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ABSTRACT 

We investigated the influence of the ratio of the electron and hole mobility-lifetime products, (µτ)e,h and (µτ)e/(µτ)h, on 
the resolution of CdZnTe planar radiation detectors via Monte-Carlo simulations. Preliminary results show that this ratio 
exercises a larger effect than that of any other parameter on the detector’s peak-to-valley ratio and resolution.  We 
determined the range of values of the ratio (µτ)e/(µτ)h where the fast degeneration of the photopeak in CdZnTe detectors 
takes place at a gamma-ray energy 661.7 keV (137Cs). We offer an explanation, based on the results of some of our 
experimental data, on the spectrometric performance of CdZnTe detectors.  

Keywords: CdZnTe, semiconductor gamma-radiation detector, mobility-lifetime product, Monte-Carlo simulation, 
EGSnrc, photopeak degeneration 
 

1. INTRODUCTION  
The transport properties of electrons (e) and holes (h) determine the spectroscopic characteristics of CdZnTe planar 
gamma-radiation detectors. In applications of CdZnTe radiation detectors, the main focus of attention usually is given to 
the direct influence of their transport properties on the efficiency of charge collection, CCE. Such investigations can be 
relatively easy when carried out with planar detectors for which the Hecht equation can describe the relationship between 
the CCE and the mean free paths of charge carriers λe,h. [1] 

Experiments showed [2] that in CdZnTe single-crystals, the ratio of charge transport parameters for electrons and holes 
within the same ingot may vary profoundly: (µτ)e/(µτ)h = 10…100 (µ – mobility and τ – average life time of the charge 
carrier). Furthermore, modification of the ingot’s (µτ)e,h product can be due to technological processing of the material 
during  manufacturing into a detector, or may result from the accumulation of defects during growth or operation[3]. The 
loss in spectroscopic properties over time is a characteristic feature of the processes of the creation of defects in the 
planar CdZnTe gamma-radiation detectors. At some level of the accumulated absorbed dose, the gradual decreases of the 
peak-to-valley ratio and the associated energy resolution cause the disappearance of the photopeak [3]. The centroid of the 
photopeak almost invariably remains up to the moment of its rapid degeneration, demonstrating  that the (µτ)e value is 
almost constant. Evidently, the fluid broadening in the photopeak generally takes place due to a decreasing (µτ)h value. 

In the present work, we investigated the influence of the (µτ)e,h products and (µτ)e/(µτ)h ratio on the spectroscopic 
characteristics of CdZnTe planar radiation detectors via simulation modeling. The results of our preliminary simulations 
show that the largest effect on the peak-to-valley ratio and resolution is exercised by the (µτ)e/(µτ)h ratio. We explored 
the dynamics of the CdZnTe detector’s response function for gamma-ray energies of 122 keV (57Co source) and 
661.7 keV (137Cs source).  The value ranges of the (µτ)e/(µτ)h ratio are determined, wherein the faster degeneration of the 
photopeak in CdZnTe detectors takes place at a gamma-ray energy of 661.7 keV. 
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2. SIMULATION OF CdZnTe DETECTOR RESPONSE FUNCTIONS 
We simulated 6x6x3 mm3 planar Cd0.9Zn0.1Te detectors, equipped with ohmic contacts.  The bias voltage, Ub, was 
300 V. The electron mobility-lifetime product (µτ)e was fixed at 3×10–3 cm2/V to assure the occurrence of a full 
absorption peak at the simulation of the registration of the high energy gamma-quanta. The hole mobility-lifetime 
product (µt)h was varied in the range between (µτ)e/7 and (µτ)e/100. We specified the total level of noise in the CdZnTe 
spectrometry systems (Equivalent Noise Charge – ENC) at about 300 e– (electron charge units). The detector’s dark 
current was taken as 3 nA. 

We simulated the passage of gamma-quanta through the detector using the Monte-Carlo EGSnrc package for calculating 
photon- and electron-transport [4]. The user program code, embedded in this package, mimics the detector’s response for 
every gamma-quantum, taking into account the statistical effects of pair generation within the detector’s volume and the 
modification in the amplitude of the output pulse under the influence of the electronic noise and charge-carrier capture. 
At the first stage of simulation, the program calculates the value of ionization energy, Ei, absorbed in the detector for an  
initial energy of gamma-quantum Eγ. 

At the second stage, we calculate the value of charge induced on the detector’s contacts for every interacted photon. 
Also, we take into consideration the efficiency of charge collection, the contribution of noise to the induced signal, along 
with variations in charge-carrier capture by traps. The absorbed energy Ei is converted into the charge value using the 
mean energy of generation of an electron-hole pair, ε. Our assessments of the charge-collection efficiency, CCE, in the 
planar detectors are made using the basic Hecht model[1]. Controlling the model’s parameters also are important in 
measuring channel characteristics: pulse shaping time, equivalent noise charge and the width of the analog-digital 
converter (ADC) channel. This supports our having an amplitude distribution of the pulses that most closely corresponds 
to the measured spectrum in the specific experiment. 

Generally, three factors influence the amplitude of the induced charge: 1) Fluctuations in the generation of electron-hole 
pairs (Fano noise); 2) variations in the numbers of collected electrons and holes; and 3) electronic noise. The last factor 
depends on detector’s dark currents Id, bias currents, and the thermal noises of the circuit of the input-signal’s amplifier. 
The variations in amplitude of these pulses is described satisfactorily described by a Gaussian distribution [5] with Ei/ε 
mean and σ2 variance 
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Here, F is the Fano factor characterizing the statistical fluctuations of ionization, and the distinction between real 
statistics and Poisson statistics; ε is the mean energy required for generating electron-hole pairs; 2

d d~ Iσ τ⋅ is the variance 

of the shot noise, depending on the detector’s leakage current, Id , and the pulse-shaping time τ; 2
el ~ Tσ

τ
 the variance of 

thermal electronic noise depending on the temperature, T, and pulse shaping time τ; and G(Ei) is the capture factor [6, 7]. 

The variance 2
elσ  is obtained experimentally by measuring the signal broadening from a precision pulse generator. The 

variance 2
dσ  can be calculated from measurements of the dark current-voltage.  

The trapping of charge carriers drifting under the influence of the electric field is related to the different number of 
capture centers occurring along their paths, and the probabilistic nature of the capture process. Material non-uniformities 
influence the distribution of the internal field within semiconductor detectors and the volume profile of charge-carriers’ 
lifetimes. Thus, fluctuations in charge collection are inevitable, even for the idealized case when the non-equilibrium 
depth of charge generation is fixed in the detector. The variance of the fluctuations in charge collection,  
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, is proportionate to number of  electron-hole pairs created and the ratio of carrier collection time, td, 

to life time, τe,h [7]. The proportionality coefficient is a capture factor. In this work, we fixed the capture factor of the 
CdZnTe detector at 1×10–5. 

Figures 1 to 3 show the experimental- and calculated-response functions (probability of registration of the pulse whose 
amplitude corresponds to the specified energy E) of the CdZnTe detectors measured with 241Am-, 137Cs-, and 152Eu-



 
 

 
 

 
 

sources. These data demonstrate that the described model is in good agreement with the experimental measurements. The 
qualitative trend of the calculated spectra corresponds to their spectral peculiarities. The location of the photopeaks, their 
amplitude and full-width-at-half maximum also correspond closely to the experimental data. 

The observed differences in photopeak region may be influenced by a random factor. We can suppose that the main 
reason for the evident differences between theoretical- and experimental-spectra for 137Cs (Figure 2) and 152Eu (Figure 3) 
lies in the simplified description of the geometry and the chemical composition of scattered elements from the measuring 
bench. On simulation, it leads to some underestimation of the contribution in the output signal from high energy gamma-
quanta scattered at angles more than 135° outside the sensitive volume of the detector.  

 
Figure 1. 60-keV 241Am spectrum 

 
Figure 2. 661.67-keV 137Cs spectrum 

 
Figure 3. 152Eu spectrum 

Ref. [8] contains examples of other applications of the described model. 

 

3. HECHT EQUATION ANALYSIS 
Next we consider the dependency of the efficiency of charge collection from the transport parameters of electrons and 
holes in the planar detector irradiated by gamma-quanta from the negative contact [1] 
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Here, η is the charge-collection efficiency; Qind is the charge induced on the detector contacts; Qgen is the average charge 
created at absorption energy Ei, Qgen = Ei/ε; d is the detector’s thickness; and z is the depth of gamma-quantum 
interaction within the detector’s material  (0 < x < d). 

In the following, we suppose that the values of (µτ)e, Ub, and d are constant. We use the notations
( ) be

e

U
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corresponding to the electron’s mean-free-path which is assumed constant in this research, and
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Then, equation (2) can be rewritten in the equivalent form 
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z const

d z
d

η κ
κ

=

 is equal to 

 ( , ) expe e

z const e

d z z z
d d d d

λ λη κ
κ κ κλ=

  = − + −  
   

. (4) 

The first derivative (4) is positive in the whole range, 0
e

z
κλ

> , so that the efficiency of charge collection is a 

monotonically increasing function of the ratio κ  and respectively, (µτ)h. It is correct for all z in the range from 0 to d. 

 

4. ANALYSIS OF THE CHANGE OF SPECTROSCOPIC CHARACTERISTICS OF 
CdZnTe DETECTORS 

Figure 4 demonstrates the change in the 57Co spectrum registered by CdZnTe detector with decreasing κ value. The 
centroid of the 122-keV photopeak is shifted marginally in the direction of lower energy. Therein the height of the 122-
keV photopeak and the peak-to-valley ratio is decreased more than threefold.  Degeneration of the 136-keV photopeak is 
observed. The theoretical energy-resolution of the investigated CdZnTe detector for gamma-quantum energy at 122 keV 
drops from 1.8% to 2.3%, when the value of 1/κ changes from 10 to 60. From Figure 4 , it is evident that with increasing 
1/κ , the gradual decreasing peak-to-valley ratio of CdZnTe detector takes place, corresponding with the data in Ref. [3]. 
If 1/κ is above 150, the 122-keV photopeak is broad. 

The results of simulation agree with the data from Ref. [9] (Sato et al.). Figure 8 from Ref. [9] confirms that the peak-to-
valley ratio for the 122-keV photopeak is higher for detectors with a lower 1/κ  value, even if their electron-transport 
characteristics (µτ)e are worse. Similarly, for the same (µτ)e value, detectors with a higher κ value demonstrate better 
resolution and peak-to-valley ratio. 

The simulation also confirms the experimental findings (Figure 8, Ref. [9]) deducing that the parameters of the 14.4-keV 
photopeak of the 57Co radioactive source remain constant with a changing κ  value. This reflects the fact that the depth of 
absorption of the main part of gamma-quanta with 14.4-keV energy in CdZnTe (reduction intensity in e times) is near to 
a hole-drift-length even at the worst (µτ)h values, viz., that is z ≅ λh. In this case, the second member of the equation (3) 
can be neglected, and the efficiency of the charge collection of a CdZnTe detector for 14.4-keV gamma-quanta appears 
practically constant (η(κ, z) ≈ const). 

Overall, we conclude that for gamma-quantum energies less than 150 keV, planar CdZnTe detectors of 2–3 mm 



 
 

 
 

 
 

thickness retain satisfactory spectrometric properties in the ratio range (µτ)e/(µτ)h below 30. 

 
Figure 4. 57Co spectrum transformation with decreasing κ value 

Figure 5 shows the changes that occur around the 661.7-keV photopeak with the spectrum of a 137Cs source registered by 
a CdZnTe detector. The degeneration of the 661.7-keV photopeak occurs faster than that of the122-keV photopeak. The 
value of 1/κ = 20 can be considered as the threshold level. The theoretical energy resolution of the investigated CdZnTe 
detector at 661.7 keV declines from 1.1% to 1.5% in the range of 1/κ values from 10 to 20. The planar CdZnTe detectors 
with higher value of 1/κ are unsuitable for the spectrometry of high-energy gamma-quanta, because the accumulation of 
radiation traps can lead to the disappearance of the photopeak.  

The faster degeneration of the 661.7-keV photopeak in CdZnTe detectors compared with the 122-keV photopeak is 
connected with the fact that in the simulated detector the interaction of 122-keV gamma-quanta within the detector 
material mainly occurs in the first one-third of its thickness (Figure 6). Gammas with energy of 661.7 keV uniformly 
interact with detector through its entire thickness. The efficiency of charge collection (equation 3) depends on interaction 
depth. Therefore, decreasing the hole-drift-length relative to the electron-free path more strongly reduces η(κ, z) and the 
pulse amplitude at greater depths. The full absorption cross-section of CdZnTe is small in the energy region Eγ above 
100 keV. Therefore, this restricted total pulse-number from the full absorption of 661.7-keV gamma-quantum is spread 
over a wider range of amplitudes. 

 
Figure 5. 137Cs spectrum transformation with 

decreasing κ value  

 
Figure 6. Normalized distribution of created charge 

with thickness in 6×6×3 mm3 CdZnTe detectors 
for different energies of gamma-quanta 

 



 
 

 
 

 
 

As our preliminary calculations show (Figure 7), a planar CdZnTe detector  theoretically can ensure an energy resolution 
of less than 2% at 661.7 keV provided that the value of 1/κ is less than 20. In the range 1/κ from 20 to 60, the detector’s 
resolution quickly deteriorates to 10-12% after the complete disappearance of the 661.7-keV photopeak. 

More precise data can be obtained by modifying the model of the CdZnTe detector, so to account for a changing capture 
factor G(Ei) at decreasing (µτ)h, because the increase of the number of hole traps is the main factor driving the 
degradation of the hole-transport property. 

 

 
Figure 7. Energy resolution of CdZnTe detector versus ratio (µτ)e/(µτ)h 

 

5. CONCLUSION 
The spectroscopic properties of the CdZnTe detectors are maintained when the range of the (µτ)e/(µτ)h ratio is below 20. 
If the (μτ)e/(μτ)h ratio is above 60, then the 661.7-keV photopeak cannot be observed for planar detectors, even with very 
low levels of electronic noise. These criteria establish quality-growth requirements for spectrometric CdZnTe material. 
Finding  a relationship between the mobility-lifetime product for the holes and the capture factor, and modifying the 
model of the CdZnTe detector would allow us to explain experimental data on the degradation of the detector’s 
spectrometric performance when exposed to large doses of different kinds of ionizing radiation. 
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