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Introduction 
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• CdTe0.9Se0.1 (CTS) is expected to be an excellent candidate for 
gamma-ray detectors 

• Density is ~ 5.8 gm/cc (nearly the same as CZT and CdTe). 
• Band gap is little less than CdTe, and the effective mass of the 

electron is less than CdTe. Thus, a higher electron mobility and 
µτ product are expected for CdTe0.9Se0.1. Hence, enhanced 
charge transport properties are possible. 

• The segregation coefficient of Se in the CdTe host is nearly 
unity, ensuring the compositional uniformity throughout the 
whole ingot, both in the axial and radial directions resulting in 
reduced cost of production. 



Band Gap Versus Composition 
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a b 
CdSexTe1-x  band gap value as a function of x. a) x= 0 to 1 and b) = 0 to 0.15 

G. Brill et al., J Electronic Materials 34 (2005) 655. 



Electron Effective Mass Versus Composition 
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Electron effective mass for CdSexTe1-x as a function of x 

L. Hannachi et al., Superlattices and Microstructure 44 (2008) 794. 



Characterization of CdTe0.9Se0.1 

5 

•  Cadmium Telluride Selenide crystals (CdSexTe1-x or CTS) were grown with       
nominal concentration of 10% Se (x =0.1). 
 
•  Indium was used as dopant. 
 
•  Crystals were cut and polished for characterization. 
 
•  The crystals were characterized by X-ray topography, IR microscopy, 

compositional uniformity by X-ray fluorescence mapping, PL, high resolution X-
ray response mapping, I-V, and charge-transport characterization. 

 
•  Detector fabrication and investigations of the device performance. 
 



IR Imaging of CdTe0.9Se0.1 
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Photograph of CdTe0.9Se0.1  sample and IR 
transmission image of dimension 10x10x5 mm3  



X-Ray Response Mapping and Topography 
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    X-ray response mapping of CdTe0.9Se0.1  sample, dimension 10x10x5 mm3  
1.5 x 1.5 mm2 area; V = 15V; 10 µm step 10 x 10 mm2 area; V = 15V; 50 µm step 0.9 x 0.9 mm2 area; V = 15V; 3 µm step 



3D Distribution of Secondary Phases 
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3D maps of Te inclusions reconstructed for 4 locations.  The volumetric 
regions dimension are 1.5x2x 5 mm3. 



Size and Distribution of Secondary 
Phases 
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All Te inclusions in a 1.5x2x5 mm3 volumetric region are 
projected to a single 1.5x2 mm2 plane 

Distribution of the Te inclusions averaged over 4 
locations 



Low-Temperature PL 
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   PL spectrum of a CdTe0.9Se0.1 sample at 4.2 K  



PL Mapping 
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X-ray Fluorescence Mapping 
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 Mapping of Cd La1 line  Mapping of Se Kα line 

Mapping of Te La1 line 



Resistivity and Charge-Transport Properties 
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I-V curve at room temperature 
Charge collection vs voltage 
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Detector Performance at RT 
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Room-temperature CdTe0.9Se0.1 detector response for 241Am under applied bias: a) 5 V and b) 25 
V.   The energy resolution at 25V obtained was ~12% at 59.6 keV. Sample dimension: 10x10x1 
mm3 . The lower bias voltages were used due to the lower electrical resistivity and the sample’s 
associated thermal noise. A higher resistivity will allow a higher voltage bias and much better 
spectra for CTS crystals.  



Summary 
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•  Our initial evaluations of CdTe0.9Se0.1 are promising. 
 
•  IR transmission imaging showed less Te inclusions compared to 
conventional CZT with average concentration of the secondary phase of 
~ 7x 104/cm3 compared to ~ 1x 105/cm3  for conventional CZT material. 
 
•  Fairly good macro and micro compositional uniformity. 
 
•  Fairly high resistivity at room temperature of ~ 6x 109 ohm-cm with 

very good µτe value of 3.5x 10-3cm2/V was obtained. 
 
• High charge collection was achieved at only 25 volts applied across 1-

mm thick sample.  
 
•  Study on surface passivation is underway to decrease surface leakage 

current in order to apply higher voltage. 
 
•  Efforts to increase the bulk resistivity of the grown samples are in 

progress. 
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