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1 The “A’ in ADS-R - Ring methods

An accelerator driven system consists of

o that provides a beam in the spallation energy
range,0.6 — 1.5 GeV

o (Pb, Pb+Bi),
Installed in the center of the nuclear core, provides the newons needed to sustain
the fission process ; for instance convertion from fertile**Th to fissile 23U,

o neutronically coupled to the target. “ [US OS “ADS White
Paper’]

A complete accelerator system for high power ADS applicatios consists of four
main sections:

o (e.g., ECR)

o (e.g., RFQ, linac, cyclotron, including buncher stage(s))

o (linac, fixed field ring)

o which transports the beam to the spallation target, and

shapes the beam to the required size, profile, and uniformity
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o Little benefit from heavier ions, at larger accelerator cost

P MW] (1—Fk) 1
IA| = ~—(1—k)P,

A fE{MeV] k o= F) P

k =~ 0.95 — 1~ = neutron multiplication factor (produced/absorbed),

E; = fission energy~ 200[MeV],

f = fraction of neutrons causing fission = nb of neutrons emitd per incident
proton / nb of neutrons emitted per fission, e.g20/2.5.

e £ Is central to the accelerator parameters, the closer it is td, the lower the beam
power to be brought in.

e Examples :
- JAEA power installation design : proton beam 1.5 GeV, 30 MWfor 800 MW-th,

- Transmutation demonstration facility MYRRHA : 600 MeV pro ton, 1.5 MW
beam power to a subcritical core with 85 MW thermal power,
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Accelerator technologies, for 1 MW power and beyond

e Separated sector cyclotron the highest power example of which operates at the
Paul Scherrer Institute in Switzerland, delivering a 1.3 MW CW beam,

e Normal conducting proton linear accelerator, the highest power example of which
(the LANSCE linac) delivered a 1 MW pulsed beam at Los Alamos [dtional Labo-
ratory,

e Superconducting proton linear accelerator the highest power example of which
(the SNS linac) delivers a 1.1 MW pulsed beam at Oak Ridge Natnal Laboratory.
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Alternative approaches to high proton beam power include :

e synchrotron technology, which has the capability of achieving powers in excess of
1 MW, but is limited to pulsed operation at relatively low duty factor.

e Fixed Field Alternating Gradient (FFAG) accelerators, actively studied at labora-
tories throughout the world. Synchrotrons and FFAGs have sme similar intrinsic
features, but the repetition rate for FFAGs can be much highe (albeit

) While promising, FFAGs have yet to demonstrate
high beam power capability.

e With further development, FFAG technology may also denrastapplicability in
the 5-10 MW power range. It is worth noting that



2 FFAGs
2.1 MURA electron FFAGs

The first model, radial sector FFAG, Mark Il. First operation March 1956, U of Michigan.
Machine parameters

Einj - Emax

Optics
lattice
number of cells
field index K

v | v,

Tt
Magnet
Or, Op
rED/p
gap

Injection

Acceleration

swing
Frc. 4. Schematic cross scction of a magnet and the vacuum chamber. re p " rate
F magnet, positive field, radially ¢ _
focusing. req. swing
gap voltage

cycle rep. rate

orbit radius C/27)

criteria / comments

keV 25 - 400 {small size, easy to build

m 0.34-0.50

Nlwi

F3
8
3.36

2.2-3 / 1-3
~ 2

radial sector

deg 25.74, 10.44
2.85, 2.59
cm 6-4

continuous or pulsed

only betatron, at first...
Gauss 40 - 150
Hz a few 10’s
... completed with RF acc., next
MHz  10in [35, 75]MHz
Vv 50
kHz a few

field not too low, ms lifetime

16 magnets & 4.41 deg. drifts

g/r =Cst & pole-face windings
{ varying K, resp.Br/Bp
varies mostly,., resp.v,

v+ K
B = By(r/ro)* F(0)
sector angles
at center of F, D magnets
g/r =Cst

for simplicity

split tank
for RF stacking expts

to cope with lifetime

£T0Z 1dv 62 ‘PlaysiappnH ‘doysyiom wnloyL



Second model, spiral sector FFAG, Mark V

First operation Aug. 1957 at the MURA Lab., Madison.

Interest of spiral optics : always positive curvature, leesimaller accelerator, compared to radial sector.
Study objectives : confirm theoretical predictions - firstessive use of computers to determine magnetic field and ima
parameters ; long-term orbit stability ; RF acceleratiorthuds.

SCINT.
DET

TARGET
PROBE o772, -

Machine parameters criteria / comments
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Logarithmic spiral poles

B _E keV 35 - 180 { reasonable size
" e magnets
orbit radius m 0.34-0.52
RF exprmnts

Eu | 7 keV/m  155/0.49 {at% Sy
Optics

lattice N spiral sectors

number of sectors 6 of i

1 pole-face windings,

field index i 0.7 { tunable 0.2-1.16

flutter Fis¢ 1.1 tuning coils / 0.57 - 1.60

v | v, 1.4/1.2 tunable

By / B, m 0.45-1.3/0.6-1.4 min-max
Magnet spiral sector B:BO(%)K F(ln-/w— NO)

1/w 6.25 2mwry =~ ridges radial separation

a = Arctg(Nw) deg 46 edge to radius angle

Tmin — Tmax m 025 - 061

gap cm 16.5-7 g/r =Cte
Injection cont. or pulsed e-gun + e-inflector

Acceleration

betatron and RF

extensive RF prog. tests



Second radial sector, 50 MeV, 2-waycollider scheme”

Preliminary studies early 1957. The spiral sector e-moae mot yet completed - this determinied the choice of radicics :
easier to design, better understood.

Study objectives :

50 MeV.

POSITIVE MAGNET

HIGH ENERGY
ORBITS

NEGATIVE MAGNET

ORBITS

Br

1/ RF stacking,

Bp

2/ high circulatihg 3/ 2-way storage.
First start Dec. 1959, 2-beam mode, 27 MeV ; disassemble@,im@gnets corrected ; second start Aug. 61, single bea

[Typical] data

rameters

eV 0.1-50
1.20-2.00
FODO
16
9.25
4.42/2.75

radial sector
6.3
0.52
8.6
100

swing 20-23
harmonic 1
voltage p-to-p  kV 1.3-3
cycle rep. rate  Hz 60

criteria / comments

reasonable size & beam life-ti

B =~ By(r/ro)% cos(166)
32 magnets, 3.15 deg. drift

T'mazx

e-gun + e-inflector

€102 1dvFZ ‘playsiappnH ‘doysyIom wniioy

S



2.2 R/D in Japan

Em]’ —FE keV 50 -500
orbit radius m 0.8-1.14
lattice / K DFDx 8/2.5
B, 5. max. m 0.7
v | v, 2.2/1.25
RF swing MHz 06-14
voltage p-to-p  kV 13-3
cycle time ms 1

2.0 S ;

1

'

!
D

'

1

15

D
\

[ ~O- measurement tune shift
394 7| == integer resonance
F/D=3.9 ‘\ / half integer resonance
T < sum resonance
N ) difference resonance
\ - - normal 3rd order
F/D=4.29 \ )/ ~ - skew 3rd order resonanc
\ , — sfructure resonance
| \
1 S 1 A
F/D=44sa 1 Y 1
1.0 : : :

3.0

150 MeV FFAG - 2003

Einj — Epgz  MeV 12 - 150
orbit radius m 4.47-5.20
lattice / K DFDx 12/7.6
Br / B, max. m 25/45

v | v, 3.7/1.3

Bp / Br T 0.2-0.78/0.5-1.63
gap cm 23.2-4.2
RF swing MHz 1.5-45
voltage p-to-p  kV 2

rep. rate Hz 250

Bz (T) on closed orbit vs. angle (m

P

10

s

Y
bii

=
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KURRI KUCA. First ADS-R connection
e The main purposes of this R&D :

- a basic feasibility evaluation of ADSR as an energy produaatevice.

- k physics : sub-criticality characteristics, neutron nplitiation, fuel... Including Thorium in 2010.
— 1 GeV, spiral FFAG

KURRI-FFAG complex

UCA * : -

ey

Innovation Research Laboratory

KUCA Building ‘ \ L

Accelerator to core 2009
Core power 10 Watt

W target D8OmMm/L10mm

Beam powek 0.1 Watt (100-150 MeV, 1 nA)

Rep. rate 30 Hz -

w’

......

- KUCA A-Core :
93% enriched uranium

Polyethylene moderator/reflector
C1~C3 control rods fully inserted

"

Subceritical fuel system
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2.3 Linear FFAG

e 2 innovative concepts : linear lattice, quasi-isochrormceleration, Johnstone/Koscielniak, 1999-2000
introduced in the late 90’s, for muonsynchrotron-like cell - ! linear optical elements - & fixed fidds
e Orbit position moves in the course of acceleration, dndes changeunlike “scaling” FFAG

e Well suited for high energy muon acceleration in NuFact. Garad to RLA'S :
more turns hence less RF ; FFAG rings (2-3) are in smaller s ®iaA arcs ¢ x 4 — 5 pass)

Typical (early) data. 6—+20 GeV, 314 Cells, Gz 2 km, B<6 T, B’<80 T/m, 10-20 MV/cell :

Proton Driver

Hg Target
Capture
Drift
Buncher

. Cavity T =%
Bunch Rotation SET Vertizal
R|ng Comector per 2 cells

Cooling

Acceleration
Linac
0.2-1.5GeV

Acceleration

15-50 GeV

Field clamp plates Wertical & Horizontal Location for pop in

B eam Position Monitors diagnostic and BPIM move -
Wolts (50v) too high

near to RF cavity

2 per cell vacuum pumping

Linear, non-scaling opticsinduce a series of consequences :
e large acceptancex 3 cm) « linear fields.Large momentum acceptance=- prone to less (no ?) cooling
o rapid acceleration (=~ 2 — 3 E gain over~ 10 turns)« high freq.£ RF, near-crest- small§TOF over E span
e reduced circumferencehenceu decay loss) compared to “scaling” circumf. factorR/p < 2
e magnets have reasonable size reasonable horizontal beam excursiersmall D,

Standard vacuum chambar geam diredtion
‘___,__-'———"'
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EMMA - Electron Model for Many Applications

e Launched in the frame of Neutrino Factory R&D
e An experimental machine

e International collaboration

e 2007 : funded through “British Accelerator Science and Radation Oncology Consortium”,
e Construction at Daresbury Lab. started in 2007, first beam 200

8.00 MV (2xd MV)

0.35 MeV
{fixed)
350kW Gun
Cs:GaAs cathode
Photginjector

~ | 8.35 MeV

{atandard)

[standard)
‘ &
SCRF 9 sl
Maodule 77 /f 2%
%
g = A
'\‘

- 3CRF

Module

1.65-11.65 MV

{variable)

Enangy Fecavary Linss Probotype dccalesaior Layou|

_.F.’Z,-‘ s o T /’
- ey
¥ T = | T‘_

10-20 MeV
{variahle)

o | emmaINnvestigate resonance crossing

For mare information,
and Conceptiral Report,
soo www.dgls.ac.uk

e Goals of EMMA experiment:
- prove rapid, “gutter acceleration”
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assess phase space, dynamic apertut
- Investigate sensitivity to defects
- assess stability, operating conditions

A



: 3“ - length F/D
s - drifts

- alignement

EMMA parameters

Energy range
number of turns
circumference
Lattice

No of cells

RF frequency
No of cavities
RF voltage
RF power

Rep. rate

MeV 10 - 20
<16
m 16.568
F/D doublet
42
GHz 1.3
19
kV/cav. 20-120
kW/cav. <2
Hz 1-20

Injection into EMMA, from ALICE

Screen

39.448cm
5.88/7.57cm
5/21cm

0.25: (10)

}
) 3

- QF/QD/Cav. ap. 7.4/10.6/4cm &

Injection Region
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Principle of quasi-isochronous acceleration

=
Q
(T - Tref)/Tref vs. E (MV) o KinEnr (MeV) vs. Phase (rad) 5
0. 002 ; 12 T
x\ / ol 120 1o~ §
0. 005 ’ 1 4\ ~. e B >
? ] 16 -\ \ s/ G ;’/ S
I ] I } 16 p 6 i ] S
0. 001 / y _ q \ -
L 4 14 i y \\ ]
’ / ] 1< 18 ¥/ ] d 4 turhs S
0. 0005 ’ 12 [N\ \ L A &
: \ / ] - 20 7 2 tdfns . @
0. 0N 107 B i - , g
10 12 14 16 18 20 3 -2 -1 0 1 2 3 N
Time of flight parabolat ~ ~;,) “Gutter acceleration” N
- 2 2 3
STOF 5 ) ~ i ) § IS
e R [nof + (f) A sin“ o + |a (?p) |+ (f) N
=
w
o5 NU_X, Nuz vs. E(MV)
o.4i\
o.3f
0. 2?\':’\-\.\
0.1 S Nuzz
10 12 14 16 18 20

Cell_tunes vary with enérgy

Vi



RACCAM - proton FFAG R&D

e French ANR project, 2006-2008, launched in 2005:7m.y, 3.5 MEU

e A frame for collaboration in international R&D programs (EM MA, e.g.)
e A mean for magnet prototyping : focused on spiral sector optts

¢ Also, a medical project : hadrontherapy and biology R/D.

£T0Z dy 62 ‘playsiappnH ‘doysyiom wnroyL
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Master piece : spiral scaling magnet, first of the king

W, U WE. E{(NEV)

R

i} _:_—_ I yoace)
40 E03CE
L 23 znd TP with zligps vpdld

6 20 %0 60 S0 100 120 140 1ce 133 209

e Designed and built by SigmaPhi, completed April 2007
e magnetic measurements at SigmaPhi, May-November 2007
e proved scaling, industrial feasibility

e 3D design work and fabrication were a succcess : quasi-invant optics (constant tunes) achieved

e A follow-on : 1 GeV proton driver, KURRI, 2010s

£T0Z dy 62 ‘playsiappnH ‘doysyiom wnroyL
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2.4 Proton driver prospects

e Linear FFAG / S. Ruggiero, BNL, 2004

e For neutrino factory p-driver , 12 GeV
design, several MW

Ringl Ring2 Ring3

Energy, Inj. (GeV) 04 1.5 4.5

Extr. (GeV) 15 45 12
# of turns 1800 3300 3600 43 <
cycle time ms 6 9 10 Zj \\*x‘_
Circumf. m 807 819 831 . “\\“H._.Ej
# cells 136 136 136 2 S N e, =S
cell length (m) 5.9 6 6.1 e 2 I i
h 136 138 140 ; T
RF freg. MHz 36-46 46-49.7 49.7-50.4 S DN DS DS D L
Egain/turn MeV 0.6 0.9 2 o | |

e 3 stages

Note : Ring 1, pulsed REQ*ppp, rep. rate
100 Hz

— potential for MW beam in GeV range.

e CW acceleration based on “harmonic num-
ber jump” foreseeable

e Refs: (BNL) C-A/AP/208, C-A/AP/218, C-
AJAP/219.

W

£T0Z 1dv 62 ‘PlaysiappnH ‘doysyiom wnloyL
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e Non-linear, quasi-isochronous ns-FFAG

* The main driver behind this desigh was to achieve better

isochronicity but the tune variation also improved compared to
previous designs.
* Non-linear magnets with radial profile

Parameter 330 MeV 500 MeV 1000 MeV
Avg. Radius [m] 5.498 6.087 7.086
v.lvy (cell) 0.297/0.196  0.313/0.206  0.367/0.235
Field E/D [T] 1.7/-0.1 [.8/—1.9 1.9/-3.8
Magnet Size 1.96/0.20 2.79/0.20 4.09/0.20
F/D [m]

e Total tune variation = 0.42 (H) / 0.234 (V)

BiT)
e _ BT| .
175 f,f _osi~5i4 58 5|8 6o 6l2 6l4 &l
1.70 — | N =
1.E5 -1.5 N,
1.60 - g
| -25
1.55 = - B -a.n H“‘uh\
6.0 6.5 7.0 ml _35 =

Field profiles from C. Johnstone, IPAC'12, THPPROG63

S. Sheehy

At [%]

1.0
0.8
0.6
0.4
0.2
0.0
=2
-0.4
—0.6

P T TR . — S
et
L .V o e . = S V4
T et LU

e

_\‘E? I — e A W I

5 i o e Y M N

300 400 500 600 T00 800 900 1000

kinetic energy [MeV]
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Serpentine acceleration

Not ‘perfectly’ isochronous

Phase slip during acceleration is still
too large for cyclotron-like
acceleration

BUT what about the serpentine
channel?

MV/turn vs max. phase
__acceptance

1

frr = Toin + 61/4
s _ WL AE

16

Serpentine channel
acceleration available at ~3.7
MeV/turn for h=1

For space charge reasons a
higher harmonic cavity may
be needed - to be studied

£T0Z 1dv 62 ‘PlaysiappnH ‘doys)iom wnioyL
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e Pumplet lattice

A non-linear, non-scaling type of FFAG, “non-linear cyctwt”, G. Rees.

Magnetic field in bd, BF and BD.
It has the advantage of on-crest acceleration. g

0]

N

Ex.: lattice for 8 to 20 GeV / 16 turns / 123 cell ring.

N

O bd-) o F+) o BDHY o F+) o bd) O
O A /[
¥ A

24 D45 05 0.62 0.5 1.26 0.5 D62 05 D42 24m

o
[ FN®OMO

Bya(x) = —3.456 — 6.6892 2 +9.4032 2% — 7.6236 2 + 360.38 & + 1677.79 27
Bpr(r) = —0.257+16.620 7 +20.739 12 4+ 158.65 1% + 1812.17 * + 7669.53 17 Trajectory in the tune diagram :

TUNE D AGRA
Bpp(r) = 4.220—9.659 £—45.472 22 —322.1230 2> —5364.309 2* —27510.4 ° 4 ah

0.4 O >~ Tl S e T
Allows insertion straights, with the advantages of 0.-3p
1. reduced ring circumference, 0.2 AN
2. easier injection and extraction, N R A\ =g e =
3. space for beam loss collimators, e NV
0.0 0.1 0.2 0.3 0. 4 0]

4. RF gallery extending only above the insertions, not
above the whole ring,

5. 4-cell cavities usable, thus reducing, by a factor of
four, the total number of rf systems.

£T0Z 1dv 62 ‘PlaysiappnH ‘doysyiom wnloyL
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Thorium Workshop, Huddersfield, 29 Apr. 2013

=11MeV)

H- linac (E

e Spiral scaling lattice - KURR-Institute

charge exchange injection.

H
Variable energy 150

-700 MeV. n flux x30.

Will reach space charge limit LA at 150 MeV.

21



e Serpentine acceleration in a scaling lattice =
¢ Allows fixed RF-frequency accelerationn non-relativistic regime. %
N
e ADS equivalent, Emi Yamakawa, FFAG 2012 §
k-value 1.45
e Experimental demonstration with Equivalent mean radius at 200 MeV [m] 3
electron FDF lattice (2012) : Equivalent mean radius at 1 GeV [m] 5.9
e small e-beam ring Stationary kinetic energy below transition [MeV] 360
e 160 keV— 8 MeV rf voltage [MV /turn] 15 (h=1)
e F-D-F scaling triplet lattice at transition 1 frequancy [MHz| 9.6(h=1)
gamma (764 keV)
e RF freq. 75 MHz (h=1), 750 kV/gap ::;:z
? gnué—
@ gooL

&

(=3

=
[TTITErTT [T T [TITT (7T

ha
=3
E

B s

tnu || | | | | | i1 | i | | | | |
50 100 150 200 250 300 350
Phase [deg]

(=]

44



3 Cyclotrons

3.1 Principles

Radio-frequency cavity ’

Sector magnet

5m

Isochronism : R « S, B oy

Qr =1 +k) =7 Q.~ (—k+ F2/(1+2tanf))

e High power requires separated
sector technology,

so allowing room (drifts) for beam
manipulations :

- injection (also high poower !)

- extraction

- acceleration

- longitudinal manipulaiton

- monitoring

etc.

e Main concern : beam loss.

e Limiting factor : beam loss at ex-
traction, whereas

turn separation
AR/R < AEium, /| %77

e Hence, receipes :

- large R (low B)

- maximize AE / turn

- orbit oscillations at extraction

€102 1dv 62 ‘playsiappnH ‘doysxyiom wnuoy |
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3.2 The archetype of a high power ring : PSI cyclotron

e Key to low beam loss is turn separation at extractio
Main “knob” is RF voltage - close to 4 MV/turn.

e Longitudinal losses with space charge scalé/n?,
currentincrease over the years follows, from RF upgr?d

Yl

IBI0

MIOM W

590 MeV beam, 1.3 MW, en route to 1.8 MW,

. . ) average voltage gain per turn [MV] o
in a continuous effort, over the years, to raise s 34 26 21 17 15 13 115 T
the current for the experiments. i e scaling law Iz, = N —— | S
. est. 3. imi

e Most important aspect of the control of the | el EomA scaled it 3
facility : beam losses, now 10~ 1 2
e Availability is 85-90%, 5000 hrs/Year. T N
T 05t >
®)
0.3} =
N
S
3 cavity mode B

0.1

150 200 250 300 350 400 450
turns in Ring Cyclotron

copper resonator for the Ring Cyclotron.

ve



3.3 Molecular H2 cyclotron

e Two specificities :
- stripping extraction - relaxes on turn separation thusallowing high field, SC technology,
- “2-in-1". Relaxes on space charge effects. Namely, negligible at 5 mAq.e10 mA p)

) ] | 114
pry DAEDA
DPE |
(| : { D C€ DO L0
) | A @ 80(
[ ) % J
) U
e DD |
% D large e
: ] ) e ]
3

80( : 1
)% § Dercond ng Co A bl eV/I
ll' DEed
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Layout for ADS & 3.25 mA of H2+

delivered by each
cyclotron Injector

o
()

The beams delivered
by the sources are
chopped, to reduce the
duty cycle at ~77%

—
()

The power of the 3
s, cyclotron is reduced from
6.5 mA of proton -/, 15.6 MW = 10 MW
-2 5.2 MW Tya"g
delivered by

each Ring N (ﬁ
Cyclotron 5 oW/

THEC'11, City College New York, 10 - 12 Oct. 2011

A possible trip-safe scheme : injectors work ak 2/3 duty cycle. In case of failure, or
maintenance, remaining two sources ensure full power.
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4 MY CONCLUSION

¢ I[N matter of megawattS, cyclotrons and other
FFAGs cannot be said to have said their last
word !
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