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SEMI-ANALYTICAL DESCRIPTION OF THE MODULATOR SECTION
OF THE COHERENT ELECTRON COOLING ∗

Andrey Elizarov† , Vladimir Litvinenko, BNL, Upton, NY 11973, USA,
Stony Brook University, Stony Brook, NY 11794, USA

Abstract
We discuss the theoretical description of the modulator

section of the coherent electron cooling (CeC) [1], the mod-
ern realization of the stochastic electron cooling, where the
electron beam serves as a modulator and a kicker, i.e., it
records the information about the hadron beam via elec-
tron density perturbations resulting from the shielding of
the hadrons and then accelerates or decelerates hadrons by
its electric field with respect to their velocities. To analyze
the performance of the CeC shielding of a hadron in an
electron beam should be computed with high precision. We
propose a solution of this problem via Fourier and Laplace
transforms for 1D, 2D and 3D plasmas. In some cases there
are fully analytical solutions, which gave an opportunity to
test semi-analytical ones involving numerical evaluations
of the inverse integral transforms. Having its own practical
value this solution will also serve as a testing ground for
our general solution via numerical treatment of the integral
equations applicable for the realistic case of the finite beam
[3].

INTRODUCTION
The dynamics of the shielding of the charged particle in

plasma is a longstanding problem, the last achievements for
an infinite plasma are presented in [2] and the method for
a finite plasma, the realistic model of an electron beam, is
described in [3], the comprehensive list of references to the
earlier works can be found in these articles. In this article
we describe some new analytical and numerical results for
an infinite plasma. We start with a general solution and then
discuss various dimensions and equilibrium distributions.

GENERAL SOLUTION
We describe the dynamics of the shielding of the charged

particle in an infinite isotropic electron plasma via Fourier
and Laplace transforms. In the paper we use the following
dimensionless variables:

~x =
~x

rD
, ~v =

~v

vrms
, t =

t

tp
≡ tωp, rD =

vrms

ωp
,

where

vrms =

√
1

ρ

∫
v2f0(~v)d~v, ωp =

√
e2ρ

m0γε0
, (1)

and dimensionless equilibrium density f0(~v):

f0(~v) = ρfdf0(~v),

∫
f0(~v)d~v = ρ. (2)
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For the unitary point charge moving along a straight line
~y (t) = ~x0 + ~v0t we have for the induced electron density
perturbation for any number of spacial dimensions d:

n1 (~x, t) = L−1F−1

 e−i
~k·~x0(

f−1
d v−d

rms

LF~kt(tf0(~v))
+ 1
)(

s + i~k ·~v0
)
 ,

(3)

where LF~kt (tf0 (~v)) depends on equilibrium distribution:

LF~kt (tf0 (~v)) =

∞∫
0

e−tst

∫
f0 (~v) e−i

~k·~vtd~vdt,

f−1d v−drms is a dimensionless factor, and L−1, F−1 are the
inverse Laplace and Fourier transforms, respectively.

SOLUTIONS FOR SOME DISTRIBUTIONS
We consider several distributions for 1D, 2D and 3D.

vrms, fd, and f−1d v−drms can be computed via (1) and (2)
for all distributions excepting the Cauchy. The solution
(3) is valid for all these cases, we only need to com-
pute LF~kt (tf0 (~v)) and f−1d v−drms. For the Kapchinskij-
Vladimirskij (KV) distribution we have:

1D: f0(~v) = δ(v2 − 1), LF~kt (tf0 (~v)) =
s2 − k2

(s2 + k2)
2 ,

2D: f0(~v) =
1

π
δ(v2 − 1), LF~kt (tf0 (~v)) =

s

(s2 + k2)
3
2

,

3D: f0(~v) =
1

2π
δ(v2 − 1), LF~kt (tf0 (~v)) =

1

2
Î(s,~k, 1),

where

Î(s,~k, v) =
ik3v (S− − S+) + s (S− + S+)

(s2 + k2v2)S−S+
,

S± =

√(
s± ik

2
3v

k

)2

,

for the water-bag (WB):

f0(~v) =
1

2
Θ(1− v2), LF~kt (tf0 (~v)) =

1

k2 + s2
,

f0(~v) =
1

π
Θ
(
1− v2

)
, LF~kt (tf0 (~v)) =

2

k2

√
k2 + s2 − s√
k2 + s2

,

f0(~v) =
3

4π
Θ(1− v2), LF~kt (tf0 (~v)) =

3

2

1∫
0

v2Î(s,~k, v)dv,



for 1D, 2D, and 3D respectively. For the Normal (Maxwell)
distribution f0(~v) = π−

d
2 e−v

2

we have:

LF~kt (tf0 (~v)) =
2

k2

[
1−
√
πe

s2

k2
s

|k|
Erfc

s

|k|

]
,

where Erfc(z) is a complementary error function,

vrms =

√
dHc

2β
, fd =

(
β

Hc

) d
2

, f−1d v−drms = (2/d)
d
2 ,

And for the Cauchy distribution we have:

f0(~v) =
Γ( 1+d

2 )

Γ( 1
2 )π

d
2

1

(1 + v2)
1+d
2

, LF~kt (tf0 (~v)) =
1

(s + k)
2 .,

vrms =

√
Hc

β
, fd =

(
β

Hc

) d
2

, f−1d v−drms = 1.

Then inverse integral transforms in (3) have to be com-
puted. They can be rewritten as discrete Fourier transforms
and then evaluated numerically using fast Fourier transform
(FFT) algorithm. For 1D Cauchy distribution it is possible
to compute this expression analytically.

EXACT SOLUTION FOR 1D CAUCHY
The inverse Laplace and Fourier transforms in (3) can

be evaluated exactly for 1D Cauchy distribution giving the
following solution:

n1 (~x, t) =
1

4π

1

v0 − i
(
e−A+ (Ei(A+)− Ei(B+)) +

+eA+ (E1(A+)− E1(B+))
)

+

+
1

4π

1

v0 + i

(
e−A− (Ei(A−)− Ei(B−)) +

+eA− (E1(A−)− E1(B−))
)
, (4)

A± =
tv0 − x + x0

1± iv0
, B± =

x0 − x± it
1± iv0

,

and E1(z) and Ei(z) are the exponential integral functions,
which can be computed via series expansions.

NUMERICAL RESULTS
Here we show numerical results for n1 (~x, t) for some

distributions obtained using the program we developed.
The program works for any number of spacial dimensions
and for any equilibrium distribution, its detailed description
and full analysis of the results will appear in our next pub-
lications. On the Fig. 1 we compare the numerical results
with the exact ones for 1D Cauchy distribution for wide
ranges of time and spacial coordinate. q is an FFT parame-
ter defining number of data points via N = 2q . We found
that for all ranges for q = 10 FFT values stabilize and fur-
ther increasing of q doesn’t change them. On the Fig 2 we
show our numerical results for all 1D distributions we con-
sidered. The dynamics of the perturbations for 2D KV, WB
and Cauchy distributions is depicted on the Fig 3, where we
also show results for 3D Cauchy distribution.

Figure 1: The exact and FFT values for 1D Cauchy case.

CONCLUDING REMARKS
In this short paper we presented our new results for the

dynamics of the shielding of the charged particle in an
isotropic infinite electron plasma. Our numerical results
are in the perfect agreement with the theoretical ones for
the exactly solvable case.

Being useful for practical purposes on its own, the pro-
gram we developed can serve as a reliable testing ground
for PIC simulations and for the general method capable to
deal with realistic finite electron beam based on numeri-
cal solution of the integral equation. This method was de-
scribed in our IPAC’12 contribution [3] and now is being
developed.
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Figure 2: KV, WB, Normal, and Cauchy distributions in
1D.

Figure 3: KV and WB in 2D and Cauchy in 2D and 3D.
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