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TRANSVERSE BEAM TRANSFER FUNCTIONSVIA THE VLASOV
EQUATION*

M. BlaskiewicZ, V.H. Ranjbar,
BNL Upton NY 11973 USA

Abstract D(0,7) = z(0,7)I(7) with I(7) the bunch curreny the

A semi-numerical method of integrating the ViasoWarticle charge, and the synchronous momentum. The
equation to obtain beam transfer functions directly as {rce is limited to a single bunch of full length, but can
function of frequency is presented. The results are cor® extended to uniformly filled rings. S
pared with beam transfer functions calculated via particle 10 Selve (1) and (2) using the Viasov equation first in-
tracking and excellent agreement is shown. The technigf@duce amplitude angle variables definedrby- a sin ¢
works well with both transverse wakes and detuning wakes= @ cos¥. Since all particle have constant

from space charge. oF OF dpoF oF
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The stability and response properties of particle bean)fgheredp/de IS given by eq (2). We no_rmahsE so that
are encapsulated in beam transfer functions (BTFs) [1, 2,4*dpadadi)is the number of particles in the phase space
3]. BTFs are relatively easy to measure making their aolume. To continue we define 3 transverse moments [4],
curate calculation of great practical interest. In thisgrap
we will present two independent ways to calculate buncheciX(w’ a,0), P, ¥} = /dxdpF(x’p’ a,%,0){z,p, 1}
beam transverse beam transfer functions, and show their 4)
agreement for some challenging parameters. To begin [Ebis gives
f denote azimthh, which increases by each turn. Let oxX oxX
t be clock time and let denote particle arrival time with 50 + Qs%
respect to the synchronous particle so that wo(t — 7),
with wq the synchronous angular revolution frequency. We
used as the time-like variable and, to make a precise cross or +Q or
check possible, take linear rf so that o7} oy

dr de +2Q5I€ [deekll - U deX]

@ = Qse @ = _QsTa (1) q¥

- 27rPow0
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= P(/17D3a7 9)7 (5)

—Q4()X + Fe(0, 1)V

[driWi(m)q [deX(e,7—71)  (6)
where(Q), is the synchrotron tune ands the energy vari- 0

able. with We consider a single transverse variablend WhereAQ (1) = « [ de¥, (1) [ de¥ = [ deX and, for
uniform focusing. Collective forces are taken in the continexample,

uum approximation witliz /df = p and
/deX = /aldaldw15(asinw—a1 sin 1) X (¢1, a1, 0),

dp 2
o @)z + Fel0,7) and the occurences afande in (6) are understood to be
+ 2Q5AQue(T)x — (6, 7)] shorthand for the amplitude angle representations. Next
* ’ we substitute (5) in (6) and drop second partial derivatives
q with respect tap. We takeF. (0, 7) = Fo(7) exp(—iQ¥b),
27 Powo /WL(Tl)D(H’T —7)dn, (2)  and we takeX = X, exp(—iQO — ifwot/n), With Q =
0 Qo + AQ. This yields

where Qg(e) = Qo + Qsewoé/n is the betatron tune, D . .
with chromaticity¢ and frequency slip factoy, F. (6, 7) AQ + le% + AQsc(asiny) ¢ X1(¢,a) = F(1)¥(a),
is the external driving forcedQ,.(7) is the space charge

27'1,

tune shift as a function of longitudinal position in the h (7)
bunch, andz(0, 7) is the average beam offset. The wallV"ere

induced forces are due the the transverse wake potential N _ eiéon/ "y (7)

W, () and driven by the instantaneous dipole moment F(r) = 30, + £k [ deX,

*Work performed under the auspices of the United States Drapat iEwnT
of Energy N Q}OdT WJ_(Tl)eg 0T1/m
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[ deXi(e, 7 —71). (8)



The strategy is to solve (7) fab; = ¢ [ deX; resulting
in a one dimensional integral equation By which will
be solved numerically. To proceed IAIQ,.(asiny) =
Aa) + dA/dy whereA(a,v) = A(a, 1) + 27). Substitute
X1 = X2 exp(iA/Q) yielding

{AQ + iQs% + )\(a)} Xy —e N Qspy. (9
Multiply both sides by the integrating factexp(—i(\ +

AQ)/Qs) and integrate from) to ¢ + 27 employing the
periodicity of X5. BacksubstituteX; giving

\IjeiG(aa 1/1) v

/ dir F(asini)e ~ iG(

a, ’l/)l)
QsR(a)
P

X, =

(10)
whereR(a) = 1 — exp(—2mi(A + AQ)/Qs) and

»
G(va) = dwl
/

To proceed note that

AQ + AQsc(asin)
Qs '

Dy(r) = q/adadz/)(S(T —asiny) X1 (a, )

yielding

Dl(T

) = / Grm)qB (m)dm (11)

where

- €i£w07/ano(7')
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+ kD1 (1)

and
G(r,m) = }Oada zfrdz/J(S(T — asin z/J)kll(a)eiG(a’ ¥)
0 0
K(a) w}%dwlé(n —asiny)e iG(a, 1) (13)
P

whereK = i¥/QsR. To proceed assumg, () is defined
at a set of equidistant pointg = kA and thatD varies
linearly between these points. Then

N

Z arT (T — kA),

k=—N

qF (1)

whereT (x) is a triangle function of height 1 and half width
at baseA. For smooth bunche®(r) is zero at the ends of
the bunch so we tak& = 7,/(N + 1) wherer, is the half

bunch length. Next we do the integral ovgiin (13). For
any smooth functiof(a, v),

2
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where the two angles satisfyn; o = 7/a and the in-
tegral vanishes fofr| > a. Next we define a new radial
variableu defined byu? = a? — 72 soudu = ada. The
dipole density is defined at the same set of lattice points as
F'so

N
Dl(mA) =D, = Z an]\/[m,na (14)
n=—N
where
Mpn= [ duK(@ 3 €0p)

0 p=1,2

Pp+2m -
[ dT(nA — asingy)e ~ 1G@¥1) (15

Yp
In integral (15)a = vu? + m2A? andsiny, = mA/a.

We have written a program which solves (14) with matrix
element (15) and,, from (12),

- eszonA/anO(nA) oD
2 IN+1 .
q 1€wokA/n
+— AW, (KA D, . (16
47 Qo Powo kZ::O 1(kA)e t- (16)

SIMULATIONS

The solution of equations (1) and (2) using particle track-
ing is straightforward [5, 6, 7, 8]. Before considering
a sinusiodaly drive BTF we consider forces of the form
Fyo(r,0) = f(7)cos(Q8) exp(gQ)d,(8) whered, is the
periodic delta functiong) is the real part of the drive tune,
g is the imaginary part of the drive tune arfigr) is non-
zero only over the full bunch lengthr,. Supposeé (6, 7)
is the dipole response to a kigkr) given atd = 0. Then
the response from all the kicks is

o0

Z D¢(0—2mm, T) cos(2rmQ) exp(2mgm).

D(O,7) =

To obtain a scalar we take the inner product

= _7 drf(r)D(0, 1)

2

m=—0o0

D (6 — 27wm) cos(2rmQ) exp(2mgm)

For a pickup at a fixed location one obtains the time series
D(0), D(27), D(4x),..., these values may be obtained
with a single S|mulat|on As long aéf(e) does not grow
more quickly tharexp(g6) we will have

D(2rk) = [Ag cos(2mkQ) + Bg sin(27kQ)] exp(2mgk)



with

Aq +jBq =Y _ By(2ml)exp(2nl[jQ — g])  (18)
=0

Hence, the entire BTF can be obtained with one simulation.
For a real beam transfer function the force at the pickup is
sinusiodal. We assume the frequencyis + w; wheren

is an integer|w; | < wp/2. Then the driving force is given
by

Reactive(BTF), Q-n

F.(0,7) = 6,(0)cos[(nwo + w1)t],
dp(0) cos|(nwo + w1 ) (T + 0/wo)],
0p(8) cos(nwoT) cos(w1k(t)Tp)
—0p(0) sin(nwoT) sin(w1k(t)To)  (19)

whereT, = 27 /wy andk(t) = nint(t/Tp). In areal BTF
only the response at the drive frequency is measured so,
with a sinusiodal kick one needs to run two simulations.
One with a kick proportional tgin(nwo7) and another
with kick cos(nwo7). During each simulation one takes in-
ner products of the response with each sinusoid every turn.
One finds

Reactive(BTF), Q+n

BTF(w1) =Y (Com + jSm)e (jwi + €)mTy

m=0

with

Th
C,, = / drDcos(2mm, T)e _]non,

—Ty

whereD,,s(0, T) is the response to a cosine kickfat 0,
and similarly forS,,. In these equations we have used
the electrical engineering convention witfh= —i and
allowed for an exponentially growing driver exp(et).
The driving terms in the Vlasov approach are given by
Fo(r) = exp(xjnwor) for the @ F n sidebands, respec-
tively. Figure 1 shows upper and lower sideband BTFs with
nwy = £m/27, varying chromaticity and a step function
wake of size comparable to what is needed for a mode cou-
pling instability. The peak space charge tune shiftis 4$ime
the synchrotron tune. For more extreme parameters the dis-
agreement increases and we continue to look for errors.
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