We need more !  Welcome Newly joining ! 



Belle II Detector 
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Belle  Belle II  

53 

SVD: 4 DSSD lyrs g 2 DEPFET + 4 DSSD lyrs 
CDC: small cell, long lever arm 
ACC+TOF g TOP+A-RICH 
ECL: waveform sampling (+pure CsI end-caps) 
KLM: RPC g Scintillator +MPPC(end-caps) 



Vertex detectors PXD/SVD 
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Beam Pipe  r = 10mm 

DEPFET 

 Layer 1 r = 14mm 

 Layer 2 r = 22mm 

DSSD 

 Layer 3 r =  38mm  

 Layer 4 r =  80mm 

 Layer 5 r = 105mm 

 Layer 6 r = 130mm 



Expected performance 
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p p-  Ks track 

 IP profile 

B vertex 

g 

g 

g 

B decay point reconstruction  

with KS trajectory 

Larger radial 

coverage of SVD 

pbsin(q)3/2 

[GeV/c] 

s
[m

m
] 

pbsin(q)5/2 [GeV/c] 
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Less Coulomb 

scatterings 

Pixel detector close 

to the beam pipe 

s
[m

m
] 

Belle 

Belle II’ 

Belle II 

1.0 2.0 0 1.0 2.0 0 

sin

b
a

p n
s

b q
 

10mm 
20mm 



CDC 
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Belle 

Belle II 

Belle Belle II 

radius of inner most sense wire 88 168 

radius of outer most sense wire 863 1111.4 

Number of layers 50 56 

Number of total sense wire 8400 14336 

Gas He:C2H6 He:C2H6 

sense/field wire W(Φ30μm)/Al(Φ120μm) W(Φ30μm)/Al(Φ120μm) 

longer lever arm 

improve resolution of momentum and dE/dx 

KEK, NTU, OCU, 

Korea, RCNP 



Particle ID 
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Aerogel radiator 
Hamamatsu HAPD + readout 

Barrel PID: Time of Propagation Counter (TOP) 

Aerogel radiator 

Hamamatsu HAPD 

+ new ASIC 

200mm 

n~1.05 

Endcap PID: Aerogel RICH(ARICH) 

200 

Quartz radiator 
Focusing mirror 

Small expansion block 

Hamamatsu MCP-PMT (measure t, x and y) 

Nagoya, KEK, Ljubljana, Hawaii, Cincinnati 



TOP counter 
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TOP 
MCP-PMT 

～1.2m 

• Quartz radiator 
– 2.6mL x 45cmW x 2cmT 

– Excellent surface accuracy 
• MCP-PMT 

– Hamamatsu 16ch MCP-PMT 
• Good TTS (<35ps) & enough 

lifetime 
• Multialkali photo-cathode  SBA  



KLM 
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• Endcap & Barrel 2 lyrs 

– RPC  Scintillator+MPPC 

– (7-10)x40mm2 scintillator strip+WLS 

– 14 layers Superlayer (X,Y) 

– MPPC from HPK 

• same design as T2K 

Mechanical Mockup 

MPPC: Hamamatsu 
1.3×1.3 mm  667 pixels 
(used in T2K ND) 

Scintillator bar: Vladimir (Russia) 
(used in T2K ND) 



Summary 
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Discovery of CPV in B decays 

Precise test of KM and SM 

Search for NP 

Step1 

Step2 

Step3 

2001 summer ! 

Hints of NP 

Establish procedures  

2008 

~50 ab-1 data (L ~1036cm-2s-1 ) 

(SUSY, Extra-dim…) 

LHC: New particle, masses 

SuperKEKB: couplings 

Understand NP need Both 



Summary 
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KEKB accelerator and Belle detector 

have been disassembled 

SuperKEKB 

  Upgrade is on going ! 

International Collaboration is crucial ! 
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Machine Parameters 

63 



Construction Schedule 
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Kobayashi-Maskawa: CPV 
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CPV: due to a complex phase in the quark mixing matrix 

CKM matrix 

Wolfenstein representation 

1(b) 
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DAQ & Trigger 
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New trigger board 

3D trigger study with CDC test chamber 

Belle Belle II 

Trigger rate 500Hz 30kHz 

Event size 40kB 300kB(max) 

KEK, IHEP, Korea 
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Computing 

Service Sharing in Sites 

HLT rate event size 

Belle II 3.6kHz 300kB 

ATLAS 0.2kHz 1.6MB 

~same amount of Accumulated data 



                                                                68 

Physics at B factory 

• B physics (~1.1nb) 

    - CP violation & CKM 

    - Rare decays   

• Charm physics (~1.3 nb) 
 

• t physics (~0.9nb) 

 

• two-photon processes 

  

• New Resonance 

   - ordinary & exotics  

c  t- 

c  t- 
_ 

B 

B 

_ 

Y(4S) 

Variety of Physics ! 

Complement/Cooperative with t/Charm factory ! 

http://www.dex.ne.jp/mantan/search/std2_search_preview.jhtml?start=1&lastServiceTime=1089537010262&number=1


Physics Prospects: t/charm 

69 

1, 2, 3 s @ 50 ab-1 

D0-mixing t LFV decays  

Also, Super-Factory for t/charm  ! 

LFV, CPV in D/t : Clear New Physics ! 



Lattice QCD with open boundary
conditions

Stefan Schaefer

CERN

May 14, 2012

Based on work done in collaboration with Martin Lüscher

Stefan Schaefer Open boundary conditions 14-05-2012 1 / 18



Problem

Rising cost as a→ 0

Need more points for fixed volume
L =const→ N = L4a−4.
Monte Carlo time scales as a−2.
Topological sectors emerge→ simulation gets stuck

Solutions

Fix topological sector.
Loss of unitarity.
Deal with 1/V corrections.

Open the lattice.

Stefan Schaefer Open boundary conditions 14-05-2012 2 / 18



Scaling in pure gauge theory

Topological charge shows dramatic slow down:
periodic b.c.
Pure gauge theory

SOMMER, VIROTTA, ST.S’10
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Topological Charge

Slowing down

Topological sectors emerge in continuum limit.
Simulation gets stuck.

Fermions

Some folklore that fermions solve the problem.
Distribution of Q gets narrower at light quark mass.
Different effective gluonic action
→ influences coefficient.
Slow topology observed, e.g., by MILC, ALPHA.

Stefan Schaefer Open boundary conditions 14-05-2012 4 / 18



Open boundary conditions

Proposed solution

open boundary condition in time direction
→ same transfer matrix, same particle spectrum
periodic boundary condition in spatial directions
→momentum projection possible

Stefan Schaefer Open boundary conditions 14-05-2012 5 / 18



Open boundary conditions

Periodic boundary conditions in space.
Neumann boundary conditions in time.

Gauge fields

F0k|x0=0 = F0k|x0=T = 0, k = 1,2,3

Fermion fields

P+ψ(x)|x0=0 = P−ψ(x)|x0=T = 0 P± =
1
2

(1± γ0)

ψ̄(x)P−|x0=0 = ψ̄(x)P+|x0=T = 0

Stefan Schaefer Open boundary conditions 14-05-2012 6 / 18



On shell improvement

Boundary terms

Gauge action

δSG,b =
1

2g2
0

(cG − 1)
∑
ps

tr(1−U(ps))

Fermion action

δSF,b = a3(cF − 1)
∑
~x

(
ψ̄(x)ψ(x)|x0=a + ψ̄(x)ψ(x)|x0=T−a

)

Very similar to Schrödinger functional.
If one stays clear of boundaries, might not be
needed.

Stefan Schaefer Open boundary conditions 14-05-2012 7 / 18



Pure gauge theory: τint vs a−2

M. LÜSCHER, ST.S, JHEP 1107 (2011) 036

0 500 1000 1500
0

50

100

150

τint /Z SMD, Z=1
HMC, Z=1.32

0 500 1000 1500

(L /a)2

0 500 1000 1500

  E   Q2 Q2

L =const
scaling linear in a−2.
no effect of sector forming visible.

Stefan Schaefer Open boundary conditions 14-05-2012 8 / 18



Pure gauge theory: Periodic vs Open boundaries

 1

 10

 100

 1000

 10000

 100000

 100  1000

τ in
t

1/a2 [fm]2

open b.c.; a-2(1+c a2)
periodic b.c.; a-5

Open boundary conditions solve problem.
Scaling of the topological charge same as other
observables.
Already at typical a sizable improvement.

Stefan Schaefer Open boundary conditions 14-05-2012 9 / 18



Large T

Finite volume

For T →∞ the effect of the b.c. vanishes.
But also the effect on observables vanishes as V−1.

Dependence on T

Width of distribution of Q is ∝
√

TL3.
Change of charge through boundary ∝

√
L3.

→ expect τint ∝ T, for random walk
For each T, there is an a from which the boundary
tunneling dominates over the bulk tunneling.

Stefan Schaefer Open boundary conditions 14-05-2012 10 / 18



Analysis

Physics in the center as with period. bound. cond.
Boundary effects decay with lightest state of
vaccuum quantum numbers. → 2π
How is the effect in actual simulations?

1/M 1/M

Stefan Schaefer Open boundary conditions 14-05-2012 11 / 18



Setup

Action

Nf = 2 + 1 NP improved Wilson fermions
Iwasaki gauge action
64× 323 lattice with a = 0.09fm
studied extensively by PACS-CS
mπ = 200MeV; mπL = 3

Reweighting

Simulate fermion action with spectral gap.
Include reweighting factor in measurement.
Stabil simulation, no ergodicity problems.

Stefan Schaefer Open boundary conditions 14-05-2012 12 / 18



Yang-Mills action density
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Gauge action density from smoothed links.
Boundary effects decay with mass ≈ 1GeV.
mπ ≈ 200MeV.
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Boundary conditions

yx

t=0 t=T

C(x0, y0) =
∑
x,y
〈P(x0,x)P(y0,y)〉

Source point y, zero momentum projection
With periodic bc get cosh(m(x0 − y0)) behavior

Open boundary conditions

Dirichlet boundary condtions for hadron propagator

C(x, y) ∝ sinh(m(T − x0)) for x0 > y0

Stefan Schaefer Open boundary conditions 14-05-2012 14 / 18



Pseudoscalar Correlator
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source at y0/a = 1
exponential fall-off 2/mπ away from source/boundary
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Pseudoscalar Correlator: effective mass
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Mass agrees with PACS-CS (interpolated) value
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Effect of the position of the source
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Source on boundary couples strongy to excited states
Plateau starts about at same time slice.
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Conclusions

Simulations with reduced rate of tunneling cannot
produce accurate results.
Open boundary conditions in time solve the problem
of frozen topology.
Fermion simulations without particular problems.
Measurements 2/mπ from boundary.
Reweighting makes Wilson simulations safe.

Stefan Schaefer Open boundary conditions 14-05-2012 18 / 18



Goal: 10-29e cm; Probe New Physics ~103 TeV 

 

Systematics best in an all-electric ring and 
counter-rotating (CR) beams. 

 Lattice Computations 

BNL, 16 May 2012 

Storage ring  Electric Dipole Moment 

experiment for the proton 
Yannis K. Semertzidis, BNL 



Why is there so much matter after 

the Big Bang; 

nB

n
6.08 0.14 10 10

nB

n

n
B 

n
10 18

We see: 

From the SM: 



Spin is the only vector defining a 

direction of a “fundamental” 

particle with spin 

0d


ˆ

 - 

+ 

ˆdd




Electric Dipole Moment: two 

possibilities 

0d


ˆ

 - 

+ 

ˆdd


ˆd d

+ 

- 



If we discover that the proton 
• Has a non-zero EDM value, i.e. prefers only 

one of the two possible states: 

 

 

    

 

 • Then P and T symmetries are violated and 

through CPT, CP-symmetry is also violated. 

• CP-violation is one of three necessary 

conditions to obtain a matter dominated 

universe starting from a symmetric one… 

 

+ 

- 

 - 

+ 



- p. 6/28 

Phys. Rev. 78 (1950) 

Purcell and Ramsey: 

“The question of the possible existence of 

an electric dipole moment of a nucleus or of 

an elementary particle…becomes a purely 

experimental matter” 



Short History of EDM 
• 1950’s neutron EDM experiment started to search for 

parity violation (Ramsey and Purcell). 

• After P-violation  EDMs require both P,T-Violation 

• 1960’s EDM searches in atomic systems 

• 1970’s Indirect Storage Ring EDM method from the 

CERN muon g-2 exp. 

• 1980’s Theory studies on systems (molecules) w/ 

large enhancement factors 

• 1990’s First exp. attempts w/ molecules. Dedicated 

Storage Ring EDM method developed 

• 2000’s Proposal for sensitive dEDM exp. developed.  

• 2010’s Proposal for sensitive pEDM exp. developed.  

 



Yannis Semertzidis, BNL 

• Muon g-2: Precision physics 

in a Storage Ring 

 

•Statistics limited… to improve 

sensitivity by a factor of 4 at 

Fermilab 



Yannis Semertzidis, BNL 

Muon g-2: 4 Billion e+ with E>2GeV 

aa

t

tAeNdtdN cos1/ 0

Sub-ppm accuracy, 

statistics limited 



Breakthrough concept: Freezing the 

horizontal spin precession due to E-field 

  Muon g-2 focusing is electric:  The spin precession 

due to E-field is zero at “magic” momentum 

(3.1GeV/c for muons, 0.7 GeV/c for protons,…) 

2
, with 

2

m g
p a

a

  The “magic” momentum concept was used in the muon 

g-2 experiments at CERN, BNL, and …next at FNAL. 



Yannis Semertzidis, BNL 

The proton EDM uses an ALL-ELECTRIC ring: 

spin is aligned with the momentum vector 

0a



Momentum 

vector 

Spin vector 

E 

E E 

E 

ds
d E

dt

At the magic momentum 

the spin and momentum 

vectors precess at same  

rate in an E-field 

m
p

a



Is the polarimeter analyzing 

power good at Pmagic? YES! 
Analyzing power can be further optimized 



The proton 

EDM ring 

Weak vertical focusing to optimize  

SCT and BPM operation 
B: quadrupoles 

As shown on the March 2011 review 

with limited straight-section length 



Yannis Semertzidis, BNL 

Important Stages in an EDM 

Experiment 

1. Polarize: state preparation, intensity of beams 

 

2. Interact with an E-field: the higher the better 

 

3. Analyze: high efficiency analyzer 

 

4. Scientific Interpretation of Result!  Easier for 

the simpler systems (theory; lattice?) 



The grand issues in the proton 

EDM experiment 
1. BPM magnetometers (need to demonstrate in 

a storage ring environment) 

2. Polarimeter development: high efficiency, 

small systematic errors 

3. Spin Coherence Time (SCT): study at 

COSY/simulations; Simulations for an all-

electric ring: SCT and systematic error studies 

4. Electric field development for large surface 

area plates 



Clock-wise (CW) & Counter-Clock-wise Storage 

Equivalent to p-bar p colliders in 

Magnetic rings 

Any radial magnetic field sensed by the  

stored particles will also cause their 

vertical splitting.  Unique feature among 

EDM experiments… 



1. Beam Position Monitors 

• Technology of choice: Low Tc SQUIDS, signal 

at 102-104Hz (10% vertical tune modulation) 

• R&D sequence: (First funding from US-Japan) 

1. Operate SQUIDS in a magnetically shielded 

area-reproduce current state of art 

2. Operate in RHIC at an IP (evaluate noise in an 

accelerator environment);  

3. Operate in E-field string test 



2. Polarimeter Development 

• Polarimeter tests with runs at COSY 

(Germany) demonstrated < 1ppm level 

systematic errors: N. Brantjes et al., NIM A 

664, 49, (2012) 

 

• Technologies under investigation: 

1. Micro-Megas/Greece: high rate, pointing 

capabilities, part of R&D for ATLAS upgrade  

2. MRPC/Italy: high energy resolution, high rate 

capability, part of ALICE development 



3. Spin Coherence Time: need >102 s 

• Not all particles have same deviation from 

magic momentum, or same horizontal and 

vertical divergence (all second order effects) 

 

• They cause a spread in the g-2 frequencies: 

• Present design parameters allow for 103 s. 

Cooling/mixing during storage could prolong 

SCT (upgrade option?). 

2

2 2

a x y

dP
d a b c

P



SCT Development  
• We have a SCT working solution (precision 

tracking and analytically-work in progress). 

 

• Tests with polarized deuterons and protons at 

COSY to benchmark software 

 

• Test runs at COSY are very encouraging. 

 

• Bonus: Electric ring with weak vertical focusing 

SCT is long enough for 103s storage 



 Reproduce Cornell/JLAB results of stainless 

steel plates treated with high pressure water 

rinsing (part of ILC/ERL development work) 

 

• Determine: 

1. E-field vs. plate distance 

2. Develop spark recovery method 

 

• Develop and test a large area E-field prototype 

plate module (Cornell Univ. just got involved) 

4. Electric Field Development 
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Large Scale Electrodes, New: 

pEDM electrodes with HPWR 
Parameter Tevatron pbar-p 

Separators 

BNL K-pi 

Separators 

pEDM 

Length 2.6m 4.5m 3m 

Gap 5cm 10cm 3cm 

Height 0.2m 0.4m 0.2m 

Number 24 2 102 

Max. HV 180KV 200KV 

 

150KV 

 



E-field plate module: Similar to the 

(26) FNAL Tevatron ES-separators 

0.4 m 

3 m 

Beam position 



E-field plate module: Similar to the 

(26) FNAL Tevatron ES-separators 

0.4 m 

3 m 

Beam position 



The miracles that make the pEDM 
1. Magic momentum (MM): high intensity 

charged beam in an all-electric storage ring 

2. High analyzing power: A>50% at the MM 

3. Weak vertical focusing in an all-electric ring: 

SCT allows for 103s beneficial storage; 

prospects for much longer SCT with mixing 

(cooling and heating) 

 

4. The beam vertical position tells the average 

radial B-field; the main systematic error source 



Technically driven pEDM timeline 

• Two years R&D 

• One year final ring design 

• Two years ring/beam-line construction 

• Two years installation 

• One year “string test” 

 

  

12 13 14 15 16 17 18 19 20 21 



Booster 

AGS 

A proposed proton EDM ring location 

at BNL. It would be the largest diameter  

all-electric ring in the world. 

40 m 



Total cost: exp + ring + beamline for 

two different ring locations @ BNL 

System Experiment w/ 

indirects 

Conventional plus 

beamline w/ indirects 

Total 

pEDM at ATR $25.6M $20M $45.6M 

pEDM at SEB $25.6M $14M $39.6M 

System Experiment w/ 

55% contingency 

Conv. & Beamline w/ 

contingency 

Total 

pEDM at ATR $39.5M $29.2M $68.7M 

pEDM at SEB $39.5M $22.6M $62.1M 

EDM ring 
EDM ring+tunnel 

and beam line 



Storage Ring EDM Collaboration  
• Aristotle University of Thessaloniki, Thessaloniki/Greece 

• Research Inst. for Nuclear Problems, Belarusian State University, Minsk/Belarus 

• Brookhaven National Laboratory, Upton, NY/USA 

• Budker Institute for Nuclear Physics, Novosibirsk/Russia 

• Royal Holloway, University of London, Egham, Surrey, UK 

• Cornell University, Ithaca, NY/USA 

• Institut für Kernphysik and Jülich Centre for Hadron Physics Forschungszentrum 

Jülich, Jülich/Germany 

• Institute of Nuclear Physics Demokritos, Athens/Greece 

• University and INFN Ferrara, Ferrara/Italy 

• Laboratori Nazionali di Frascati dell'INFN, Frascati/Italy 

• Joint Institute for Nuclear Research, Dubna/Russia 

• Indiana University, Indiana/USA 

• Istanbul Technical University, Istanbul/Turkey 

• University of Massachusetts, Amherst, Massachusetts/USA 

• Michigan State University, East Lansing, Minnesota/USA 

• Dipartimento do Fisica, Universita’ “Tor Vergata” and Sezione INFN, Rome/Italy 

• University of Patras, Patras/Greece 

• CEA, Saclay, Paris/France 

• KEK, High Energy Accel. Res. Organization, Tsukuba, Ibaraki 305-0801, Japan 

• University of Virginia, Virginia/USA 

>20 Institutions 

>80 Collaborators 

http://www.bnl.gov/edm 



J.M.Pendlebury and E.A. Hinds, NIMA 440 (2000) 471 
e-cm 

Gray: Neutron 
Red: Electron 

n current 

n target 

Sensitivity to Rule on Several New Models 

e current 

e target 

p, d target 

If found it could explain 

Baryogenesis  

(p, d, n (or 3He)) 

If a pEDM is not found it can 

eliminate EW-Baryogenesis  

Statistics limited 

Upgrade? 



EDMs of hadronic systems are 

mainly sensitive to 

• Theta-QCD (part of the SM) 

 

• CP-violating sources beyond the SM 

 

   Alternative simple systems are needed to be 

able to differentiate the CP-violating source 

(e.g. neutron, proton, deuteron,…).      

   pEDM at 10-29ecm is > an order of magnitude 

more sens. than the best current nEDM plans 

 



EDMs of different systems 

 Theta_QCD: 

 Super-Symmetry (SUSY) model predictions: 

Measure all three: proton, 

deuteron and neutron EDMs to 

determine CPV source  

Theoretical estimation on the 

lattice? 



Physics reach of magic pEDM (Marciano) 

   The proton EDM at 10-29e∙cm has a reach of  

>300TeV or, if new physics exists at the LHC scale, 

<10-7-10-6 rad CP-violating phase; an 

unprecedented sensitivity level.  

   The deuteron EDM sensitivity is similar. 

• Sensitivity to SUSY-type new Physics: 

• Sensitivity to new contact interaction: 3000 TeV 

10 13   Currently: 10 ,  Sensitivity with pEDM: 0.3 10

2
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The current status 

• Have developed R&D plans (need $1M/year for 

two years) for  

   1) BPM magnetometers, 2) SCT tests at COSY, 

3) E-field development, and 4) Polarimeter 

prototype 

 

• We had two successful technical reviews:    

Dec 2009, and March 2011.  

• Sent a proposal to DOE NP for a proton EDM 

experiment at BNL: November 2011  

 

 



Other possible places? 

• COSY (Jülich/Germany); proposal for a pre-

cursor experiment; we have a common R&D 

collaboration. 

 

 

 

• Fermilab, accumulator ring; JETP talk on April 

20; Proposal to Fermilab by end of fall 2012; 

Need polarized proton source. 



Common R&D with COSY 

Slide by H. Stroeher, 

Director of IKP II 



Summary 
Proton EDM physics is a must do, > order of 

magnitude improvement over the neutron EDM 

E-field issues well understood 

Working EDM lattice with long SCT and large 

enough acceptance (~10-29ecm/year) 

Polarimeter work 

 Planning BPM-prototype demonstration 

including tests at RHIC 

 Old accumulator ring could house the proton 

EDM ring at Fermilab; BNL: new tunnel needed 

At COSY a pre-cursor proposal to PAC 

 



Extra slides 

 



Physics strength comparison  (Marciano) 

System Current limit 

[e cm] 

Future goal Neutron 

equivalent 

Neutron <1.6×10-26 ~10-28 10-28 

199Hg atom 

 

<3×10-29 

 

<10-29 

 
10-25-10-26 

 
129Xe atom <6×10-27 ~10-29-10-31 

 

10-25-10-27 

 

Deuteron 

nucleus 

~10-29 3×10-29- 

5×10-31 

Proton 

nucleus 

<7×10-25 ~10-29 

 
10-29 



M. Conte 



Why does the world need a 

Storage Ring EDM experiment at 

the 10-29 e-cm level ? 

1. The proton, deuteron and neutron combined 
can pin-down the CP-violating source should 
a non-zero EDM value is discovered.   
Critical: they can differentiate between a 
theta-QCD source and beyond the SM. 

2. The proton and deuteron provide a path to 
the next order of sensitivity. 

Yannis Semertzidis, BNL 



Why Storage Ring EDMs? 

• Storage rings offer a unique setting for a 
sensitive electric dipole moment (EDM) probe of 
charged particles. A number of simple systems 
can be probed with high accuracy: p, d, 3He,… 

• The mechanical (centrifugal) force balances the 
strong radial E-fields. 

• Pencil-like, high intensity/high polarization 
beams of protons and deuterons have been 
around for decades.  

• Ready for prime time.  

 

 



Beam parameters 

C.R. proton 

beams 

0.7 GeV/c 80% polariz.; 

 

~4×1010 

protons/store 

~102 m base 

length 

Repetition 

period:    

20 minutes 

Beam energy: 

~1J  

Average 

beam power: 

~1mW 

Beam 

emittance: 

95%, norm. 

 

Horizontal: 

2 mm-

mrad 

 

Vertical:         

6 mm-mrad 

 

(dp/p)rms~ 

2×10-4 

• CW & CCW injections: Average emittance 
parameters: same to ~10% at injection. 

Fermi would need to get into polarized beams physics 



Proton EDM R&D cost: $2M 

• BPM development & testing over two years: 

$0.6M 

• E-field prototype development & testing: 1.8 

years: $0.4M 

• SCT tests at COSY, 2 years: $0.4M 

• Polarimeter prototype, 2 years: $0.6M 



Polarimeter rates: 
•Beam intensity with 2×1010 pol. protons/ 

~103s and a detection efficiency of 1%  

200KHz for ~3000cm2 area, or ~100Hz/cm2 

on average but much higher at small radius.  

Design: ~1KHz/pad. 

 

70 cm 
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The Electric Dipole Moment 

precesses in an Electric field 

ds
d E

dt

+ 

- 

d

The EDM vector d is along the particle spin direction 



Parameters of  

current lattice 



The EDM signal: early to late change 
• Comparing the (left-right)/(left+right) counts vs. 

time we monitor the vertical component of spin  

(L-R)/(L+R) vs. Time [s] 

M.C. data 
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How to Scale HPWR to 3cm gap? 
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Gas cluster ion beam surface treatment: 

getting rid of ~μm level asperities 



Electropolishing Process Verses Mechanical Polishing 

Electropolish Mechanical polish 

Roughness: 4 - 40 microinches 

(depends from abrasive grit number) 
Roughness: 2 - 5 microinches 

 

Electropolishing (used since early 1950’s) is the 

electrochemical removal of microscopic 

irregularities or diminution scratches, burns and 

unwanted harp edges from metal surfaces. Typical 

material removal is .0001”- .0004”  

per surface.  

Mechanical polishing is an operation  

designed to prepare a metal surface for  

electropolishing or to satisfy non-critical  

surface roughness requirements. 

Mechanical polishing reduces all surface 

ridges, microprotrusions, pits and 

discrepancies to provide a homogeneous 

appearance and roughness.   

Smoothness of the metal surface is one of the primary and  

most advantageous effects of electropolishing.  

 

Electropolishing should improve separator performance. 



High Voltage Electrical Breakdown in Vacuum 

It is generally agreed that a vacuum breakdown is a vapor arc, taking place in material evaporated from the electrodes. 
Evidence is the observation of localized light during breakdown and electrode material transferred across the gap.   

 

 Electron field emission mechanism for initiating the breakdown 
            According with this model, electrons are assumed to be field emitted from the 

tip of microprotrusion at an isolated site on the surface of broad-area cathode. 
        Question:  where is the metal vapor  produced at the anode or cathode? 
              Is it enough power to vaporize anode material by field emitted electrons 

bombarded anode or  positive ions produced at the anode lead to rupture of the 
cathode or that resistive heating on the cathode causes them to melt and 
ultimately to vaporize. This mechanism dominates at gaps less than 2 mm. 
 

 Microparticle or “clump” model 
             Clump of loosely adhesive material is drawn across the gap by the electric field 

so as to strike the opposite electrode with enough energy to produce high local 
temperature in the electrode or clump material with melting and vaporizing.     

             Pre-operational electrode surface will be characterized by having a finite 
number of microscopic particles. These will originate from various stages of 
mechanical polishing, and may be in the form of either impurity particle of 
polishing material or dust particles. Another source of microparticles are those 
originated from thermal instabilities at either the cathode or anode “hot” spot.   
For uniform gaps the breakdown voltage should vary as the square root of the gap 
spacing. The model is dominating at large gaps. 

 
 Ion exchange mechanism 
             This mechanism is assumed to be initiated by say random positive ion created in 

the gap that is then accelerated by the field to generate further negative ions on 
impact with cathode, which subsequently generate more positive ions on impact 
with the anode etc. Thus, if the ion multiplication factor  > 1, the process will  
develop in the breakdown mode. It is very sensitive to chemicals contaminations.  

 

Cathode 

Anode 

e 

Primary 

Secondary 

The breakdown consists of many complicated and complex phenomena with no single process involved. 

e 
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When P=Pmagic the spin follows the momentum 

0a



E 

E E 

E 

No matter what the E-field value is the spin follows  

the momentum vector creating an ideal Dirac-like  

particle (g=2) 

1. Eliminates (to first order) geometrical phase effect 

2. Equalizes the beta-functions of counter-rotating (CR) 

beams 

3. Closed orbits of the CR beams are the same  

 

ds
d E

dt



Proton Statistical Error (230MeV): 

p    : 103s    Polarization Lifetime (Spin Coherence Time) 

A   : 0.6      Left/right asymmetry observed by the polarimeter 

P   : 0.8      Beam polarization 

Nc  : 4 1010p/cycle Total number of stored particles per cycle 

TTot: 107s               Total running time per year 

f     : 0.5%              Useful event rate fraction (efficiency for EDM) 

ER  : 10.5 MV/m     Radial electric field strength (95% azim. cov.) 

2
d

R c p totE PA N f T

d 1.6 10 29e cm/year for uniform counting rate and

d 1.1 10 29e cm/year for variable counting rate



Physics/effort comparison 
• Physics reach ~103 TeV, similar to mu2e 

(MECO) experiment at FNAL; moreover, it can 

explain BAU (EW-Baryogenesis) 

• SUSY-like new physics at LHC scale, it probes 

CP-violating phases to sub micro-radian level, 

complementary to LHC (plus fine-tuned SUSY) 

• At 10-29e cm it’s > an order of magnitude better 

than the best neutron EDM plans anywhere. 

Statistically superior to neutron EDM exps. 

• Method can be applied to proton, deuteron, and 
3He to unravel the underlying physics. More 

than other methods can do. 

 



SU(N) gauge theories with symmetric-rep fermions

Yigal Shamir ⋆

with

Tom DeGrand ⋄ and Ben Svetitsky ⋆

Part I. SU(N), N = 2, 3, 4, with Nf = 2 two-index sym rep Dirac fermions:

“continuum” issues; physics results

Part II: Fat (nHYP) links and what they do for us

⇒ It’s a good idea to try DWF with fat links

⋆ Tel Aviv University
⋄ Boulder, CO



Walking [extended] Technicolor

• Confinement & Chiral symmetry breaking are lost for Nf > Ncritical

• “Walking” theories are found just below the conformal window

• Condensate enhancement needed ⇔ mass anomalous dimension γ ≈ 1

• Natural candidates: Nf = 2 higher-irrep fermions [Sannino et al.]

Schrödinger functional

• Induce background field thru boundary conditions in L4 box

• Measure 1/g2(L) from response to small change in boundary conditions

• Extract mass anomalous dimension γ from scaling of
pseudoscalar renormalization constant ZP , on the same lattices

1



Life inside (or near) the conformal window

Two-loop beta function, SU(2) with Nf = 2 of:

adjoint fundamental

⇒ Strategy of ALPHA developed for QCD; performs poorly here

2



Nearly constant beta function

define: β̃(1/g2) ≡
d(1/g2)
d log(L)

= 2β(g2)/g4

• Solution: 1/g2 ≃ a + b log(L)

• Exact at one loop

• Treat dataset at each bare β

as separate fitting problem

• slope = beta fn.

• Systematics: add log2 term,
or remove smallest volume

• Slope changes sign =⇒ IRFP!

681216
L/a

0

0.1

0.2

0.3

0.4

0.5

1/g
2
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SU(2)/adjoint

Fitting 1/g2: x = L/8, Black: L = 6,8,12,16, Red: L = 8,12,16

a + b log(x) a + b log(x) + c log2(x)

1/g2
∗

= 0.20(4)(3)

4



SU(2)/adjoint, SU(3)/sextet, SU(4)/decuplet

• Qualitatively agrees with β [2-loop]

• Actual β > β[2-loop]

• With increasing Nc, IRFP moves to
stronger coupling, or disappears

• Consistent with no IRFP of

β[2-loop] for Nc → ∞ limit

• Can one use SU(4)/decuplet for
walking technicolor?

0 0.1 0.2 0.3

u = 1/(g
2
N)

-2

-1

0

1

2

8π
2 

b~ (u
)

N = 2
N = 3
N = 4
N = ∞
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Mass anomalous dimension

• Dashed line:
one-loop for Nc → ∞

• Remarkable universality

• Saturation: γ <
∼ 0.45

• Missed by analytic calculations!

• No good for walking technicolor

0 10 20 30 40

g
2
N

0

0.2

0.4

0.6

0.8

1

γ
m

N = 2
N = 3
N = 4
N = ∞
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Part II. What nHYP links do for us

• Results from SU(3)/sextet

β g2
SF (L = 6) κc mc M

thin 6.0 ∼ 2 0.1610 -0.89 1.9
fat 5.8 1.9 0.1283 -0.10 1.1

Critical hopping parameter κc = 1/(8 + 2mc)

Optimal Domain-Wall height M = 1 + |mc| (to be explained later on)

• Similar improvement for optimal clover coefficient
(big enough that we’ve decided to set cSW = 1)

• Fat links allow us to probe much larger g2(L)

7



DWF primer

• 5-d Wilson fermions, supercritical (negative bare mass),
with chiral 4-d fields located near the boundaries s = 0 and s = L

• Effective 4-dim operator: Deff(L) = 1 + γ5 tanh
(
(L/2)a5H

)

• For L → ∞ it becomes a GW operator: Deff(∞) = 1 + γ5H/
√

H2

• DWF transfer matrix: T = exp(−a5H) = 1 − a5HW + · · ·
where HW = γ5DW is the 4-d hermitian Wilson operator

• Penetration into the 5-d bulk from near-unity eigenvalues of T ,
hence from near-zero eigenvalues of HW

• PCAC: ∂µAµ = 2mqJ5 + 2mres
(
J5 + [more] lattice artifacts

)

• Need mres ∼ 10−3 (or smaller). Want L to be small.

8



spectrum of DW in complex plane

• Optimal DW height = center of leftmost “void”

• Fat links tame the Wilson spectrum: mc(fat) ≪ mc(thin)

• Expect many more ev’s inside the thin-links “void”: mres(fat) ≪ mres(thin)

0 2 6 84 0 2 6 84
fat links thin links
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Fat links and DWF

• DWF on staggered MILC lattices: [LHP Collaboration, . . . ]

thin: mres “too big to measure”
fat: mres ∼ 10−3

• Locality
– It’s true that DW is less local with fat links
– nHYP links only mildly nonlocal: [Hasenfratz, Hoffmann & Schaefer]

Smeared link depends only on thin links that share a hypercube with it

• GW operators are never ultra-local

• Relevant notion: exponential localization of Deff(L).
– Depending on suppression of near-zero eigenmodes,

in principle Deff(L) might be more local with fat links!
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Summary

• SU(N), N = 2, 3, 4, with Nf = 2 two-index sym rep Dirac fermions
are no good for walking technicolor
because mass anomalous dimension saturates at γ <

∼ 0.45

• While several nice tricks are already being used to bring down mres
[improved gauge action, Dislocations Suppressing Determinant Ratio],
and to speed up the inversion [Möbius], it’s a good idea to

try DWF with fat links
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Walking (extended) Technicolor

For acceptable flavor physics, candidate theories should have:

• Chiral symmetry breaking

• Small S-parameter

• Avoid massless GBs (except those eaten by W± and Z)

• Condensate enhancement

⇒ need mass anomalous dimension γ ≈ 1
⇒ this is expected for nearly conformal (“walking”) theories

⇒ Natural candidates: Nf = 2 higher-irrep fermions [Sannino et al.]
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Schrödinger functional

• Prescribe gauge field Ak(L, η) on time boundaries: t = 0 and t = L

⇒ induce background color-electric field in the bulk

Γ(L, η) ≡ − log(Z) = tree-level + one-loop + · · ·

=
(

1
g2
0(a)

+
b1

32π2
log(L/a) + · · ·

)
Scl(η)

=
1

g2(L)
Scl(η)

• Obtain 1/g2(L) from variation w.r.t. η, which is an observable

• Extract mass anomalous dimension γ from scaling of
pseudoscalar renormalization constant ZP , on the same lattices
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Soft gauge action

• Soft action: Sgauge = β
∑

Uplaq(thin links) + β̃
∑

Uplaq(fat links)

• Pushes 1st-order bulk transition back into stronger bare coupling

• SU(3)/sextet:
– thin links: transition at g2

SF ≈ 2.5, lattice artifacts for g2
SF

>
∼ 2.0

– fat links, β̃ = 0: transition at g2
SF ≈ 5.0, lattice artifacts for g2

SF
>
∼ 3.5

– fat links, β̃ = 0.5: up to g2
SF ≈ 11 before running out of steam

• Stabilize nHYP reunitarization step:

Vµ = Ωµ

(
Ω†

µΩµ

)
−1/2

⇒ Vµ = Ωµ

(
Ω†

µΩµ + ǫ
)
−1/2

We use ǫ = 10−6
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Soft gauge action: weak-coupling universality

bare coupling:
1
g2
0

=
β

N
T (f) +

β̃

dR

T (R),
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β
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SU(4), Right to left: β̃ = −0.5, 0.0, 0.5, 1.0, 1.5
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Soft gauge action: κc

• Perturbation theory:
κc increases with β̃ at fixed 1/g2

0

• Beyond 8/g2
0 ≈ 9 trend reverses

5 6 7 8 9 10 11 12 13

8/g
0

2

0.13
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0.145

κ
c

β
10

 = −0.5
β

10
 = 0

β
10

 = 0.5

β
10

 = 1.0

β
10

 = 1.5

β
10

 = 2.0

β
10

 = 2.5

β
10

 = 3.0

β
10

 = 3.5
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Effects of the bulk transition, SU(3)

0 0.1 0.2 0.3 0.4 0.5

u = 1/g
2

-0.05

0

β~ (u
)

β
6
 = 0

β
6
 = 0.5

one loop
two loops

SF coupling: agreement
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g
2

0
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γ
m

one loop
β

6
 = 0

β
6
 = 0.5

Mass anomalous dimension:
discrepancy – due to proximity
of bulk transition for β̃ = 0
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Nucleon EDM from Lattice QCD 

Eigo Shintani (RIKEN-BNL)  

for RBC/UKQCD collaboration 

1 New Horizons for Lattice Computations with Chiral Fermions, May 16 2012 



 EW 

 It has been known the CP violation occurs by the phase of CKM matrix  

 K, D, B meson decay via direct and indirect CP violation 

 Contribution to EDM is very tiny,  

    6-orders magnitude below the exp. upper limit: 

 QCD 

 q term in the QCD Lagrangian: 

 

 

renormalizable and CP-violation comes due to topological charge density. 

 EDM experiment provides very strong constraint on 

  ⇒ q and arg det M need to be unnaturally canceled ! (strong CP problem) 

2 

CP symmetry breaking in the SM 



 Possible higher dimension operators 

 Effective Hamiltonian with higher dimension than 4 

CP symmetry breaking beyond the SM 

: Quark-photon 

: Quark-gluon 

: Pure gluonic 

SUSY model 

Chang, et al. (99), Ibrahim and Nath (08) 
3 



Constraint on nEDM 

 The present and future experiment is  

    close to “exclude” of MSSM 

pEDM experiment @ BNL,  

nEDM experiment @ J-PARC, … 

⇒ reaching a sensitivity of 10-29 e・cm ! 

 Current theoretical bound is  

   based on quark model. 

 Non-perturbative computation is  

   necessary to draw more reliable 

   conclusion. 

Harris,  0709.3100 
4 



What lattice QCD can do for nEDM 

 In principle 

 Direct estimate of neutron and proton EDM from q term, higher dim. 

CP operators 

 Matrix elements of higher dimension operators 

     

 In practice there are some difficulties 

 Statistical error 

    Source of CP violation comes from gauge background (topological 

charge, sea quark) which is intrinsically noisy. 

    Disconnected diagram is necessary because of flavor singlet contraction. 

 Systematic error 

     Volume effect may be significant. 

     Chiral behavior is important, dN ~ O(m) ? 

5 



 Spectrum method 

 Spin splitting of nucleon energy in external electric field and q term, 

which is given by 2-pt function: m↑ - m↓ = 2dNqE 

 Computational cost is cheap, and directly obtain EDM. 

 Form factor 

 

 

 F3 in Q2 → 0 provides dN  

 Subtraction to contribution of CP-odd phase in n propagator. 

 Imaginary q 

 Generate new configurations with imaginary q term, which may enhance 

signal. 

Possible lattice methods 

Izubuchi (07),  Horsley et al. (08) 

ES et al. CP-PACS(05), RBC(06) 

Aoki-Gocksch(89), ES et al. CP-PACS(06, 07) 

6 



 Ratio of spin up and down 

 

 

 Remarks 

 Reweighting works well for small real q  

 Temporal periodicity is broken by electric field. 

 

7 

Spectrum method 

•  There seems to be no significant difference 

between quench and full QCD.  

•  Statistical error is still large. 

 

•  Finite size effect from breaking of temporal 

periodicity is also significant 

Linear response, gradient is a signal of EDM. 

Full QCD with clover fermion:  

ES et al. (06, 07) 



 F3 signal 

 

 

 

 

 

 Nf=2 clover fermion 

 Sequential source for V current 

ES(08) 
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Form factor method 



Imaginary q  

 Analytically continued to pure imaginary,  q → iqI  

 

 

 There is no sign problem,  

    expect better signal. 

 Generate the QCD ensemble with qI: 

    distribution of topological charge is  

    shifted by qI  

 

Full QCD with clover fermion 

•  EDM is given by the slope.  

•  Clear signal, but systematic error due 

to chiral symmetry breaking of clover 

fermion  has not been taken into account. 

Izubuchi(07), Horsley et al. (08) 
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 Full QCD 

Comparison of results 

•  Lattice results are 

consistent within 1s. 

 

•  An order of magnitude 

larger than the results of  

current algebra. 

 

• Nf = 2+1 DWF configs. 

(RBC/UKQCD) are available 

for near physical pion mass. 

 

• Large statistical error is still 

problem. 

(O(100) measurements is not 

enough) 

10 



Error reduction techniques 

 Covariant approximation averaging (CAA) 

 For original observables O, (unbiased) improved estimator  

 

 

     which satisfies <O> = <Oimp> if approximation is covariant under lattice 

symmetry g, and error becomes 

 Ideal approximation 

ensemble ensemble  

•  Ignoring the error from O(rest) 

•  There may be many candidates of O(appx) e.g. LMA, heavy mass, … 

•  The cost of approximated observable need to be smaller than the original. 

RBC in prep. 

11 



Examples of CAA  

 Lowmode averaging (LMA) 

 Using lowlying eigenmode of Dirac operator to approximate propagator: 

 

 

where Nl is number of lowmode computed by Lanczos. 

Except for computational cost of eigenmode, Cost(LMA) ⋍ 0, but 

approximation is only lowmode part (long distance contribution). 

 All-mode averaging (AMA) 

 Using sloppy CG (loose stopping condition), 

 

If stopping cond. is 0.003, Cost(AMA) ⋍ Cost(CG)/50(without deflation). 

Approximation becomes better than LMA for other than lowmode 

dominanted observables (nucleon, finite momentum hadron, …). 

Guisti et al.(04),  Neff et al.(01), 

DeGrand et al. (04) 
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Examples of Covariant Approximations 
 All Mode Averaging 

AMA 

 Sloppy CG  or 

 Polynomial  

 approximations 

 

accuracy control : 

•  low mode part : # of eig-mode 

•  mid-high mode :  degree of poly. 
13 



Comparison between LMA/AMA 

 Preliminary result 

 8 configs, Gaussian smearing, NG = 23×4 = 32 sources, 24364×16 DWF 

•  t = 6: 

   Error in AMA is actually 

reduced by factor 5 

compared with orig. and 

LMA. 

 

•  t = 12 

   Error in AMA/LMA is 

reduced by factor 3--4 

compared with original. 

RBC in prep. 
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Comparison between LMA/AMA 

 Very preliminary 

Proton Ge (Original) 

Proton Ge  

(LMA) 

Proton Ge  

(AMA) 
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Conclusion and future work 

 Nucleon EDM in lattice QCD  

 Large statistical error is problem. 

 LMA/AMA may work well. 

 Aim for less than 10% statistical error. 

 Systematic study of finite size effect, chiral behavior, … 

 Other source CP effect  

Thank you. 
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Backup  

17 



 P(arity), T(ime reversal)[=CP] symmetry breaking  

EDM:  

 

under discrete symmetries, spin and E have different behavior 

 

 

 

 

 

 

 

 
18 

If d ≠ 0, 

Non-vanishing EDM is a signal of the P, CP violation. 

•  In EW P, CP violation following Kobayashi-Maskawa mechanism. 

•  In QCD, it is natural to exist but there has been no signal the 

breaking would be also.  

Electric dipole moment (EDM) 



Strong CP problem ? 

 Possible solution  

 Massless quark  

One of the quark flavor is massless (mu = 0 or md = 0),  

i.e. arg det M  mumdms/(mu+md+ms) = 0 

This has been refused by spectrum study in lattice QCD+QED. 

 

 Axion model 

 Pecci-Quinn (additional chiral) symmetry is spontaneously broken. 

    Axion of (in-)visible model has been almost excluded by cosmology. 

 

 Spontaneous breaking 

19 



 Contribution to EDM from weak interaction is very small  

 Vanishing 1-loop (no Im part), 2-loop diagram 

 Three-loop order(short) and pion loop correction (long): 

CP symmetry breaking in the SM 

Czmechi, Krause (1997) Khriplovich, Zhitnitsky (1982) 

Short distance Long distance 

which is the 6-order magnitude below the exp. 

upper limit: 

20 



 Energy difference between nucleon spin 

 Energy eigenvalue if q exist in the background 

 

 

    in the case of  

 2-pt function provides EDM as exponents 

 

 

 

 Two reweighting method 

Aoki-Gocksch(89), ES(06,07),  

Horsley(07), QCD-SF(08) 
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Spectrum method 

dN is given by fitting with the above asymptotic function.  

Eucleadian E, real θ 

Minkowski E, imaginay θ 



 Matrix element 

 

 

 F3 in Q2 → 0 is equivalent to dN  

 Expansion of 3pt func. at O(q) into different CP-odd sources: 

ES(05, 08) 
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Form factor  

Subtraction of CP-odd phase in n propagator (2nd and 3rd terms) is essential. 



 Statistical error 

 

 In order to reduce error, 

     do more Nmes independent measurements. 

     change to C of observables with small fluctuation. 

 

 Due to limited gauge ensembles, usually covariant observables under lattice 

symmetry Og are regarded as independent measurements: 

      

     e.g. g : lattice rotation, translation, … 

 Problem is computational cost.  

23 

Error reduction technique 



Lattice QCD’s works 

 One of the most successful non-perturbative calculation in the 

particle physics. 

 Reproduce the hadron spectrum using a few input parameters. 

 

 Monte-Carlo simulation is powerful tool. 

 

 Precision of lattice computations are getting better year by year thanks 

to development of algorithm (improved HMC, CAA) and machine 

(GPGPU, Blue Gene, Kei, …). 

 

 Flexible methodology to apply other physics concerned with strong 

interaction (e.g. many flavor, Graphene, …) 

 

BMW, PACS-CS, … 
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Introduction Actions Tuning Results bb̄ LPT B-physics Conclusion

B-physics with domain-wall light quarks and
relativistic heavy quarks

Oliver Witzel
Center for Computational Science

BNL, May 15, 2012
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Phenomenological Importance
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form factor



Introduction Actions Tuning Results bb̄ LPT B-physics Conclusion

B0–B0 Mixing
I Allows us to determine the CKM matrix elements

I Dominant contribution in SM: box diagram with top quarks

|V ∗
tdVtb| forBd−mixing

|V ∗
tsVtb| forBs−mixing

}
∆Mq =

G 2
Fm

2
W

6π2
ηBS0MBq f

2
Bq
BBq |V ∗

tqVtb|2

I Nonperturbative contribution: f 2
q BBq

I Define the SU(3) breaking ratio
ξ2 = f 2

Bs
BBs/f

2
Bd
BBd

I CKM matrix elements are extracted by

∆Ms

∆Md
=

MBs

MBd

ξ2 |Vts |2
|Vtd |2

W

W

B0 B0

b̄

q

q̄

b
t

t̄

W W

B0 B0

b̄

q

q̄

b

t t

I Experimental error of ∆Mq is better than a percent;
lattice uncertainty for ξ is about 3%
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B → πlν form factor

I Allows to determine the CKM matrix element Vub from the

experimental branching ratio

dΓ(B → πlν)

dq2
=

G 2
F |Vub|2

192π3M3
B

[
(M2

B + M2
π − q2)2 − 4M2

BM
2
π

]3/2 |f+(q2)|2

I Tension between exclusive determination and inclusive determinations

of Vub is greater than 3σ
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Possible Deviations from the Standard Model

[Lunghi and Soni 2010/11]

I Experimental value for sin(2β) is 3.3σ lower than SM expectation

I Measured value for BR(B → πlν) is 2.8σ lower than predicted

I Most likely source of deviation in Bd(s) mixing and sin(2β);

less likely in B → τν

[Laiho, Lunghi and Van de Water 2012,

http://www.latticeaverages.org]

I Scenario in which new physics is in B → τν decay and/or

in Bd -mixing preferred

I If tension is taken at face value, points to physics at a few-GeV mass scale

See also: http://ckmfitter.in2p3.fr, http://utfit.roma1.infn.it

http://www.latticeaverages.org
http://ckmfitter.in2p3.fr
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2+1 Flavor Lattice Calculations of fBs
, fB , fBs
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Our Project
I Use domain-wall light quarks and nonperturbatively tuned relativistic

b-quarks to compute at few-percent precision

I B0–B0 mixing

I Decay constants fB and fBs

I B → π`ν form factor

I Tune RHQ parameters using bottom-strange states and high statistics

I Improve upon exploratory studies and verify made assumptions

I Validate tuning procedure by computing bb̄ masses and splittings

I Derive lattice perturbation theory for matching lattice results to

continuum 1-loop in tadpole-improve lattice perturbation

I Improve matching using a mostly-nonperturbative scheme for fB , fBs

and B → π`ν
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2+1 Flavor Domain-Wall Gauge Field Configurations

s = 0 s = Ls − 1

I Domain-wall fermions for the light quarks (u, d, s)

[Kaplan 1992, Shamir 1993]

I Iwasaki gauge action [Iwasaki 1983]

I Configurations generated by RBC and UKQCD

collaborations [C. Allton et al. 2008],

[Y. Aoki et al. 2010]

approx. # time
L a(fm) ml ms mπ(MeV) # configs. sources

24 ≈ 0.11 0.005 0.040 331 1636 1
24 ≈ 0.11 0.010 0.040 419 1419 1

32 ≈ 0.08 0.004 0.030 307 628 2
32 ≈ 0.08 0.006 0.030 366 889 2
32 ≈ 0.08 0.008 0.030 418 544 2
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Relativistic Heavy Quark Action for the b-Quarks

I Relativistic Heavy Quark action developed by Christ, Li, and Lin
for the b-quarks in 2-point and 3-point correlation functions

[Christ, Li, Lin 2007; Lin and Christ 2007]

I Builds upon Fermilab approach [El Khadra, Kronfeld, Mackenzie 1997]
by tuning all parameters of the clover action non-perturbatively;
close relation to the Tsukuba formulation [Aoki, Kuramashi,
Tominaga 2003]

I Heavy quark mass is treated to all orders in (mba)n

I Expand in powers of the spatial momentum through O(~pa)
I Resulting errors will be of O(~p2a2)
I Allows computation of heavy-light quantities with discretization errors

of the same size as in light-light quantities

I Applies for all values of the quark mass

I Has a smooth continuum limit
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Tuning the Parameters of the RHQ Action
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I Compute for all seven parameter sets

spin-averaged mass M = (MBs + 3MB∗s )/4 → 5403.1(1.1) MeV
hyperfine-splitting ∆M = (MB∗s −MBs ) → 49.0(1.5) MeV
ratio M1

M2
= Mrest/Mkinetic → 1

I Assuming linearity

Yr =

 M
∆M
M1
M2


r

= J(3×3)

 m0a
cP
ζ


r

+ A(3×1) (r = 1, . . . , 7)

and defining

J =

[
Y3 − Y2

2σm0a
,
Y5 − Y4

2σcP

,
Y7 − Y6

2σζ

]
A =

 M
∆M
M1
M2


1

− J ×

 m0a
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1

I We extract the RHQ parameters and iterate until result is inside uncertainties m0a
cP
ζ

RHQ

= J−1 ×
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Nonperturbatively Tuned Parameters of the RHQ Action
(preliminary)

ml
sea m0a cP ζ

0.005 8.43(7) 5.7(2) 3.11(9)
0.010 8.47(9) 5.8(2) 3.1(2)

average 8.45(6) 5.8(1) 3.10(7)

ml
sea m0a cP ζ

0.004 4.07(6) 3.7(1) 1.86(8)
0.006 3.97(5) 3.5(1) 1.94(6)
0.008 3.95(6) 3.6(1) 1.99(8)

average 3.99(3) 3.57(7) 1.93(4)
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Preliminary Predictions for the Heavy-Heavy States
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I RHQ action describes heavy-light as well as heavy-heavy mesons

I Tuning the parameters in the Bs system we can predict bottomonium states
and mass splittings

ηb = 9350(33)(37) MeV

Υ = 9410(30)(38) MeV

∆(ηb,Υ) = 60(05)(20) MeV

∆(χb0, χb1) = 44(05)(19) MeV
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χb0 = 9808(35)(39) MeV

χb1 = 9851(35)(39) MeV

hb = 9862(36)(39) MeV

I Publication on tuning and bottomonium spectroscopy to appear soon
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RHQ Lattice Perturbation Theory [C. Lehner]

Motivation I Knowing the RHQ parameters nonperturbatively we can

compare the outcome with lattice perturbation theory

I Helps to build confidence that lattice perturbation

theory is working also in cases where we do not have

fully non-perturbative matching

(e.g. decay constants, form factors)

Method I Computation at 1-loop order

I Mean field improved

I Use nonperturbative inputs for 〈P〉, 〈R〉, 〈L〉 and m0a

I Predict: cP and ζ

I Naive α2
S ∼ 5% power-counting estimate
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I Central values: average of one-loop mean-field improved values computed
with u0 obtained from the plaquette and from the spatial Landau link

I Error on perturbative cP : difference between mean field methods dominates

I Error on perturbative ζ: naive power-counting dominates

I Nonperturbative values include systematic errors from discretization errors
in quantities used for tuning

I Agreement within errors ⇒ MF-improved LPT can be trusted in situations
for which NP matching factors are not available
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B0 − B0 Mixing Matrix Element Calculation

t1 tO∆B=2 t2

b b

q q
I Location of four-quark operator is fixed

I Location of B-mesons is varied over all possible time slices

I Need: one point-source light quark and one point-source heavy quark
originating from operator location

I Propagators can be used for B- and B-meson

I Project out zero-momentum component using a Gaussian sink

I Optimize Gaussian wavefunction to minimize excited-state contamination in
B-meson 2-point correlation function
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Preliminary B- and B∗-meson mass
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I L = 24, ml
sea = 0.005, N = 1636, only statistical uncertainty
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Mostly Nonperturbative Renormalization

For fB , fBs and B → π we plan to compute mostly non-perturbative
renormalization factors á la [El Khadra et al. 2001]

%bl =
Z bl
V√

Z bb
V Z ll

V

I Compute Z ll
V and Z bb

V non-perturbatively and only %bl perturbatively

I Enhanced convergence of perturbative serious of %bl w.r.t. Z bl
V

because tadpole diagrams cancel in the ratio

I Bulk of the renormalization is due to flavor conserving factor√
Z ll
VZ

bb
V ∼ 3

I %bl is expected to be of O(1); receiving only small corrections

I For domain-wall fermions ZA = ZV +O(mres) i.e. we know Z ll
V

[Y. Aoki et al. 2011]

I Mostly nonperturbative renormalization not yet computed for
B0–B0 mixing
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B-meson Decay Constant Calculation
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I Re-use: point-source light quark and generate

Gaussian smeared-source heavy quark

I Final result will use mostly nonperturbative

renormalization

I Very preliminary result for fBs

I Renormalization and matching

to be improved:

nonperturbative Z ll
V

perturbative Z bb
V

(tree level, 20% error)

%bl = 1

I Axial current tree-level

O(a) improved

I Small scaling violations
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B → πlν form factor [T. Kawanai]

tVµ

tsink

bq

l

t0

I Compute matrix element of the b → u vector current between

B-meson and pion

I Fix location of pion at t0 and B meson at T − tsink − t0

I Vary operator location tVµ
in that range

I B-meson is at rest, inject momentum on pion side

I Using partially quenched daughter quark-masses should help to

better resolve quark-mass dependence and pion-energy dependence
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Conclusion

I We have completed tuning the parameters of the RHQ action for
b-quarks, and find good agreement between our predictions for
bottomonium masses and fine splittings with experiment.

I Given this success, we are now using this method for B-meson
quantities such as decay constants and form factors, and expect to
obtain errors competitive with other groups.

I The RHQ action can also be used for charm quarks, and Hao Peng
is currently performing the necessary parameter tuning.

I We should have results for decay constants, mixing parameters, and
form factors within the next year, and maybe sooner!
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Conformal Window:
NFcrit < NF <NFaf 

Viable Technicolor model (e.g. 
WTC) is expected to exist in 
vicinity of NFcrit.

First task : Identifying NFcrit

Conformal Window

Chirally broken, 
confinement

Conformal Window

Asymptotic Free lost

NF

⇦ QCD

NFaf

NFcrit

0
Phase diagram@T=0

⇦ WTC?

Phase of a theory with NF degenerate massless flavors at T=0



We take Wilson fermion.

3

Disadvantages:
✓O(a) scaling violation
✓Fine-tuning,
✓...

Advantages:
✓Simple, tractable and 

well understood
✓Able to study arbitrary 

NF without any subtlety
✓Independent check to KS 

(or other) results



There are several approaches to identify NFcrit.
Focusing on SU(3) gauge theory, we are performing the 
following studies:

1. Running coupling and anomalous dimension in 
10-flavor QCD. IRFP?

2. Finite temperature study of Many Flavor QCD 
(NF = 6 - 10)
• Strategy
• Future prospect

Contents



α(μ) and γm in
10-flavor QCD
M. Hayakawa,  K.-I. Ishikawa, Y. Osaki,

S. Takeda, S. Uno, NY



DBF=0 ⇒ IRFP
g2FP ≥ 12
Continuum extrapolation 
with two data points.
In order to have more 
confidence, large V 
calculation is on-going.

gSF2(μ) in 10-flavor QCD
Hayakawa, Ishikawa, Osaki, Takeda, Uno, NY, PRD(2011) and work in progress

Preliminary
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Determination of the running coupling in Nf =6 two-color QCD with Plaquette gauge and Wilson quark actions · · · March 9, 2012

2.1 Discrete Beta function

I introduce the discrete β function (DBF) [9]

Blat(u(g2
0), l1, l2) =

1
g2(g2

0, l2)
−

1
g2(g2

0, l1)
, (9)

u = g2(g2
0, l1), (10)

s =
l2
l1

. (11)

Here I slightly modified the original DBF by an overall constant and the definition of argument. The contin-
uum counterpart is given by

BSF(u, s) =
1

g2
SF(u, s)

−
1
u

. (12)

At the leading order of continuum perturbation theory, the DBF is scheme-independent and given by

Bleading(u, s) = −b1 ln(s) =






−0.012145120 for s = 4/3
−0.017117585 for s = 3/2
−0.029262705 for s = 2

, (13)

independent of u, where Nc = 2 and Nf = 6 and g−2
SF (L) = b1 ln(L0/L) is used. If one goes to the next-

leading order, the u dependence comes in. One can include the higher order effects numerically. Using the
DBF defined in eq. (11), one can write

1
g2(u, s)

=
1 + u B(u, s)

u
, (14)

where the notation is simplified. Using the numerical values of p1 given in eq.(2), the lattice DBF values in
the small u limit can be calculated as

Blat(u, l1, l2) = p1(l1) − p1(l2)) =






−0.0084127199 for (l1, l2) = (6, 8)
−0.0070582401 for (l1, l2) = (12, 16)
−0.0076604041 for (l1, l2) = (18, 24)

−0.0100876671 for (l1, l2) = (8, 12)
−0.0100474271 for (l1, l2) = (12, 18)
−0.0106495911 for (l1, l2) = (16, 24)

−0.0185003871 for (l1, l2) = (6, 12)
−0.0171459072 for (l1, l2) = (8, 16)
−0.0177078312 for (l1, l2) = (12, 24)

. (15)

That was numerically checked.
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Adding large V data, the 
continuum limit shits 
upward.
g2FP ≥ 12 ⇒ g2FP ～	  10

⬇

More confident on IRFP

Preliminary
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@g2SF = 10



Two different step scaling 
factors give consistent 
result.

Assuming gFP2 ~10, γm~1 !

10-flavor QCD appears 
to be in CW (NFcrit <10) 
and have γm  ~ O(1).

Preliminary

γm of 10-flavor QCD
Hayakawa, Ishikawa, Osaki, Takeda, Uno, N.Y., work in progress
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of Many Flavor QCD
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Phase diagram of  Wilson fermion
for NF < NFcrit  Iwasaki et al. (91,04)

19

If the theory is confining, 
the transition line move to 
the right as T decreases (or 
V increases).

infinitely heavy quarks. Quarks are confined for any value of
the current quark mass for all values of ! at zero temperature
(Nt!").
On a lattice with a fixed finite Nt , we have the finite

temperature deconfining transition at finite ! , because the
temperature T!1/Nta becomes larger as ! increases in as-
ymptotically free theories. At K!0 (mq!"), the first order
finite temperature phase transition of pure SU#3$ gauge
theory locates at !c!5.69254(24) and 5.89405#51$ for Nt
!4 and 6 %18& and at !c!6.0625 for Nt!8 %19&. This finite
temperature transition turns into a crossover transition at in-
termediate values of K, and becomes stronger again towards
the chiral limit Kc . As K is increased, the finite temperature
transition line crosses the Kc line at finite ! %14&. We note
that, for understanding the whole phase structure which in-
cludes the region above the Kc line #negative values of the
bare quark mass$, the existence of the Aoki phase is impor-
tant %20&. A schematic diagram of the phase structure for this
case is shown in Fig. 4#b$. For simplicity, we omit the phase

structure above the Kc line. It is known that the system is not
singular on the Kc line in the high-temperature phase #to the
right of the finite temperature transition line$ %14&. The loca-
tion of the finite temperature transition line moves toward
larger ! as Nt is increased. In the limit Nt!" , the finite
temperature transition line will shift to !!" so that only the
confined phase is realized at T!0.

B. When NF is very large

We present the result for the case of NF!240 in Fig. 5.
The reason why we investigate the case where the number of
flavor is so large as 240 is the following: We have first in-
vestigated the case of NF!18 as a generic case for NN
'17. However it has turned out that the phase diagram looks
complicated when NF!18. So, to understand the phase
structure for NF'17, we have increased the number of fla-
vors like 18, 60, 120, 180, 240, and 300, and systematically
viewed the results of the quark mass and the pion mass for
all these numbers of flavors. Then we have found that when
the number of flavors is very large as 240, the phase diagram
is simple as the chirally symmetric case discussed in Sec. III.
Therefore we first show the result for the case of NF!240.
At finite Nt where numerical simulations have been per-

formed, the finite temperature transition occurs as shown in
Fig. 5. As Nt increases, the transition line moves towards
larger value of ! . The envelop of those finite temperature
transition lines is the zero temperature phase transition line,

FIG. 3. #a$ mq at !!" . #b$ m( at !!" . Results with an anti-
periodic boundary condition #apbc$ in the t direction and those with
the periodic boundary condition #pbc$ are compared on Nt!8 and 4
lattices.

FIG. 4. The phase structure for NF)6; #a$ at zero temperature,
and #b$ at finite temperatures. The chiral limit #massless quark limit$
is shown by thick curves labeled by ‘‘mq!0,’’ and the finite tem-
perature QCD transition at a fixed finite Nt is shown by a shaded
curve.

IWASAKI et al. PHYSICAL REVIEW D 69, 014507 #2004$

014507-6

~ 0.25

 

NF < NFcrit
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Phase diagram of  Wilson fermion
for NF < NFcrit  Iwasaki et al. (91,04)

19

If the theory is confining, 
the transition line move to 
the right as T decreases (or 
V increases).

Eventually, the whole region
is covered by confining
phase.
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finite temperature phase transition of pure SU#3$ gauge
theory locates at !c!5.69254(24) and 5.89405#51$ for Nt
!4 and 6 %18& and at !c!6.0625 for Nt!8 %19&. This finite
temperature transition turns into a crossover transition at in-
termediate values of K, and becomes stronger again towards
the chiral limit Kc . As K is increased, the finite temperature
transition line crosses the Kc line at finite ! %14&. We note
that, for understanding the whole phase structure which in-
cludes the region above the Kc line #negative values of the
bare quark mass$, the existence of the Aoki phase is impor-
tant %20&. A schematic diagram of the phase structure for this
case is shown in Fig. 4#b$. For simplicity, we omit the phase

structure above the Kc line. It is known that the system is not
singular on the Kc line in the high-temperature phase #to the
right of the finite temperature transition line$ %14&. The loca-
tion of the finite temperature transition line moves toward
larger ! as Nt is increased. In the limit Nt!" , the finite
temperature transition line will shift to !!" so that only the
confined phase is realized at T!0.

B. When NF is very large

We present the result for the case of NF!240 in Fig. 5.
The reason why we investigate the case where the number of
flavor is so large as 240 is the following: We have first in-
vestigated the case of NF!18 as a generic case for NN
'17. However it has turned out that the phase diagram looks
complicated when NF!18. So, to understand the phase
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vors like 18, 60, 120, 180, 240, and 300, and systematically
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all these numbers of flavors. Then we have found that when
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Therefore we first show the result for the case of NF!240.
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Fig. 5. As Nt increases, the transition line moves towards
larger value of ! . The envelop of those finite temperature
transition lines is the zero temperature phase transition line,

FIG. 3. #a$ mq at !!" . #b$ m( at !!" . Results with an anti-
periodic boundary condition #apbc$ in the t direction and those with
the periodic boundary condition #pbc$ are compared on Nt!8 and 4
lattices.

FIG. 4. The phase structure for NF)6; #a$ at zero temperature,
and #b$ at finite temperatures. The chiral limit #massless quark limit$
is shown by thick curves labeled by ‘‘mq!0,’’ and the finite tem-
perature QCD transition at a fixed finite Nt is shown by a shaded
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NF < NFcrit

infinitely heavy quarks. Quarks are confined for any value of
the current quark mass for all values of ! at zero temperature
(Nt!").
On a lattice with a fixed finite Nt , we have the finite

temperature deconfining transition at finite ! , because the
temperature T!1/Nta becomes larger as ! increases in as-
ymptotically free theories. At K!0 (mq!"), the first order
finite temperature phase transition of pure SU#3$ gauge
theory locates at !c!5.69254(24) and 5.89405#51$ for Nt
!4 and 6 %18& and at !c!6.0625 for Nt!8 %19&. This finite
temperature transition turns into a crossover transition at in-
termediate values of K, and becomes stronger again towards
the chiral limit Kc . As K is increased, the finite temperature
transition line crosses the Kc line at finite ! %14&. We note
that, for understanding the whole phase structure which in-
cludes the region above the Kc line #negative values of the
bare quark mass$, the existence of the Aoki phase is impor-
tant %20&. A schematic diagram of the phase structure for this
case is shown in Fig. 4#b$. For simplicity, we omit the phase

structure above the Kc line. It is known that the system is not
singular on the Kc line in the high-temperature phase #to the
right of the finite temperature transition line$ %14&. The loca-
tion of the finite temperature transition line moves toward
larger ! as Nt is increased. In the limit Nt!" , the finite
temperature transition line will shift to !!" so that only the
confined phase is realized at T!0.

B. When NF is very large

We present the result for the case of NF!240 in Fig. 5.
The reason why we investigate the case where the number of
flavor is so large as 240 is the following: We have first in-
vestigated the case of NF!18 as a generic case for NN
'17. However it has turned out that the phase diagram looks
complicated when NF!18. So, to understand the phase
structure for NF'17, we have increased the number of fla-
vors like 18, 60, 120, 180, 240, and 300, and systematically
viewed the results of the quark mass and the pion mass for
all these numbers of flavors. Then we have found that when
the number of flavors is very large as 240, the phase diagram
is simple as the chirally symmetric case discussed in Sec. III.
Therefore we first show the result for the case of NF!240.
At finite Nt where numerical simulations have been per-

formed, the finite temperature transition occurs as shown in
Fig. 5. As Nt increases, the transition line moves towards
larger value of ! . The envelop of those finite temperature
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General Strategy

12

✓Find the critical endpoint around mq=0.
✓Keep monitoring it while changing V to see whether it 

moves to the right with NT or V.

✓ If the endpoint moves to the right as in QCD, the theory 
is outside of Conformal Window.



This work (NF=10)

13

This work using Wilson 
Fermion on V=43x4.

1st oder weakens as 
going to small kappa.

mQ and β dependence of Polyakov loop@NF =10
Phase 0: global scan of K-β plane May 14, 2012
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Figure 25:

5.4 Nf = 8

Nf V β κ b.c. traj. spect. Figure generated by
8 83 × 16 0.0 0.220 anti-periodic 3,580 yamada
8 83 × 16 0.0 0.230 anti-periodic 2,400 yamada
8 83 × 16 0.0 0.235 anti-periodic 320 yamada
8 83 × 16 6.0 0.150 anti-periodic 6,000 15, 16 yamada
8 83 × 16 6.0 0.155 anti-periodic 4,560 15, 16 yamada

Table 5: Parameters of configurations for spectroscopy.
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Previous Results (NF=10)
Fukugita, Ohta, Ukawa (88)

14

KS, V=83x4.

Observation:
Transitions are 1st order 
over the entire range of 
fermion mass at NF=10.
No end point.
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FIG. 2. The magnitude of the jump of the Polyakov line
h(ReQ) across the transition as a function of rnva for various
numbers of flavors Nf.
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On the other hand, for mva -0.1 flip-flop behaviors with
a period of x=100 were observed at p 5.50, 5.51, and
5.52. For these runs the average of ReQ over subinter-
vals of z =50 form two clearly separate clusters center-
ing around (ReQ) =0.09-0.10 and 0.04-0.05. Similar
flip-flop behaviors with a somewhat more irregular pat-
tern were seen for m~a =0.05 at P =5.47 and 5.48.
The stable behavior at m~a =0.2 shows that the tran-

sition there is a relatively strong first-order transition.
The appearance of flip-flops and the decrease of the
amount of jump h(ReQ) across the transition at mva
=0.1 indicate that the transition weakens towards mva
=0.1. The transition, however, is still first order at mqa
=0.05, as evidenced by the persistence of the flip-flop
behavior. The transition might be weakening from

FIG. 1. The average value (ReQ) for an 83&4 lattice as a
function of p for (a) 1VI 1, (b) Nf 2, and (c) Nf 10. The
open squares in (c) are the results of a detailed heating run be-
tween P-5.1 and 5.2.

mrna 0.1 to 0.05, but it is not clear from our data
whether it eventually disappears toward mv 0 reconcil-
ing with the original prediction of the o-model analysis, s
or remains first order. '
Our results show that the first-order phase transition

persists at least down to mrna 0.05 with possible indica-
tions of weakening with decreasing mv. This is rather
different from the Nf 2 case, where the transition be-
comes continuous for an intermediately light quark mass
before turning first order again for rnva~0. 1. For
Nf 1, the Z(3) breaking effect of dynamical quarks is
probably too weak to smooth out the first-order transi-
tion of the pure gauge system.
Nf 2.—For m a 0.2, 0.1, and 0.05, the results have

been reported previously. The transition shows first-
order nature for mva 0.05 and 0.1, and that for mrna=0.2 is of continuous transition. In the present analysis,
the simulation has been extended to mrna 0.4 and 1.0.
At mqa 0.4 the average value of Q shows a continuous
increase with P, while it exhibits an abrupt jump at
mrna 1.0 [see Fig. 1(b)]. The continuous increase at
mrna 0.4 is similar to that at mva 0.2, but it appears
to occur over a narrower interval. Thus the first-order
deconfining transition, which persists at rnva 1.0, is
smoothed out before mrna 0.4 and the dynamical quark
continues to make the transition smoother at least down
to rnva 0.2. From rnva =0.1 to 0.05, b,(ReQ) increases
as shown in Fig. 2, indicating that the transition becomes
stronger towards ms 0 by the effect of the chiral phase
transition.
Wf =10.—%e made thermal-cycle analyses with z
=20 at mrna 0.1, 0.2, 0.4, 0.6, and 1.0 taking averages
over the last r-10. As shown in Fig. 1(c), we have
detected a clear hysteresis at mrna 0.1 and 1.0 which in-
dicates first-order transitions at both the chiral and
heavy-quark regions. The lack of hysteresis at other
values of mv shows that here again the transition is
weakened at intermediate values of mv. The increase of
(Q) across the transition region, nonetheless, is very
sharp at those values of rnqa. This feature and the fact
that h(ReQ) continuously increases for smaller mv (see
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or remains first order. '
Our results show that the first-order phase transition

persists at least down to mrna 0.05 with possible indica-
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different from the Nf 2 case, where the transition be-
comes continuous for an intermediately light quark mass
before turning first order again for rnva~0. 1. For
Nf 1, the Z(3) breaking effect of dynamical quarks is
probably too weak to smooth out the first-order transi-
tion of the pure gauge system.
Nf 2.—For m a 0.2, 0.1, and 0.05, the results have

been reported previously. The transition shows first-
order nature for mva 0.05 and 0.1, and that for mrna=0.2 is of continuous transition. In the present analysis,
the simulation has been extended to mrna 0.4 and 1.0.
At mqa 0.4 the average value of Q shows a continuous
increase with P, while it exhibits an abrupt jump at
mrna 1.0 [see Fig. 1(b)]. The continuous increase at
mrna 0.4 is similar to that at mva 0.2, but it appears
to occur over a narrower interval. Thus the first-order
deconfining transition, which persists at rnva 1.0, is
smoothed out before mrna 0.4 and the dynamical quark
continues to make the transition smoother at least down
to rnva 0.2. From rnva =0.1 to 0.05, b,(ReQ) increases
as shown in Fig. 2, indicating that the transition becomes
stronger towards ms 0 by the effect of the chiral phase
transition.
Wf =10.—%e made thermal-cycle analyses with z
=20 at mrna 0.1, 0.2, 0.4, 0.6, and 1.0 taking averages
over the last r-10. As shown in Fig. 1(c), we have
detected a clear hysteresis at mrna 0.1 and 1.0 which in-
dicates first-order transitions at both the chiral and
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values of mv shows that here again the transition is
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(Q) across the transition region, nonetheless, is very
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V=83x8, NF=6-10

15

1st order at large 
kappa weakens as 
going to small 
kappa.

Calc. on V=164 is 
on going.

Preliminary Results for NF=6, 7, 8, 10

Phase 0: global scan of K-β plane May 14, 2012
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(Far) Future plan

16

(strongly depends on what LHC@CERN observes.)

✓ In realistic TC model, only two of NF flavors must 
be exact massless while the other NF-2 flavors 
shouldn’t be so.

✓Go to 2 + (NF-2) QCD
✓Nice to discuss such a theory on the basis of 

Columbia plot



Columbia plot
Brown, Butler, Chen, Christ, Dong, Schaffer, Unger, and Vaccarino (90),
N.H. Christ, Z. Dong (92) and N.H. Christ(92)

17

Recent lattice results seems to favor the left.
How does this plot for many flavor QCD look like?

Kanaya, Lattice 2010
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Finite Temperature QCD on the Lattice – Status 2010 Kazuyuki Kanaya

Figure 3: Order of the finite temperature transition in 2+1 flavor QCD as a function of the degenerate u

and d quark mass m

ud

and the s quark mass m

s

. (Left) The standard scenario with the second order chiral
transition for two-flavor QCD. (Right) An alternative scenario when the two-flavor chiral transition is first
order.

experimental investigations of QGP. Estimation of T

c

in 2+1 flavor QCD has been made based on
large-scale simulations using various improved staggered quarks. However, there has been a big
discrepancy in the values of T

c

among different groups for more than five years. This year, the main
part of the discrepancy has been removed.

The nature of the transition in the chiral limit of two-flavor QCD (the upper left edge of the
figure) has significant implications for the nature of the transition at the physical point too. The
left panel of Fig. 3 summarizes the standard scenario in which the chiral transition of two-flavor
QCD is second order in the universality class of the O(4) Heisenberg model [33]. In this case,
because the chiral transition of three-flavor QCD is of first order, we have a tricritical point on
the left edge of the figure (m

ud

= 0) where the order of the transition changes from the second
order to the first order. Depending on the location of the tricritical point relative to the physical
point, the universality class dominating the parameter dependence around the physical point will
be different. The right panel of Fig. 3 shows an alternative scenario in which the chiral transition of
two-flavor QCD is first order. In this case, we have no tricritical point and thus no regions for the
O(4) universality class. A distinction between the two scenarios is important for studies at finite
densities too. Although the majority view the standard scenario as more probable, the nature of the
two-flavor chiral transition was not fully fixed. This year, we had some advances.

In this section, I discuss these developments.

3.1 Transition temperature

In 2005, the MILC Collaboration obtained T

c

= 169(12)(4) MeV in the combined chiral and
continuum limit from a measurement of a chiral susceptibility in 2+1 flavor QCD with asqtad
quarks and the one-loop Symanzik glues on N

t

= 4–8 lattices [34], where the scale was set by r1

and the O(4) critical exponent was adopted in the chiral extrapolation. In 2006, the Wuppertal-
Budapest Collaboration has published their values based on a study of the 2+1 flavor QCD with a
stout-link improved staggered quarks coupled to the tree-level Symanzik glues [35]. Carrying out
a chiral extrapolation to the physical point and a continuum extrapolation using N

t

= 6–10 lattices,
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NFcrit > 4 is assumed.
Symmetric phase diagram
Probably running is not slow 
enough.
Less interesting.
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NFcrit > 5 is assumed.
1st order persists to mU,D = ∞ 
for small mTQ.
Slow running and large γm may 
be expected at some NF.
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NFcrit > 5 is assumed.
1st order persists to mU,D = ∞ 
for small mTQ.
Slow running and large γm may 
be expected at some NF.
Furthermore,
•1st order P.T. is attractive 
because of baryongenesis. 

 Appelquist, Schwetz and Selipsky, PRD52, 4741 
(1995).
Kikukawa, Kohda and Yasuda, PRD77 (2008) 
015014

Phenomenologically interesting!
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If this is the case, 
EW Baryongenesis within 
TC seems to difficult.Z(2)

???
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NF - 2< NFcrit < NF (Speculation)
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If this is the case, not 
interesting.
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Summary
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✓Important to have several complementary 
approaches in the search for Conformal Window.

✓We employ Wilson fermion to study the properties 
of Many Flavor QCD.

✓Important to know Wilson Phase diagram when 
interpreting spectroscopy results.

✓Establishing Columbia plot for Many Flavor QCD 
clarifies phenomenologically interesting region.



Finite Volume effect

23

•Finite volume effect 
is significant.
•Masses are bounded 

from below.
•Minimum decreases 

as volume → large.

Parameter search for SU(2) spectroscopy March 16, 2012
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Figure 14: Comparison of mπ vs 2 × mpcac with 83 × 24, 163 × 32 and 243 × 48 lattices at β = 1.5 and 2.0.
Calculatios are done with plaquette gauge and six-flavors of wilson fermions.
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Del Debbio et al.(2010)

Expected behavior in Conformal Window

24

•Static limit = Quench
•In the massless limit, 

everything becomes massless.
•Dynamical scale (e.g. ΛQCD in 

QCD) also vanishes there in 
contrast to QCD.
•Therefore, mass dependence 

of gluonic quantities is the 
key.

6

MMlock

MX
V
PS

2++

0++

σ

MMlock

MX
V
PS

2++

0++

σ 1/21/2

FIG. 1: Sketches of the spectrum of a mass-deformed IR-conformal theory (square root of the string tension, 0++ and 2++

glueballs, pseudoscalar and vector isovector mesons). In the left plot, the locking sets up at an intermediate value of the fermion
mass, where dynamical fermion effects account for the physics of the system, but the pseudoscalar is not much lighter than the
other particles in the spectrum. In the right plot, the locking sets up at a high value of the fermion mass, where the heavy quark
effective theory provides a good description of the relevant degrees of freedoms. This case is realized close to the Banks-Zacks
point, but is possible in principle also if a strongly coupled IR fixed point is present.

B. Scaling region and locking scale

Under the hyperscaling hypothesis, the function FX defined in Eq. (21) is expected to approach a nonzero value
AX in the chiral limit. We can define the scaling region for a given channel X as the range of x = M/Λ around x = 0,
where the function FX(x) deviates from its asymptotic behavior by a small relative amount ε:

∣∣∣∣FX(x) −AX

AX

∣∣∣∣ < ε . (26)

In the scaling region, the mass MX obeys the power law (24) as a function of the running mass up to corrections
of order ε. The extension of the scaling region will depend on the size of the discarded subleading contributions to
formula (24) in the chosen channel.

Consider now the square root of the fundamental string tension Mσ =
√
σ (which is well defined for dynamical

fermions in the adjoint representation) and the lightest isovector meson (which is always the pseudoscalar one), with
mass MPS. A finite value x = x̄ exists, below which both these channels are in the scaling region. This means that
below the mass Mlock = x̄Λ, the corrections to the hyperscaling behavior of Mσ and MPS masses are relatively smaller
than ε. Also the ratio MPS/Mσ for every fermionic mass below Mlock will be very similar to its asymptotic value
APS/Aσ:

∣∣∣∣MPS

Mσ
−

APS

Aσ

∣∣∣∣ < O(ε) . (27)

The dynamics is dramatically different below and above the mass Mlock. In the large-mass region, M # Λ, the
gluonic and mesonic masses are parametrically independent. All the gluonic masses are proportional to Λ, while all
the mesonic masses are equal to 2M :

MPS = 2M , (28)

Mσ = BσΛ . (29)

The ratio MPS/Mσ goes to infinity in the large-mass limit. For masses below Mlock the two masses MPS and Mσ

enter the scaling region, become both independent of Λ and proportional to M . The ratio MPS/Mσ is locked to its
asymptotic value APS/Aσ. We will refer to Mlock as the locking mass.



MH and σ

25

•MP ≈ MV and MS ≈ MAV 
are typical pattern in the 
presence of heavy quark 
symmetry.
•σ1/2 is smaller than MH 

in most region.
•At V=323 x 64, σ1/2 ≈ MH

•FVE is small for σ1/2.
•σ1/2 seems to remain 

finite in the chiral limit.
•Confinement?

Parameter search for SU(2) spectroscopy March 16, 2012
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Figure 15: Various meson masses and
√
σ as a function of 2mpcac with 243×48 lattices at β = 2.0. Calculatios

are done with plaquette gauge and six-flavors of wilson fermions. One data from the simulation with the
same parameters but on 323 × 64 are also shown.
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1. Introduction

Strong interaction

Bind

{
protons and neutrons → nuclei

quarks and gluons → protons and neutrons

Spectrum of nuclei

success of Shell model since 1949: Jensen and Mayer

degrees of freedom of protons and neutrons

Spectrum of proton and neutron (nucleons)

success of non-perturbative calculation of QCD

such as lattice QCD

degrees of freedom of quarks and gluons

Motivation: Understand property of nuclei from (lattice) QCD

quarks and gluons→
Shell model︷ ︸︸ ︷

protons and neutrons→ nucleiquarks and gluons→ protons and neutrons︸ ︷︷ ︸
(lattice) QCD

→ nuclei
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1. Introduction

Strong interaction

Bind

{
protons and neutrons → nuclei

quarks and gluons → protons and neutrons

Spectrum of nuclei

success of Shell model since 1949: Jensen and Mayer

degrees of freedom of protons and neutrons

Spectrum of proton and neutron (nucleons)

success of non-perturbative calculation of QCD

such as lattice QCD

degrees of freedom of quarks and gluons

Motivation: Understand property of nuclei from (lattice) QCD

quarks and gluons→
Shell model︷ ︸︸ ︷

protons and neutrons→ nucleiquarks and gluons→ protons and neutrons→ nuclei︸ ︷︷ ︸
(lattice) QCD
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1. Introduction

Motivation :

Understand property and structure of nuclei from QCD

If we can study nuclei from QCD, we may be able to

1. reproduce spectrum of nuclei

2. predict property of nuclei hard to calculate or observe

such as neutron rich nuclei

So far only few works for multi-baryon bound states

Before studying such difficult problems, we should check

→ Can we calculate known binding energy in a-few-nucleon systems?

3



Multi-baryon bound state from lattice QCD
Not observed before ’09 (except H-dibaryon ’88 Iwasaki et al.)

Recent studies of lattice QCD for bound state of multi-baryon systems

1. 3- and 4-nucleon systems

’10 PACS-CS Nf = 0 mπ = 0.8 GeV PRD81:111504(R)(2010)

2. H dibaryon in ΛΛ system (S=−2, I=0)

’11 NPLQCD Nf = 2+ 1 mπ = 0.39 GeV

’11 HALQCD Nf = 3 mπ = 0.67–1.02 GeV

’11 Luo et al. Nf = 0 mπ = 0.5–1.3 GeV

3. NN systems

’11 PACS-CS Nf = 0 mπ = 0.8 GeV PRD84:054506(2011)

’12 NPLQCD Nf = 2+ 1 mπ = 0.39 GeV

4. ΞΞ system

’12 NPLQCD Nf = 2+ 1 mπ = 0.39 GeV

presented in this talk

Other studies: 2- and 3-nucleon forces HALQCD, ΩΩ channel Buchoff et al.
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Problems of multi-nucleon bound state

Traditional calculation method of 0th state energy

Example: 4He channel (JP = 0+, I = 0)

C4(t) = ⟨0|O4He(t)O4He(0)|0⟩

=
∑
n
⟨0|O4He|n⟩⟨n|O4He|0⟩e

−Ent −−−→
t≫1

A0 e
−E0t

1. Statistical error
→ Unphysically heavy quark mass + large # of measurements

2. Calculation cost
→ Reduce calculation costs with several methods

Multi-meson systems: ’10 Detmold and Savage
Multi-baryon systems: ’12 Doi and Endres

3. Identification of bound state in finite volume
→ Volume dependence of energy shift of 0th state
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2. Simulation parameters

Quenched Iwasaki gauge action at β = 2.416
a−1 = 1.54 GeV with r0 = 0.49 fm

Tad-pole improved Wilson fermion action
mπ = 0.8 GeV and mN = 1.62 GeV
reduce large statistical fluctuation

Finite volume dependence of 0th state
(4He, 3He, 3S1 and 1S0 channels)

• Three volumes: L = 3.1,6.1,12.3 fm
L L [fm] Nconf Nmeas
24 3.1 2500 2
48 6.1 400 12
96 12.3 200 12

• Two smearing sources: for consistency check

Simulations:
PACS-CS, T2K-Tsukuba at Univ. of Tsukuba, HA8000 at Univ. of Tokyo
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4. Results
Effective energy of 4He channel at L = 48 E0 = log

(
CHe(t)

CHe(t+1)

)

and ∆EL = log

(
R4He(t)

R4He(t+1)

)
with R4He(t) =

C4He(t)

(CN(t))4

0 4 8 12 16 20
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4
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S
1
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4
He

• Clear signal in t < 12, but larger error in t ≥ 12
• consistent plateaus in 8∼<t ≤ 12
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3. Results
3- and 4-nucleon channels ∆EL = E0 −NNmN

PACS-CS Collaboration, PRD81:111504(R)(2010)

Identification of bound state from volume dependence of ∆E

0 2e-05 4e-05 6e-05 8e-05

1/L
3

-0.06

-0.04

-0.02

0

S
1

S
2

exp.

∆E
L
[GeV]   

4
He

0 2e-05 4e-05 6e-05 8e-05

1/L
3

-0.06

-0.04

-0.02

0

S
1

S
2

exp.

∆E
L
[GeV]   

3
He

• ∆EL < 0 in three volumes ⇐ statistically independent ensembles
• Small volume dependence
• Infinite volume limit with ∆EL = −∆Ebind + C/L3
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3. Results
3- and 4-nucleon channels ∆EL = E0 −NNmN

PACS-CS Collaboration, PRD81:111504(R)(2010)

Identification of bound state from volume dependence of ∆E
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∆E4He = 27.7(7.8)(5.5) MeV ∆E3He = 18.2(3.5)(2.9) MeV

1. Observe bound state in both channels

2. Same order of ∆E to experiment

However, large systematic errors, e.g., mπ = 0.8 GeV
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3. Results
NN (3S1 and 1S0) channels ∆EL = E0 − 2mN

PACS-CS Collaboration, PRD84:054506(2011)

Identification of bound state from volume dependence of ∆E
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∆EL < 0 in three volumes
Infinite volume extrapolation ’04 Beane et al., ’06 Sasaki & TY

∆EL = −
γ2

mN

{
1+

Cγ

γL

′∑
n⃗

exp(−γL
√
n⃗2)√

n⃗2

}
, ∆Ebind =

γ2

mN

based on Lüscher’s finite volume formula
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3. Results
NN (3S1 and 1S0) channels ∆EL = E0 − 2mN

PACS-CS Collaboration, PRD84:054506(2011)

Identification of bound state from volume dependence of ∆E
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Bound state in both channels ← different from experiment

∆E3S1
= 9.1(1.1)(0.5) MeV ∆E1S0

= 5.5(1.1)(1.0) MeV

Probably bound states in Nf = 2+ 1 mπ = 0.39 GeV (’12 NPLQCD)

might be caused by heavy quark mass in calculation
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4. Preliminary results of Nf = 2+ 1

Reduce systematic errors
Quark mass dependence of ∆E and a0

Bound state in 1S0 vanishes as quark mass decreases?

Heavy quark mass

mπ = 0.8 GeV → 0.7 and 0.5 GeV

Quenched effect

Nf = 2+ 1 QCD

Finite lattice spacing

a−1 = 1.54 GeV Far future project

Calculation of NN, 3He, 4He channels
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4. Preliminary results of Nf = 2+ 1

Reduce systematic errors
Quark mass dependence of ∆E and a0

Bound state in 1S0 vanishes as quark mass decreases?

Heavy quark mass

mπ = 0.8 GeV → 0.5 (and 0.7) GeV

Quenched effect

Nf = 2+ 1 QCD

Finite lattice spacing

a−1 = 1.54 GeV → a−1 ∼ 2 GeV

Calculation of NN, 3He, 4He channels
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4. Preliminary results of Nf = 2+ 1

Simulation parameters

• Iwasaki gauge action at β = 1.90

a−1 = 2.194 GeV with mΩ

• Non-perturbative improved Wilson fermion action

mπ = 0.5 GeV and mN = 1.3 GeV

ms ∼ physical strange mass

Finite volume dependence of 0th state
Four volumes: L = 2.9,3.6,4.3,5.8 fm

Measurements: ∼ 200 confs × O(100)/per conf

Simulations:

PACS-CS, T2K-Tsukuba, HA-PACS at Univ. of Tsukuba, HA8000 at Univ. of Tokyo

and K at AICS
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4. Preliminary results of Nf = 2+ 1
3- and 4-nucleon channels

Identification of bound state from volume dependence of ∆E
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Similar results to Nf = 0 mπ = 0.8 GeV
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4. Preliminary results of Nf = 2+ 1
NN (3S1 and 1S0) channels

Identification of bound state from volume dependence of ∆E
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Similar results to Nf = 0 mπ = 0.8 GeV
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4. Preliminary results of Nf = 2+ 1
NN (3S1 and 1S0) channels

Current status of ∆E
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filled(open) symbols: Nf = 2+ 1(quenched) results

Roughly consistent with other results
Still quark mass might be heavy
Need further lighter quark mass for clear quark dependence
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5. Summary and future work

Exploratory study of light nuclei in quenched lattice QCD

• Unphysically heavy quark mass

• Volume dependence of energy shift of ground state

1. ∆E ̸= 0 of 0th state in infinite volume limit

(2. Expected properties of 1st excited state in NN)

→ bound state in 4He, 3He, 3S1 and 1S0 at mπ = 0.8 GeV

Larger ∆E than experiment

Bound state in 1S0 not observed in experiment

probably observed Nf = 2+ 1 at mπ = 0.39 GeV (’12 NPLQCD)

Need to reduce systematic errors
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5. Summary and future work

Nf = 2+ 1 calculation is on-going at mπ = 0.5 GeV

Similar result to quenched case

→ bound state in 4He, 3He, 3S1 and 1S0 at mπ = 0.5 GeV

Need further lighter quark mass calculation

16



Back up



Very preliminary Nf = 2+ 1 results at mπ = 0.7 GeV
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Larger volumes at mπ = 0.5 and 0.7 GeV underway
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Example of large quark mass dependence
rms radii from form factors F1 and F2 ’09 RBC + UKQCD
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Effective energy shift ∆EL = ENN − 2mN of 3S1 at L = 24 and L = 96

∆EL(t) = log

(
R(t)

R(t+1)

)
, R(t) =

CNN(t)

(CN(t))2
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Smearing functions of sink operator at L = 32 and L = 48

N(x)Wq2(|x− y|)N(y)
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Effective nucleon mass at L = 48

MN(t) = log

(
CN(t)

CN(t+1)

)
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Effective energy before and after diagonalization L = 48

Eij(t) = log

(
Gij(t)

Gij(t+1)

)
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Effective energy before and after diagonalization L = 32

Eij(t) = log

(
Gij(t)

Gij(t+1)

)
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Effective energy shift ∆EL,α = Eα − 2mN

for ground and 1st excited states of 3S1 at L = 48

∆EL,α(t) = log

(
Rα(t)

Rα(t+1)

)
, Rα(t) =

λα(t)

(CN(t))2
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Effective energy shift ∆EL,α = Eα − 2mN

for ground and 1st excited states of 1S0 at L = 48

∆EL,α(t) = log

(
Rα(t)

Rα(t+1)

)
, Rα(t) =

λα(t)

(CN(t))2
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3. Results (cont’d)

2. Two-state analysis
Volume dependence of ∆EL and ∆EL,0
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∆E3S1
= 7.5(0.5)(0.9) MeV ∆E1S0

= 4.4(0.6)(1.0) MeV

3S1: almost four times larger than experimental values
1S0: bound state exists different from experiment

mainly caused by heavy quark mass in calculation, probably

26



Future work quark mass dependence

Assume: our results smoothly continue to physical one

Quark mass ↘
3S1: ∆E ↘ and |a0| ↗
1S0: ∆E ↘ and |a0| ↗
1S0: → bound state vanishes, |a0| =∞ and sign(a0) = +
1S0: → a0 ↘

0 0.5 1 1.5 2 2.5

mπ
2
[GeV

2
]

-6

-4

-2

0

2

Fukugita et al.(1995) (L=2.7fm, N
f
=0)

NPLQCD(2006) (L=2.5 fm, N
f
=2+1)

Ishii et al.(2008) (L=4.4 fm, N
f
=0)

NPLQCD(2009) (L=2.5 fm, N
f
=2+1)

experiment

This work(L=6.1fm, N
f
=0)

a
0
(
3
S

1
)[fm]

0 0.5 1 1.5 2 2.5

mπ
2
[GeV

2
]

-5

0

5

10

15

20

25

30

experiment a
0
=23.7[fm]

Fukugita et al.(1995) (L=2.7 fm, N
f
=0)

NPLQCD(2006) (L=2.5 fm, N
f
=2+1)

Ishii et al.(2008) (L=4.4 fm, N
f
=0)

NPLQCD(2009) (L=2.5 fm, N
f
=2+1)

This work(2011) (L=6.1fm, N
f
=0)

a
0
(
1
S

0
)[fm]

Certainly need to study quark mass dependence
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3. Simulation parameters

• Quenched Iwasaki gauge action at β = 2.416
a−1 = 1.54 GeV with r0 = 0.49 fm

• Tad-pole improved Wilson fermion action
mπ = 0.8 GeV and mN = 1.62 GeV
reduce large statistical fluctuation

1. Single state analysis
• Three volumes

L L [fm] Nconf Nmeas
24 3.1 2500 2
48 6.1 400 12
96 12.3 200 12

• Exponential smearing sources q(x⃗) = A exp(−B|x⃗|)
O1 O2

(A,B) = (0.5,0.5), (0.5, 0.1) for L = 24
(A,B) = (0.5,0.5), (1.0, 0.4) for L = 48,96

• quark operator with non-relativistic projection in nucleon operator
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3. Simulation parameters

2. Two-state analysis with 2× 2 diagonalization
• Two volumes

L L [fm] Nconf Nmeas Nr q21 q22
32 4.1 300 192 40 0.184 1.3
48 6.1 300 144 32 0.1 1.1

• Exponential smearing sources q(x⃗) = A exp(−B|x⃗|)
O1: (A,B) = (0.5,0.5)

Or: spread random source with (A,B) = (0.5,0.5)

• Two Wavefunction smearing sinks N(x)Wq2(|x− y|)N(y)

Wq2(|r|) : Based on solution of 3-dimension Helmholtz equation

parameters: q2 and overall normalization

• quark operator with non-relativistic projection in nucleon operator

Simulations:

PACS-CS, T2K-Tsukuba at Univ. of Tsukuba

HA8000 at Univ. of Tokyo

29



4. Results
1. Single state analysis
Effective two-nucleon energy at L = 6.1 fm

ENN(t) = log

(
CNN(t)

CNN(t+1)

)
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• Clear signal in t < 12, but larger error in t ≥ 11

• consistent plateaus in 8∼<t ≤ 11
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2. Two-state analysis
Effective two-nucleon energy after diagonalization at L = 6.1 fm

Eα(t) = log

(
λα(t)

λα(t+1)

)
, Diag

[
G−1(t0)G(t)

]
= λ(t) with t0 = 6

Gij(t) = ⟨0|Oi(t)Oj(0)|0⟩
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• Close two states, but clearly split
• ground state agree with one in single state analysis
• 1st excited state below free state 2
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N + (2π/L)2
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4. Results
1. Single state analysis
Effective energy shift ∆EL = ENN − 2mN at L = 6.1 fm

∆EL = log

(
R(t)

R(t+1)

)
, R(t) =

CNN(t)

(CN(t))2
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• ∆EL < 0 in 8∼<t ≤ 11

• consistent plateaus in 8∼<t ≤ 11
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Existence of bound state for a0

System w/ bound state w/o bound state
0th bound state scattering state
1st scattering state scattering state
a0 < 0 from 1st > 0 from 0th

Bound state exists → a0 never obtained from 0th state

by Lüscher’s finite volume method

∆EL = E0
NN − 2mN = −

4πa0
mNL3

+ · · · (’86, ’91 Lüsher)

Need to check existence of bound state to calculate a0

Two properties in w/ bound state system

1. 0th state energy

2. a0 (1st state energy)
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2. 1st excited state energy
Effective energy shift for ground and 1st excited states at L = 6.1 fm

Diag
[
G−1(t0)G(t)

]
= λ(t) with Gij(t) = ⟨0|Oi(t)Oj(0)|0⟩

∆EL,α = Eα − 2mN = log

(
Rα(t)

Rα(t+1)

)
, Rα(t) =

λα(t)

(CN(t))2
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• ∆EL,0 < 0 and consistent with ∆EL

• small, but ∆EL,1 > 0 as expected
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Exploratory study of three- and four-nucleon systems
PACS-CS Collaboration, PRD81:111504(R)(2010)

Traditional method for example 4He channel

⟨0|O4He(t)O
†
4He

(0)|0⟩ =
∑
n
⟨0|O4He|n⟩⟨n|O

†
4He
|0⟩e−Ent −−−→

t≫1
A0 e

−E0t

Difficulties for multi-nucleon calculation

1. Statistical error

Statistical error ∝ exp
(
NN

[
mN −

3

2
mπ

]
t

)
→ heavy quark mass corresponding to mπ = 0.8 GeV

c.f. physical pion mass mπ = 0.135 GeV

2. Calculation cost

Wick contraction for 4He = p2n2 = (udu)2(dud)2: 518400

→ 1107 using symmetries

p↔ p, n↔ n, p↔ n, u(d)↔ u(d) in p(n)

3. Identification of bound state on finite volume

Finite volume effect in energy E0

→ Finite volume dependence of ∆E
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Exploratory study of three- and four-nucleon systems
PACS-CS Collaboration, PRD81:111504(R)(2010)

Traditional method for example 4He channel

⟨0|O4He(t)O
†
4He

(0)|0⟩ =
∑
n
⟨0|O4He|n⟩⟨n|O

†
4He
|0⟩e−Ent −−−→

t≫1
A0 e

−E0t

Difficulties for multi-nucleon calculation

1. Statistical error

Statistical error ∝ exp
(
NN

[
mN −

3

2
mπ

]
t

)
→ heavy quark mass corresponding to mπ = 0.8 GeV

c.f. physical pion mass mπ = 0.135 GeV

2. Calculation cost

Wick contraction for 4He = p2n2 = (udu)2(dud)2: 518400

→ 1107 using symmetries

p↔ p, n↔ n, p↔ n, u(d)↔ u(d) in p(n)

3. Identification of bound state on finite volume

Finite volume effect in energy E0

→ Finite volume dependence of ∆E = E0 −NNmN
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1. Introduction

Hadron spectrum from Nf = 2+ 1 QCD

’09 PACS-CS Collaboration
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Multi-baryon system from lattice QCD at ’09

1. ΛΛ system (Quenched QCD)
’85 Mackenzie & Thacker ’00 Wetzorke et al.
’88 Iwasaki et al. ’02 Wetzorke & Karsch
’99 Pochinsky et al. ‘09 NPLQCD (Nf = 2+ 1)

H dibaryon: unbound

2. NN system 3S1 and 1S0

’95 Fukugita et al. : Quenched QCD

’06 NPLQCD : Nf = 2+ 1 QCD

’08 Ishii et al. : Quenched and Nf = 2+ 1 QCD

’09 NPLQCD : Nf = 2+ 1 QCD

Deuteron: unbound due to mπ∼>0.3 GeV

3. NNN system
’09 NPLQCD : Nf = 2+ 1 QCD

Triton: likely unbound
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1. Statistical error

C4(t) = ⟨0|O4He(t)O4He|0⟩ −−−→t≫1
A0 e

−E0t

Rough estimate of noise-to-signal ratio for NN-nucleon channel

δCNN
(t)

CNN
(t)
∝

1√
Nmeas

exp
(
NN

[
mN −

3

2
mπ

]
t

)
mπ: proportional to (quark mass)1/2

quark mass → small
NN → large

Nmeas → small
⇒

δCNN
(t)

CNN
(t)
→ large ⇒

δE0

E0
→ large

Avoid large statistical fluctuation
• unphysically heavy quark mass mπ = 0.8 GeV and mN = 1.62 GeV

• larger number of measurements than typical calculation

Lighter quark mass

→ new method or much larger number of measurements
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2. Calculation cost

C4(t) = ⟨0|O4He(t)O4He(0)|0⟩ with O4He = p2n2 = [udu]2[dud]2

Number of Wick contraction Nu!×Nd! = (2Np +Nn)!× (2Nn +Np)!
4He: 6!× 6! = 518400 −→ 1107
3He: 5!× 4! = 2880 −→ 93
NN: 4!× 2! = 48 −→ 10

but contain identical contractions

Summation of ∼ (color and dirac)2NN in each contraction

Reduction of contractions

Symmetries

p↔ p, n↔ n in 4He operator

Isospin all p↔ all n

Calculate two contractions simultaneously

u↔ u in p or d↔ d in n
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2. Calculation cost (cont’d)

C4(t) = ⟨0|O4He(t)O4He(0)|0⟩ with O4He = p2n2 = [udu]2[dud]2

Number of Wick contraction Nu!×Nd! = (2Np +Nn)!× (2Nn +Np)!
4He: 6!× 6! = 518400 −→ 1107
3He: 5!× 4! = 2880 −→ 93

Summation of ∼ (color and dirac)2NN in each contraction

Further reduction: avoid same calculations of dirac and color indices

Block of three quark propagators B3
zero momentum nucleon operator in sink time slice

Blocks of two B3
1, 2, 3 dirac contractions carried out

Multi-meson systems : ’10 Detmold and Savage
Recursion relations: Rn+1 = ⟨Rn⟩ ·R1 − nRn ·R1

Multi-baryon systems : ’12 Doi and Endres
Unified contraction algorithm
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3. Identification of bound state in finite volume

C4(t) = ⟨0|O4He(t)O4He|0⟩ −−−→t≫1
A0 e

−E0t

Observed state is whether bound state or not?

Example) Two-particle system

observe small ∆E = E − 2m < 0 at single L

0 2e-05 4e-05 6e-05 8e-05 0.0001

1/L
3

2m
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3. Identification of bound state in finite volume (cont’d)
Example) Two-particle system

observe small ∆E = E − 2m < 0 at single L

0 2e-05 4e-05 6e-05 8e-05 0.0001

1/L
3

2m

bound

Bound state : ∆E = −∆Ebind + O(e−γL) < 0
Beane et al., PLB585:106(2004), Sasaki & TY, PRD74:114507(2006)

c.f.) N-particle scattering state : ∆E = Escat −Nm = O

(
−NC2 a0

ML3

)
Beane et al., PRD76:074507(2007)
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3. Identification of bound state in finite volume (cont’d)
Example) Two-particle system

observe small ∆E = E − 2m < 0 at single L

0 2e-05 4e-05 6e-05 8e-05 0.0001

1/L
3

2m

attractive

Attractive scattering state : ∆E = O

(
−

a0
ML3

)
< 0 (a0 > 0)

Lüscher, CMP105:153(1986), NPB354:531(1991)

c.f.) N-particle scattering state : ∆E = Escat −Nm = O

(
−NC2 a0

ML3

)
Beane et al., PRD76:074507(2007)
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3. Identification of bound state in finite volume (cont’d)
Example) Two-particle system

observe small ∆E = E − 2m < 0 at single L

0 2e-05 4e-05 6e-05 8e-05 0.0001

1/L
3

2m

attractivebound

Hard to distinguish at single L
Bound state and Attractive scattering state

Lüscher, CMP105:153(1986), NPB354:531(1991)

c.f.) N-particle scattering state : ∆E = Escat −Nm = O

(
−NC2 a0

ML3

)
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3. Identification of bound state in finite volume (cont’d)
Example) Two-particle system

observe small ∆E = E − 2m < 0 at several L

0 2e-05 4e-05 6e-05 8e-05 0.0001

1/L
3

2m

attractivebound

Identify bound state from volume dependence of ∆E

observe constant in infinite volume limit with L = 3.1,6.1,12.3 fm

Other methods: spectral weight: Mathur et al., PRD70:074508(2004)

Other methods: anti-periodic boundary.: Ishii et al., PRD71:034001(2005)
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3. Identification of bound state in finite volume (cont’d)
Example) Two-particle system

observe small ∆E = E − 2m < 0 at several L

0 2e-05 4e-05 6e-05 8e-05 0.0001

1/L
3

2m

attractivebound

Identify bound state from volume dependence of ∆E

observe constant in infinite volume limit with L = 3.1,6.1,12.3 fm

Other methods: spectral weight: Mathur et al., PRD70:074508(2004);

anti-periodic boundary.: Ishii et al., PRD71:034001(2005)
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3. Identification of bound state in finite volume (cont’d)
Example) Two-particle system

observe small ∆E = E − 2m < 0 at several L

0 2e-05 4e-05 6e-05 8e-05 0.0001

1/L
3

2m

attractivebound

Identify bound state from volume dependence of ∆E

observe constant in infinite volume limit with L = 3.1,6.1,12.3 fm

Other methods: spectral weight: Mathur et al., PRD70:074508(2004)

Other methods: anti-periodic boundary.: Ishii et al., PRD71:034001(2005)
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2. Problems of multi-nucleon bound state
NN channels

1. Statistical error
Not so severer than 3- and 4-nucleon channels

δCNN
(t)

CNN
(t)
∝

1√
Nmeas

exp
(
NN

[
mN −

3

2
mπ

]
t

)
2. Calculation cost

Not so severer than 3- and 4-nucleon channels

# of contraction < 10 after reduction

3. Identification of bound state in finite volume
Similar to 3- and 4-nucleon channels

Bound state in simplest multi-nucleon system, NN system?
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Scattering length a0 in NN system at ’09

0 0.5 1 1.5 2 2.5

mπ
2
[GeV

2
]

0

5

10

15

20

25

experiment a
0
=23.7[fm]

’95 Fukugita et al. (L=2.7 fm, N
f
=0)

’06 NPLQCD (L=2.5 fm, N
f
=2+1)

’08 Ishii et al. (L=4.4 fm, N
f
=0)

’09 NPLQCD (L=2.5 fm, N
f
=2+1)

a
0
(
1
S

0
)[fm]

0 0.5 1 1.5 2 2.5

mπ
2
[GeV

2
]

-6

-4

-2

0

2

’95 Fukugita et al. (L=2.7fm, N
f
=0)

’06 NPLQCD (L=2.5 fm, N
f
=2+1)

’08 Ishii et al. (L=4.4 fm, N
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a0: Far from experiments due to mπ∼>0.3 GeV

Assumption: Deuteron in 3S1 channel unbound due to mπ∼>0.3 GeV

Aim of this work: check assumption by simpler method
c.f. using nuclear force ’09 HALQCD
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Existence of bound state for a0

System w/ bound state w/o bound state
0th bound state scattering state
1st scattering state scattering state
a0 < 0 from 1st > 0 from 0th

Bound state exists → a0 never obtained from 0th state

by Lüscher’s finite volume method

∆EL = E0
NN − 2M = −

4πa0
ML3

+ · · · (’86, ’91 Lüsher)

Need to check existence of bound state to calculate a0

Two methods

1. Volume dependence of 0th state

2. Properties of 1st state energy
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Properties of 1st excited state energy in finite volume
’06 Sasaki & TY

bound state exists → 1st excited state = scattering state with a0 < 0

bound state exists →∆EL,1 > 0 at finite L

0 2e-05 4e-05 6e-05 8e-05 0.0001

1/L
3

2m
scattering

bound

2(
m

2 +(
2π

/L
)

2 )
1/

2

Scattering state : ∆EL = O

(
−

a0
mL3

)
> 0 (a0 < 0) ’86, ’91 Lüscher

1st excited state ← diagonalization method ’90 Lüscher & Wolff
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4. Results
NN (3S1 and 1S0) channels ∆EL,1 = E1 − 2mN

PACS-CS Collaboration, PRD84:054506(2011)

Volume dependence of ∆EL,1
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0.025
3
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1
1
S

0

∆E
L,1

∆EL,1 > 0 and 1/L3 tendency

Scattering length a0 fm

L[fm] 3S1

3.1 −1.5(0.2)
(
+0.2
−1.4

)
6.1 −1.05(24)

(
+0.05
−0.65

)
L[fm] 1S0

3.1 −1.8(0.3)
(
+0.4
−12.9

)
6.1 −1.62(24)

(
+0.01
−0.75

)

Observe expected properties of 1st excited state
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Computing the KL - KS mass difference in 

Lattice QCD 

Jianglei Yu

RBC and UKQCD Collaborations

May 15 2012, BNL

Monday, May 14, 12



• Introduction

• Summary of the method

• Setup of the calculation

• Short distance effect

• Long distance effect

• Mass difference

• Conclusion and future plans

Outline
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?

Introduction

•                mixing :

  ∆MK= 3.4583(6) × 10-12 Mev

•  Perturbative calculation can 

explain 70% of the mass 

difference

•  Long distance effect 

Directly evaluate second 

order weak process on a 

Lattice 

K0 � K̄0
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Summary of the method

Neglect CP violation, KL-KS mass difference is given by : 

Two parts to calculate 

∆MK : 

✓ Evaluate lattice four 

point function 

• Correct finite volume 

effect

Principal part should be 

taken when dealing with 

MK = En singularity

�MK = 2P
Z

dEn
hK0|HW |nihn|HW |K0i

MK � En
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Lattice four point function

G(tf , t1, t2, ti) = hK0(tf )HW (t2)HW (t1)K
0†(ti)i

Four point correlator :

• t1-ti and tf-t2 should be sufficiently large to get a kaon
• Fix ti and tf , correlator depends only on t2-t1

• Refer to this quantity as unintegrated correlator

Kaon source Anti-Kaon sink

d

d

s

s

u

u
t1 t2

K0†(ti) K
0
(tf)

Weak Hamiltonian

t1-ti tf-t2t2-t1
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Integrate the unintegrated correlator over a time interval :

Integrated Correlator

A =
1

2

tbX

t1=ta

tbX

t2=ta

hK0(tf )HW (t2)HW (t1)K
0†(ti)i

Kaon source Anti-kaon sourceInteraction region

ta-ti tf-tbtb-ta

• tf-tb and ta-ti should be sufficiently large to get a kaon
• Fix ti and tf , correlator depends only on tb-ta

• Refer to this quantity as integrated correlator
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After inserting a sum over intermediate states one obtains :

1 2 3,4

5

A = N2
Ke�MK(tf�ti)

(
X

n6=n0

hK0|HW |nihn|HW |K0i
MK � En

✓
�T � 1

MK � En
+

e(MK�En)T

MK � En

◆

+
1

2
hK0|HW |n0ihn0|HW |K0iT 2

)

T = tb-ta+1 is the integration range, the terms in correlator fall into five 

categories: 

1.Linear term, the coefficient  gives finite volume approximation to ∆MK

2. Constant term, which is trival 

3. Exponential decreasing term, come from states En>MK

4. Exponential increasing term, come from states En<MK

5. Quadratic term, come from state En=MK

Subtract from 
correlator

Monday, May 14, 12



Correct finite volume effect

�(E) + �0(E) + �W (E) = n⇡

Finite Volume :
• ∆MK is given by 
finite volume sum
• Tune lattice so 
Eππ = MK

• Use degenerate 
perturbation 
theory, relate Eππ 

with ∆MK

Infinite volume : 
• ∆MK is given by 
infinite volume 
integral
• π-π phase shift 
relate to ∆MK 

through kaon pole

Luscher condition:
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Result for ∆MK

Leading order term
• Tune volume so MK = Eππ
•  Remove ππ state

Add back finite volume 
correction

The finite volume correction 
is not done in this calculation

�MK =2
X

n6=n0

hK0|HW |nihn|HW |K0i
MK � En

� @2(�+ �0)/@E2

2@(�+ �0)/@E
|hn0|HW |KSi|2 �

@

@E
|hn0|HW |KSi|2

Monday, May 14, 12



Setup of the calculation

Lattice ensemble : 
• 163×32×16 , 2+1 flavor DWF 
• Inverse lattice spacing 1.73(3) Gev

• Mπ = 421 Mev, MK = 559Mev

• 800 configurations, each separated by 10 time units

• Kaon wall sources at ti = 0 at tf = 27 
• Weak Hamiltonian act between ta=4 and tb=23
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HW =
GFp
2

X

q,q0=u,c

VqdV
⇤
q0s(C1Q

qq0

1 + C2Q
qq0

2 )

Effective weak Hamiltonian

The ∆S=1 effective weak Hamiltonian in a 4 flavor theory : 

Here we only include current-current operators :

Qqq0
1 = (s̄idi)V�A(q̄jq

0
j)V�A

Qqq0
2 = (s̄idj)V�A(q̄jq

0
i)V�A

All the penguin operators are neglected, since they are highly 
suppressed because of GIM cancellation  
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Type 1 diagrams

Kaon sources

Weak Vertex
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Type 2 diagrams
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Type 3 digrams, not calculated
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Type 4 diagrams, not calculated

d s

s
d

c, u

c, u

d s

s
d

c, u

c, u

d s

s
d

c, u

c, u

d s

s
d

c, u

c, u
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π0 intermediate state
π0 intermediate state contributes an exponentially 
increasing term in the integrated correlator, which must 
be identified and removed. In this non unitary calculation, 
π0 and η have same mass, since only up quark can appear 
in our intermediate state,we define                   , calculate 
following diagrams to compute kaon to pion decay 
amplitude : 

d

s

u

u

d

s

u

u

⇡0 = iū�5u
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Result without GIM cancellation

0 5 10 15 20 25
−6

−5

−4

−3

−2

−1

0

Integration Time Interval

In
te

gr
at

ed
 C

or
re

la
to

r

 

 
Original
Remove /0 term

• Both operators are Q1

• Without GIM, there will 
be divergent short 
distance effect

• The dependence of 
correlator on time is 
almost linear imply that 
largest contribution comes 
from short distance
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Artificial cutoff

We can impose an artificial cutoff, require |x2 - x1|≥r while 
doing integral :   
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Quadratic divergence

Mass difference is given by the slope of integrated correlator
plot while the integration range is large enough.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cutoff Radius

M
as

s 
di

ffe
re

nc
e

 

 

Mass Differece
Quadratic Fit

�MK(R) =
a

R2
+ b
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GIM remove the divergence in short distance :
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Mass difference
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Quadratic Fit : 

�MK(mc) = a m2
c + b Is 1 Gev charm too 

heavy ?
Quadratic dependence 
on mc will be cutoff 
buy lattice spacing if 
charm is too heavy. 
The fitting result 
suggest we haven’t 
reach that region

Monday, May 14, 12



Long distance effect

Investigate unintegrated correlator : 

G(T ; ti, tf ) = N2
Ke�MK(tf�ti)

X

n

hK0|HW |nihn|HW |K0ie�(En�MK)T

Here T is the time separation between to weak Hamiltonian

• Separate the Hamiltonian into two parity channel :
• Parity conserving channel, long distance effect 
dominate by π0 intermediate state
• Parity violating channel, long distance effect 
dominate by ππ intermediate state

• Use various kaon masses
Monday, May 14, 12



Parity conserving channel
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4 point correlator
/0 term

G(T ; ti, tf ) = N2
Ke�MK(tf�ti)hK0|HW |⇡0ih⇡0|HW |K0ie�(E⇡�MK)T

In long distance,  correlator dominate by π0 term : 
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Parity conserving channel

• Points are the fitting 
results from unintegrated 
correlators at various 
kaon masses
• Horizontal line is the 
“exact” pion mass given 
by two point correlator 
calculation 
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Parity violating channel

In long distance,  correlator dominate by ππ term : 

G(T ; ti, tf ) = N2
Ke�MK(tf�ti)hK0|HW |⇡⇡ih⇡⇡|HW |K0ie�(E⇡⇡�MK)T

We expect to see plateau at 
long distance : 
• No signal at long distance
• Good signal from type 2 
diagrams only
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Parity violating channel

Noise behave like 
π ,exponentially 
increasing  noise to 
signal ratio

The signal from type 
2 contractions don’t 
have such noise

Type 1 Type 2
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Parity violating channel
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correlators at various 
kaon masses, type 2 
contractions only
• Horizontal line is the 
“exact” 2 pion mass given 
by two point correlator 
calculation 
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Mass difference

MK ( Mev ) �M11
K �M12

K �M22
K �MK (⇥10�12 Mev)

563 6.38(14) -2.64(14) 1.47(8) 5.52(24)
707 8.90(21) -2.96(23) 2.10(12) 7.38(37)
775 10.63(27) -3.18(30) 2.48(15) 8.61(49)
839 12.56(34) -3.62(40) 2.89(20) 9.93(65)

Μπ = 421 Mev 
Μc  = 1 Gev

• Only included statistical error
• Finite volume effect not corrected 

∆MKexp =  3.483(6) ×10-12 Mev

≈2Mπ
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Conclusions and future plans

• Lattice calculation of ∆MK is possible :

✓ Use GIM to remove divergence in short distance

✓ Remove π exponentially term

• Use on-shell K → ππ kinematics, remove 
quadratic term from integrated correlator
• Add finite volume correction term

• Include type 3 and type 4 diagrams in future
• Use Low mode averaging or A2A to collect statistics 
more efficiently
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Operator mixing and renormalization

Three group of operators :

QX
+ = QX

1 +QX
2

QX
� = QX

1 �QX
2

Equivalent basis :

(84,1)
(27,1)

X= ~, cu, uc SU(4)×SU(4)

Q̃1 = (s̄idi)V�A(ūjuj)V�A

� (s̄idi)V�A(c̄jcj)V�A

Q̃2 = (s̄idj)V�A(ūjui)V�A

� (s̄idj)V�A(c̄jci)V�A

Qcu
1 = (s̄idi)V�A(c̄juj)V�A

Qcu
2 = (s̄idj)V�A(c̄jui)V�A

Quc
1 = (s̄idi)V�A(ūjcj)V�A

Quc
2 = (s̄idj)V�A(ūjci)V�A

• Operators will not mix with penguin
• Renormalization for three groups of operators should 
be identical
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Correct finite volume effect

• Singular energy denominator 1/(MK-En) will 
introduce uncontrolled errors

•  Use generalized Lellouch-Lucsher method : 

• Tune lattice so Eππ = MK

• Finite volume Eππ depend on finite volume 
sum

• Infinite volume π-π resonant phase shift δW 
depend on infinite volume integral

• Luscher condition relate them : 

�(E) + �0(E) + �W (E) = n⇡
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Finite volume energy 

• Let |n0> be the π-π state degenerate with kaon

• Second order perturbation theory 

0

BBB@

MK +
X

n6=n0

|hn|HW |Ki|2

MK � En
hK|HW |n0i

hn0|HW |Ki En0 +
X

n6=K

|hn|HW |n0i|2

En0 � En

1

CCCA

•π-π state energy is given by : 

E± = MK ± hK|HW |n0i

+
1

2

8
<

:
X

n6=n0

|hn|HW |Ki|2

MK � En
+

X

n6=K

|hn|HW |n0i|2

En0 � En

9
=

;
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Infinite volume scattering

+ +

Strong interaction Kaon pole Weak interaction

Total phase shift is given by :

�(E) = �0(E) + arctan(
�(E)/2

MK +�MK � E
)� ⇡

X

n6=K

hn|HW |⇡⇡i|2

E � En

Require that :

�(E±) + �(E±) = n⇡
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Form factors for B → Kl
+
l
− semileptonic decay from

three-flavor lattice QCD

Ran Zhou

Indiana University

(In collaboration with FNAL/MILC)

New Horizons for Lattice Computations with Chiral Fermions,
BNL, NY

05/15/2012
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Motivations and theoretical background

B → Kll semileptonic decay occurs through Penguin diagram (b → sll).

ū ū

B K

γ, Z0

b s

l−

l+

Standard Model (SM) contributes via FCNC (suppressed)

Suitable process to detect physics BSM

Studied by many experiment groups (BABAR, Belle, CDF, LHCb etc.)

Ran Zhou (Indiana University) 05/15/2012 2 / 17



Example of observable in B → Kll process

)2/c2 (GeV2q
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 (
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q
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0.5

0.6

(a)

B+ → K+µ+µ− differential branching ratio from CDF 2011
Uncertainties in form factors are crucial to theoretical predictions(Red
lines).
High intensity front experiment(LHCb, SuperB) will come to with
more accurate result.
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Studies of B → Kll form factors from lattice QCD

Quenched lattice QCD:

A. Al-Haydari et al. (QCDSF) Eur. Phys. J. A 43, 107120 (2010)

D. Becirevic et al. Nucl. Phys. B 769, 31 (2007)

L. Del Debbio et al. Phys. Lett. B 416, 392 (1998)

A. Abada et al. Phys. Lett. B 365, 275 (1996)

Recent studies on dynamical Nf=2+1 flavors ensembles:

FNAL/MILC.(B → Kll) hep-lat/1111.0981

Cambridge group.(B → K/K ∗ll) hep-ph/1101.2726

Ran Zhou (Indiana University) 05/15/2012 4 / 17



Lattice ensembles used in B → Kll work

a−1(fm) size aml/ams Nmeas

0.12 203 × 64 0.02/0.05 2052
0.12 203 × 64 0.01/0.05 2259
0.12 203 × 64 0.007/0.05 2110
0.12 203 × 64 0.005/0.05 2099

0.09 283 × 96 0.0124/0.031 1996
0.09 283 × 96 0.0062/0.031 1931
0.09 323 × 96 0.00465/0.031 984
0.09 403 × 96 0.0031/0.031 1015
0.09 643 × 96 0.00155/0.031 791

0.06 483 × 144 0.0036/0.018 673
0.06 643 × 144 0.0018/0.018 827

Table: Ensembles of QCD gauge field configurations used in the current B2K
analysis. Four sources(0, Nt

4 ,
Nt

2 ,
3Nt

4 ) are used for all measurements

Ran Zhou (Indiana University) 05/15/2012 5 / 17



Form factors in B → Kll semileptonic decays
Two matrix elements are needed in B → Kll work:

〈B(p)|b̄γµs|K (k)〉, 〈B(p)|s̄σµνb|K (k)〉

〈B(p)|b̄γµs|K (k)〉 = f+(p
µ + kµ −

m2
B −m2

K

q2
qµ) + f0

m2
B −m2

K

q2
qµ

=
√

2mB

[
f‖

pµ

mB

+ f⊥p
µ
⊥

]




f‖(EK ) =
〈B(p)|b̄γ0s|K (k)〉

√
2mB

f⊥(EK ) =
〈B(p)|b̄γi s|K (k)〉

2
√
mB

1

pi


f0(EK ) =
2mB

m2
B −m2

K

[
(mB − EK )f‖(EK ) + (E 2

K −m2
K )f⊥(EK )

]

f+(EK ) =
1

√
2mB

[
f‖(EK ) + (mB − EK )f⊥(EK )

]
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Form factors in B → Kll semileptonic decays

Semileptonic B → K transition from tensor current:

qν〈K (k)|s̄σµνb|B(p)〉 =
i fT

mB +mK

[
q2(pµ + kµ)− (m2

B −m2
K )q

µ
]

Solve for fT :

fT =
mB +mK√

2mB

〈K (k)|ibσ0i s|B(p)〉
√
2mBk

i

Ran Zhou (Indiana University) 05/15/2012 7 / 17



Bx → Pxy ll semileptonic decays in NLO SChPT

f‖ =
C0

f
(1 + logs+ C1mx + C2my + C3E + C4E

2 + C4a
2)

f⊥ =
C0

f

[
g

E +∆∗
B + D

]

+
(C0/f )g

E +∆∗
B

(logs+ C1mx + C2my + C3E + C4E
2 + C5a

2)

where ∆∗
B = mB∗

s
−mB , D and logs are chiral log terms.

We use SU(2) chiral logs in the chiral fit.

The same formula are used for fT and f⊥.
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f‖, f⊥ and fT chiral-continuum extrapolations
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Chiral-Continuum extrapolations
give FFs at small EK . (large q2)

q2 = (pB − pK )
2 =

m2
B +m2

K − 2mBEK

z-expansion is a model
independent extrapolation
method to small q2.

Ran Zhou (Indiana University) 05/15/2012 9 / 17



z-expansion on B → Kll form factors

z-expansion maps q2 to z by:

z(q2, t0) =

√
t+ − q2 −

√
t− − t0√

t+ − q2 +
√
t− − t0

, t± = (mB ±mK )
2

Choose t0 = t+(1−
√

1− t−
t+
) → z ∈ (−0.15, 0.15) for B → Kll ,

corresponding q2 ∈ (0, 23).

Expand form factors as a function of z .

f (q2) =
1

B(z)φ(z)

∞∑
k=0

akz
k ,

where B(z) = z(q2,m2
R) and φ(z) is selected such that

∑∞
k=0 a

2
k ≤ 1

Ran Zhou (Indiana University) 05/15/2012 10 / 17



z-expansion on B → Kll form factors

f (q2) =
1

B(z)φ(z)

∞∑
k=0

akz
k ,

Numerical recipe for z-expansion:

Fit f (q2)B(z)φ(z) as a polynomial of z in the range of z ∈ (−0.15, 0)

Extrapolate z-expansion fit to z = 0.15

Convert variable z back to q2

Now, we extend lattice measured form factors from q2 ∈ (15, 23)GeV 2 to
whole q2 range.

Ran Zhou (Indiana University) 05/15/2012 11 / 17



z-expansion on B → Kll form factors

z-expansion on B → Kll form factors. (Statistical error only.)

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 2.4

 2.7

 3

 0  5  10  15  20

f+
 a

nd
 f0

q2

q2 vs. f+ and f0 z-expansion fit

f+
f0

 0

 0.3

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 2.4

 2.7

 3

 0  5  10  15  20

f T
q2

q2 vs. fT z-expansion fit

fT

kinematic constraint, f+(q
2 = 0) = f0(q

2 = 0), is applied in z-expansion
fit.

Ran Zhou (Indiana University) 05/15/2012 12 / 17



z-expansion on B → Kll form factors

z-expansion on B → Kll form factors. (Statistical and systematic error.)
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Systematic error budget
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Direct measurement of form
factors at small q2 is valuable.
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Future work

Study possible impact from the accurate form factors

Consider to measure form factors at smaller quark masses and lower
q2.

Consider form factors in B → K ∗ll semileptonic decay
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