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 Abstract–Despite immense endeavor invested in optimizing the 
crystal growth parameters and the post growth improvement 
methodologies proposed by numerous studies, there are still 
unresolved shortcomings of CdZnTe crystals to produce 
commercial-grade CdZnTe detectors. Post-growth thermal 
annealing under Zn, Te, or Cd vapor overpressure at various 
temperature have been the approach attempted to improve the 
crystallinity of CdZnTe crystals. This paper presents results of 
post growth annealing of CdZnTe detectors that shows both 
reduction in the sizes of Te inclusions and the migration of the 
inclusions towards the high-temperature side of the crystal. Two 
set of annealing experiments were made. The first is annealing 
under Cd vapor overpressure in vacuum at 600 oC for 45 minutes 
at a temperature gradient of 10 oC/cm.  The second set of CdZnTe 
post-growth annealing experiments was carried out at 700 ˚C 
CdZnTe annealing temperature with the Cadmium temperature 
at 650 ˚C, 30 minutes annealing time, and temperature gradient 
of 10 ˚C/cm. The reduction in the sizes of Te inclusions ranges 
from 8% to 38%.   

I. INTRODUCTION 

OOM-TEMPERATURE semiconductor nuclear detector 
grade materials are desired to have high resistivity (low 

dark current), high atomic number (good stopping power), 
good carrier mobility-lifetime product, µτ, (for better 
collection of charge), high band-gap, high crystallinity 
(uniformity of response), and room temperature performance.  
Cadmium Zinc Telluride (CdZnTe) is one of the most 
investigated materials as a wide band-gap semiconductor 
crystal for nuclear radiation detection [1]–[4], nuclear 
medicine [5], medical imaging [6], [7], and in the field of 
astrophysics for measurement of celestial gamma-ray photons 
[7]. Despite immense endeavor invested in optimizing the 
crystal growth parameters and the post growth improvement 
methodologies proposed by numerous studies, there are still 
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unresolved shortcomings of CdZnTe crystals to produce 
commercial-grade CdZnTe detectors [8]. Post-growth thermal 
annealing under Zn, Te, or Cd vapor overpressure at various 
temperature have been the approach attempted to improve the 
crystallinity of CdZnTe crystals.  One of the widely reported 
defects is defect associated with Cadmium vacancy created 
during the crystal growth process. To compensate the Cd 
vacancy created, eliminate tellurium inclusions and improve 
the overall performance of the crystal, post-growth thermal 
annealing of CdZnTe crystals under Cd vapor overpressure has 
been a widely accepted practice [1]–[4].  To our knowledge, 
Wanwan et al is the first to report the theoretical and 
experimental findings on the effect of Cd-diffusion thermal 
annealing on the resistivity of CdZnTe crystals (9). Based on 
this study, the average values of Cd self-diffusion coefficients 
of Cd0.9Zn0.1Te crystal annealed at 1073, 973, and 873 K are 
found to be 1.464 x 10-10, 1.085 x 10-11, and 4.167 x 10-13 
cm2/s. Recently, Fochuk et al. reported a promising result on 
elimination of Te inclusion in CdZnTe crystals by short term 
thermal annealing under Cd, Zn, and Te-over pressure and the 
corresponding resistivity of the crystal for a range of annealing 
temperature [10]. 

II. EXPERIMENT 
CdZnTe crystals with detector-grade quality grown by 

Northrop Grumman using the Bridgman furnace method were 
used.  The crystals were cut approximately 5 x 5 x 5 mm3. The 
surfaces of the CdZnTe slices used for the experiments were 
prepared by mechanical polishing, using a series of Al2O3 
powders grades, decreasing in size from 5.0 to 0.1 microns as 
necessary. The material removed in this procedure (~ 200 µm 
by mechanical polishing, ~100 µm by etching) was sufficient 
to remove all surface damage caused by sawing the slices from 
the wafer. Next, the CdZnTe crystals were etched using a 2% 
Br-methanol solution.  

In the experimental procedure, infrared images of the 
samples were taken before and after annealing.  The samples 
are marked to track the locations and orientations of the Te 
inclusion being studied.  Samples were annealed under Cd 
vapor overpressure and in vacuum at 600 oC for 45 minutes at 
a temperature gradient of 10 oC/cm.  A second set CdZnTe 
post-growth annealing experiments was carried for the 
following annealing parameters: 700 ˚C CdZnTe annealing 
temperature, Cadmium temperature at 650 ˚C, 30 minutes 
annealing time, and temperature gradient of 10 ˚C/cm. 
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III. RESULTS 
Figure 1 shows the infrared images of the same region of a 

CdZnTe crystal before annealing and for the first and second 
annealing cycles (at 600 oC, 45 minutes and temperature 
gradient of 10 oC/cm for each cycle).  

 
   Low temperature side      High temperature side 

 
(a) Before annealing 

 

 
(b) First annealing at 600 oC for 45 minutes 

 

 
(c) Second annealing at 600 oC for 45 minutes 

 
Fig. 1. Infrared images comparing Te inclusions sizes and locations of the 
same region in the CdZnTe crystal before annealing, and for the first and 
second annealing cycles (at 600 oC for 45 minutes for each cycle).  

 

 
Fig. 2. Comparison of size reductions for six selected Te inclusions in the two 
annealing cycles. The areas were calculated using NIS-Elements Nikon 
imaging software. 
 

In each annealing cycle, there are reductions in the sizes of 
the Te inclusions as indicated by the infrared images in Fig. 1.  
In addition to size reduction (see Fig. 2), the Te inclusions also 
migrate towards the high-temperature side of the sample.  The 
migration of Te inclusions is clearly shown in Fig. 3 for the 
following annealing parameters: 700 ˚C CdZnTe annealing 
temperature, Cadmium temperature at 650 ˚C, 30 minutes 
annealing time, and temperature gradient of 10 ˚C/cm.  
 

 
Fig. 3. Migration of Te inclusions towards the high-temperature in thermal 
gradient post-growth annealing of a CdZnTe crystal under Cd vapor 
overpressure. 

 
Figure 2 shows the comparison of the size reductions for six 

selected Te inclusions in the two annealing cycles shown in 
Fig 1, with the areas calculated using NIS-Elements Nikon 
imaging software.  The percentage reductions are shown in 



 

Table I. Figures 1 and 3 show that for most of the Te 
inclusions, an inclusion separates into two with the lager 
portion migrating towards the high-temperature side of the 
sample, leaving the smaller portion behind.   
 

TABLE I.  PERCENTAGE REDUCTION OF TE INCLUSIONS 
_____________________________________________________________

__ 
 Te inclusion Size before  Reduction after  Reduction after  
  annealing first annealing second annealing 
 1 121 18% 18% 
 2 156 29% 10% 
 3 132 8% 34% 
 4 210 20% 15% 
 5 272 18% 38% 
 5 182 8% 17% 

 

IV. CONCLUSION 
Our studies have shown that annealing CdZnTe crystals 

under Cd vapor overpressure and in vacuum at 600 oC for 45 
minutes at a temperature gradient of 10 oC/cm showed 
significant reduction in the size of Te inclusions. The 
reduction in sizes ranges from 8% to 38%.  In addition, for 
most of the Te inclusions, an inclusion separates into two with 
the lager potion migrating towards the high-temperature side 
of the sample, leaving the smaller portion behind. 
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