BROOKHFIAVEN

NATIONAL LABORATORY

BNL-98504-2012-CP

Toolkit for data reduction to tuples for the ATLAS
experiment

Scott Snyder® and Attila Krasznahorkay?

(For the ATLAS Collaboration)

! Brookhaven National Laboratory, Upton, NY, 11973, USA

? Physics Department, New York University, 4 Washington Place,
New York, NY, 10003, USA

Presented at the Computing in High Energy Physics (CHEP12) Conference
New York University, New York, NY, USA
May 21 — 25,2012

September 2012

Physics/High Energy/ATLAS

Brookhaven National Laboratory

U.S. Department of Energy

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others
to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before
publication, it may not be cited or reproduced without the author’s permission.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

Toolkit for data reduction to tuples for the ATLAS

experiment

Scott Snyder! and Attila Krasznahorkay?
(For the ATLAS Collaboration)

! Brookhaven National Laboratory, Upton NY, 11973, USA
2 Physics Department, New York University, 4 Washington Place, New York, NY, 10003, USA

E-mail: snyder@bnl.gov

Abstract. The final step in a HEP data-processing chain is usually to reduce the data to a
‘tuple’ form which can be efficiently read by interactive analysis tools such as ROOT. Often,
this is implemented independently by each group analyzing the data, leading to duplicated effort
and needless divergence in the format of the reduced data. ATLAS has implemented a common
toolkit for performing this processing step. By using tools from this package, physics analysis
groups can produce tuples customized for a particular analysis but which are still consistent in
format and vocabulary with those produced by other physics groups. The package is designed
so that almost all the code is independent of the specific form used to store the tuple. The code
that does depend on this is grouped into a set of small backend packages. While the ROOT
backend is the most used, backends also exist for HDF5 and for specialized databases. By now,
the majority of ATLAS analyses rely on this package, and it is an important contributor to the
ability of ATLAS to rapidly analyze physics data.

1. Introduction

The final stage for most HEP analyses is often works from a ‘tuple’ data format which can be
easily manipulated with interactive analysis tools such as ROOT [1]. A tuple can generally be
thought of as a two-dimensional table where the rows are events and the columns are variables
describing the event. These variables can be of either simple or more complicated data types;
in particular, events will typically contain various collections of objects (electrons, muons, etc.),
so the tuple variables for them will also be collections.

These tuple data sets are typically the responsibility of the group working on the analysis.
However, in a large experiment such as ATLAS, this rapidly leads to having many different
group-specific codes producing group-specific tuple formats. Not only does this result in
substantial duplicated effort in implementation and validation, but the fact that each tuple
has independent conventions and naming makes communication between groups difficult, and
hinders the provision of common tools that work from the tuple format.

On the other hand, however, different physics analyses do have differing requirements.
Attempting to produce a single tuple format that has sufficient information for all analyses
typically results in a tuple that’s too big to satisfy anyone.

Therefore, ATLAS has pursued a toolkit approach: ATLAS provides a set of common tools
which groups doing physics analyses can combine together, and possibly customize, to form
tuples appropriate for their analysis. The toolkit also can be easily extended, to allow adding

’ ATLAS Event Store ‘ Maker](?ile: egamma.root
Tuple: egamma
“Tracks”/ “Electrons” by :
. Object: el_
‘ TrackContainer ‘ ‘ ElectronContainer }\k ObjectFiller Block: Kinematics

‘ Track ‘ ‘ Track ‘

‘ Electron "
. ; BlockFiller

L el_eta: vector<float>
el_phi: vector<float>

Block: Cluster
el_cl_eta: vector<float>

Block: Tracks
el_trk_pt: vector<vector<float> >
el_trk_index: vector<vector<int> >

Object: trk_

.

Figure 1. Overview of tuple making. The tools in the middle process the contents of the
ATLAS event store, on the left, to the tuple structure on the right.

information specific to a particular analysis. This approach preserves flexibility while sharing
most of the development and validation effort; further, tuples made using the toolkit will share
a common set of conventions and names, facilitating sharing between groups.

This note is organized as follows. Section 2 gives an overview of the components of the
toolkit. Section 3 discusses how these components are combined to produce a complete tuple.
Section 4 outlines the tools that need to be written in order to add new kinds of data to the tuple.
Section 5 discusses the use of type-generic tools in the toolkit. Section 6 discusses the interface
used to allow writing tuples in multiple formats. Section 7 outlines utilities that ATLAS makes
available to aid in reading tuples. Finally, section 8 includes some comments on the use of the
tuples in ATLAS, and section 9 is the summary.

2. Overview
The goals for the design of the toolkit included the following;:

e The tuple should be usable for analysis with minimal runtime support.
implies a ‘flat’ tuple structure, using only standard C++ types.
should not preclude more structured types as well.

This generally
However, the toolkit

e Variables in the tuple should be grouped into related blocks at a relatively fine level of
granularity. Each block is associated with a ‘level of detail’; blocks can be selected by
choosing a level of detail or individually.

e The tuple should be easily extensible by user code without requiring changes to core
packages.

e It should be easy to change the underlying method used to store the tuple data.

The toolkit runs in the context of the ATLAS offline software framework [2-4]. This
framework is based on a collection of loosely-coupled, dynamically-loaded components which
communicate via a “blackboard”-style event store, from which objects can be retrieved based
on type and a name. The tuple toolkit provides components that access information from the
event data store and convert it to a tuple format.

An sketch of this is shown in figure 1. The toolkit produces files containing one or more
tuples; each tuple is managed by a “Maker” component, which the offline framework will call

for every event. The tuple is divided into a set of “objects,” which correspond to objects from
the ATLAS event store. Objects are managed by “ObjectFiller” tools, and the variables within
them share a common prefix. The variables within an object are grouped into “blocks,” which
define the granularity at which variables can be selected to be included in or omitted from the
tuple. Each block is managed by a “BlockFiller” tool, and is associated with a small integer
“level of detail.” During configuration, all blocks with a certain level of detail or less may be
selected; blocks may also be individually selected or excluded.

So, for each event, the framework calls the Maker component for each tuple being built.
The Maker then calls in turn each of the ObjectFiller tools. Each ObjectFiller tool will then
obtain its input, usually from the event data store. The input can either be a single object or
a container of objects. In the former case, the ObjectFiller simply passes it in turn to each of
the BlockFiller tools. In the latter case, the ObjectFiller tool loops over the the contents of
the container and calls the BlockFiller tools for each; it is also responsible for building a vector
for each of the variables containing the results. Note that a BlockFiller tool only ever deals
with a single object; handling of containers is done by the caller. This makes it easier to reuse
BlockFiller tools in different contexts.

An important concept is that of associations. An association maps a source object to one
(single association) or a set of (multiple association) target objects. The target objects may
be contained within the source object, may be referenced by the source object, or may be
constructed dynamically by the association. An association may be represented in the tuple
either by having the target objects “contained” within the source objects, or by storing within
the source objects the indices of the target objects in another part of the tuple.

Some examples may make this clearer. Consider first figure 2. An electron has associated
with it a cluster of cells in the calorimeter. The cluster has some energy, but the electron’s energy
may in principle be different (due to corrections or to incorporating information from tracking).
So we want to store both. Assume that the electron and cluster share a common interface for
retrieving kinematic information, so that we can use the same BlockFiller tool for both. We
configure the toolkit starting with a Vector ObjectFiller, a tool which records containers as
vectors. This will retrieve the container “Electrons” from the event data store and pass its
elements to the contained BlockFiller tools; each variable created by these BlockFiller tools will
be wrapped in a vector, with one entry for each element in the ObjectFiller’s input container.
The ObjectFiller will also add the prefix “el_” to all variables created by those BlockFiller
tools. This ObjectFiller then holds a BlockFiller tool to fill the transverse momentum of the
electron itself; the tuple variable this ends up producing will be called “el_pt” and will have type
“vector<float>”. A second BlockFiller is added to handle the association to the cluster. This
tool holds a single Association tool (going from an electron to its cluster) and a list of BlockFiller
tools; here this list contains another momentum filler tool. The association BlockFiller will also
add the additional prefix “cl_” to the variables it creates. We thus have another variable
“el_cl_pt,” with entries also corresponding to the elements of the electron container.

It is also possible to have multiple associations; for example, an electron may in principle
have multiple tracks associated with it. This is illustrated in figure 3. In comparison to the
previous case, the Association tool is replaced with one that associates from an electron to a
set of tracks, and the BlockFiller tool holding it is replaced with a MultiContained Association
tool. This makes one entry in the vectors for each target object; the variables that are not part
of the association are duplicated.

More useful in practice is to express the contents of the target object as nested vectors
rather than as duplicate rows; see figure 4. This is accomplished simply by changing
the association BlockFiller tool to ContainedVectorMultiAssociation, which wraps the target
variables in an additional level of vectors. The el_trk_pt variable will now have type
vector<vector<float> >, with a vector of values for each track for each element in the electron

Vector ObjectFiller:
“Electrons”
prefix: el_

el pt | el_cl_pt
45.2 43.1
23.5 23.1

BlockFiller:
Contained Association
prefix: cl_

BlockFiller:
FourMom

Association:
Electron
— Cluster

BlockFiller:
FourMom

Figure 2. Example of contained single association. Left: diagram of toolkit components. Right:
Example of the produced tuple.

Vector ObjectFiller:
“Electrons”
prefix: el_
el_i | el_pt | el_trk_pt
BlockFiller: BlockFiller: 0 45.2 43.1
F OCMl €11 MultiContained Association 0 45.2 24.8
ouriviom prefix: trk_ 1 23.5 27.6
Mult Association: BlockFiller:
Electron
FourMom
— Track

Figure 3. Example of contained multiple association. Left: diagram of toolkit components.
Right: Example of the produced tuple.

container.

An association can also be represented by storing an index into another object of the tuple.
For example, suppose in figure 5 that separate track objects are stored in the tuple, with a prefix
of “trk_”. We can than use the special BlockFiller tool IndexFiller, which stores the index of
the target track object within the trk_ object of the tuple.

Finally, in addition to the per-event data stored in the tuple, it is often useful to store
additional metadata applicable to the entire data sample. This can include information about
the processing history or beam conditions for the sample, as well as information about the
structure of the tuple itself. For ROOT tuples, the metadata is saved as objects in a separate
directory within the ROOT file alongside the tuple itself.

Here is a summary of the types of components in the toolkit.

Maker Top-level component responsible for building a tuple. Contains a list of ObjectFiller
tools, over which it iterates for each event.

Getter A tool to abstracts the process of locating the input to an ObjectFiller tool. Can

Vector ObjectFiller:
“Electrons”
prefix: el_
1 el_pt | el_trk_pt
BlockFiller: | | DlockEiller: L 5.2 | [43.1, 24.8]
Contained VectorMultiAssociation
FourMom) 23.5 [27.6]
prefix: trk_

Mult Association:)
BlockFiller:
Electron
FourMom
— Track

Figure 4. Example of contained multiple association, stored as nested vectors. Left: diagram
of toolkit components. Right: Example of the produced tuple.

el_pt | el_trk_index | ... trk_pt
Vector ObjectFiller: 15.9 [0, 2] — 43.1
“Electrons” 535] — 27.6
preﬁX: 617) “ e) 24.8
- BlockFiller:
BlockFiller: Contained VectorMultiAssociation
FourMom .
prefix: trk_

Mult Association: BlockFiller:
Electron IndexFiller
— Track trk_

Figure 5. Example of indexed multiple association. Left: diagram of toolkit components.
Right: Example of the produced tuple.

retrieve either a single object or a container of objects; in the latter case, it also provides
an interface to iterate over the objects within the container. Standard Getter tools are
provided for the usual case of retrieving objects from the event data store; however, there
are some special cases for which alternate implementations are useful.

ObjectFiller Handles filling all variables for one tuple object. It contains a Getter tool, which
is used to obtain the input object, and a list of BlockFiller tools. Several varieties of
ObjectFiller tool are provided. One simply passes the input object directly to the BlockFiller
tools. Another expects the input object to be a container. It creates a vector for each
variable and loops over the contents of the container. It passes each element to the
BlockFiller tools, telling them to fill in the appropriate elements of the vector. A third
variety does not take any object as input: this is used for some blocks for which the input
does not come directly from the event data store (for example, trigger decisions).

BlockFiller Copies data from an input object to a set of output variables. This is the type of

N OO »

oo

1
2

3

tool one needs to write in order to add support for a new object type. A BlockFiller tool
that expects input of type T will derive from BlockFillerTool<T>; however, it is possible
to write a generic tool that can accept any type as input.

Some special BlockFiller tools are used to support associations as described above. They
contain lists of child BlockFiller tools that are applied to the target(s) of the association.

Association Tools deriving from SingleAssociationTool<FROM_T,TO_T> take an object
of type FROM_T as input and return an object of type TO_T. Tools deriving from
MultiAssociationTool<FROM_T,TO_T> are similar, but provide an interface to iterate over
a set of objects of type TO_T.

MetaData As discussed above, additional information may be written alongside the tuple after
the completion of event processing. This is accomplished by registering a MetaData tool
with the Maker. The tool will be called when event processing is complete.

3. Configuration
This section describes the configuration of the toolkit. Like all parts of the ATLAS offline
framework, the toolkit is configured using Python scripts.

Here is an example of a function to define a tuple. This is similar to what a group doing a
physics analysis would maintain to define a tuple for that analysis (albeit much simpler).

def myTuple():

tuple = MakerAlg (’mytuple’, file = ’myfile.root’)

tuple += ElectronTupleObject (3)

tuple += TrackTupleObject (1)

tuple += ElectronTupleObject (O,
sgkey = ’myEles’,
prefix = ’myel_’,
include = [’Shape’])

return tuple

The tuple is created by the call in line 2. The first argument gives the name of the tuple
being created; the name of the file in which it is contained may also be specified. By default, a
ROOT tuple is made; however, a different sort of tuple may be made instead by passing to the
Maker an alternate tool to use to create the tuple.

An object is added to the tuple in line 3. The argument is the requested level of detail,
with larger numbers representing more detailed information. The example here requests that
all blocks with a level of detail of 3 or less be included. The toolkit also needs to know the
name of the object to retrieve from the event data store and the prefix to add to this object’s
variables. Here we use the defaults that were specified when the object was defined (see below).
Line 4 shows adding another object with a different level of detail. Line 5 shows adding another
electron object. This time, rather than taking the defaults, the code requests the electron named
“myEles” from the event data store, and the prefix to be used in the tuple is set to “myel_”.
This object is requested with a level of detail of 0; however, the block named “Shape” is also
explicitly requested.

The next example shows how to define an object to add to a tuple. These parts of
the configuration are generally maintained by groups responsible for specific physics objects:
electrons, muons, etc.

Create a tuple object --- think of it like a class.
Arguments are the name of the C++ container type, the default name
of the object in the event store, and the default prefix within

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

the tuple.

ElectronTupleObject = make_SGDataVector_TupleObject (’ElectronContainer’,
’Electrons’,
’el_’)

Define some blocks. Arguments are the level of detail, the block name,

and the BlockFiller tool.

ElectronTupleObject.defineBlock (0, ’Kinematics’, FourMomFillerTool,
WriteMass = False)

ElectronTupleObject.defineBlock (1, ’Shape’, EleShapeFillerTool)

Add cluster kinematics by associating to a cluster

and adding another kinematics block.

ElClusterAssoc = SimpleAssociation (ElectronClusterAssocTool, prefix = ’cl_’)
ElClusterAssoc.defineBlock (1, ’ClusterKin’, FourMomFillerTool)

Associate to set of tracks. Add both track momenta

directly and indices into track list in the tuple.

TrkClusterAssoc = ContainedVectorMultiAssociation (ElectronTrackAssocTool,
prefix="trk_’)

TrkClusterAssoc.defineBlock (1, ’TrackKin’, FourMomFillerTool)

TrkClusterAssoc.defineBlock (1, ’TrackIndex’, IndexFillerTool, Target=’trk_’)

The object is defined in line 5. Here, “ElectronTupleObject” can be thought of as being
analogous to a class, which is instantiated when it gets added to a tuple. The function
make_SGDataVector_TupleObject constructs a tuple object that retrieves a container from
the event store and fills vector variables in the tuple with the elements. The arguments are the
name of the C++ type of the object to be retrieved from the event store, the default name of
the object to be retrieved, and the default prefix to use for this object in the tuple.

Two blocks are defined starting at line 11, using the defineBlock method. The arguments
are the level of detail for the block, the name of the block, and the BlockFiller tool used
to fill the block. Any additional arguments are passed through to the BlockFiller tool; for
example, the argument “WriteMass = False” is passed to the Kinematics BlockFiller. (Such
settings my be overridden when the tuple object is instantiated by passing in arguments like
“ElectronTupleObject (3, Kinematics_WriteMass = False)”.)

A single contained association is set up by SimpleAssociation, as shown in line 17. Here
the arguments are the Association tool and an optional prefix to add to variables created by
this association. SimpleAssociation returns another tuple object; defineBlock can then be
used to create blocks taking as input the target object of the association.

Similarly, line 22 sets up a multiple association. ContainedVectorMultiAssociation
puts the results of the association in nested vectors, as in figure 4. As before, one uses
defineBlock to create variables using the target objects of the association. The special
BlockFiller IndexFillerTool is used to record the index of the object within another object in
the tuple; the “Target” argument refers to the prefix of that other object. It is also possible to
give IndexFillerTool a list of targets; in that case, the index of the target in which the object
is found may also be saved.

In the usual case, the level of detail argument passed to defineBlock is a small integer.
But a function may be specified in order to implement more complicated logic. For example,
the fragment below demonstrates defining a block that will be present only if an argument
“TrackIndex_Target” is specified when the object is added to the tuple.

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28

Level-of-detail function for TrackIndex.
The arguments are the requested level of detail and the dictionary
of arguments to be passed to the BlockFiller (which the function
may modify, if desired).
def trkAssoclLevel (reqlev, args):
return reqlev >= 1 and args.get (’Target’)

Define a block with a level-of-detail function.
TrkClusterAssoc.defineBlock (trkAssocLevel,
>TrackIndex’, IndexFillerTool, Target=’’)

4. Writing BlockFiller and Association tools

The most common tools that one need to write when using the tuple toolkit are BlockFiller
tools and Association tools. Examples of these tools are given below. (Some details such as
namespace assignments have been omitted for these examples.)

4.1. BlockFiller tools

A BlockFiller tool copies data from a C++ object into the tuple. Here is a simple example
of filling variables from a hypothetical four-momentum class. Further notes are given after the
example.

// Example block filler tool, taking as input a hypothetical ‘FourMom’ class.
struct FourMomFillerTool
: public BlockFillerTool<FourMom>

{
private:
// Variables being filled. The pointed-to type sets the type
// of the tuple variable.
// Class types may also be used.
float *m_pt, *m_eta, *m_phi, *m_m;
// Tool properties.
bool m_WriteMass;
public:

// Constructor. Called by the component framework, not by user code.
// The arguments are used by the framework, and should just be
// passed through to the base class.
FourMomFillerTool (const std::string& type,
const std::string& name,
const IInterface* parent)
: BlockFillerTool<FourMom> (type, name, parent)
{
// Declare a tool property.
declareProperty ("WriteMass", m_WriteMass = false,
"Should the mass be written?");

29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52

// Called once at the start of the first event to declare variables to fill.
virtual StatusCode book()
{

CHECK(addVariable ("pt", m_pt, "Transverse momentum"));

CHECK(addVariable ("eta", m_eta, "Pseudorapidity"));

CHECK(addVariable ("phi", m_phi, "Polar angle"));

if (m_WriteMass)

CHECK(addVariable ("m", m_m, "Mass"));
return StatusCode: :SUCCESS;

// Called for each object. The tuple toolkit is responsible

// for setting the pointers appropriately before each call.

// On entry, the contents of each variable will have been initialized to O.
virtual StatusCode fill (const FourMom& p)

{
*m_pt = p.pt(Q);
*m_eta = p.eta();
*m_phi = p.phi();

if (m_WriteMass)
*xm_m = p.mQ);
return StatusCode: :SUCCESS;
}
};

Line 2 defines the class. A BlockFiller tool taking a specific type T as input should derive
from BlockFillerTool<T>. It is also possible to declare a tool which can accept one of a set
of types, by using the form BlockFillerTool<Types<T1, T2> > (in this case, the tool should
declare multiple overloads for the £i11() method described below). As a special case, if T is
void, this means that the tool does not expect any input (and in this case, the £i11() method
should be declared with no arguments).

Line 9 defines member variables corresponding to each tuple variable to be filled; the type
of the member variables should be a pointer to the desired type. (This is what sets the type
of the variables in the tuple.) Tools can also have additional properties that are managed by
the component framework and are set during initialization. Line 12 declares a member variable
corresponding to one such property.

Line 23 is the definition of the constructor. In the ATLAS component framework, the tool
constructors are not called directly by user code, but rather by the framework. From the point
of view of the tool, the constructor arguments are simply boilerplate to pass through to the
base class. The constructor is, however, where tool properties are defined to the component
framework; here, we define a flag that will control whether or not we should write the invariant
mass to to the tuple.

Line 31 shows the book method. This is called once by the tuple toolkit and should make
one addVariable call for each tuple variable to be filled. The addVariable method has two
required arguments: the name of the variable (to which the toolkit may then add a prefix) and
a member variable that is a pointer to the type of the variable. An optional third arguments
gives a documentation string for the variable; this is stored in the written tuple. An optional
default value for the variable may also be given to addVariable. (The CHECK macro used here
is an ATLAS idiom to check the return status of a call.)

10
11
12

13

10
11
12

13

Line 44 shows the £i11 method. This is called once for every object, and should copy data
from that object into the locations pointed to by the member variables that were passed to
addVariable. The toolkit is responsible for setting these pointers appropriately before the call
to £i11; the objects pointed to are guaranteed to be cleared to zero (or the default value given
to addVariable, if it was specified) at the entry to £ill.

4.2. Single Association tools
A single Association tool maps from one object to another.

// Example single association tool.
class ElectronClusterAssociationTool
: public SingleAssociationTool<Electron, Cluster>
{
public:
// Constructor omitted...
// Perform the association. May return null.
virtual const Cluster* get (const Electron& p)
{
return p.cluster();
3
s

A single Association tool derives from SingleAssociationToo<FROM_T, TO_T> (line 3).
The get method (line 10) should take an object of type FROM_T and return a pointer to
TO_T. A null pointer may also be returned (in which case any BlockFillers depending on this
association will not be called, and their variables left with their default values). Usually the get
method is very simple, as in this example. However, it is also possible for the get method to
construct the resulting object dynamically. In this case, the tool should also define a method
releaseObject (const TO_T&); this will be called when the toolkit is finished with the object
and it can be deleted.

4.8. Multiple Association tools

A multiple Association is somewhat more complicated than a single Association because the
Association tool must also be able to act as an iterator over the results of the association.
Here’s an example.

// Example multiple association tool.
class ElectronTrackAssociationTool

: public MultiAssociationTool<Electron, Track>
{
private:

Electron: :TrackConstIterator m_beg, m_end;

public:
// Constructor omitted...

// Prepare to start an association starting from an object.
virtual StatusCode reset (const Electron& p)

{

14

15

16

17

18

19

20

21

22

23

24

25

26

m_beg = p.tracks_begin();
m_end = p.tracks_end();

3

// Return the next target in the association.
// Return O at the end of the iteration.
virtual const Track* next ()

{
if (m_beg == m_end)
return O;
return *m_beg++;
}

};

A multiple Association tool derives from MultiAssociationTool<FROM_T, TO_T> (line 3).
Rather than a single get method, the association is done by first calling the reset method
(line 13), passing in the source object, and then calling next (line 21) repeatedly until it returns
null to signal the end of the association. In general, this means that the tool will need to save
the state of the iteration (as in line 6).

5. Generic tool implementation

Some of the tools used to make tuples necessarily depend on the type of the object being
processed, for example most BlockFiller and Association tools. Others, such as ObjectFiller
tools, pass around pointers to data objects but never look inside them. However, to be correct
according to C++ type rules, these tools would need to be templated on the type being processed.
Each instantiation of these template classes would then have to made known to the component
framework. This entails significant extra effort to allow the toolkit to work with a new type,
and results in duplication of code at runtime.

But simply using a generic pointer and keeping track of the object type is not sufficient. For
example, if one has an Electron object that derives from a FourMom class, one would like to be
able to add to the electron tuple object a BlockFiller that takes a FourMom as input. Thus, the
toolkit also needs to understand the inheritance relations between classes.

This information is not available using the standard C++ run-time type identification.
However, the ATLAS event data model does make such information available. This relies on
using a special macro to declare inheritance relations. In this example:

struct B {};
struct D : public B {};
SG_BASE (D, B);

the SG_BASE macro declares that D derives from B. (There are other forms of the macro for
multiple and virtual derivation.)

One can then use the BaseInfoBase interface to test classes for inheritance relationships and
to convert pointers:

// Given a generic pointer to FROM_TYPE, convert it to a pointer to TO_TYPE.
const void* convert (const void* p,

const std::type_info& from_type,

const std::type_info& to_type)
{

const BaseInfoBase* bib = BaseInfoBase::find (from_type);

7

9

10

N OO »

oo

10

11

if (bib && bib->is_base (to_type))
return bib->cast (p, to_type);
return O;

3

The container type usually used in the event data store is DataVector<T>. This acts like a
vector<T*>, but has an additional feature that if a macro “DATAVECTOR_BASE (D, B);” has
been given, then DataVector<D> will derive from DataVector. Thus, the containers have
an inheritance hierarchy that mirrors that of the elements. The same BaseInfoBase interface
described above works for such DataVector classes as well. Further, an interface is provided to
access the element pointers of the DataVector without having to know the specific type of the
container.

We can now outline how this is used in the tuple toolkit. During job initialization, a
configure method is called on each ObjectFiller tool. Recall that each of these tools has a
Getter tool that abstracts the process of retrieving the input object from the event data store
(or possibly somewhere else). The ObjectFiller tool calls a method of the Getter interface that
returns the type of object that it retrieves. It then calls a configure method for each BlockFiller
tool. These tools then compare this type to the type they expect to receive as input and prepare
to do a type conversion if the conversion is legal, or produce an error otherwise.

During event processing, the ObjectFiller calls the fillUntyped method, which is
implemented in the BlockFillerTool<T> template class. This takes the argument as a generic
pointer, performs the conversion to a T*, and then calls the £i11 method of the derived class.

This approach allows type checking to be done during job initialization, before events are
processed. Also, much of the work needed to set up the type conversions can be done during
initialization, reducing the overhead during event processing.

6. Alternate storage formats

While by default, tuples are written in ROOT format, the toolkit was designed so that other
formats can also be used. The toolkit defines a simple abstract interface for writing data to a
tuple, with these essential methods:

virtual StatusCode addVariable (const std::string& name,
const std::type_info& ti,
void* & ptr,
const std::string& docstring = "",
const void* defval = 0);
virtual StatusCode capture();
virtual StatusCode clear();
virtual StatusCode addMetadata (const std::stringk& key,
const void* obj,
const std::type_info& ti);

The addVariable method (line 1) is used to declare a new variable to be written to the
tuple. It takes the variable name, the variable type (as a C++ type_info), and a reference
to a pointer. The tuple implementation should initialize the pointer appropriately. Optional
arguments allow specifying a documentation string for the variable and a default value for it.

The capture method (line 6) takes the current values of all the tuple variables and makes
a new persistent tuple entry from them, while the clear method (line 7) resets all variables

10

11

12

13

14

15

to zero (or their specified default values). Finally, the addMetadata method allows adding an
arbitrary named object to be written along with the tuple.

In addition to ROOT, an interface is also available for writing tuples in HDF5 format [5].
ATLAS also plans to use this mechanism for creating the “tag” database: this is a relational
database that holds basic information about each event, to allow rapid selection of events of
interest [6].

7. Reading tuples

The tuples produced by the toolkit, with the default ROOT backend, can be read by ROOT
with no additional software, and many analyses on ATLAS do start from this point. However,
it is often more convenient to be able to have a more object-oriented view of the data. This is
provided by the TupleReader package.

When a tuple is written, extra metadata is saved that records the association between
variables in the tuple and the object structure that was used to produce it. Such a tuple can then
be read by a code generator which produces C++ code that implements classes corresponding
to these objects. (This is somewhat analogous to the ROOT MakeClass facility.)

Here’s an example of how these classes might be used.

void sample (TTree* tree)

{
Long64_t entry = O;
EventInfoObject event (entry);
ElectronObject el (entry, "el_");

event.ReadFrom (tree);
el.ReadFrom (tree);

for (entry = 0; entry < tree->GetEntries(); ++entry) {
std::cout << "Event number " << event.EventNumber() << std::endl;
for (Int_t i = 0; i < el.n(); ++i)
std::cout << " Ele " << i << " pt " << el[i].pt() << std::endl;

A Python-based package also exists which similarly lets one access the tuple data in an
object-oriented fashion. No separate code generator is needed for this case, though, due to the
dynamic nature of the Python language.

8. Experience in ATLAS

The tuple framework was in place for the first collision data taken with ATLAS, and was used
for early performance studies. Since then, the usage of these tuples has expanded dramatically.
They are now used by the majority of ATLAS physics analyses, and have replaced most custom
tuple formats.

Tuple making using this toolkit is now integrated into the ATLAS production system. An
issue that arose is that making the tuples was taking too much CPU time, up to one CPU second
per event. This time was being taken not by the tuple framework, but by other ATLAS tools
which were being called from BlockFiller tools. A contributing factor to this was that during
the rapid growth of the use of tuples, no timing studies were done as new information was added
to the tuple. Once profiling studies were done, several bottlenecks were found for which simple
fixes sped up tuple making several times. Further improvements are expected as this is studied
further.

9. Summary

The tuple framework described here is now an integral part of the ATLAS physics analysis effort,
with the majority of physics analyses relying on it. It provides a modular way for physics groups
to construct tuples appropriate to their specific analyses while at the same time allowing them
to share implementation and validation efforts. It also provides a common set of names and
conventions, making it feasible to provide tools that can be useful across many different tuple
types. This contributes to the ability of ATLAS to quickly analyze physics data.

Acknowledgments
This work is supported in part by the U.S. Department of Energy under contract DE-AC02-
98CH10886 with Brookhaven National Laboratory.

References

[1] Brun R and Rademakers F 1997 Phys. Res. A 389 81-6 URL http://root.cern.ch

[2] van Gemmeren P and Malon D 2009 IEEE Int. Conf. on Cluster Computing and Workshops, 2009, New
Orleans, USA pp 1-8

[3] Duckeck G et al. (ATLAS) 2005 ATLAS computing technical design report Tech. Rep. CERN-LHCC-2005-022
CERN

[4] Barrand G et al. 2001 Comp. Phys. Comm. 140 45

[5] The HDF group 2000-10 Hierarchical data format version 5 URL http://www.hdfgroup.org/HDF5

[6] Ehrenfeld W et al. (ATLAS) 2011 J. Phys: Conf. Ser 331 032007

