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Table 1: Beam parameters achieved at three different ener-
gies during the physics runs of the first phase of the beam
energy scan.
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Figure 1: The QCD phase diagram, with the critical
point expected in the center-of-mass energy range between

\/ = 5and30GeV. . .
SNN an ¢ In the first phase of the beam energy scan in FY2010

and FY2011, RHIC operated at three different energies
at and below its nominal injection energy [1, 2]. During
Abstract these runs, beam lifetimes of roughly 15 minutes to one

To search for the critical point in the QCD phase dialoU" were achieved at gold bunch intensitie)df - 10°
gram, Au-Au collisions at beam energies between 2.5 arfd 1-1 - 10” ions per bunch; at the lower energies these in-
15 GeVi/n are required. While RHIC has successfully oplensities were limited by the space chage tune shift. Table
erated at 3.85 and 5.75 GeV/n, the performance achiev&diSts the beam parameters achieved during these runs.
at 2.5 GeV/n is not sufficient for a meaningful physics pro- " FY2012, RHIC operated for the first time success-

gram. We report on dedicated beam experiments performfdly at a quarter of its nominal injection energy, namely

approximately 4 minutes were achieved, see Figure 2. The
INTRODUCTION bunch intensity was limited at - 107 Au ions per bunch
: . because of an injection efficiency of only 10 percent. Due
During the next 5 - 10 years, one of the major RHIC’[O this short beam lifetime, only 27 bunches per ring were

physics programs_will be the sear(_:h fqr the critical_ point iri' jected, since filling 110 bunches takes about two minutes
the QCD phase diagram, shown in Figure 1. This searﬁbr fing

requires a gold beam energy scan in the range betwe nAt these low bunch intensities, most of the RHIC beam
2.5 and 15 GeV/nucleon, which extends well below the . o
instrumentation does not work properly, making it virtyall

RHIC design energy range from 10 GeV/n at injection to . ! .
100 GeV/n at store. impossible to understand and improve the machine perfor-

Operating RHIC below its desian enerav ranae is very 2nce: Most importantly, the transverse beam size and
perating 9 gy rang Yherefore the emittance were unknown because the ioniza-
challenging for a number of reasons. First of all, bea

emittances are large, resulting in a lower limit on the ion profile monitor (IPM) could not operate reliably.
function at the interaction point, and therefore in low lu-

minosity. Large space charge tune shifts are encountered EXPERIMENTS

even with moderate beam intensities. Last but not least, the|, 5 effort to understand the single particle performance

multipole errors i_n the accelerator magnets are optimizest the RHIC lattice at 2.5 GeV/nucleon Au beam energy,
at full energy, while they are an order of magnitude largeg otons with the same rigidity of 19.3 Tm were injected
below the nominal injection energy. and stored at an energy of 5.86 GeV. Due to the differ-
ent charge-to-mass ratié/ A of protons compared to gold
ions, the relativistic Lorentz factoy is about a factor 2.5

*Work supported by Brookhaven Science Associates, LLC uBder
tract No. DE-AC02-98CH10886 with the U.S. Department of flgge
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Figure 2: A typical Au-Au store at 2.5 GeV/n beam energy time [sec]

during a test run in 2012. While 27 bunches are being in-

jected into the Blue ring, the intensity in the Yellow ringFigure 3: Comparison of the lifetime performance of typi-
decreases by some 25 percent due to the short beam lifed Au-Au stores at 2.5 GeV/n in the Blue and Yellow ring

time. (top) with a typical proton store at 5.86 GeV (bottom) in
the Yellow ring.
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Table 2: Beam parameters during the 5.86 GeV proton test

experiment. ) ) )
tion, losses were observed only in the RHIC abort kicker
ramp [ pp13-6GeV area, which is geometrically the tightest aperture at injec
Bp 19.3Tm tion. Applying orbit bumps in an effort to reduce the losses
E 5.86 GeV in that location proved unsuccessful, which indicates that
Fin 4.92 GeV the beam orbit was well centered in thé x 3” aper-
y 6.25 ture. However, regardless of the mis-steering efforts, the
P 5.79 GeV/c RMS beam sizes measured by the polarimeter target, at
frev | 77.187kHz B: = B, = 25m, remained constant at, = 2.4mm
h 363 ando, = 2.0mm which indicates that the beam already

filled the available aperture even when it was injected with-
out any intentional mis-steering, see Figure 6. At the abort

kickers with 5, = 41m, 8, = 119m, this corresponds
higher than for gold ions at the same rigidity. Assumingo RMS beam sizes of, = 3.1 mm ando, = 4.4mm.

identical normalized emittance& for the two Species, this These values are small Compared to the abort kicker aper-
results in smaller transverse beam sizes. Furthermore, thge, so it is safe to assume that the measured acceptance
space charge tune shift is limited by the dynamic aperture rather than the physical

9 aperture.
AQse = — 27Ty N ¢ 1) This observation was confirmed by a second experiment
> A AnBy2en 2mos y p

in which the stored beam was transversely blown-up by the

for protons is also reduced by a factof(A-12) = 2.53as  RHIC tunemeter. Again, this experiment resulted in RMS
compared to gold ions with identical bunch chaige N, beam sizes of 2.4 mm horizontally and 2.0 mm vertically
normalized emittancesy, and bunch lengths, . at the polarimeter. Furthermore, we observed a shrinking

After some tuning, intensities of - 10° protons per bunch length while the tunemeter was exciting the beam
bunch were routinely injected and stored, with beam lifetransversely, see Figure 5. We therefore conclude that the
times of approximate'y one hour, as shown in Figure 3i_iynamic apel‘ture is smallest for pal‘tiC|eS with |arge mo-
Compared to the experience with gold ions in the sam@entum deviatiomp/p.
RHIC lattice, this was a huge improvement. The measured beam sizes of 2.4mm horizontally and

To characterize the single-particle performance of th2.0 mm vertically at the IPM with3 = 25m correspond
lattice, we measured the dynamic aperture by two differetd RMS geometric emittances ef = 0.23 mmmrad and
methods. In the first attempt, we injected proton buncheg = 0.16 mmmrad. In contrast to this, Au beams with
with intentionally mis-steered orbits and measured the r&an RMS geometric emittance ef= 0.73 mm mrad have
sulting beam emittances using the RHIC polarimeter tabeen routinely stored at 3.85 GeV/nucleon. This indicates
get as a slow wire scanner. Mis-steering the injection oa dynamic aperture that is at least a factor 3 larger at the
bit resulted in a drop of the injection efficiency and there50 percent higher rigidity 029.7Tm at 3.85 GeV/nucleon
fore the resulting stored beam intensity, Figure 4, thus ircompared td9.3 Tm at 2.5 GeV/nucleon Au, or 5.86 GeV
dicating that an aperture limit was reached. During injegprotons. The root cause of this large difference is not
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yet understood. Tracking studies are currently being per-
formed in an affort to understand and improve the dynamic
aperture at 2.5 GeV/nucleon Au.

SPACE CHARGE

Based on the measured emittarce- 0.16 mm mrad,
corresponding to a normalized emittance of =
1mm mrad, an RMS bunch length o, = 3m, and a
bunch intensityN = 4 - 10'° protons/bunch, the space
charge tune shift achieved during our experiments with
5.86 GeV protons can be computed as

AQ.c = —0.065, @)

Figure 4: Total intensities of 110 bunches during the dywhich is consistent with the space charge tune shift limit
namic aperture measurement with mis-steered injection. of AQ,. ~ —0.05 observed with Au beams at 3.85 and
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Figure 5: Hourly beam decay (top) and average bunch”
length during the dynamic aperture measurement usir&
transverse emittance blow-up via the RHIC tunemeter.
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5.75 GeV/nucleon.

Assuming the same geometric emittance of =
0.16 mm mrad for 2.5 GeV/nucleon gold, corresponding
to a normalized emittance @f, = 0.4 mmmrad, and a
bunch length of, = 3 m, this same space charge tune shift
would be reached at a bunch intensityf, = 8 - 107
gold ions per bunch, which is a factor 5 less than what
was achieved at 3.85GeV/nucleon. With 111 bunches
per ring, this would result in a luminosity of = 2 -
1022 cm~2sec™ L.

CONCLUSION

Measuring the dynamic aperture of the 2.5 GeV/nucleon
Au lattice by injecting and storing protons at the same rig-
ity resulted in a dynamic aperture that is at least 3 times
smaller than that for 3.85 GeV/nucleon Au. Improving this
is the key to a higher beam intensity at the space charge
limit, and therefore to higher luminosity. Tracking stuslie
cluding a frozen space charge model, are currently un-
r way to understand and improve the dynamic aperture.
However, multipole errors at these low energies are only
known for a single dipole and a single quadrupole, which
limits the predictive power of these simulations somewhat.
As the next step, it is planned to inject gold beams with
emittances taylored to the measured dynamic aperture to
study the beam lifetime under these conditions.
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