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TRANSVERSE BEAM TRANSFER FUNCTIONS VIA THE VLASOV
EQUATION∗

M. Blaskiewicz† , V.H. Ranjbar,
BNL Upton NY 11973 USA

Abstract
A semi-numerical method of integrating the Vlasov

equation to obtain beam transfer functions directly as a
function of frequency is presented. The results are com-
pared with beam transfer functions calculated via particle
tracking and excellent agreement is shown. The technique
works well with both transverse wakes and detuning wakes
from space charge.

INTRODUCTION AND THEORY
The stability and response properties of particle beams

are encapsulated in beam transfer functions (BTFs) [1, 2,
3]. BTFs are relatively easy to measure making their ac-
curate calculation of great practical interest. In this paper
we will present two independent ways to calculate bunched
beam transverse beam transfer functions, and show their
agreement for some challenging parameters. To begin let
θ denote azimthh, which increases by2π each turn. Let
t be clock time and letτ denote particle arrival time with
respect to the synchronous particle so thatθ = ω0(t − τ),
with ω0 the synchronous angular revolution frequency. We
useθ as the time-like variable and, to make a precise cross
check possible, take linear rf so that

dτ

dθ
= Qsǫ

dǫ

dθ
= −Qsτ, (1)

whereQs is the synchrotron tune andǫ is the energy vari-
able. with We consider a single transverse variablex and
uniform focusing. Collective forces are taken in the contin-
uum approximation withdx/dθ = p and

dp

dθ
= −Q2

β(ǫ)x+ Fe(θ, τ)

+ 2Qβ∆Qsc(τ)[x − x̄(θ, τ)]

− q

2πP0ω0

2τb
∫

0

W⊥(τ1)D(θ, τ − τ1)dτ1, (2)

whereQβ(ǫ) = Q0 + Qsǫω0ξ/η is the betatron tune,
with chromaticityξ and frequency slip factorη, Fe(θ, τ)
is the external driving force,∆Qsc(τ) is the space charge
tune shift as a function of longitudinal position in the
bunch, and̄x(θ, τ) is the average beam offset. The wall
induced forces are due the the transverse wake potential
W⊥(τ) and driven by the instantaneous dipole moment
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D(θ, τ) = x̄(θ, τ)I(τ) with I(τ) the bunch current,q the
particle charge, andP0 the synchronous momentum. The
force is limited to a single bunch of full length2τb but can
be extended to uniformly filled rings.

To solve (1) and (2) using the Vlasov equation first in-
troduce amplitude angle variables defined byτ = a sinψ
ǫ = a cosψ. Since all particle have constanta,

∂F

∂θ
+ p

∂F

∂x
+
dp

dθ

∂F

∂p
+Qs

∂F

∂ψ
= 0, (3)

wheredp/dθ is given by eq (2). We normaliseF so that
Fdxdpadadψ is the number of particles in the phase space
volume. To continue we define 3 transverse moments [4],

{X(ψ, a, θ), P,Ψ} =

∫

dxdpF (x, p, a, ψ, θ) {x, p, 1} .
(4)

This gives

∂X

∂θ
+Qs

∂X

∂ψ
= P (ψ, a, θ), (5)

∂P

∂θ
+Qs

∂P

∂ψ
= −Q2

β(ǫ)X + Fe(θ, τ)Ψ

+2Qβκ
[

X
∫

dǫΨ − Ψ
∫

dǫX
]

− qΨ

2πP0ω0

∞
∫

0

dτ1W⊥(τ1)q
∫

dǫX(ǫ, τ − τ1) (6)

where∆Qsc(τ) = κ
∫

dǫΨ, x̄(τ)
∫

dǫΨ =
∫

dǫX and, for
example,
∫

dǫX ≡
∫

a1da1dψ1δ(a sinψ−a1 sinψ1)X(ψ1, a1, θ),

and the occurences ofτ andǫ in (6) are understood to be
shorthand for the amplitude angle representations. Next
we substitute (5) in (6) and drop second partial derivatives
with respect toψ. We takeFe(θ, τ) = F0(τ) exp(−iQθ),
and we takeX = X1 exp(−iQθ − iξω0τ/η), with Q =
Q0 + ∆Q. This yields
{

∆Q+ iQs
∂

∂ψ
+ ∆Qsc(a sinψ)

}

X1(ψ, a) = F̃ (τ)Ψ(a),

(7)
where

F̃ (τ) =
− eiξω0τ/ηF0(τ)

2Q0

+ κ
∫

dǫX1

+q2
∞
∫

0

dτ1
W⊥(τ1)e

iξω0τ1/η

4πQ0P0ω0

∫

dǫX1(ǫ, τ − τ1). (8)



The strategy is to solve (7) forD1 = q
∫

dǫX1 resulting
in a one dimensional integral equation forD1 which will
be solved numerically. To proceed let∆Qsc(a sinψ) =
λ(a) + dΛ/dψ whereΛ(a, ψ) = Λ(a, ψ + 2π). Substitute
X1 = X2 exp(iΛ/Qs) yielding

{

∆Q+ iQs
∂

∂ψ
+ λ(a)

}

X2 = e− iΛ/QsF̃Ψ. (9)

Multiply both sides by the integrating factorexp(−iψ(λ+
∆Q)/Qs) and integrate fromψ to ψ + 2π employing the
periodicity ofX2. BacksubstituteX1 giving

X1 =
ΨeiG(a, ψ)

QsR(a)

ψ+2π
∫

ψ

dψ1F̃ (a sinψ1)e
− iG(a, ψ1)

(10)
whereR(a) = 1 − exp(−2πi(λ+ ∆Q)/Qs) and

G(τ, ψ) =

ψ
∫

0

dψ1

∆Q+ ∆Qsc(a sinψ1)

Qs
.

To proceed note that

D1(τ) = q

∫

adadψδ(τ − a sinψ)X1(a, ψ)

yielding

D1(τ) =

∫

Ĝ(τ, τ1)qF̃ (τ1)dτ1 (11)

where

qF̃ (τ) =
− eiξω0τ/ηqF0(τ)

2Q0

+ κD1(τ)

+
q2

4πQ0P0ω0

∞
∫

0

dτ1W⊥(τ1)e
iξω0τ1/ηD1(τ − τ1) .(12)

and

Ĝ(τ, τ1) =
∞
∫

0

ada
2π
∫

0

dψδ(τ − a sinψ)Ψ(a)eiG(a, ψ)

K(a)
ψ+2π
∫

ψ

dψ1δ(τ1 − a sinψ1)e
− iG(a, ψ1) (13)

whereK = iΨ/QsR. To proceed assumeD1(τ) is defined
at a set of equidistant pointsτk = k∆ and thatD varies
linearly between these points. Then

qF̃ (τ) =

N
∑

k=−N

akT (τ − k∆),

whereT (x) is a triangle function of height 1 and half width
at base∆. For smooth bunchesD(τ) is zero at the ends of
the bunch so we take∆ = τb/(N + 1) whereτb is the half

bunch length. Next we do the integral overψ in (13). For
any smooth functionh(a, ψ),

2π
∫

0

δ(τ − a sinψ)h(a, ψ)dψ =
∑

p=1,2

h(a, ψp)
√

a2 − τ2
,

where the two angles satisfysinψ1,2 = τ/a and the in-
tegral vanishes for|τ | > a. Next we define a new radial
variableu defined byu2 = a2 − τ2 soudu = ada. The
dipole density is defined at the same set of lattice points as
F̃ so

D1(m∆) ≡ Dm =
N

∑

n=−N

anMm,n, (14)

where

Mm,n =

√
τ2

b
−m2∆2

∫

0

duK(a)
∑

p=1,2

eiG(a, ψp)

ψp+2π
∫

ψp

dψ1T (n∆ − a sinψ1)e
− iG(a, ψ1). (15)

In integral (15)a =
√
u2 +m2∆2 andsinψp = m∆/a.

We have written a program which solves (14) with matrix
element (15) andan from (12),

an =
− eiξω0n∆/ηqF0(n∆)

2Q0

+ κDn

+
q2

4πQ0P0ω0

2N+1
∑

k=0

∆W⊥(k∆)eiξω0k∆/ηDn−k. .(16)

SIMULATIONS
The solution of equations (1) and (2) using particle track-

ing is straightforward [5, 6, 7, 8]. Before considering
a sinusiodaly drive BTF we consider forces of the form
F0(τ, θ) = f(τ) cos(Qθ) exp(gQ)δp(θ) whereδp is the
periodic delta function,Q is the real part of the drive tune,
g is the imaginary part of the drive tune andf(τ) is non-
zero only over the full bunch length,2τb. SupposeDf (θ, τ)
is the dipole response to a kickf(τ) given atθ = 0. Then
the response from all the kicks is

D(θ, τ) =

∞
∑

m=−∞

Df (θ−2πm, τ) cos(2πmQ) exp(2πgm).

(17)
To obtain a scalar we take the inner product

D̂(θ) =
τb
∫

−τb

dτf(τ)D(θ, τ)

=
∞
∑

m=−∞

D̂f (θ − 2πm) cos(2πmQ) exp(2πgm)

For a pickup at a fixed location one obtains the time series
D̂(0), D̂(2π), D̂(4π), . . ., these values may be obtained
with a single simulation. As long aŝDf (θ) does not grow
more quickly thanexp(gθ) we will have

D̂(2πk) = [AQ cos(2πkQ) +BQ sin(2πkQ)] exp(2πgk)



with

AQ + jBQ =
∞
∑

ℓ=0

B̂f (2πℓ) exp(2πℓ[jQ− g]) (18)

Hence, the entire BTF can be obtained with one simulation.
For a real beam transfer function the force at the pickup is
sinusiodal. We assume the frequency isnω0 + ω1 wheren
is an integer,|ω1| ≤ ω0/2. Then the driving force is given
by

Fe(θ, τ) = δp(θ) cos[(nω0 + ω1)t],

= δp(θ) cos[(nω0 + ω1)(τ + θ/ω0)],

≈ δp(θ) cos(nω0τ) cos(ω1k(t)T0)

−δp(θ) sin(nω0τ) sin(ω1k(t)T0) (19)

whereT0 = 2π/ω0 andk(t) = nint(t/T0). In a real BTF
only the response at the drive frequency is measured so,
with a sinusiodal kick one needs to run two simulations.
One with a kick proportional tosin(nω0τ) and another
with kick cos(nω0τ). During each simulation one takes in-
ner products of the response with each sinusoid every turn.
One finds

BTF (ω1) =

∞
∑

m=0

(Cm + jSm)e− (jω1 + ǫ)mT0

with

Cm =

τb
∫

−τb

dτDcos(2πm, τ)e
− jnω0τ ,

whereDcos(θ, τ) is the response to a cosine kick atθ = 0,
and similarly forSm. In these equations we have used
the electrical engineering convention withj = −i and
allowed for an exponentially growing drive∝ exp(ǫt).
The driving terms in the Vlasov approach are given by
F0(τ) = exp(±jnω0τ) for theQ ∓ n sidebands, respec-
tively. Figure 1 shows upper and lower sideband BTFs with
nω0 = ±π/2τb, varying chromaticity and a step function
wake of size comparable to what is needed for a mode cou-
pling instability. The peak space charge tune shift is 4 times
the synchrotron tune. For more extreme parameters the dis-
agreement increases and we continue to look for errors.
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Figure 1: Simulated BTFs (solid lines) and those following
from eq (14) (crosses) .
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