Low dose radiation hypersensitivity and clustered DNA damages in human fibroblasts exposed to low dose and dose rate protons of 137Cs γ-rays; abstract

P.V. Bennett*1; D. Keszenman1; A.M. Joohnson1; B.M. Sutherland1(#); and Paul Wilson1

1Biosciences Department, Brookhaven National Laboratory, Upton, NY

*contact info: bennett@bnl.gov
= deceased

To be presented at: NASA Space Radiation Investigators’ Workshop & Heavy Ions in Therapy and Space Radiation Symposium, Chiba, Japan, May 14-19, 2013

March 2013

Biosciences Department
Brookhaven National Laboratory

U.S. Department of Energy
Office of Science, Office of Biological and Environmental Research

Notice: This manuscript has been co-authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author's permission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Low dose radiation hypersensitivity and clustered DNA damages in human fibroblasts exposed to low dose and dose rate protons or 137Cs γ-rays

P.V. Bennett*, D.J. Keszenman, A.M. Johnson, B.M. Sutherland [D], and P.F. Wilson

Biology Department, Brookhaven National Laboratory, Upton, NY 11973-5000

Effective radioprotection for human space travelers hinges upon understanding the individual properties of charged particles. A significant fraction of particle radiation astronauts will encounter in space exploratory missions will come from high energy protons in galactic cosmic radiation (GCR) and/or possible exposures to lower energy proton flux from solar particle events (SPEs). These potential exposures present major concerns for NASA and others, in planning and executing long term space exploratory missions. We recently reported cell survival and transformation (acquisition of anchorage-independent growth in soft agar) frequencies in apparently normal NFF-28 primary human fibroblasts exposed to $0-30$ cGy of 50MeV, 100MeV (SPE-like), or 1000MeV (GCR-like) monoenergetic protons. These were modeled after 1989 SPE energies at an SPE-like low dose-rate (LDR) of 1.65 cGy/min or high dose rate (HDR) of 33.3 cGy/min delivered at the NASA Space Radiation Laboratory (NSRL) at BNL [1].

We now report on studies including matched doses and dose rates of 137Cs γ-rays, an important reference radiation for calculating relative biological effectiveness (RBE). Analysis of clonogenic survival results reveal a window of low dose radiation hypersensitivity (HRS) with all four radiation species tested. This is suggestive of an HRS-like “induced repair” survival response [2]. Transformation frequencies (TFs) are maximal ($<25\text{cGy}$) for HDR protons. TFs for LDR protons did not peak in the low dose range, but continued to increase with the accumulation of dose (50cGy-100cGy). In contrast, TFs produced by 137Cs γ-rays which increase linearly with increasing dose accumulation.

On the hypothesis that protons may induce DNA damages that are more complex thus more refractory to repair or removal than those produced by 137Cs γ-rays levels of DNA double strand breaks (induction and removal) were measured, electrophoretically and by γ-H2AX pS139 focus detection. Induction and removal of oxidative bystranded clustered damages, which are mutagenic [3], were also measured for both HDR and LDR cell exposures. Slopes of clustered DNA damage induction and removal incurred in apparently normal human fibroblast strain 28 by proton radiation vs. 137Cs γ-rays at HDR vs. LDR to be presented.

This work was performed under the auspices of the U.S. Department of Energy by Brookhaven National Laboratory under contract DE-AC02-98CH10886 and supported by BNL LDRD12-012 to PFW, grant NN07HC73I from the NASA Space Radiation Program (BMS/PFW) and grants BO-089 (BMS)/SCW-0543 (PFW) from the DOE Low Dose Radiation Research Program. [D] Deceased.