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Optimization of NSLS-II Blade X-ray Beam Position 
Monitors: from Photoemission type to Diamond Detector

P Ilinski1

Brookhaven National Laboratory, Upton NY, USA 

E-mail: pilinski@bnl.gov

Abstract. Optimization of blade type X-ray Beam Position Monitors (XBPM) was performed 
for NSLS-II undulator IVU20. Blade material, configuration and operation principle was 
analyzed to improve XBPM performance. Optimization is based on calculation of the XBPM 
signal spatial distribution. Along with standard photoemission blades, Diamond Detector Blade 
(DDB) was analyzed as XBPM signal source. Analyses revealed, that Diamond Detector Blade 
XBPM would allow overcoming drawbacks of the photoemission type XBPMs.

1. Introduction
Photoemission blade X-ray BPMs [1] are standard for most synchrotron radiation facilities. The 
photoemission XBPMs are non-invasive and can provide high spatial resolution, but they are 
vulnerable to the background radiation from dipoles and focusing optics due to their high sensitivity to 
the lower energy photons. Performance of the photoemission type XBPM was analyzed to optimize 
geometry and configuration of photoemission blades. Optimization is based on calculations of the 
XBPM signal spatial distribution. An alternative type of a Diamond Detector Blade XBPM [2] was 
analyzed and compared to the photoemission XBPM.

2. Undulator Radiation Source
Optimization of the XBPM was performed for the NSLS-II undulator IVU20. The power density 
spatial distribution at the minimum undulator gap, corresponding to K=1.8, and at 500 mA storage 
ring current is shown at figure 1. The power density distribution specifies the XBPM blades high heat 
load conditions and defines how far the blades should be placed away from the axis of radiation. 
Blades need to withstand the heat load and should be mechanically stable since blade deformation can 
be interpreted as the undulator beam motion.

Another important characteristics of undulator radiation for XBPM operation is the spectral flux 
angular dependence. The flux spectral density of IVU20 at various locations from the axis of undulator 
radiation at 10m is presented in figure 2 which shows that hard X-rays from high undulator harmonics 
are radiated at large off-axis angles.

3. Photoemission Blade XBPM
Operation of the photoemission XBPM is based on photoemission of electrons from a blade. Tungsten 
is often used as a blade material for undulator XBPMs due to mechanical properties. The resulting 
photoemission XBPM signal is convolution of the undulator spectral density and the total electron 
yield of the blade. Convolution for a portion of the undulator spectra reveals signal distribution for 
particular undulator harmonic. The signal spatial distributions of tungsten blade for the first and 
second undulator harmonics of IVU20, K=1.8, at 10m are shown at figures 3 and 4. The signal 
generated by second undulator harmonic is more intense compare to the signal due to the first 
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harmonic and is localized closer to the axis of undulator radiation. The total signal spatial distribution 
of tungsten blade XBPM, which includes all undulator harmonics, is presented at figure 5.

Figure 1. Power Density spatial distribution 
of undulator radiation, IVU20, K=1.8, 10m.

Figure 2. Flux Spectral Density angular 
dependance IVU20, K=1.8, 10m at various [mm, 
mm] locations from the axis of radiation.

For blades shown at figure 5 the signal level per tungsten blade is reaching few hundreds of micro-
amperes at 10m distance for IVU20 at 500 mA current and K=1.8, reducing to tens of micro-amperes 
for K=0.5. The signal level will increase if blades are extended towards the axis of radiation, but this is 
limited by the high heat load conditions.

-5

-4

-3

-2

-1

0

1

2

3

4

5

m
m

-5 -4 -3 -2 -1 0 1 2 3 4 5

mm

 2
50

0 
 2

50
0 

 2000 

 2
00

0 

 1500 
 1000 

 500 

 5
00

 

 500  500 

 5
00

 

 500 -5

-4

-3

-2

-1

0

1

2

3

4

5

m
m

-5 -4 -3 -2 -1 0 1 2 3 4 5

mm

 3
50

0 

 3000 

 3
00

0 

 2500 

 2
50

0 

 2
00

0 

 2000 

 1
50

0 

 1
50

0 

 1
00

0 

 1000 

 5
00

 

 500 

Figure 3. The signal spatial distribution for 
tungsten blade XBPM for the first undulator 
harmonic, IVU20, K=1.8, 10m.

Figure 4. The signal spatial distribution for 
tungsten blade XBPM for second undulator 
harmonic, IVU20, K=1.8, 10m.

Calibration curves, calculated as (S1-S2)/(S1+S2), where S1 and S2 are signals from the opposite 
blades, are presented at figure 6 for different configurations of blades indicated in figure 5. As can be 



seen, the calibration curves do not differ significantly when beam deviation is smaller then 0.5 mm. 
Therefore, the sensitivity of the photoemission XBPM cannot be improved substantially by 
optimization of the blade configuration after the blade geometry was defined to satisfy the high heat 
load conditions.

Figure 5. Tungsten blade XBPM. The total 
signal spatial distribution, IVU20, K=1.8, 
10m.

Figure 6. Tungsten blade XBPM. The calibration 
curves for various blades configurations.

4. Diamond Detector Blade XBPM
The major deficiencies of the photoemission XBPM are sensitivity to the lower energy photons and 
dependence on the condition of photoemission surface. Those deficiencies can be overcome by 
changing the photoemission blade to the Diamond Detector Blade. The DDB XBPM was introduced 
by H. Aoyagi [2], the layout of the DDB is shown at figure 7. The DDB is positioned along the 
radiation axis similar to the photoemission blade. Charge carriers generated when photon is absorbed 
in the diamond detector drift to opposite side electrodes when bias voltage is applied. The signal 
generated in the diamond detector is proportional to the number and energy of absorbed photons 
through conversion factor of ~13eV/e-h [3]. This provides an intrinsic discrimination for the lower 
energy photons. Further discrimination can be achieved by not collecting charge carriers generated by 
lower energy photons at the front of the DDB by offsetting the electrodes from the edge of the DDB, 
figure 7. This is similar to an introduction of an X-ray filter in front of the DDB.

DDB - Diamond Detector Blade Metal contact

Incident X-ray Beam

Soft x-rays 
absorption

X-ray photon to 
electron 
conversion 
1e/13eV 

Figure 7. Layout of the diamond detector blade 
of the DDB XBPM.

Figure 8. Integrated Spectral Flux, IVU20, 
K=1.8. Incident undulator radiation transmitted 
after 1mm thick diamond, and transmitted after 
16mm thick diamond.



The integrated spectral flux of undulator radiation from IVU20 at K=1.8 is shown at figure 8 along 
with the integrated spectral flux transmitted after 1mm and 16mm thick diamonds. As can be seen, 
photons with energies below 4 keV are absorbed in the 1mm thick diamond filter. Varying thickness of 
the X-ray filter by changing the geometry of side electrodes will make possible to discriminate the 
lower energy photons background radiation and to control the DDB signal level. Optimization of the 
side electrodes geometry will also allow control of DDB characteristics such as capacitance.

Figure 9. The signal spatial distribution of the 
DDB XBPM, IVU20, K=1.8, 10m, 1mm thick 
diamond X-ray filter.

Figure 10. The DDB XBPM calibration curves 
with and without diamond X-ray filter for various 
blade configurations.

The spatial distribution of the DDB XBPM signal reflects the spatial distribution of the incident 
radiation power density. The DDB signal is reaching level of few hundreds of milli-amperes for 
IVU20, K=1.8, at 500 mA storage ring current. When a 1mm thick diamond X-ray filter is introduced 
in front of the DDB, the signal spatial distribution becomes narrower, figure 9, the signal level drops to 
hundreds of micro-amperes. The calibration curves of the DDB XBPM with and without diamond X-
ray filter are presented at figure 10 for various blade configurations. The sensitivity of the DDB XBPM 
without X-ray filter is two times higher compare to the tungsten blade XBPM, figure 6. The sensitivity 
of the DDB XBPM with X-ray filter depends on the blade configuration and is 6-8 times higher 
compare to the tungsten blade XBPM.

5. Conclusion
A noninvasive type of the white beam Diamond Detector Blade XBPM was analyzed and compared to 
the photoemission XBPM. The choice of the Diamond Detector Blade instead of the photoemission 
blade as XBPM signal source allows discrimination of the lower energy background photons. The 
discrimination is achieved due to proportionality of the DDB signal to the energy of absorbed photon, 
and by additional X-ray filtering through modification of the DDB side electrodes.
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