Growth and Characterization of CdTeSe for Room-Temperature Radiation Detector Applications

Utpal Roy

Presented at the SPIE Optics and Photonics 2013

September 2013

Nonproliferation and National Security Department
Brookhaven National Laboratory
P.O. Box 5000
Upton, New York 11973
www.bnl.gov

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author’s permission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party’s use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Growth and characterization of CdTeSe for room-temperature radiation detector applications

U. N. Roy¹, A. E. Bolotnikov¹, G. S. Camarda¹, Y. Cui¹, A. Hossain¹, G. Yang¹, R. B. James¹, A. Fauler², M. Fiederle², M. Sowinska³, G. Hennard³ and P. Siffert³

¹Brookhaven National Laboratory, Upton, NY, USA
²Freiburger Material for schungszentrum FMF, Stefan-Meier-Strasse 21, 79104 Freiburg, Germany
³Eurorad S.A., Rue Ettore Bugatti, 67201 Eckbolsheim, France

ABSTRACT

The near-unity segregation coefficient of Se in a CdTe matrix ensures the compositional homogeneity, both axial- and radial, of the CdTeSe ternary compound, so making it a material of choice for room-temperature radiation detectors. In this study, we grew CdTeSe crystals by the Traveling Heater Method (THM), using Te as the solvent, and characterized the crystals by IR transmission microscopy, white-beam X-ray diffraction topography, and low-temperature photoluminescence. The total average concentration of the secondary phases obtained for the CdTeSe sample was about 7×10^4 cm$^{-3}$ for crystals grown at two different laboratories. The best resistivity registered was 5×10^9 ohm-cm, and the estimated $\mu \tau$ product for the electrons was $3-4 \times 10^{-3}$ cm2/V.

1. INTRODUCTION

The ternary compound CdTe$_x$Se$_{1-x}$ (CTS) could be a good choice for usage in room-temperature radiation detectors. It has several advantages over CdZnTe (CZT), particularly the near-unity segregation coefficient of Se in CdTe that ensures the axial- and radial-compositional uniformity of the grown ingots1,2. The ability to obtain larger, more uniform detector-grade crystals than those presently available potentially could drastically reduce the cost of producing such detectors compared to those made from CdZnTe. Here, CTS offers another advantage, viz., that of having a lower electron effective-mass compared to CdTe3. Furthermore, selenium assures effective solution hardening, judged against the Zn in the CdTe matrix1,4 so drastically reducing the sub-grain boundary network. The presence of sub-grain boundaries in present-day CZT crystals are known to be the most detrimental factor for the device’s performance5. Therefore, we consider that CST offers many advantages over CZT. Indeed, during the early developmental stages of CZT as detector material in 1994, it was demonstrated that CTS was more promising than CZT and CdTe6. Hence, we considered that it was worth reconsidering the ternary compound CdTe$_x$Se$_{1-x}$ for radiation-detectors. In this paper, we discuss our growth and characterization of CdTe$_x$Se$_{1-x}$ crystals, and detail some preliminary results on the properties of devices fabricated from it.

2. EXPERIMENTAL

We grew the CdTe$_x$Se$_{1-x}$ samples that we characterized for our research by the Traveling Heater Method (THM) with a 10% nominal concentration of Se. Herein, we also discuss some of the results with THM-grown CTS samples generated by the collaborations of M. Fiederle and the Eurorad group; furthermore, we include the preliminary characterization of samples grown at Brookhaven National Laboratory. All our samples were grown from a Te-rich solution at the rate of ~3 mm/day. The samples were cut and polished to a mirror-like finish by a final polishing using 0.05-µm alumina with a felt pad. Samples were characterized by IR transmission microscopy, and white beam X-ray diffraction topography in the reflection mode using the NSLS facility at BNL’s X19C beam line. To explore the crystalline quality of the samples, we used low-temperature photoluminescence (PL) at 4.2 K. High-resolution charge-collection mapping was carried out at BNL’s beam line, X27B. Finally, we fabricated planar devices from samples measuring 10x10x1 mm3 using chemically deposited gold as the electrode. Their resistivity and charge-transport characteristics were evaluated by...
measuring their I-V characteristics; we plotted the efficiency of charge collection versus applied bias to derive the µτ product for electrons at room temperature. Finally, we assessed the characteristics at room temperature for our planar detectors using a 241Am gamma source.

3. RESULTS AND DISCUSSION

Figure 1 represents a typical optical photograph of a CTS sample of 10x10x1 mm3, wherein the grain boundaries are visible. The sample was etched in a 2% bromine-methanol solution. Figure 2 is the X-ray diffraction topographic image of the large grain taken in the reflection mode. The bending on the topographic image is the signature of stress associated with the sample. In addition, large sub-grain boundaries are visible as dark lines in the topographic image. The IR transmission image of the sample is shown in figure 3, while an enlarged image of the rectangle therein is presented in figure 4; the area of the image is ~ 2.5x2 mm2. The presence of the secondary phases is clearly visible. To investigate the concentration and size distribution of the total average secondary phases in the CTS samples, we studied a sample, 5-mm thick, to obtain better statistics. Figure 5 is its typical histogram, illustrating the concentration and size-distribution of the secondary phase present within it. We explored the distribution of the inclusions over the volume of 1.1x1.5x5 mm3, as presented in Fig. 4. The concentrations of the secondary phase were measured at different depths over the sample’s entire thickness, viz., 5 mm in the present case. Figure 5 is the result of superimposing all the IR transmission images taken at different depths; we show the image as negative, so that the inclusions appear as white spots, instead of black ones as in a normal image. We measured the total average concentration of the secondary phases in the CTS sample as 7x104 cm$^{-3}$, a value that is 5-8 times lower than that in the standard CdZnTe available today7. The histogram
of size distribution extends up to 17-18 µm, with the peak at about 7-8 µm. We consider that the lower concentration of the secondary phases is very encouraging compared to that in CZT; further, we expect the charge-transport characteristics and their uniformity will be superior to those in the presently available CZT. Similar behavior was observed for the crystals grown at BNL by the THM technique. The total average concentration of the secondary phases obtained for BNL’s CTS sample was 6.6x10^4 cm^-3, i.e., strikingly similar to the value for CTS sample provided by M. Fiederle and the Eurorad group. Although making a definitive statement is premature, seemingly the lower concentration of the secondary phase, compared to CZT, possibly is an intrinsic property of the CTS ternary compound. Our low-temperature photoluminescence study at 4.2 K showed sharp well-resolved excitonic peaks that are the signature of the sample’s good crystallinity.

Figure 5. Concentration and size distribution of the secondary phases in the CTS sample. The volume investigated was 1.1x1.5x5 mm³.

Figure 6. Superimposed IR transmission image over in a 5 mm-thick crystal. The image area is 1.1x1.5 mm².

Figure 7. Room-temperature ²⁴¹Am gamma response for a CTS planar detector.

Figure 8. Charge collection versus applied bias for a CTS sample using 59.6-keV gamma line of ²⁴¹Am.

The resistivity of the sample was 5x10⁹ ohm-cm. The pulse height spectrum for a planar detector of 10x10x1 mm³ is shown in figure 7; it was obtained from an ²⁴¹Am gamma source under an applied bias of 25 V. We note that even at very low applied bias of 5 V across a 1-mm-thick sample a well-resolved gamma peak was also revealed, which is very unusual for a similar sized standard CZT sample. This finding implies that its charge-transport properties are very good. To evaluate the mobility-lifetime product for electrons, we plotted charge collection versus applied-bias voltage for the detector in planar geometry using ²⁴¹Am gamma line and fitted with the Hecht’s relation; this is illustrated in figure 8.
The $\mu \tau$ product for an electron estimated from the Hecht’s equation was 3.5×10^{-3} cm2/V. This result is very encouraging for our early growth experiments; we expect to enhance the $\mu \tau$ product by optimizing the growth parameters and purifying the starting materials.

4. SUMMARY

Reasonably good spectroscopic CdTeSe (CTS) samples were grown by the THM technique. The average concentration of the secondary phases present in the CTS crystals grown from two different sources are encouragingly similar; the value obtained was 7×10^4 cm$^{-3}$, a level that is 5-8 times lower than in commercial CZT presently available. For our early grown samples, the $\mu \tau$ value for electrons was 3.5×10^{-3} cm2/V, which also is very promising. Higher resistivity and $\mu \tau$ values may be realized after we purify the material and optimize the growth parameters. Overall, we consider that CTS is very promising for radiation-detector applications, and it has remarkable potential for replacing CZT.

5. ACKNOWLEDGEMENT

This work was supported by the U.S. Department of Energy, Defense Nuclear Nonproliferation R&D.

6. REFERENCES