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Identification of Matrix Conditions that Give Rise

to the Linear Coupling Resonances

C.J. Gardner

Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

General definitions of horizontal and vertical amplitudes for linear coupled motion are developed from the
normal form of the one-turn matrix. This leads to the identification of conditions on the matrix that give rise
to the linear coupling sum and difference resonances. The correspondence with the standard hamiltonian
treatment of the resonances is discussed.

1. Introduction

One of the hallmarks of linear coupling is the
resonant exchange of oscillation amplitude between
the horizontal and vertical planes when the dif-
ference between the unperturbed tunes is close to
an integer. The standard derivation of this phe-
nomenon (that is, the difference resonance) can be
found, for example, in the classic papers of Guig-
nard [1, 2, 3]. One starts with an uncoupled lattice
and adds a linear perturbation that couples the two
planes. The equations of motion are expressed in
hamiltonian form. As the difference between the
unperturbed tunes approaches an integer, one finds
that the perturbing terms in the hamiltonian can
be divided into terms that oscillate slowly and ones
that oscillate rapidly. The rapidly oscillating terms
are discarded or transformed to higher order with
an appropriate canonical transformation. The re-
sulting approximate hamiltonian gives equations of
motion that clearly exhibit the exchange of oscilla-
tion amplitude between the two planes.

If, instead of the hamiltonian, one is given the
four-by-four matrix for one turn around a syn-
chrotron, then one has the complete solution for the
turn-by-turn motion. However, the conditions for
the phenomenon of amplitude exchange are not ob-
vious from a casual inspection of the matrix. These
conditions and those that give rise to the related
sum resonance are identified in this article. The
identification is made by expressing the one-turn
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matrix in normal form and defining appropriate am-
plitudes for oscillations in the horizontal and verti-
cal planes. The resonance conditions are found to
be encoded in a two-by-two matrix M formed from
the normal-form matrix W . The formulae obtained
are general in that no particular hamiltonian or cou-
pling elements are assumed. The only assumptions
are that the one-turn matrix is symplectic and that
it has distinct eigenvalues on the unit circle in the
complex plane.

The outline of the article is as follows: In Section
2 the properties of the one-turn symplectic matrix
are reviewed. In Sections 3 and 4 the normal form
of the matrix and normalized coordinates are intro-
duced. The matched ellipsoid and the horizontal
and vertical amplitudes are introduced in Sections
5 and 6. The conditions for resonance are iden-
tified and discussed in Sections 7 through 10. In
Section 11 the degrees of freedom in the choice of
the normal-form matrix are examined and various
parameters and matrices that are independent of
this choice are identified. The Edwards-Teng pa-
rameters [4, 5, 6] are derived from the normal-form
matrix in Section 12 and the matrix M is shown to
be proportional to the normalized coupling matrix
of Sagan and Rubin [7]. If the conditions for one
resonance dominate over those for the other, the
number of parameters needed to specify the one-
turn matrix is reduced from ten to eight. This is
exploited in Section 13 where the measurement of
coupling parameters for the case of the difference
resonance is discussed. For completeness, the cou-
pled lattice parameters introduced by Ripken [8, 9]
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are derived from the normal-form matrix in Section
14.

2. The One-Turn Matrix

Let X0, X
′
0, Y0, Y

′
0 be the initial horizontal and

vertical positions and angles of a beam particle at
some point along the equilibrium orbit of a syn-
chrotron, and let X , X ′, Y , Y ′ be the positions
and angles at the point on the nth turn around the
machine. Writing

Z =





X
X ′

Y
Y ′



 , Z0 =





X0

X ′
0

Y0

Y ′
0



 (1)

we have

Z = TnZ0 (2)

where

T =





T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44



 (3)

is the four-by-four transfer matrix for one turn
around the machine. It will be convenient to parti-
tion Z0, Z and T into two-component vectors and
two-by-two matrices. Thus

Z0 =

(
X0

Y0

)
, Z =

(
X

Y

)
(4)

X0 =

(
X0

X ′
0

)
, X =

(
X
X ′

)
(5)

Y0 =

(
Y0

Y ′
0

)
, Y =

(
Y
Y ′

)
(6)

and

T =

(
M n

m N

)
(7)

where

M =

(
M11 M12

M21 M22

)
(8)

N =

(
N11 N12

N21 N22

)
(9)

m =

(
m11 m12

m21 m22

)
(10)

n =

(
n11 n12

n21 n22

)
. (11)

The matrix elements of m and n are proportional
to the skew quadrupole or solenoidal fields that give
rise to linear coupling between the horizontal and
vertical planes of oscillation.

Following Courant and Snyder [10], we define the
symplectic conjugate of any two-by-two matrix

A =

(
A11 A12

A21 A22

)
(12)

to be

A =

(
A22 −A12

−A21 A11

)
. (13)

We then have

AA = AA = |A|I (14)

and

A + A = (TrA)I (15)

where

|A| = A11A22 −A12A21 (16)

TrA = A11 +A22 (17)

and

I =

(
1 0
0 1

)
(18)

is the multiplicative identity.
The matrix T is symplectic and we assume that

its four eigenvalues are distinct and lie on the unit
circle in the complex plane. We assume further that
none of the eigenvalues is equal to 1 or −1. The four
eigenvalues are then λ1, λ

∗
1, λ2 and λ∗2, where [10]

λ1 = exp iψ1, λ2 = exp iψ2 (19)

4 cosψ1 = M +N ±
√
T 2 + 4|m + n| (20)

4 cosψ2 = M +N ∓
√

(T 2 + 4|m + n|. (21)

Here

M = TrM = M11 +M22 (22)

N = TrN = N11 +N22 (23)

and

T = Tr (M − N) = M −N. (24)
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Under our assumptions, the phases ψ1 and ψ2 are
real with cosψ1 6= cosψ2. The tunes associated
with the eigenvalues are

Q1 = ψ1/(2π), Q2 = ψ2/(2π) (25)

and no element of the set Q1, 2Q1, Q2, 2Q2, Q1 +
Q2, Q1 −Q2 is equal to an integer. We also define

U = 2 cosψ1 − 2 cosψ2 (26)

which gives

U = ±
√
T 2 + 4|m + n|. (27)

We shall adopt the convention [7] that signs in front
of the square roots in (20), (21) and (27) are chosen
so the U has the same sign as T .

The symplectic condition implies that the two-
by-two submatrices of T satisfy

|M| + |m| = 1

|N| + |n| = 1

Mn + mN = 0 (28)

and

|M| + |n| = 1

|N| + |m| = 1

Mm + nN = 0 (29)

where

0 =

(
0 0
0 0

)
. (30)

Equations (28) and (29) are actually equivalent,
and, as shown by Brown and Servranckx [11], they
impose a total of 6 independent constraints on the
16 matrix elements of T. The four-by-four sym-
plectic matrix T is therefore specified by 10 inde-
pendent parameters. Equations (28) and (29) also
imply

|M| = |N|, |m| = |n|. (31)

3. Normal Form

Under our assumptions it is possible to write T

in the form [12, 13]

T = WUW−1 (32)

where

U =

(
A 0

0 B

)
(33)

A =

(
cosψ1 sinψ1

− sinψ1 cosψ1

)
(34)

B =

(
cosψ2 sinψ2

− sinψ2 cosψ2

)
(35)

and W is a four-by-four symplectic matrix. We call
this normal form. Here we derive some important
relations between the elements of T and those of U
and W . Partitioning W into two-by-two matrices
we have

W =

(
W1 D1

D2 W2

)
(36)

and the symplectic condition implies

|W1| + |D2| = 1

|W2| + |D1| = 1

W1D1 + D2W2 = 0 (37)

|W1| + |D1| = 1

|W2| + |D2| = 1

W1D2 + D1W2 = 0 (38)

|W1| = |W2|, |D1| = |D2| (39)

and

W−1 =

(
W1 D2

D1 W2

)
. (40)

Thus we have
(

M n

m N

)
= (41)

(
W1 D1

D2 W2

)(
A 0

0 B

)(
W1 D2

D1 W2

)

which gives

M = W1AW1 + D1BD1 (42)

N = D2AD2 + W2BW2 (43)

m = D2AW1 + W2BD1 (44)

n = W1AD2 + D1BW2. (45)

Taking the trace of (42) and (43) gives

M = DTrA + (1 −D)TrB (46)

N = (1 −D)TrA +DTrB (47)

M −N = (2D − 1)Tr(A− B) (48)
3



where

D = |W1| = |W2| (49)

1 −D = |D2| = |D1|. (50)

Thus using (24) and (26) we have

T = (2D − 1)U (51)

and since we have adopted the convention that the
signs in (20) and (21) are chosen so that U has the
same sign as T , we must have

D ≥ 1/2. (52)

Taking the symplectic conjugate of (45) gives

n = D2AW1 + W2BD1 (53)

and therefore

m + n = D2W1 TrA + W2D1 TrB. (54)

Using (38) we then have

m + n = UD2W1 (55)

and

|m + n| = U2D(1 −D). (56)

Note that this follows also from (51) and (27).

4. Normalized Coordinates

Using (32) in (2) we have

Z = WUnW−1Z0 (57)

and multiplying by W−1 from the left we see that it
is natural to introduce normalized coordinates [14]
defined by

Ẑ = W−1Z (58)

Ẑ0 = W−1Z0. (59)

This gives

Ẑ = UnẐ0. (60)

Partitioning Ẑ and Ẑ0 into two-component vectors
we have

Ẑ =

(
X̂

Ŷ

)
, Ẑ0 =

(
X̂0

Ŷ0

)
(61)

and (60) becomes

X̂ = AnX̂0, Ŷ = BnŶ0 (62)

where

X̂ =

(
X̂

X̂ ′

)
, Ŷ =

(
Ŷ

Ŷ ′

)
(63)

X̂0 =

(
X̂0

X̂ ′
0

)
, Ŷ0 =

(
Ŷ0

Ŷ ′
0

)
. (64)

Then using the identities

(An)†An = I, (Bn)†Bn = I (65)

we have

X̂†X̂ = X̂
†
0X̂0 = ε1 (66)

and

Ŷ†Ŷ = Ŷ
†
0Ŷ0 = ε2 (67)

where

X̂†X̂ = X̂2 + X̂ ′2, X̂
†
0X̂0 = X̂2

0 + X̂ ′2
0 (68)

Ŷ†Ŷ = Ŷ 2 + Ŷ ′ 2, Ŷ
†
0Ŷ0 = Ŷ 2

0 + Ŷ ′ 2
0 . (69)

Here and throughout the text we use a dagger to
denote the transpose of a vector or matrix. These
equations define the normal-mode emittances, ε1
and ε2, and show that they are conserved quan-
tities. They also show that there are phases φ1 and
φ2 such that

X̂0 =
√
ε1 cosφ1, X̂ ′

0 =
√
ε1 sinφ1 (70)

Ŷ0 =
√
ε2 cosφ2, Ŷ ′

0 =
√
ε2 sinφ2. (71)

The four parameters ε1, ε2, φ1 and φ2 are the
“action-angle” parameters introduced by Luo [14].
These are initial condition parameters which either
determine or are determined by X0, X

′
0, Y0 and Y ′

0

through equations (59) and (70–71).
Now writing (58) as

Z = WẐ (72)

and using (36) we have

X = W1X̂ + D1Ŷ (73)

Y = D2X̂ + W2Ŷ. (74)

Then using (62) we have

X = W1AnX̂0 + D1BnŶ0 (75)

Y = D2AnX̂0 + W2BnŶ0 (76)

which give the turn-by-turn positions and anglesX ,
X ′, Y and Y ′ in terms of the submatrices of W and
U and the initial normalized coordinates X̂0, X̂

′
0,

Ŷ0 and Ŷ ′
0 .
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5. The Matched Ellipsoid

Consider now the matrix

E = WW†. (77)

Using (32) one finds that

TET† = WUU†W† (78)

and since UU† = I we have

TET† = E. (79)

By construction the matrix E has unit determinant
and is real, symmetric and positive definite. (A real
symmetric matrix E is positive definite if and only
if the quadratic form Z†EZ > 0 for every vector
Z 6= 0.) It follows that the set of initial positions
and angles X0, X

′
0, Y0, Y

′
0 defined by

Z
†
0E

−1Z0 = ε (80)

is a four dimensional ellipsoid. On the nth turn
around the machine we have

Z = TnZ0 (81)

and

Z†E−1Z = Z
†
0(T

†)n E−1 TnZ0. (82)

But (79) implies

T†E−1T = E−1 (83)

and (by induction)

(T†)n E−1 Tn = E−1. (84)

Thus

Z†E−1Z = Z
†
0E

−1Z0 = ε (85)

and we see that the particle positions and angles lie
on the same ellipsoid after each turn. The ellipsoid
is then said to be matched to the lattice.

6. Horizontal and Vertical Amplitudes

Partitioning E into two-by-two matrices and us-
ing (36) in (77) we have

E =

(
F C

C† G

)
(86)

where

F = W1W†
1 + D1D†

1 (87)

G = W2W†
2 + D2D†

2 (88)

C =
{
W1D†

2 + D1W†
2

}
. (89)

The projections of the matched ellipsoid onto the
X , X ′ and Y , Y ′ planes are then the regions defined
by [11]

{
X†F−1X

}
≤ ε (90)

and
{
Y†G−1Y

}
≤ ε (91)

respectively. The borders of these regions are the
ellipses defined by taking the equal signs in (90) and
(91). This suggests that we define horizontal and
vertical amplitudes

Jx = F−1
{
X†F−1X

}
= F

{
X† FX

}
(92)

and

Jy = G−1
{
Y†G−1Y

}
= G

{
Y† GY

}
(93)

respectively, where

F = |F|−1/2, G = |G|−1/2 (94)

and we have used the identities

F−1 = |F|−1F, G−1 = |G|−1G. (95)

Note that by construction the matrices FF and GG

have unit determinant and are symmetric and pos-
itive definite. Thus we can write

FF =

(
bx −ax

−ax gx

)
(96)

GG =

(
by −ay

−ay gy

)
(97)

and we find that Jx and Jy have the familiar
Courant-Snyder forms

Jx = gxX
2 + 2axXX

′ + bxX
′ 2 (98)

Jy = gyY
2 + 2ayY Y

′ + byY
′ 2 (99)

where

bxgx − a2
x = 1, bygy − a2

y = 1. (100)

To obtain F and G we need to calculate

FF ={
W1W†

1 + D1D†
1

}{
W†

1W1 + D†

1D1

}
(101)
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GG ={
W2W†

2 + D2D†
2

}{
W†

2W2 + D†

2D2

}
. (102)

Here it will be useful to introduce the matrix

M = D1W1 = −W2D2 (103)

where the second equality follows from (37). Using
(14–15) and (49–50) we have

FF ={
D2 + (1 −D)2 + Tr

(
W1W†

1D
†

1D1

)}
I (104)

GG ={
D2 + (1 −D)2 + Tr

(
D2D†

2W
†

2W2

)}
I (105)

and using (103) we have

Tr
(
W1W†

1D
†

1D1

)
= Tr

(
MM†

)
(106)

Tr
(
D2D†

2W
†

2W2

)
= Tr

(
MM†

)
. (107)

Thus

F = G =
{
D2 + (1 −D)2 + Tr

(
MM†

)}−1/2
. (108)

Now using (73) and (74) in (92) and (93) we have

Jx =

F
{
X̂†W†

1 + Ŷ†D†
1

}
F
{
W1X̂ + D1Ŷ

}
(109)

Jy =

G
{
X̂†D†

2 + Ŷ†W†
2

}
G
{
D2X̂ + W2Ŷ

}
(110)

where

F = W†

1W1 + D†

1D1 (111)

W†
1 FW1 = D2I + M†M (112)

D†
1 FD1 = (1 −D)2I + M†M (113)

W†
1FD1 = DM + (1 −D)M† (114)

and

G = W†

2W2 + D†

2D2 (115)

D†
2 GD2 = (1 −D)2I + M†M (116)

W†
2GW2 = D2I + M†M (117)

D†
2GW2 = −(1 −D)M−DM†. (118)

Thus

Jx = F
{
D2ε1 + (1 −D)2ε2

}

+F
{
X̂†M†MX̂ + Ŷ†M†MŶ

}

+2F
{
DX̂†M Ŷ + (1 −D)X̂†M†Ŷ

}
(119)

Jy = F
{
(1 −D)2ε1 +D2ε2

}

+F
{
X̂†M†MX̂ + Ŷ†M†MŶ

}

−2F
{
(1 −D)X̂†M Ŷ +DX̂†M†Ŷ

}
(120)

where F is given by (108).
Note that we can use (103) to express D1 and D2

in terms of W1, W2 and M. Thus

D1 =
1

D
W1M, D2 = − 1

D
W2M (121)

and we have

D1D†
1 =

1

D2
W1MM†W†

1 (122)

D2D†
2 =

1

D2
W2MM†W†

2 (123)

W1D†
2 = − 1

D
W1M†W†

2 (124)

D1W†
2 =

1

D
W1MW†

2 . (125)

This gives

F = W1

{
I +

1

D2
MM†

}
W†

1 (126)

G = W2

{
I +

1

D2
MM†

}
W†

2 (127)

C =
1

D
W1

{
M−M†

}
W†

2 . (128)

7. Sum and Difference of the Amplitudes

Taking the sum and difference of (119) and (120)
we have

Jx + Jy = F
{
D2 + (1 −D)2

}
(ε1 + ε2)

+2F
{
X̂†M†MX̂ + Ŷ†M†MŶ

}

+2F (2D − 1)X̂†
{
M−M†

}
Ŷ (129)

6



and

Jx − Jy = F (2D − 1)(ε1 − ε2)

+ 2F X̂†
{
M + M†

}
Ŷ (130)

where M is given by (103) and

MM = D1W1W1D1 = D(1 −D)I. (131)

Here we see that if

M = M† (132)

then

M†M = MM = D(1 −D)I (133)

M†M = MM = D(1 −D)I (134)

Tr(MM†) = Tr(M†M) = 2D(1 −D) (135)

F =
{
D2 + (1 −D)2 + 2D(1 −D)

}−1/2

= 1 (136)

and (129) becomes

Jx + Jy = ε1 + ε2. (137)

This is just the result obtained in the standard
hamiltonian treatment [1, 2, 3] of the linear cou-
pling difference resonance. Under the condition
(132) we also find that (126), (127) and (128) be-
come

F =
1

D
W1W†

1 , G =
1

D
W2W†

2 (138)

C = 0. (139)

We shall see in Section 12 that the elements of
W1W†

1/D and W2W†
2/D are just the Courant-

Snyder parameters introduced by Edwards and
Teng.

Similarly, if

M = −M† (140)

then

M†M = −MM = −D(1 −D)I (141)

Tr(MM†) = Tr(M†M) = −2D(1 −D) (142)

F =
{
D2 + (1 −D)2 − 2D(1 −D)

}−1/2

= (2D − 1)−1 (143)

and (130) becomes

Jx − Jy = ε1 − ε2 (144)

which is just the result obtained in the standard
treatment of the linear coupling sum resonance.
Under the condition (140) we also find that (126)
and (127) become

F = (2D − 1)
W1W†

1

D
(145)

G = (2D − 1)
W2W†

2

D
(146)

and we again find that F and G are proportional
to W1W†

1/D and W2W†
2/D.

8. Further Algebraic Reduction of the Am-

plitudes

Let us now look more closely at the matrix M
which appears prominently in the expressions for
the amplitudes. Writing

M =

(
M11 M12

M21 M22

)
(147)

it is useful [7] to define parameters A, B, ω, and ψ
such that

2A cosω = M11 + M22

2A sinω = M12 −M21 (148)

2B cosψ = M11 −M22

2B sinψ = M12 + M21. (149)

This shows that M can always be written in the
form [7]

M = AΩ +BΨ (150)

where

Ω =

(
cosω sinω

− sinω cosω

)
(151)

Ψ =

(
cosψ sinψ
sinψ − cosψ

)
. (152)

The matrices Ω and Ψ have the properties

ΩΩ† = Ω†Ω = ΨΨ† = Ψ†Ψ = I (153)

Ω = Ω†, Ψ = −Ψ, Ψ† = Ψ. (154)
7



Thus

M† = AΩ† +BΨ (155)

M = AΩ† −BΨ (156)

and we see that

M−M† = 0 (157)

if and only if B = 0. Similarly we have

M + M† = 0 (158)

if and only if A = 0. As we have seen, these con-
ditions are associated with (137) and (144) respec-
tively.

The matrices Ω and Ψ have the additional com-
mutation properties

ΨΩ† = ΩΨ, Ω†Ψ = ΨΩ (159)

which give

MM = (A2 −B2)I (160)

and, along with (131),

|M| = D(1 −D) = A2 −B2. (161)

We also have

ΨΩ + ΩΨ = ΨΩ − Ω†Ψ = 0 (162)

and therefore

Tr(ΨΩ) = 0. (163)

We can now express the terms of Jx and Jy con-
taining the matrix M in terms of the matrices Ω
and Ψ and the coefficients A and B. Thus

X̂†MŶ = A
{
X̂†Ω†Ŷ

}
−B

{
X̂†ΨŶ

}
(164)

X̂†M†Ŷ = A
{
X̂†Ω†Ŷ

}
+B

{
X̂†ΨŶ

}
(165)

M†M = (A2 +B2)I − 2ABΩΨ (166)

Ŷ†M†MŶ = (A2 +B2)ε2

− 2AB
{
Ŷ†ΩΨŶ

}
(167)

M†M = (A2 +B2)I + 2ABΨΩ (168)

X̂†M†MX̂ = (A2 +B2)ε1

+ 2AB
{
X̂†ΨΩX̂

}
(169)

and, using (163),

Tr(MM†) = Tr(M†M) = 2(A2 +B2). (170)

Using these results in (119), (120) and (108) we
obtain

Jx = F
{
D2ε1 + (1 −D)2ε2

}

+ F
{
(A2 +B2)(ε1 + ε2)

}

+ 2AF
{
X̂†Ω†Ŷ

}

+ 2(1 − 2D)BF
{
X̂†ΨŶ

}

+ 2ABF
{
X̂†ΨΩX̂− Ŷ†ΩΨŶ

}
(171)

and

Jy = F
{
D2ε2 + (1 −D)2ε1

}

+ F
{
(A2 +B2)(ε1 + ε2)

}

− 2AF
{
X̂†Ω†Ŷ

}

+ 2(1 − 2D)BF
{
X̂†ΨŶ

}

+ 2ABF
{
X̂†ΨΩX̂ − Ŷ†ΩΨŶ

}
(172)

where

F =
{
1 − 2D(1 −D) + 2(A2 +B2)

}−1/2

=
{
1 + 4B2

}−1/2
. (173)

To proceed further we compute

X̂†Ω†Ŷ = X̂
†
0(An)†Ω†BnŶ0

= X̂
†
0Ω

†(An)†BnŶ0 (174)

X̂†ΨŶ = X̂
†
0(An)†ΨBnŶ0

= X̂
†
0ΨAnBnŶ0 (175)

Ŷ†ΩΨŶ = Ŷ
†
0(Bn)†ΩΨBnŶ0

= Ŷ
†
0ΨΩ†B2nŶ0 (176)

X̂†ΨΩX̂ = X̂
†
0(An)†ΨΩAnX̂0

= X̂
†
0ΨΩA2nX̂0 (177)

where the components of X̂0 and Ŷ0 are given by
(70–71). We then have

X̂†Ω†Ŷ =
√
ε1ε2 cos ξ− (178)

X̂†ΨŶ =
√
ε1ε2 cos ξ+ (179)
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Ŷ†ΩΨŶ = ε2 cos ζ2 (180)

X̂†ΨΩX̂ = ε1 cos ζ1 (181)

where

ξ− = nψ1 − nψ2 + φ2 − φ1 + ω (182)

ξ+ = nψ1 + nψ2 − φ1 − φ2 + ψ (183)

ζ2 = 2nψ2 − 2φ2 + ψ − ω = ξ+ − ξ− (184)

ζ1 = 2nψ1 − 2φ1 + ψ + ω = ξ+ + ξ− (185)

and

ψ1 = 2πQ1, ψ2 = 2πQ2. (186)

Thus the horizontal and vertical amplitudes become

Jx = F
{
D2ε1 + (1 −D)2ε2

}

+ F
{
(A2 +B2)(ε1 + ε2)

}

+ 2F
√
ε1ε2 {A cos ξ−}

+ 2F
√
ε1ε2 {(1 − 2D)B cos ξ+}

+ 2ABF {ε1 cos ζ1 − ε2 cos ζ2} (187)

and

Jy = F
{
D2ε2 + (1 −D)2ε1

}

+ F
{
(A2 +B2)(ε1 + ε2)

}

− 2F
√
ε1ε2 {A cos ξ−}

+ 2F
√
ε1ε2 {(1 − 2D)B cos ξ+}

+ 2ABF {ε1 cos ζ1 − ε2 cos ζ2} (188)

where

D(1 −D) = A2 −B2 (189)

and

F =
{
1 + 4B2

}−1/2
. (190)

These expressions are exact. They give the ampli-
tudes of oscillation in the horizontal and vertical
planes in terms of the initial condition parameters
ε1, ε2, φ1 and φ2, and the parameters D, A, B, ω,
ψ, Q1 and Q2 of the one-turn matrix. The simple
appearance of the parameters A and B in the ex-
pressions shows the utility of expressing the matrix
M as AΩ + BΨ. Note that each amplitude con-
tains frequencies Q1 −Q2, Q1 +Q2, 2Q1 and 2Q2.
If B = 0, only frequency Q1 −Q2 appears, while if
A = 0, only frequency Q1 +Q2 appears. Note also
that frequency Q1 − Q2 is absent from the sum of
the amplitudes and is the only frequency present in
the difference.

9. The Difference Resonance

Let us examine further the case B = 0. In this
case we have A2 = D(1−D) and F = 1, and equa-
tions (187) and (188) become

Jx = Dε1 + (1 −D)ε2

+ 2 {D(1 −D)ε1ε2}1/2 cos ξ− (191)

and

Jy = Dε2 + (1 −D)ε1

− 2 {D(1 −D)ε1ε2}1/2
cos ξ− (192)

where

ξ− = 2πn(Q1 −Q2) + φ2 − φ1 + ω. (193)

Here we see that the only n dependence in the ex-
pressions for Jx and Jy is in the terms contain-
ing cos ξ− which oscillate with frequency Q1 −Q2.
Moreover we have, as already shown,

Jx + Jy = ε1 + ε2. (194)

These are both characteristics of the amplitudes ob-
tained in the standard hamiltonian treatment of the
linear coupling difference resonance. We therefore
identify the condition B = 0 (or B2 � A2) with the
difference resonance. As we have seen, this condi-
tion is equivalent to M = M† which gives

M11 = M22, M12 = −M21. (195)

The work of Calaga, Tómas and Franchi [15] shows
that the normalized coupling matrix elements of
Sagan and Rubin [7] satisfy equations (195) when
the sum resonance driving term of the hamiltonian
treatment is zero. In Section 12 we shall see that M
is in fact proportional to the normalized coupling
matrix.

Since for B = 0 we have

D(1 −D) = A2 −B2 = A2 > 0 (196)

it follows from (56) that we must have

|m + n| > 0 (197)

and we may define

K2 = |m + n|. (198)

Using this in (27) we then have

U2 = T 2 + 4K2 (199)
9



and (56) becomes

D(1 −D) =
K2

T 2 + 4K2
. (200)

Substituting (200) into (191) and (192) we see that
the oscillations of Jx and Jy are greatest when T =
0 and go to zero as K2 goes to zero. We also have

D =
1

2
+

1

2

{
T 2

T 2 + 4K2

}1/2

(201)

which shows that D goes to 1/2 as T goes to zero
and goes to one as K2 goes to zero. The parameters
T and K correspond to the unperturbed tune sepa-
ration and the coupling parameter in the standard
treatment of the linear coupling resonance.

By specifying values for parameters A, B, Q1,
Q2 we obtain values for D, U2, K2, and T 2. As an
example of the difference resonance let us take

A = 0.48, B = 0.048 (202)

Q1 = 5.2364, Q2 = 4.2236. (203)

We then have

D = 0.6480 (204)

U = 2 cos(2πQ1) − 2 cos(2πQ2)

= −0.1595 (205)

K2 = D(1 −D)U2 = 0.005806 (206)

and

T 2 = U2 − 4K2 = 0.002230. (207)

Figure 1 shows a plot of Jx, Jy andJx+Jy obtained
with these values. Here we have taken ε1 = ε2 = 1,
φ1 = φ2 = 0 and ω = ψ = π/4. As expected
we see Jx and Jy oscillations characteristic of the
difference resonance. The small-amplitude high-
frequency oscillations seen on all of the curves are
due to the parameter B being small but nonzero.
If we set B = 0 and keep A, Q1, Q2 the same as be-
fore, we obtain the curves shown in Figure 2. Here
we see that the high-frequency oscillations are gone
and the sum Jx + Jy is constant. Setting B = 0
corresponds to discarding the high-frequency terms
in the hamiltonian treatment of the difference res-
onance.

0 20 40 60 80 100
0

0.5

1

1.5

2

Figure 1: Horizontal and vertical amplitudes Jx and Jy and
their sum versus turn plotted in black, red (dashed curve)
and blue respectively. Here normalized coupling matrix pa-
rameters A = 0.48 and B = 0.048. The small-amplitude
high-frequency oscillations seen on all of the curves are due
to the parameter B being small but nonzero.

0 20 40 60 80 100
0

0.5

1

1.5

2

Figure 2: Amplitudes Jx and Jy and their sum obtained
with normalized coupling matrix parameters A = 0.48 and
B = 0. Here the high-frequency oscillations are gone and
the sum is constant.
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10. The Sum Resonance

For the case A = 0 we have B2 = D(D − 1),

F = {2D − 1}−1
and equations (187) and (188)

become

Jx = Dε1 + (D − 1)ε2

− 2 {D(D − 1)ε1ε2}1/2
cos ξ+ (208)

and

Jy = Dε2 + (D − 1)ε1

− 2 {D(D − 1)ε1ε2}1/2
cos ξ+ (209)

where

ξ+ = 2πn(Q1 +Q2) − φ1 − φ2 + ψ. (210)

Here we see that the only n dependence in the ex-
pressions for Jx and Jy is in the terms contain-
ing cos ξ+ which oscillate with frequency Q1 +Q2.
Moreover we have

Jx − Jy = ε1 − ε2. (211)

These are just the characteristics of the amplitudes
obtained in the standard hamiltonian treatment of
the linear coupling sum resonance. We therefore
identify the condition A = 0 (or A2 � B2) with the
sum resonance. Note that this condition is equiva-
lent to M = −M† which gives

M11 = −M22, M12 = M21. (212)

The work of Ref. [15] shows that the normalized
coupling matrix elements satisfy these equations
when the difference resonance driving term (of the
hamiltonian treatment) is zero.

Since for A = 0 we have

D(D − 1) = B2 −A2 = B2 > 0 (213)

it follows from (56) that we must have

|m + n| < 0. (214)

Thus we may define

K2 = −|m + n| (215)

and we have

D(D − 1) =
K2

T 2 − 4K2
. (216)

Substituting (216) into (208) and (209) we see that
in this case the oscillations of Jx and Jy increase

0 20 40 60 80 100
0

0.5

1

1.5

2

Figure 3: Amplitudes Jx and Jy and their difference plotted
in black, red (dashed curve) and blue respectively. Here
normalized coupling matrix parameters A = 0.056 and B =
0.56. The small-amplitude high-frequency oscillations seen
on all of the curves are due to the parameter A being small
but nonzero.

without bound as T 2 approaches 4K2. The motion
is unstable for T 2 ≤ 4K2. We also have

D =
1

2
+

1

2

{
T 2

T 2 − 4K2

}1/2

(217)

which shows thatD becomes large as T 2 approaches
4K2 and goes to one as K2 goes to zero. As an
example of the sum resonance let us take

A = 0.056, B = 0.56 (218)

Q1 = 5.2124, Q2 = 4.7973. (219)

We then we have

D = 1.2486 (220)

U = 2 cos(2πQ1) − 2 cos(2πQ2)

= −0.1176 (221)

K2 = D(D − 1)U2 = 0.004291 (222)

and

T 2 = U2 + 4K2 = 0.030987. (223)

Figure 3 shows a plot of Jx, Jy and Jx − Jy

obtained with these values. Here we have taken
ε1 = 1, ε2 = 0.5, φ1 = φ2 = 0 and ω = ψ = π/4. As
expected we see Jx and Jy oscillations characteristic
of the sum resonance. The small-amplitude high-
frequency oscillations seen on all of the curves are
due to the parameter A being small but nonzero.
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11. Change of Representation

The matrix W in the normal-form expression (32)
for T is not unique. In the Appendix it is shown
that if there is another symplectic matrix W for
which

T = WUW−1 (224)

then we have

W = WO (225)

where O must be of the form

O =

(
P 0

0 Q

)
(226)

with

P =

(
cosω1 sinω1

− sinω1 cosω1

)
(227)

and

Q =

(
cosω2 sinω2

− sinω2 cosω2

)
. (228)

We shall call the transformation from W to W a
change in the normal-form representation of T. The
transformation is generated by the matrix O and we
use an underline to denote a transformed parameter
or matrix. The purpose here is to identify which
parameters and matrices of the previous sections
are independent of the representation.

It follows from (225–228) that

WW† = WOO†W† = WW† (229)

and therefore

E = W W† = WW† = E. (230)

Thus E is unchanged by a change of representation.
The same is obviously true for the submatrices (F,
G and C) of E and it follows from (92) and (93)
that the amplitudes Jx and Jy are unchanged.

Writing

W =

(
W1 D1

D2 W2

)

=

(
W1 D1

D2 W2

)(
P 0

0 Q

)
(231)

we have

W1 = W1P, D1 = D1Q (232)

D2 = D2P, W2 = W2Q. (233)

Since PP† = QQ† = I it follows that

W1W†
1 = W1W†

1 (234)

D1D†
1 = D1D†

1 (235)

W2W†
2 = W2W†

2 (236)

D2D†
2 = D2D†

2 (237)

which shows that these symmetric positive-definite
matrices are unchanged by a change in representa-
tion. We also have

|W1| = |W1| = D (238)

|D1| = |D1| = 1 −D (239)

|W2| = |W2| = D (240)

|D2| = |D2| = 1 −D (241)

which shows that the parameter D is unchanged.
This is also evident from inspection of equation
(56).

For the matrix M we have

M = D1W1 = QD1W1P = QMP (242)

M = AQΩP +BQΨP (243)

and

M = AΩ +BΨ (244)

where

Ω = QΩP =

(
cosω sinω

− sinω cosω

)
(245)

Ψ = QΨP =

(
cosψ sinψ
sinψ − cosψ

)
(246)

and

ω = ω + ω1 − ω2 (247)

ψ = ψ + ω1 + ω2. (248)

Thus M does in fact change under a change in rep-
resentation, but only the phases ω and ψ change;
the parameters A and B are unchanged.

There is a corresponding change in the phases φ1

and φ2 associated with the normalized coordinates.
The transformed normalized coordinates are given
by

Ẑ0 = W−1Z0 (249)
12



where

Ẑ0 =

(
X̂0

Ŷ0

)
(250)

X̂0 =

(
X̂0

X̂
′

0

)
, Ŷ0 =

(
Ŷ 0

Ŷ
′

0

)
. (251)

Using (225) and (59) we have

Ẑ0 = O−1W−1Z0 = O−1Ẑ0 (252)

X̂0 = P†X̂0, Ŷ0 = Q†Ŷ0. (253)

Thus we have

X̂
†

0X̂0 = X̂
†
0X̂0 = ε1 (254)

Ŷ
†

0Ŷ0 = Ŷ
†
0Ŷ0 = ε2 (255)

and

X̂0 =
√
ε1 cosφ

1
, X̂

′

0 =
√
ε1 sinφ

1
(256)

Ŷ 0 =
√
ε2 cosφ

2
, Ŷ

′

0 =
√
ε2 sinφ

2
(257)

where

φ
1

= φ1 + ω1 (258)

φ
2

= φ2 + ω2. (259)

The change in representation therefore shifts phases
φ1 and φ2 by ω1 and ω2 respectively. Note that
these equations along with (247) and (248) give

φ
2
− φ

1
+ ω = φ2 − φ1 + ω (260)

−φ
1
− φ

2
+ ψ = −φ1 − φ2 + ψ (261)

which shows that the phases ξ+, ξ−, ζ1 and ζ2 ap-
pearing in the expressions for Jx and Jy are un-
changed by a change in representation.

12. The Edwards-Teng Parameters

In terms of the matrix M we have

D1 =
1

D
W1M, D2 = − 1

D
W2M (262)

and

W =
1

D

(
DW1 W1M

−W2M DW2

)
(263)

which we can write as

W =
1

D
R
(

W1 0

0 W2

)
(264)

where

R =

(
DI W1MW−1

2

−W2MW−1
1 DI

)
. (265)

Defining

d =
√
D, F̂ =

1

d
W1, Ĝ =

1

d
W2 (266)

and

W =
1

d
W2MW−1

1 =
1

d
ĜMF̂−1 (267)

we then have

W = RN̂ (268)

where

R =

(
dI W

−W dI

)
(269)

N̂ =

(
F̂ 0

0 Ĝ

)
. (270)

The one-turn matrix is then

T = WUW−1 = RUR−1 (271)

where

U = N̂UN̂−1. (272)

We shall show that this is just the parameterization
of Edwards and Teng [4, 5, 6]. Furthermore we show
that M is proportional to the normalized coupling
matrix introduced by Sagan and Rubin [7].

Since F̂F̂† and ĜĜ† are symmetric positive-
definite matrices with unit determinant we may de-
fine Courant-Snyder parameters α1, β1, γ1, α2, β2

and γ2 such that
(

β1 −α1

−α1 γ1

)
= F̂F̂† =

1

D
W1W†

1 (273)

and
(

β2 −α2

−α2 γ2

)
= ĜĜ† =

1

D
W2W†

2 . (274)

Equations (234) and (236) show that these param-
eters are unchanged by a change in representation.
Using (232), (233) and (242) we also have

W2 MW−1
1 = W2MW−1

1 (275)
13



which shows that W and R are unchanged by a
change in representation.

Defining now

F =
1√
β1

(
β1 0

−α1 1

)
(276)

G =
1√
β2

(
β2 0

−α2 1

)
(277)

we have

FF† =

(
β1 −α1

−α1 γ1

)
= F̂F̂† (278)

GG† =

(
β2 −α2

−α2 γ2

)
= ĜĜ† (279)

and it follows that we must have

F̂ = FP, Ĝ = GQ (280)

where

P =

(
C1 S1

−S1 C1

)
(281)

Q =

(
C2 S2

−S2 C2

)
(282)

and

C2
1 + S2

1 = 1, C2
2 + S2

2 = 1. (283)

Thus we have

N̂ = NO (284)

where

N =

(
F 0

0 G

)
, O =

(
P 0

0 Q

)
(285)

and therefore

U = NOUO−1N−1 = NUN−1. (286)

Carrying out the matrix multiplications we then
find

U =

(
A 0

0 B

)
(287)

where

A = FAF−1, B = GBG−1. (288)

This along with the matrix R gives the parameter-
ization of Edwards and Teng.

Note that we may always choose the representa-
tion such that

F̂ = F , Ĝ = G. (289)

Equation (267) then becomes

W =
1

d
GMF−1 (290)

and we have

M = dw (291)

where

w = G−1WF . (292)

This is just the normalized coupling matrix intro-
duced by Sagan and Rubin [7]. We also have, with
the help of (262) and (266),

W1 = dF , D1 = F w (293)

D2 = −Gw, W2 = dG. (294)

Equations (75–76) then become

X = dFAnX̂0 + FwBnŶ0 (295)

Y = −GwAnX̂0 + dGBnŶ0 (296)

which give the turn-by-turn positions and angles
in terms of the Edwards-Teng parameters and the
initial normalized coordinates.

Note that using (150) in (291) we have

w =
1

d
{AΩ +BΨ} (297)

where Ω and Ψ are given by (151) and (152), and
d is given by

d2(1 − d2) = A2 −B2. (298)

The phases ω and ψ in the matrices Ω and Ψ are
fixed by the choice (289). Thus, the one-turn ma-
trix T is specified by the ten parameters Q1, Q2,
α1, α2, β1, β2 A, B, ω and ψ.

13. Measurement of Coupling Parameters

for the Case of the Difference Resonance

If we are operating under the difference resonance
condition B = 0, then the number of parameters
needed to specify the one-turn matrix is reduced
from ten to eight. Measurements of the turn-by-
turn horizontal and vertical positions at a single
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dual-plane beam position monitor (BPM) then be-
come sufficient to determine the coupling strength
K2 = |m + n| and the phase ω. To show this, we
have for the case B = 0,

w =
√

1 − d2 Ω (299)

and equations (295) and (296) become

F−1X = dAnX̂0 + eΩ†BnŶ0 (300)

and

G−1Y = −eΩAnX̂0 + dBnŶ0 (301)

where

e =
√

1 − d2. (302)

Using the identity
(

cos θ sin θ
− sin θ cos θ

)(
cosχ
sinχ

)
=

(
cos(θ − χ)

− sin(θ − χ)

)
(303)

we then have

F−1X =
√
ε1d2

(
cos(nψ1 − φ1)

− sin(nψ1 − φ1)

)

+
√
ε2e2

(
cos(nψ2 − φ2 − ω)

− sin(nψ2 − φ2 − ω)

)
(304)

and

G−1Y =
√
ε2d2

(
cos(nψ2 − φ2)

− sin(nψ2 − φ2)

)

−
√
ε1e2

(
cos(nψ1 − φ1 + ω)

− sin(nψ1 − φ1 + ω)

)
(305)

which gives turn-by-turn positions

X = A1 cos(nψ1 + χ1)

+ A2 cos(nψ2 + χ2) (306)

Y = B1 cos(nψ1 + η1)

+ B2 cos(nψ2 + η2) (307)

where

A1 =
√
ε1β1d2, A2 =

√
ε2β1e2 (308)

B1 =
√
ε1β2e2, B2 =

√
ε2β2d2 (309)

χ1 = −φ1, χ2 = −φ2 − ω (310)

η1 = π − φ1 + ω, η2 = −φ2 (311)

and

ψ1 = 2πQ1, ψ2 = 2πQ2. (312)

We can fit (306) and (307) to turn-by-turn mea-
surements of the horizontal and vertical positions.
Using the fitted values of parameters A1, A2, B1

and B2 we obtain

d2e2ε1β1ε2β2 = A1A2B1B2 (313)

and

√
ε1β1ε2β2 = A1B2 +A2B1 (314)

which gives

d2(1 − d2) =
A1A2B1B2

(A1B2 +A2B1)2
. (315)

Note that this expression is independent of which
normal mode is labeled 1 and which is labeled 2.
The expression is not valid if ε1 = 0 or ε2 = 0, but
one can always kick the beam so that both normal
modes are excited.

Using the fitted values of Q1 and Q2 we also have

U = 2 cos(2πQ1) − 2 cos(2πQ2). (316)

We then can calculate the coupling strength

K2 = d2(1 − d2)U2 (317)

and also

T 2 = U2 − 4K2. (318)

From the fitted parameters χ2 and η2 we obtain
the coupling phase

ω = η2 − χ2. (319)

We also have

η1 − χ1 = η2 − χ2 + π (320)

which shows that ω is determined only to within a
phase of π due to the freedom to choose which nor-
mal mode is labeled 1 and which is labeled 2. Luo
has obtained these results with his matrix pertur-
bation approach [16] and with the standard hamil-
tonian approach [17].
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14. The Ripken Parameters

For completeness we show here that the normal-
form matrix W provides a straight-forward route to
the coupled lattice parameters introduced by Rip-
ken [8, 9]. Since W1W†

1 , D1D†
1, W2W†

2 and D2D†
2

are symmetric positive-definite matrices with deter-
minants

|W1W†
1 | = |W2W†

2 | = D2 (321)

|D1D†
1| = |D2D†

2| = (1 −D)2 (322)

we can introduce Courant-Snyder parameters de-
fined by

DE1 = W1W†
1 , |1 −D|F1 = D1D†

1 (323)

DE2 = W2W†
2 , |1 −D|F2 = D2D†

2 (324)

where

E1 =

(
β1 −α1

−α1 γ1

)
(325)

F1 =

(
b1 −a1

−a1 g1

)
(326)

E2 =

(
β2 −α2

−α2 γ2

)
(327)

F2 =

(
b2 −a2

−a2 g2

)
. (328)

It follows from equations (234–237) and (238–241)
that these parameters are unchanged by a change
in representation.

From equations (73–74) we see that the turn-by-
turn motion in the horizontal and vertical planes is
given by

X = X1 + X2 (329)

Y = Y1 + Y2 (330)

where

X1 = W1X̂, X2 = D1Ŷ (331)

Y1 = D2X̂, Y2 = W2Ŷ. (332)

Thus we have

X
†
1E

−1

1 X1 = D
{
X

†
1(W1W†

1)−1X1

}

= D X̂†X̂

= Dε1 (333)

X
†
2F

−1

1 X2 = |1 −D|
{
X

†
2(D1D†

1)
−1X2

}

= |1 −D|Ŷ†Ŷ

= |1 −D|ε2 (334)

Y
†
1F

−1
2 Y1 = |1 −D|

{
Y

†
1(D2D†

2)
−1Y1

}

= |1 −D|X̂†X̂

= |1 −D|ε1 (335)

and

Y
†
2E

−1

2 Y2 = D
{
Y

†
2(W2W†

2)−1Y2

}

= D Ŷ†Ŷ

= Dε2. (336)

Here we see that X1, X2, Y1 and Y2 are each
constrained to lie on an ellipse. The motion in
each plane is therefore given by the superposition
of motion on two ellipses as shown by Ripken. The
Courant-Snyder parameters of the ellipses are just
the Ripken lattice parameters.

Note that under the difference resonance condi-
tion B = 0 we have, with the help of (122–123) and
(132–134),

D1D†
1 =

1 −D

D
W1W†

1 (337)

D2D†
2 =

1 −D

D
W2W†

2 (338)

and it follows that

F1 = E1, F2 = E2. (339)

Thus in this case the parameters of the two ellipses
associated with the horizontal motion are the same
and those associated with the vertical motion are
the same.
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A. Appendix

Suppose that

T = WUW−1 = WUW−1 (340)
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where W and W are symplectic. Multiplying this
by W−1 from the left and by W from the right we
have

U = W−1 WUW−1 W = OUO−1 (341)

where

O = W−1W . (342)

Thus

UO = OU (343)

and writing

O =

(
P V

L Q

)
(344)

where P, Q, L, V are two-by-two matrices, we have
(

A 0

0 B

)(
P V

L Q

)
=

(
P V

L Q

)(
A 0

0 B

)
. (345)

Carrying out the matrix multiplications one then
finds

AP = PA, BQ = QB (346)

BL = LA, AV = VB. (347)

Suppose now that |L| 6= 0. Then we have

B = LAL−1 (348)

and it follows that B and A have the same eigen-
values. This contradicts our assumption that the
eigenvalues of T are distinct. Thus we must have
|L| = 0. Similarly, one finds that |V| = 0. Thus
the equations BL = LA and AV = VB imply

LBL = 0, LAL = 0 (349)

VAV = 0, VBV = 0 (350)

where

L =

(
L11 L12

L21 L22

)
(351)

V =

(
V11 V12

V21 V22

)
(352)

and

A =

(
cosψ1 sinψ1

− sinψ1 cosψ1

)
(353)

B =

(
cosψ2 sinψ2

− sinψ2 cosψ2

)
. (354)

Carrying out the matrix multiplications, one finds

(L2
12 + L2

22) sinψ2 = 0

(L2
11 + L2

21) sinψ2 = 0 (355)

(L2
12 + L2

11) sinψ1 = 0

(L2
22 + L2

21) sinψ1 = 0 (356)

with similar equations for the elements of V. Since
having both sinψ1 = 0 and sinψ2 = 0 would con-
tradict our assumption of distinct eigenvalues, at
least one of these must be nonzero. It then follows
that all elements of L must be zero. The same is
true for V. Thus

L = 0, V = 0. (357)

Now, writing out the matrix elements of PA = AP

and QB = BQ, one finds

(P12 + P21) sinψ1 = 0

(P11 − P22) sinψ1 = 0 (358)

(Q12 +Q21) sinψ2 = 0

(Q11 −Q22) sinψ2 = 0. (359)

Here our assumption that no eigenvalue is equal to
1 or −1 implies that neither sinψ1 nor sinψ2 can
be zero. Thus we have

P21 = −P12, P22 = P11 (360)

Q21 = −Q12, Q22 = Q11. (361)

The matrices O, P, and Q therefore must be of the
form

O =

(
P 0

0 Q

)
(362)

P =

(
C1 S1

−S1 C1

)
(363)

Q =

(
C2 S2

−S2 C2

)
. (364)

Furthermore, since O is symplectic, we must have

C2
1 + S2

1 = 1, C2
2 + S2

2 = 1 (365)

and therefore

PP† = I, QQ† = I, OO† = I. (366)
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