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Preface to the Series 
  

 
The RIKEN BNL Research Center (RBRC) was established in April 1997 at Brookhaven National 
Laboratory*. It is funded by the "Rikagaku Kenkyusho" (RIKEN, The Institute of Physical and 
Chemical Research) of Japan and the U. S. Department of Energy’s Office of Science. 
  
The Memorandum of Understanding between RIKEN and BNL, initiated in 1997, has been 
renewed in 2002, 2007 and 2012.  
  
The Center is dedicated to the study of strong interactions, including spin physics, lattice QCD, and 
RHIC physics through the nurturing of a new generation of young physicists. 

 
In April 2013, Dr. Samuel Aronson was named Director of the Center, preceded by Nicholas 
Samios and T.D. Lee. 

 
The RBRC has theory, lattice gauge computing and experimental components. It is presently 
exploring the possibility of an astrophysics component being added to the program. The RBRC 
Theory, Computing and Experimental Groups comprise a total of approximately 42 researchers. 
Positions include the following:  full-time RBRC Fellow, half-time RHIC Physics Fellow, and full-
time Postdoctoral Research Associate. The RHIC Physics Fellows hold joint appointments with 
RBRC and other institutions and have tenure track positions at their respective institutions. To date, 
RBRC has over 10 graduates (Fellows and Post-docs) of whom approximately 70 percent have 
already attained tenure positions at major institutions worldwide.   

 
Beginning in 2001 a new RIKEN Spin Program (RSP) category was implemented at RBRC. These 
appointments are joint positions of RBRC and RIKEN and include the following positions in 
theory and experiment:  RSP Researchers, RSP Research Associates, and Young Researchers, who 
are mentored by senior RBRC Scientists. A number of RIKEN Jr. Research Associates and Visiting 
Scientists also contribute to the physics program at the Center. 

 
RBRC has an active workshop program on strong interaction physics with each workshop focused 
on a specific physics problem. In most cases all the talks are made available on the RBRC website. 
To date there are over 100 proceedings volumes available.   
 
A series of high performance computers has been designed and built by individuals from Columbia 
University, IBM, BNL, RBRC, and University of Edinburgh, with the U.S. DOE Office of Science 
providing infrastructure support at BNL. QCDSP, a 0.6 teraflops parallel processor, dedicated to 
lattice QCD, was begun at the Center in February 1998, was completed in August 1998, and was 
decommissioned in 2006. It was awarded the Gordon Bell Prize for price performance in 1998. A 
10 teraflops RBRC QCDOC computer funded by RIKEN, Japan was unveiled on May 26, 2005. 
QCDOC was decommissioned in May 2012. The next generation computer in this sequence, 
QCDCQ (600 Teraflops), is currently operational and is producing important simulations of 

fundamental processes in nuclear and particle physics. Recent K0pp results were awarded the Ken 
Wilson Prize in 2012. 
 

      Samuel H. Aronson, Director 
      April 2014 
 
 
 

* Work performed under the auspices of U.S.D.O.E. Contract No. DE-AC02-98CH10886. 



Introduction 
  

 
The purpose of this Workshop is to critically review the recent progress on the theory and 
phenomenology of early time dynamics in relativistic heavy ion collisions from RHIC to LHC 
energies, to examine the various approaches on thermalization and existing issues, and to formulate 
new research efforts for the future. 

Specific topics we plan to address include: 

 Experimental evidence for equilibration/isotropization. What do the latest 

experimental results say about these questions? How model (in)dependent are these 

conclusions? Since the pressure isotropization is important for hydrodynamics, is there a 

way to assess the longitudinal pressure from measurements? 

 Comparison of various approaches. Various tools and approaches have been employed 

to study thermalization: kinetic theory, 2-particle irreducible formalism, classical statistical 

field theory, strong coupling techniques such as AdS/CFT,... Do their range of 

applicability overlap? How do they compare (in terms of ease of application, and in their 

results)? 

 Dependence on the initial conditions and couplings. Typically, the late time behavior 

of a system confined in a fixed volume will only depend on the conserved quantities, 

regardless of the details of the initial conditions. However, transient regimes will differ in 

general. When a system is free to expand in empty space, is there still a (partial) loss of 

details about the intial conditions? Are there various limiting regimes, depending on initial 

conditions and/or values of couplings? In heavy ion collisions, the initial conditions just 

after the collision are characterized by a strong coherent color field surrounded by small 

fluctuations. What is the role played by this coherent field? What is the role of plasma 

instabilities, in particular, at later stages of the evolution? 

 Turbulent cascades and Bose-Einstein condensation. Various studies performed in 

toy scalar models have shown that, if the initial condition is overpopulated, turbulent 

cascades may form and the particle excess can condense in the zero mode. This excess is 

gradually destroyed later on by inelastic processes. In heavy ion collisions, the initial 

condition is similarly overpopulated, but elastic and inelastic processes are parametrically 

of the same order in the coupling in contrast to the scalar field theory case. How does the 

formation of turbulent cascades and the question under which conditions a Bose-Einstein 

condensate could form compare between scalar and non-Abelian gauge field theory? 

What roles do the inelastic processes play during the evolution of a non-Abelian gauge 

field system with initial overpopulation? 
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Instabilities in non-Abelian expanding plasmas

Maximilian Attems

University of Barcelona

The Approach to Equilibrium in Strongly Interacting Matter



Motivation

Filamentation instability

[MA, Rebhan, Strickland 2008]

Hard Loop (HL) αs ≈ 0.3

Real-time physical quantities
of non-equilibrium processes

Plasma turbulence affects
parton transport
(isotropization, jet energy
loss, viscosity,..)

Derivation of time scales for
isotropization, thermalization
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Stages of an heavy ion collision

z 

t

strong fields classical fields

gluons & quarks out of eq. viscous hydro

gluons & quarks in eq.
hydrodynamics

hadrons in eq.

freeze out

[Gelis 2006] Illustration of the stages of a heavy ion collision.

Numerical approaches to early phase with strong fields:

1 Numerical solution of Yang Mills equations in real-time:
[Romatschke, Venugopalan; Berges, Sexty; Gelis, Fukushima;
Dusling; Dumitru, Nara, Schenke; Moore, Kurkela; Sexty;
Epelbaum; Schlichting, Boguslavski]

2 Hard Loop Simulation (Eikonalized particles):
[Strickland, Romatschke, Rebhan; Arnold, Lenaghan, Moore;
Mrowczynski; Rummukainen, Bödeker; Ipp, Attems; Deja]
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1 SU(3) Yang Mills Box
Stages of a heavy ion collision
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EOM

Yang-Mills equations in conjugate field momenta Eµ = ∂tAµ

∂tE
3 = −DiF

i
3 ,

∂tEi = −DjF
ji − D3F

3i .

with the Gauss law constraint

0 = D3E
3 + D iEi .

Gauge symmetry check with g ∈ SU(3)

Uµ(x)→ g(x)Uµ(x)g−1(x + aµ)
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Energy density
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Pressure
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Pressure
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Energy density spectra

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

102

0.00 0.33 0.65 0.98 1.31 1.64 1.96 2.29 2.62 2.95

ε(
E

z(
kz

))
 a

σ4

kz=2π/Lz n

t = 0.0
t = 1.0
t = 2.0
t = 3.0
t = 4.0
t = 5.0

t = 10.0
t = 15.0
t = 20.0
t = 25.0
t = 50.0

t = 100.0
t = 150.0
t = 200.0
t = 250.0
t = 300.0
t = 350.0

Chromo-electric spectra [MA, Philipsen, Schäfer 2014]
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Energy density spectra
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CGC IC Yang-Mills Box
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Isotropization at later time is a very slow process even in a
non-expanding and symmetric box.
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Scales of wQGP

Equilibrium:

T : energy of hard particles

gT : thermal masses, Debye screening mass,

g2T : magnetic confinement, color relaxation, rate for small
angle scattering

g4T : rate for large angle scattering, η−1T 4
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Scales of wQGP

Non-Equilibrium:

phard: energy of hard particles

gAµ: thermal masses, Debye screening mass,
plasma instabilities [Mrowczynski 1988, 1993, ..]

g2T : magnetic confinement, color relaxation, rate for small
angle scattering

g4T : rate for large angle scattering, η−1T 4
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Weibel instabilities
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Magnetic Fluctuation

Oblate

Distribution

[Mrowczynski 1993; Strickland 2006]: Illustration of the
mechanism of filamentation instabilities with Lorentz force.
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Bjorken expansion

x+x-

Τ = const
Η = const

z

t

It is convenient to switch to comoving coordinates

t = τ cosh η , τ =
√
t2 − z2 ,

z = τ sinh η , η = arctanh
z

t
,

with the corresponding metric

ds2 = dτ2 − dx2⊥ − τ2dη2 .
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Unstable modes growth rate
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Filamentation instability
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[2008 MA, Rebhan, Strickland.] Visualization of the 1D+3V
space-time development of color correlations in a non-Abelian
plasma instabilities in Bjorken expansion.
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Yang-Mills Vlasov

[Heinz 1985; Blaizot, Iancu 1993] One solves the covariant Vlasov

V · D δf a
∣∣
pµ

= gV µF a
µν∂

ν
(p)f0(p⊥, pη)

coupled to Yang-Mills

DµF
µν
a = jνa = g tR

∫
d3p

(2π)3
pµ

2p0
δfa(p, x, t)

with the Ansatz δf (x ; p) = −gWβ(x ;φ, y)∂β(p)f0(p⊥, pη) using the
longitudinal free streaming background distribution function

f0(p, x) = fiso

(√
p2⊥ + (

p′zτ

τiso
)2

)
resulting in the plasma anisotropy

ξ =
1

2

〈p2T 〉
〈p2z 〉

− 1 , ξ = (τ/τiso)2 − 1.
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Numerical setup

SU(2) particle content

Qs = 2GeV
Extrapolate to αs ∼ 0.3

Initial gluon densities given by
the gluon liberation factor
c = 2 ln 2 [Kovchegov 2001].

lattice size for leapfrog EOM:

Nη × N⊥
2 × Nu × Nφ =

128× 402 × 128× 32
aη = 0.025, a⊥Qs = 1
τ0 = 1/Qs

aτ = 10−2τ0

n(τ0) = c
NgQ3

s

4π2Ncαs(Qsτ0)
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Energy densities fields
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50 averaged runs N⊥ ∗ Nη ∗ Nu ∗ Nφ = 402 ∗ 128 ∗ 128 ∗ 32:
after onset one sees rapid growth of BT and ET fields,
followed by non-Abelian interactions kicking in.

Maximilian Attems, UB Instabilities in non-Abelian expanding plasmas 20/30



Energy densities fields
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Pressures
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Initially highly anisotropic, note PL,field(τ = 0.3) < 0, growing
field pressures, PL,field dominates at late times,
τ̃ scaled PL drops ∝ 1/τ̃2 .
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Pressure ratios
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Spectra
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The longitudinal energy spectra at various proper times over the
longitudinal wavenumber ν = kz ∗ τ : rapid emergence of an
exponential distribution of longitudinal energy.
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Spectra
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Longitudinal spectra for abelian runs shows amplification of the
initial seeded modes.
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Spectra
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The red-shifting is even more visible in the kz plot. Nonlinear
mode-mode coupling is vital in order to populate high momentum
modes.
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Longitudinal thermalization

Massless Boltzmann distribution fits the longitudinal spectra:

Efit(kz) = A
(
k2z + 2|kz |T + 2T 2

)
exp (−|kz |/T ) (1)
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Comparison of Vlasov simulation and fit function at six different τ̃ .
[MA, Rebhan Strickland 2012]
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Longitudinal thermalization
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After initial cool down instabilities reheat longitudinal soft fields.
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Conclusions

We performed the first real-time 3d numerical study of
non-Abelian plasma in a longitudinally expanding system
within the discretized hard loop framework:
hard expanding loops HEL.

Extrapolating our results to energies probed in ultrarelativistic
heavy-ion collisions we find, however, that a pressure
anisotropy persists for a few fm/c.

The longitudinal spectra seem to be well described by a
Boltzmann distribution indicating rapid longitudinal
thermalization of the gauge fields τthermal ∼ 1 fm/c.

We compute first SU(3) 3d real-time Yang-Mills of
non-Abelian plasma with some persisting anisotropy. We are
implementing the NLO CGC Initial condition.
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Computational challenge

Real-time lattice simulations distributed on the cluster:

Vienna Scientific Cluster:

Loewe Scientific Computing:

The code scales to 1-4k CPU’s using OpenMPI for > 1010 auxiliary
fields organised in 5-dimensional matrices on sites.
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Unstable mode comparison

[Rebhan, Steineder 2009] IC variation for specific mode ν = 30
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HEL 1d test
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[MA, Rebhan, Strickland 2008] Abelian single mode evolution the
conjugate momentum comparison with [Romatschke, Rebhan 2006]
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High occupancy
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[H1, ZEUS Collaborations 2010] parton distribution functions
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Transverse thermalization
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CGC setup at time scales Q−1s [Krasnitz, Nara, Venugopalan 2001]
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Unstable Color Glass Condensate
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[Romatschke, Venugopalan 2006] NLO Color Glass Condensate
(CGC) longitudinal pressure sees chromo-Weibel exp growth.
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Unstable Color Glass Condensate
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[Epelbaum, Gelis 2013] CGC NLO spectrum pressure evolution
[McLerran, Venugopalan (1993)]

Maximilian Attems, UB Instabilities in non-Abelian expanding plasmas 30/30



Jets in quark-gluon plasmas 
Turbulent QCD cascade 

Bottom-up thermalization

Jean-Paul Blaizot, IPhT- Saclay

« Approach to Equilibrium in Strongly Interacting Matter »

BNL, April 2, 2014



Outline

- Phenomenological motivations

- Jets in quark-gluon plasmas: loss of coherence, medium-
induced gluon branching

- Turbulent in-medium QCD cascade

- Bottom-up thermalization scenario 

- Summary

Work done in collaboration with F. Dominguez, E. Iancu  
and Y. Mehtar-Tani (arXiv:1209.4585, 1301.6102, 1311.5823)



Jets in a quark-gluon plasma

Jets are quenched due to interactions with the QGP



S. CHATRCHYAN et al. PHYSICAL REVIEW C 84, 024906 (2011)

FIG. 1. (Color online) Example of an unbalanced dijet in a PbPb collision event at
√

s
NN

= 2.76 TeV. Plotted is the summed transverse
energy in the electromagnetic and hadron calorimeters vs η and φ, with the identified jets highlighted in red, and labeled with the corrected jet
transverse momentum.

The data provide information on the evolution of the dijet
imbalance as a function of both collision centrality (i.e.,
the degree of overlap of the two colliding nuclei) and the
energy of the leading jet. By correlating the dijets detected
in the calorimeters with charged hadrons reconstructed in the
high-resolution tracking system, the modification of the jet
fragmentation pattern can be studied in detail, thus providing
a deeper insight into the dynamics of the jet quenching
phenomenon.

The paper is organized as follows: The experimental
setup, event triggering, selection and characterization, and jet
reconstruction are described in Sec. II. Section III presents the
results and a discussion of systematic uncertainties, followed
by a summary in Sec. IV.

II. EXPERIMENTAL METHOD

The CMS detector is described in detail elsewhere [29]. The
calorimeters provide hermetic coverage over a large range of
pseudorapidity |η| < 5.2, where η = − ln[tan(θ/2)] and θ is
the polar angle relative to the particle beam. In this study, jets
are identified primarily using the energy deposited in the lead-
tungstate crystal electromagnetic calorimeter (ECAL) and the
brass and scintillator hadron calorimeter (HCAL) covering
|η| < 3. In addition, a steel and quartz-fiber Cherenkov
calorimeter, called hadron forward (HF), covers the forward ra-
pidities 3 < |η| < 5.2 and is used to determine the centrality of
the PbPb collision. Calorimeter cells are grouped in projective
towers of granularity in pseudorapidity and azimuthal angle
given by $η × $ϕ = 0.087 × 0.087 at central rapidities,
having a coarser segmentation approximately twice as large
at forward rapidities. The central calorimeters are embedded
in a solenoid with 3.8 T central magnetic field. The event
display shown in Fig. 1 illustrates the projective calorimeter

tower granularity over the full pseudorapidity range. The CMS
tracking system, located inside the calorimeter, consists of
pixel and silicon-strip layers covering |η| < 2.5, and provides
track reconstruction down to pT ≈ 100 MeV/c, with a track
momentum resolution of ∼1% at pT = 100 GeV/c. A set
of scintillator tiles, the beam scintillator counters (BSC), are
mounted on the inner side of the HF calorimeters for triggering
and beam-halo rejection. CMS uses a right-handed coordinate
system, with the origin located at the nominal collision point
at the center of the detector, the x axis pointing toward the
center of the LHC ring, the y axis pointing up (perpendicular
to the LHC plane), and the z axis along the counterclockwise
beam direction. The detailed Monte Carlo (MC) simulation of
the CMS detector response is based on GEANT4 [30].

A. Data samples and triggers

The expected cross section for hadronic inelastic PbPb
collisions at

√
s

NN
= 2.76 TeV is 7.65 b, corresponding to

the chosen Glauber MC parameters described in Sec. II C.
In addition, there is a sizable contribution from large impact
parameter ultra-peripheral collisions (UPCs) that lead to the
electromagnetic breakup of one or both of the Pb nuclei [31].
As described later, the few UPC events which pass the online
event selection are removed in the offline analysis.

For online event selection, CMS uses a two-level trigger
system: level-1 (L1) and high level trigger (HLT). The events
for this analysis were selected using an inclusive single-jet
trigger that required a L1 jet with pT > 30 GeV/c and a HLT
jet with pT > 50 GeV/c, where neither pT value was corrected
for the pT-dependent calorimeter energy response discussed in
Sec. II D. The efficiency of the jet trigger is shown in Fig. 2(a)
for leading jets with |η| < 2 as a function of their corrected pT.
The efficiency is defined as the fraction of triggered events out
of a sample of minimum bias events (described below) in bins

024906-2

Di-jet asymmetry

there is more to it than just ‘jet quenching’...

Missing energy is associated with additional 
radiation of many soft quanta at large angles 

We argue that this reflects a genuine feature 
of the in-medium QCD cascade (JPB, E. Iancu 
and Y. Mehtar-Tani, arXiv: 1301.6102, PRL)



How does the jet interacts with the medium?

• Color coherence is altered inside a colored medium 

Y. Mehtar-Tani, K. Tywoniuk, C. A. Salgado, PRL (2011)

Jets in a quark-gluon plasma

J. -P. B, F. Dominguez,  E. Iancu, Y. Mehtar-Tani.  (2012-2013) 

• Medium-induced radiation off the total jet charge 
at large angles

For collimated jets the 
medium only resolves the 
total color charge ❬〈 Cjet ❭〉 ≠ 0



[Baier, Dokshitzer, Mueller, Peigné, Schiff (1995-2000) Zakharov (1996)]

• Scatterings with the 
medium can induce 
gluon radiation 

• The radiation 
mechanism is linked to  
transverse momentum 
broadening
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Medium-induced radiation 



L

k

The BDMPSZ mechanism 

Gluon emission is linked to 
momentum broadening

Time scale for the branching process

⌧br . L) ! . !c !c ⇠ q̂L2Medium of finite extent



Formation time and emission angle

L

k

Hard gluon: small angle, long time

⌧br . L ! . !c ✓br & ✓c

Soft gluon: large angle, short time

⌧br ⌧ L ! ⌧ !c ✓br � ✓c

Typical branching kT and angle 



Multiple branchings 
in-medium cascade
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Multiple emissions

JPB, F. Dominguez, E. Iancu, Y. Mehtar-Tani, arXiv: 1209.4585

In medium, interference effects are subleading, and 

independent emissions are enhanced by a factor L/⌧ f

When
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need to be resummed.

Since independent emissions dominate, the leading order resummation is equivalent 

to a probabilistic cascade, with nearly local branchings

Note: already implemented in some Monte Carlo codes (MARTINI, Q_Pythia, etc)



Density of gluons with momentum k inside a parton with 
momentum p:

Inclusive Gluon Distribution

x

dN

dx d

2k
⌘ D(x,k, t) x = !/E

k, !

p, E



Inclusive one-gluon distribution

Leading order equation



Di-jet asymmetry and turbulence

• gain = loss  ⟹ the energy flux is independent of x 

• energy flows from large to low frequencies and large angles 

without accumulating (signature of wave turbulence)

Richardson cascade 1921

Efficient mechanism for energy transport at large angles

soft particles 
large angles



Energy flow through democratic branching

Formally analogous to DGLAP. But very different kernel... and physics.

A QCD cascade of a new type

Integrating over transverse momentum yields equation for energy flow

Similar eq. postulated: R. Baier, A. H. Mueller, D. Schiff, D. T. Son (2001) S. Jeon, G. D. Moore(2003)

Exhibits wave turbulence



One finds (exact result) 

Fine (local) cancellations between gain and loss terms

BDMPS spectrum emerges as a fixed point, scaling, spectrum

Characteristic features of wave turbulence (Kolmogorov, Zakharov)
Kolmogorov exponent 1/2
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Energy flow at large angle

2 THE AUTHOR

∫ 1

0

dxD(τ, x) = 1

Ein Eout Eflowenergy in the jet with x>xo

2 THE AUTHOR

∫ 1

0

dxD(τ, x) = 1

Ein Eout Eflowenergy in the spectrum with x<xo

2 THE AUTHOR

∫ 1

0

dxD(τ, x) = 1

Ein Eout Eflow Eout + Eflow energy out of the jet cone



J. Berges, K. Bogulavski, S. Schlichting and R. Venugopalan, arXiv: 1303.5650

Thermalization 
Classical-statistical simulations 

Fixed point analysis of classical-statistical (real-time) simulations 



Bottom-up thermalization 
R. Baier, A. H. Mueller, D. Schiff and D. T. Son, Phys. Lett. B 502, 51 (2001)

Based on kinetics after time ⌧ & Q�1
s

1. Fast emission of soft gluons

2. Quick equilibration of the soft gluons which form a thermal bath

3. Hard gluons loose their energy to the soft bath,  
till complete thermalization

dN
dydk2

?
=

1
↵

f
 

k?
Qs

!

This last phase shares common features with the in-medium QCD cascade  
described earlier. 

Assumes initial gluon density of the form 



inelastic contributions are like gain and loss term in the branching processes 

Bottom-up last stage

analysis using kinetic theory



Bottom-up last stage

energy carried by hard gluons

kinetic equation reduces to 

analogous to the equation controlling the evolution of the spectrum for the in-
medium QCD cascade. Same fixed point (stationary solution) with 

✏(p) ⇠ 1/
p

p



Summary

This turbulent cascade provides a simple and natural 
mechanism for the transfer of jet energy towards very 
large angles. The mechanism is intrinsic, not related to 
a specific coupling between the jet and the medium. 

In a medium of large size, the successive branchings 
can be treated as independent, giving rise to a cascade 
that is very different from the vacuum cascade (no 
angular ordering, turbulent flow) 

This turbulent cascade may play a role in the latest  
stages of the thermalization of the quark-gluon plasma  
produced in ultra-relativistic heavy ion collisions
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Introduction

Little Bang by P. Sorensen and C. Shen

Big Bang by NASA

Heavy-ion collisions at early times
(Ultrarelativistic energies, weak-coupling limit)

Glasma +
vacuum fluctuations

Plasma 
instabilities

Overoccupied
plasma

Early universe cosmology
(       -theory at weak couplings)

Large condensate

+ vacuum fluctuations

Instabilities
(e.g. Parametric
resonance)

Overoccupied
system

p p p

f(p)

Q Q
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Turbulent thermalization process of the overoccupied
scalar system

Large occupanciesSystem approaches self-similar attractor

Momentum p

O
cc

up
an

cy
f Times

t1 < t2 < t3

Characteristic momentum pch

rescaling
Stationary distribution

Dynamical scaling exponents:

Micha, Tkachev (2004)
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Scale
with energy density

Bose Condensation:
Berges, Sexty (2012)

Particle cascade:
Berges, Rothkopf, Schmidt (2008)
Berges, KB, Schlichting, 
Venugopalan (2013)

Energy cascade:
Micha, Tkachev (2004)

Kinetic
Processes:

Characterized by exponents
and functional form fs

Example: O(1) scalar theory

Dual cascade: Wave turbulence
Turbulent thermalization process in scalar theory
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Condensate driven IC

Fluctuation dominated IC

Approach to the nonthermal attractor provides a partial memory loss! 
Both sets of initial conditions lie in its basin of attraction.

Berges, KB, Schlichting, 
Venugopalan (2013)
arXiv:1312.5216

Attractor approached for different initial conditions
Turbulent thermalization process in scalar theory

initial occupancy

O
cc

up
an

cy

Time
R

es
ca

le
d

fie
ld

am
pl

itu
de

1
/2
 0

/ Q



02.04.2014 |  Institut for Theoretical Physics, Uni Heidelberg  |  Kirill Boguslavski |  7

Range of validity of classical-statistical simulations

Aarts, Berges (2001)

• Solve classical EOM on the lattice, e.g.

• Sampling with quantum initial conditions introduces fluctuations

Classicality condition:

Decades of research in cosmology: Klebnikov, Micha, Tkachev; Smit, Tranberg; Berges, Sexty; …

Turbulent thermalization process in scalar theory

 Accurate low-energy description of quantum theory!

Break-down time tquant of classicality condition when

Onset time of attractor, self-similar evolution

Method:
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Range of validity of classical-statistical simulations

Coupling drops out of classical dynamics

 enters initial conditions, e.g.

Rescaling:
Coupling
controls
„quantum- ‘‘

Turbulent thermalization process in scalar theory

For finite cutoff
accurate low-energy description
for sufficiently small coupling 

1

Q 

overoccupation Break-down time t* due to non-
renormalizability of classical-statistical
theory

For and 

Epelbaum, Gelis (2014)
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Comparison of scalar and gauge theories
with longitudinal expansion

Scalar field theory (O(4))

Non-Abelian gauge theory (SU(2))
Berges, KB, Schlichting and Venugopalan (2013): arXiv:1311.3005, arXiv:1303.5650

Change coordinates to proper time and rapidity

In new coordinates: 
longitudinal expansion (in beam direction)

Heavy-ion collisions in large nuclei, high energy, weak coupling limit

Compare simulations

Berges, KB, Schlichting and Venugopalan



02.04.2014 |  Institut for Theoretical Physics, Uni Heidelberg  |  Kirill Boguslavski |  10

Thermalization process of expanding gauge theory: 
Nonthermal fixed-point for

Self-similar evolution

Transverse shape of distribution Longitudinal shape of distribution

Scaling exponents
Berges, KB, Schlichting, 
Venugopalan (2013)
arXiv: 1311.3005

Berges, KB, Schlichting, 
Venugopalan (2013)
arXiv: 1303.5650

Stationary function
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Effective direction of scatterings

Scalars for harder momenta:

Reminder: Self-similarity

Thermal-like integrated distribution

Transverse momenta pt

Effectively no flow into transverse direction.

Comparison: Also in expanding gauge theory scattering effectively proceeds in longitudinal direction
for

Comparison of expanding scalar and gauge theories

elastic processes
Baier, Mueller, Schiff, Son (BMSS) (2001)

Relations
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Universal scaling function for both theories

Longitudinal momentum pz / Q

Universal scaling function: At characteristic momentum pt
*, distribution functions for

different initial conditions of scalar and gauge theories lie on top of each other!

Transverse momentum pt / Q

Scalars: Characteristic
transverse momentum pt

*

Comparison of expanding scalar and gauge theories

Rescaled distribution
at pt = pt

*
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Scalars: Insensitivity to different initial conditions
Comparison of expanding scalar and gauge theories

Scalars: Occupation number

Time

Different IC

Condensate IC

O
cc

up
an

cy

Fluctuation IC

in scalar and gauge theories.

Insensitive to initial conditions!

Universal exponent

Reminder: Self-similarity

At momentum pt
*:
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Universal dynamical scaling exponents

Scalars: Dynamical
scaling exponents: 

Self-similar evolution
with same exponents
as in gauge theory!

Comparison of expanding scalar and gauge theories

At momentum pt = pt
*

Times
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Conclusion and Outlook

Conclusion:

• Nonthermal fixed points in non-expanding and expanding scalar field theories
 Characterized by self-similarity, insensitive to different sets of initial conditions.

• Universality far from equilibrium in longitudinally expanding systems
 Same scaling exponents and scaling function in characteristic momentum range!

Outlook:

• How can this strong similarity between scalar and gauge theories be explained in 
detail?       Currently under investigation.

• Direct calculations at stronger couplings with classical techniques?
 Known to fail for scalars

• How do the systems evolve in the under-occupied regime where the
classical-statistical approach is no longer valid? Is there a (quantum) attractor?

Berges, KB, Schlichting, Venugopalan (2013) ; Epelbaum, Gelis, Wu (2014)
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Thank you for your attention!
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BACKUP SLIDES
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Range of validity of classical-statistical simulations

Increasing the coupling

Up to some coupling no deviations visible. 
For larger couplings, validity tests needed.

Berges, KB, Schlichting, 
Venugopalan (2013)
arXiv:1312.5216

Momentum

Occupying just unstable modes

Evolution at later times as for weak
coupling.

Momentum
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Lattice cutoffs:

Relevant modes p / Q < 5 insensitive to the shown cutoffs at this time.

Time

Range of validity of classical-statistical simulations
Turbulent thermalization process in scalar theory

Check cutoff dependence for small coupling, e.g.

 Cutoffs limited to time dependent
finite window. 

But small cutoffs lead to lattice artifacts.

Maximum cutoff exists, for which results
are still accurate.
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Testing simulations for same cutoff

Range of validity of classical-statistical simulations

Classicality condition

Energy parts

(Condensate)

(Particles)

(Estimate for modes not satisfying condition)

Estimate: Classical-statistical method breaks down when this ratio is large.
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Beyond range of validity of classical-statistical simulations

Cutoff dependence

Examples: O(1) scalars,  = 1

Berges, KB, Schlichting, 
Venugopalan (2013)
arXiv:1312.5216Momentum
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Negative occupation numbers
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Kinetic analysis of expanding systems I

Constraints

Energy conservation

Particle number conservation

Large anisotropy

Both conserved

Self-similar evolution
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Complete set of equations:

Baier, Mueller, Schiff, Son (BMSS),
PLB 502 (2001) 51-58

Kinetic analysis of expanding systems II

Kinetic equation

Diffusion parameter

Self-similar evolution
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Insensitivity to different initial conditions

Different IC

Universal scaling!

Comparison of expanding scalar and gauge theories

Characteristic longitudinal momentum

Condensate IC

O
cc

up
an

cy

Time

Fluctuation IC

Same exponent as in 
gauge theory!
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Universal behavior of expanding scalar fields

pz

pt

Hard scales

0

Scaling exponents
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Nonthermal fixed
point matches the
BMSS scenario!

Simulations approach
nonthermal fixed point with
universal scaling exponents

Reminder: Self-similar evolution

Turbulent thermalization of expanding gauge theory

Thermalization scenarios
Kurkela, Moore ( KM ), (2011)Baier, Mueller, Schiff, Son ( BMSS ), (2001)
Blaizot, Gelis, Liao, McLerran, 
Venugopalan ( BGLMV ), (2012)

Bodeker ( BD ), (2005)

Berges, KB, Schlichting, 
Venugopalan (2013)
arXiv: 1303.5650



Early isotropization of
the Quark-Gluon Plasma

Brookhaven RBRC workshop, 2nd April 2014
Thomas EPELBAUM

IPhT
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UNDERSTANDING THE SUCCESS OF HYDRODYNAMICS

Viscous Hydrodynamics

I) Macroscopic theory
II) Few parameters: PL, PT , ε, ~u
III) Need input:

1) Equation of state f(PL, PT ) = ε
2) Small anisotropy
3) Initialization: ε(τ0), PL(τ0)? ...
4) viscous coefficients: shear viscosity η,...
5) Short isotropization time
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STUDYING THE HYDRODYNAMIZATION

Early transition: the problem

CGC

Glasma Isotropization?
Time scale?

Hydrodynamics

QGP

Huge anisotropy Small anisotropy
(negative PL)

Long time puzzle: Does (fast) hydrodynamization occur?
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COLOR GLASS CONDENSATE[MCLERRAN, VENUGOPALAN (1993)] TREATMENT

LO CGC initial conditions at τ = 0+: A ∼ Qs
g

Ai(x⊥) = α1
i(x⊥) + α2

i(x⊥) Aηa(x⊥) =
ig
2
[
α1

i(x⊥),α2
i(x⊥)

]

J+

x+

J−

x−

αn
i(x⊥) =

i
g
Un
†(x⊥)∂iUn(x⊥) Un(x⊥) = e

−ig 1
∇2
⊥

J±(x⊥)
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COLOR GLASS CONDENSATE[MCLERRAN, VENUGOPALAN (1993)] TREATMENT

Classical time evolution

[
Dµ(x⊥), Fµν(x⊥)

]
= 0 ,

x+x−
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COLOR GLASS CONDENSATE[MCLERRAN, VENUGOPALAN (1993)] TREATMENT

LO result: Strong anisotropy at all times
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COLOR GLASS CONDENSATE[MCLERRAN, VENUGOPALAN (1993)] TREATMENT

Understanding the initial strong anisotropy
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{
∂τε+

ε+PL
τ

= 0
lim

τ→0+
ε = cst ⇒ PL = −ε

ε = 2PT + PL ⇒ PT = ε
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THE COLOR GLASS CONDENSATE AT NLO (1)

Aµa(x) = Aµa(x⊥)︸ ︷︷ ︸
LO

+
∑
λ,c

∫
k

aµa
kλc(x)︸ ︷︷ ︸

NLO

aµa
kλc(x) perturbation to Aµa created by a plane wave in the remote past.

aµa
kλc(x) obeys to the linear Equation Of Motion
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THE COLOR GLASS CONDENSATE AT NLO (2)
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[ROMATSCHKE, VENUGOPALAN (2006)]

Small Fluctuations grow exponentially (Weibel instability)
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THE COLOR GLASS CONDENSATE AT NLO (3)

• Because of instabilities, the NLO correction eventually becomes as large
as the LO⇒ Important effect, should be included

• NLO alone will grow forever⇒ unphysical effect, should be taken care of
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• Such growing contributions are present at all orders of the perturbative
expansion

How to deal with them?
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RESUMMATION FORMULA [GELIS, LAPPI, VENUGOPALAN (2008)]

Key step

Tµν
NLO

=
1
2

∫
τx,y=0+

d3x d3y G(x, y)Tx Ty

︸ ︷︷ ︸
O

Tµν
LO

[
A(0+, x⊥)

]

where

G(x, y) ∼
∑
λc

∫
k

akλc(x)a∗kλc(y)

and

Tx ∼
δ

δA(x)
∼ e
√
µτ
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RESUMMATION FORMULA [GELIS, LAPPI, VENUGOPALAN (2008)]

Resummation technique

Tµν
resum

= eO Tµν
LO

[
A(0+, x⊥)

]
= Tµν

LO
+ Tµν

NLO
+ ...

Numerical implementable way to express Tµν
resum

Tµν
resum

=

∫
[Da] exp

[
−

1
2

∫
x,y

d3x d3y a(x)G−1(x, y) a(y)
]

Tµν
LO

[A+ a]
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THE CLASSICAL-STATISTICAL METHOD

• At the initial time τ = τ0:

Aµa(τ0, x⊥,η) = Aµa(x⊥) +
∑
λ,c

∫
k

ckλc aµa
kλc(τ0, x⊥,η)

where c~k are random coefficients:
〈
c~kc~k ′

〉
∼ δ~k~k ′

• Solve the Classical equation of motion DµFµν = 0

• Compute
〈
Tµν

resum
(τ, x⊥,η)

〉
, where 〈〉 is the average on the c~k

This gives: LO+NLO+Subset of higher orders
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CORRECTIONS INCLUDED

All the tree diagrams (LO)

x+x−
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CORRECTIONS INCLUDED

All the one loop diagrams (NLO): ×
(
ge
√
µτ
)2 the LO

x+x−

O =
1
2

∫
x,y

G(x, y)Tx Ty ∼
1
2

∫
x,y

∑
λc

∫
k

akλc(x)a∗kλc(y)
δ

δA(x)
δ

δA(y)
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CORRECTIONS INCLUDED

All the one loop diagrams (NLO): ×
(
ge
√
µτ
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1
2
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∫
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∑
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CORRECTIONS INCLUDED

Subset of NNLO included: ×
(
ge
√
µτ
)4 the LO

x+x−
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CORRECTIONS INCLUDED

Subset of NNLO not included: ×g
(
ge
√
µτ
)3 the LO

x+x−

Subleading!
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THE NLO SPECTRUM

Finding the small fluctuations at τ = 0+

Dab
µ

(
Dµbcaνc −Dνbc

β aµc)− igFνµabab
µ = jνa

x+x−

aµakλc = δac ε
µ
kλe

ikx

THOMAS EPELBAUM Early isotropization of the Quark-Gluon Plasma 10 / 17



THE NLO SPECTRUM

Result of [TE,GELIS (2013)]

ak⊥νλc
η = τ2Diab

(
F−,ia

k⊥νλc

2 − iν
−

F+,ia
k⊥νλc

2 + iν

)
ak⊥νλc

i = −
(
F−,ia

k⊥νλc + F+,ia
k⊥νλc

)
eηa

k⊥νλc = Diab (F−,ia
k⊥νλc − F+,ia

k⊥νλc

)
eia

k⊥νλc = iν
(
F−,ia

k⊥νλc − F+,ia
k⊥νλc

)
with

F±,ia
k⊥νλc(x) = eiνηΓ(∓iν)e

±νπ
2

∫
d2p⊥
(2π)2 eip⊥.x⊥

(
p2τ

2k

)±iν(
δij −

2pipj

p2

)
V

ja
1,2k⊥λc

and

V
ja
1,2k⊥λc(x⊥, p⊥) = U

ab†
1,2 (x⊥)

∫
d2y⊥ e−i(p⊥+k⊥).y⊥ Ubc

1,2(y⊥)
(
δij −

2kikj

k2

)
εi

k⊥λ .
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YM ON A LATTICE

Gauge potential Aµ → link variables (exact gauge invariance on the lattice)

aL aT

N

L

L
η

x

y

Numerical parameters
• Transverse lattice size L = 64, transverse lattice spacing QsaT = 1
• Longitudinal lattice size N = 128, longitudinal lattice spacing aL = 0.016
• Number of configurations for the Monte-Carlo Nconf = 200 to 2000
• Initial time Qsτ0 = 0.01
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NUMERICAL RESULTS [TE,GELIS (2013)]

αs = 8 10−4 (g = 0.1)
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RENORMALIZATION PROCEDURE

Tµν
resum

∼
Q4

s

g2 + c0Λ
4 + c2(Qs)Λ

2 + ...

Quartic divergences can be subtracted with a simulation where

Aµa(x) = 0 +
∑
λ,c

∫
k

ckλc aµa
kλc(τ0, x⊥,η)

Gives a Tµν
part renor

= Tµν
resum

− Tµν
vac
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RENORMALIZATION PROCEDURE

εpart renor ∼
Q4

s

g2 +
Q2

sν
2
max

τ2 + ...

PLpart renor ∼
Q4

s

g2 +
Q2

sν
2
max

τ2 + ...

PT part renor ∼
Q4

s

g2 + Q2
s k2
⊥,max + ...

How to deal with the Q2
sν

2
max

τ2 terms→ fitted for the time being.

Otherwise εpart renor and PLpart renor behaves as τ−2 at early time.
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RENORMALIZATION PROCEDURE

〈PT〉phys. = 〈PT〉 backgd.
+ fluct.

− 〈PT〉 fluct.
only

〈ε, PL〉phys. = 〈ε, PL〉 backgd.
+ fluct.︸ ︷︷ ︸

computed

− 〈ε, PL〉 fluct.
only︸ ︷︷ ︸

computed

+ A τ−2︸ ︷︷ ︸
fitted

.

The additional term is the only one that can satisfy Bjorken’s law

∂τε+
ε+ PL

τ
= 0

and the Equation Of State:

ε = 2PT + PL
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NUMERICAL RESULTS [TE,GELIS (2013)]

αs = 2 10−2 (g = 0.5)
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NUMERICAL RESULTS [TE,GELIS (2013)]
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ANOMALOUSLY SMALL VISCOSITY

Assuming simple first order viscous hydrodynamics

ε ≈ ε0τ
− 4

3︸ ︷︷ ︸
Ideal hydro

− 2η0τ
−2︸ ︷︷ ︸

first order correction

we can compute the dimensionless ratio (η = η0τ
−1)

ηε−
3
4 . 1

In contrast, perturbation theory at LO gives ηε−
3
4 ∼ 300.

If the system is closed from being thermal

ε
3
4 ∼ s =⇒ η

s
same magnitude as

1
4π
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CONCLUSION

• Correct NLO spectrum from first principles

• PL
PT
≈ 0.6 for g = 0.5 at τ ∼ 1fm/c

• No need for strong coupling to get isotropization

• Assuming simple first order viscous hydrodynamics

ηε−
3
4 . 1
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BACKUP: CGC INITIAL CONDITIONS VS COMPLETELY DECOHERENT FIELDS

A

E
〈A〉 ∼ Qs

g , 〈E〉 ∼ Q2
s

g〈
A2

〉
− 〈A〉2 ∼ Q2

s〈
E2

〉
− 〈E〉2 ∼ Q4

s

give correct answer at LO
give correct answer at NLO

〈A〉 ∼ 0, 〈E〉 ∼ 0〈
A2

〉
− 〈A〉2 ∼ Q2

s

g2〈
E2

〉
− 〈E〉2 ∼ Q4

s

g2

May give correct answer at LO
Not correct at NLO
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Isotropization from Color Field Condensate in
heavy ion collisions

Stefan Flörchinger (CERN)

RBRC Workshop on ”The Approach to Equilibrium in Strongly
Interacting Matter”, BNL, April 2, 2014.



based on:
S. Floerchinger and C. Wetterich, Isotropization from Color Field
Condensate in heavy ion collisions, [JHEP 03 (2014) 121].



Heavy Ion Collisions
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ions are strongly Lorentz-contracted

some medium is produced after collision

medium expands in longitudinal direction and gets diluted



Evolution in time

Non-equilibrium evolution at early times

initial state at from QCD? Color Glass Condensate? ...
thermalization via strong interactions, plasma instabilities, particle
production, ...

Local thermal and chemical equilibrium

strong interactions lead to short thermalization times
evolution from relativistic fluid dynamics
expansion, dilution, cool-down

Chemical freeze-out

for small temperatures one has mesons and baryons
inelastic collision rates become small
particle species do not change any more

Thermal freeze-out

elastic collision rates become small
particles stop interacting
particle momenta do not change any more



The puzzle of thermalization / isotropization

Hydrodynamic description works well when started at τ0 ≈ 0.5 fm/c.

Perturbative time-scale for thermalization is much longer [Baier,

Mueller, Schiff, Son (2001)].

Effective hydrodynamic description for some quantities may also be
possible without local equilibrium and detailed balance.

Some quantities e.g. pressure may thermalize faster than others:
“Prethermalization” [Berges, Borsanyi, Wetterich (2004)].

In praxis hydro description does assume early local equilibrium and it
works rather well with that.

There must be some nontrivial mechanism of thermalization /
isotropization to be understood.

Another puzzle is: How does entropy and particle production work?



Could macroscopic / classical fields be the solution?

Field expectation value or “classical field” has influence on
quasi-particle excitations and leads to

modified vertices
modified dispersion relations / self energies

That could lead to higher scattering rates and faster thermalization.

Dynamical evolution of classical fields itself might also contribute to
isotropization.

Classical fields can also induce instabilities / particle production.



Large occupation numbers versus condensate

In thermodynamic limit (stationary, infinite volume) a classical field
corresponds to large occupation number of zero-mode: a condensate.

For realistic heavy-ion collision one may have

non-equilibrium situation
finite size
finite number of gluons.

Distinction between condensate and large occupation numbers for a
few modes is not so clear.

Nevertheless, condensate picture may be easiest way to capture
important features of situation with large occupation numbers.

Gluon condensate were also discussed in kinetic theory framework.
[Blaizot, Gelis, Liao, McLerran, Venugopalan, Epelbaum, Berges,

Schlichting, Sexty, Kurkela, Moore,...]



Is a homogeneous and isotropic color field possible?

Expectation value for vector field 〈Aµ〉 breaks rotation invariance
except for µ = 0 component.

But A0 is gauge degree of freedom.

One can choose Weyl or temporal gauge, A0 = 0.

Seems to suggest that homogeneous and isotropic color field is not
possible.



Modified rotation symmetry

One can combine rotations with gauge transformations into a
modified rotation transformation [Reuter, Wetterich (1994)].

Group theoretic: embed SU(2) ∈ SU(3).

Gauge singlets rotate in the normal way.

There are two inequivalent embeddings of this type. For one of them
Lie algebra of SU(2) spanned by Gell-Mann matrices λ2, λ5, λ7.

Contains a singlet
(Aj)mn = σ εjmn

More general, temporal part A0 transforms like

8 = 5 + 3,

and spatial part Aj like

24 = 7 + 2× 5 + 2× 3 + 1.



Field configurations with cylindrical symmetry

There is only one candidate for isotropic condensate σ, i.e. a singlet
under three-dimensional rotations.

For cylindrical symmetry, i.e. reduced symmetry under

rotations in the transverse plane of x1, x2,
rotations of 180◦ around x1 or x2 axis,

one has two more condensate candidates, γ̃A and γ̃B .

For space parity transformations P(A0,Aj) = (A0,−Aj) one has

Pσ = −σ, P γ̃A = −γ̃A, P γ̃B = −γ̃B.

For color charge conjugation CAµ = −A∗
µ one has

Cσ = σ, C γ̃A = −γ̃A, C γ̃B = γ̃B.

and accordingly for CP

CPσ = −σ, CP γ̃A = γ̃A, CP γ̃B = −γ̃B.



Time evolution of condensates 1

Time evolution of condensate in general quite complicated due to
quantum effects.

Qualitative guiding from classical Yang-Mills equations.

For isotropic and homogeneous condensate σ

∂2t σ = −2g2σ3.

Anharmonic oscillator, solution in terms of Jacobi elliptic functions.
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Time evolution of condensate 2

Isotropic and cylindric condensates have coupled evolution equations.

Can be easily solved numerically.

Isotropic condensate σ can be generated from γ̃A, γ̃B . For example:
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Energy-momentum tensor due to condensates
Energy-momentum tensor due to condensates

Tµν = 2tr FρµF ν
ρ −

1

2
gµν tr FαβFαβ .

Assume that energy and momentum are dominated by this.

Tµν = diag(ε, ptr, ptr, pl).

For same example as above:
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Condensates can contribute to quick isotropization!



CP-even cylindrical condensate

Initial condition with only γ̃A is CP symmetric.

CP-breaking isotropic condensate σ not generated.

Initial energy momentum tensor of the form

Tµν = diag(ε, ptr, ptr, pl) = diag(ε, ε, ε,−ε).

Leads to oscillations between ptr and pl
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Longitudinal expansion

In realistic heavy ion collision the time evolution is modified by
several effects, in particular by longitudinal expansion.

Condensates will be diluted.

That will probably hinder oscillations.

Compare here only different scenarios for time evolution to 1/τ1/3

dilution.
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Excitations

Consider now excitations of other field modes in the presence of
isotropic condensate σ.

Classify them according to the transformation behavior under
modified rotations.

Investigate in particular dispersion relations for excitations in the
presence of isotropic condensate σ



Decomposition of gauge field 1

Write spatial and temporal parts of gauge field

(Aj)mn =κjmn + γAmkεkjn + γAnkεkjm + i γBjkεkmn

+ (βAm + i βBm) δjn + (βAn − i βBn ) δjm −
2

3
βAj δmn + i σ εjmn

(A0)mn =γCmn + i βCl εlmn

with

κjmn is real, completely symmetric, three-dimensional tensor of rank
three, traceless with respect to all contractions,

γAjk, γBjk and γCjk are real, symmetric and traceless three-dimensional
tensors,

βAm, βBm and βCm are real, three-dimensional vectors.

In summary

24 =7 + 2× 5 + 2× 3 + 1,

8 =5 + 3.



Decomposition of gauge field 2
To analyze dispersion relations it is useful to decompose further

vectors
βm = ∂mβ + β̂m

β is a real scalar,
β̂m is a real, divergence-less vector.

tensors of rank two

γmn = γ̂mn + ∂mγ̂n + ∂nγ̂m + (∂m∂n −
1

3
δmn∂

2
j )γ

γ̂mn is real, traceless and divergence-less tensor
γ̂m is real, divergence-less vector
γ is a real scalar.

and tensors of rank three

κjmn = κ̂jmn + ∂j κ̂mn + ∂mκ̂jn + ∂nκ̂jm + . . .



Decomposition of gauge field 3

Discrete symmetries C and P classify fields further.

Fields in different representations du not mix on linear level.

Gauge fixing to Weyl gauge implies A0 = 0 or γCmn = βCm = 0.

At this point we are left with

C-even scalars σ, βB , γB

C-odd scalars βA, γA, κ
C-even vectors β̂B

m, γ̂
B
m

C-odd vectors β̂A
m, γ̂

A
m, κ̂m

C-even rank-two tensors γ̂B
mn

C-odd rank-two tensors γ̂A
mn, κ̂mn

C-odd rank-three tensor γ̂jmn

which makes 24 real degrees of freedom.

To reduce to 16 d.o.f. one needs the Gauss constraint.



Constraint equations

Variation of action with respect to A0 yields the Gauss constraint

∂j(Ej)mn − ig(Aj)mk(Ej)kn + ig(Ej)mk(Aj)kn = Dj(Ej)mn = 0.

Linearize this around constant background σ and decomposed further

tensor constraint

∂0

[
∂j κjmn + εkjn(∂jγ

A
mk) + εkjm(∂jγ

A
nk)

+ ∂mβ
A
n + ∂nβ

A
m −

2

3
∂jβ

A
j δmn − 6 gσ γAmn

]
= 0,

vector constraint

∂0

[
∂kγ

B
jk + εjmn∂nβ

B
m + ∂jδσ − 2 gσ βBj

]
= 0.



Instabilities and particle production
One can now determine the dispersion relations for independent
excitation modes. For example, for symmetric tensor of rank three κ̂jmn

p20 = ~p2 + 2g2σ2 ± 4pgσ,

One mode gapped with ∆ =
√

2g2σ2.

Other mode has Nielsen-Olesen instability for intermediate momenta.

Particles will be produced in that momentum regime.

Time scale for particle production τpp ≈ 1/
√
g2σ2 ≈ 1 fm/c.
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Dispersion relations 1

C-odd tensors of rank two
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Dispersion relations 2

C-even tensors of rank two
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Dispersion relations 3

C-odd scalars

0 1 2 3 4 5
p�HgΣL

10

20

30

40

50

60

70

p0
2 �Hg2 Σ2 L



Dispersion relations 4

C-even scalars
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Conclusions

Color field condensate may be simple qualitative description for state
with high gluon occupation numbers.

Modified rotation symmetry (involving a gauge transformation)
provides powerful ordering principle.

Collective dynamics provides efficient mechanism for approximate
isotropization.

Nielsen-Olesen type instabilities can trigger decay of color field
condensate into quasi-particle excitations.

Particle production from decay of isotropic condensate can be
approximately isotropic, as well.



BACKUP



Alternative embedding of SU(2) ∈ SU(3)

Lie algebra of SU(2) spanned by Gell-Mann matrices λ1, λ2, λ3.

Contains singlets

in spatial part
(Aj)mn = σ(λj)mn.

in temporal part
(A0)mn = σ′(λ8)mn

More general decomposition of gauge field according to

temporal part 8 = 3+ 2× 2+ 1,
spatial part 24 = 5+ 2× 4+ 2× 3+ 2× 2+ 1.



Parametric resonances

Here we considered excitations around constant background σ.

For oscillating condensate one has additional parametric resonance
phenomenon leading to an additional instability band [Berges et al,

PRD 85, 034507 (2012)].

Parametric resonance instability subleading compared to
Nielsen-Olesen instability.



Real-time Stochastic Quantization 
— Problems and Simulations —

Kenji Fukushima  (U. of Tokyo) 
!

In collaboration with  
                   R. Anzaki,  T. Oka  (U. of Tokyo)  
                   Y. Hidaka  (RIKEN)
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Physics Motivation

Isotropization / Thermalization in HIC?

2
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Transverse inhomogeneity at small kz is non-linearly amplified  
toward larger kz   =>   Diffusion on the transverse plane

Fukushima 
(2013)
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Check of isotropization  
with CGC in a fixed box



Physics Motivation

Isotropization / Thermalization in HIC?

3

Isotropization / Thermalization understood in a fixed box? 
If not, how can we for an expanding case?

Fukushima 
(2013)
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g2µt =  10

1 24 48 72 96
1

24

48
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96
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10-5

Fixed-box Simulation

4

Brighter color  
=> Longitudinally disturbed

Isotropization is incomplete 
Thermal dist. (exponential)  
is achieved fast

Anisotropic Thermalization
if the initial cond. is anisotropic  
even in an isotropic box

cf. Attems, Strickland, etc…

Transverse Coulomb gauge



Success of the CSA

Classical Statistical Approximation

5

Classical Paths
Initial 
Fluct.

Berges, Epelbaum, Fukushima, Gelis, Kunihiro, Muller, Lappi, 
Ohnishi, Romatschke, Schaefer, Schlichting, Sexty, Tanji, 
Venugopalan, Wu

Foundation from the first-principle quantization scheme?
cf. von Neumann eq. for the Wigner func. (Gelis)



Quantization Methods

Canonical Quantization 
□Creation/Annihilation Operators 
Functional Integral 
□Classical Fields + Path Integral 
Functional Renormalization Group Equation 
□Classical Fields + Differential Equation (with k) 
Holographic Correspondence 
□Classical Fields + Equation of Motion (with z) 
Stochastic Quantization  (Parisi-Wu, Klauder, …) 
□Classical Fields + Complex Langevin Eq. (with q)

6

Numerical Simulation

Higher-dimensional Diff. Eq.

Complex Weight



Step 1 (Solve a complex Langevin eq. —     theory) 
!
!
!
!
Step 2 (Take a noise average) 
!
!
Step3 (Send q to infinity)

Stochastic Quantization

7
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Recovery of the Free Propagator

Explicit solution without interaction 
!
!
!
!
Two-point function

8
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Initial Condition
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Recovery of the Feynman Diagrams

Integral equation with interaction 
!
!
!
!
Iterative solutions 
!
!
!
“Perturbatively” equivalent to conventional ones
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Numerical Simulation

Berges-Stamatescu (2005) 
□ Temporal oscillation emerges  

in a scalar field theory 
□With and without interactions 
!
Berges-Borsanyi-Sexty-Stamatescu (2006) 
□ Scalar field theory and non-Abelian gauge theory 
□Comparison with full results from other methods

10

2

solution as the starting configuration can improve con-
vergence. It also provides a crucial check of the quantum
result in some limiting cases: For sufficiently large macro-
scopic field or occupation numbers classical dynamics can
provide a good approximation [1].

For our example we observe good convergence proper-
ties of the quantum simulations, which is a remarkable
result. For given initial field configurations at time t = 0,
very different starting configurations for the 3+1 dimen-
sional space-time lattice converge to the same nonequi-
librium dynamics for all t > 0. To obtain this we had to
resolve the problem of possible unstable dynamics for the
updating procedure, as is described in detail below. We
compare our quantum results with those obtained for the
corresponding classical theory for same initial conditions
and lattice regularization. We indeed find agreement in
those cases where this is expected, and observe increas-
ing deviations for smaller fields or occupation numbers.
In the following we describe the relevant theoretical in-
gredients and present the numerical evidence.

Nonequilibrium quantum field theory can be described
by the generating functional for correlation functions [1]:

Z[J ; ρ] = Tr
{

ρ TC ei
∫

C
J(x)Φ(x)

}

=

∫

dϕ1dϕ2 ρ(ϕ1, ϕ2)

ϕ2
∫

ϕ1

[dϕ] ei
∫

C
(L(x)+J(x)ϕ(x)). (1)

The path integral (1) displays the quantum fluctuations
for a theory with Lagrangian L, and the statistical fluc-
tuations encoded in the weighted average with the initial-
time density matrix ρ(ϕ1, ϕ2). Here TC denotes con-
tour time ordering along a closed path C starting at
t ≡ x0 = 0 with

∫

C
≡
∫

C
dx0

∫

ddx (usual time ordering
along the forward piece C+, and anti-temporal ordering
on the backward piece C−). The initial fields are fixed
by ϕ1(x) = ϕ(0+,x) and ϕ2(x) = ϕ(0−,x). Nonequi-
librium correlation functions, i.e. expectation values of
Heisenberg field operators Φ(x), are obtained by func-
tional differentiation. The two-point function, e.g., is

Tr{ρ TΦ(x)Φ(y)} =
δ2Z[J ; ρ]

iδJ(x)iδJ(y)

∣

∣

∣

J=0
(2)

with all time arguments on C+ such that TC corresponds
to standard time ordering T . In the following we con-
sider physical correlation functions, which have their ar-
guments on C+. The role of C− is then only to normalize
Z[J = 0; ρ] = 1 with Trρ = 1.

Complex Langevin: The complex exponential weight in
(1) requires a simulation technique, which is not based
on a probability interpretation. Stochastic quantiza-
tion reformulated for real times [7, 8] can provide such
an approach. The stochastic process is described by a
Langevin-type equation, which for a real quantum field
theory governs a complex field φ = φR + iφI . The ap-
pearance of an imaginary part reflects the fact that in the

-1
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FIG. 1: ReC(t̂) vs t̂ for a free field theory with mass m̂ =
2.315. The Langevin evolution, shown for ϑ = 0–9 in units of
a2, converges to the correct result with period 2πγ/m̂.

quantum theory the field picks up a phase by evolving in
time. In addition to the space-time variable x the field
depends on the Langevin-time parameter ϑ with [7, 13]

∂φ(x; ϑ)

∂ϑ
= i

δS[ϕ]

δϕ(x)

∣

∣

∣

ϕ→φ
+ η(x; ϑ) . (3)

Here δS/δϕ|ϕ→φ = −!φ − m2φ − λφ3 for a scalar the-
ory with mass m and self-interaction λ. In general
the real and imaginary part of the Gaussian noise term
η = ηR + iηI can be both non-vanishing [8], and the dif-
ferent choices may be used for optimizing convergence.
We consider ηI ≡ 0, with ⟨η(x; ϑ)⟩η = 0 and

⟨η(x; ϑ)η(x′; ϑ′)⟩η = 2δ(x − x′)δ(ϑ − ϑ′) , (4)

where ⟨. . .⟩η indicates average over the noise.
The stochastic process (3) is associated to a distribu-

tion P (φR, φI ; ϑ) and averages of observables A(φ) are
given as area integrals in the complex field plane:

⟨A⟩η =

∫

[dφR][dφI ]A(φR + iφI)P (φR, φI ; ϑ)
∫

[dφR][dφI ]P (φR, φI ; ϑ)

=

∫

[dφR]A(φR)Peff(φR; ϑ)
∫

[dφR]Peff(φR; ϑ)
. (5)

Here Peff(φR; ϑ) ≡
∫

[dφI ]P (φR − iφI , φI ; ϑ), where the
shift in the integration variable φR → φR − iφI for the
second equality in (5) is assumed to hold. The complex
pseudo-distribution Peff(φR; ϑ) is indeed governed by the
analytic continuation of the Fokker-Planck equation to
real times, which admits the stationary solution [7, 8]

lim
ϑ→∞

Peff(φR; ϑ) ≡ Peff [φR] ∼ eiS[φR] . (6)

Thus the approach can in principle be used for a
Minkowskian theory such as (1), with “ensemble” aver-
ages calculated as averages along Langevin trajectories.

Numerical simulation: We consider N3
s Nt lattices with

anisotropic space-time discretization a and at. Because of

Although the results were “promising”, there is no major 
development since then…  it is time to revisit this method  
and clarify the connection to the classical statistical approx.



Connection to the CSA

Averaging over h solves the classical eq. of motion

11
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Fukushima-Hayata (2014)

Out-going boundary condition  
fixed at the initial time 
h(0) and h(1) “unintegrated”

⌘(0) and ⌘(1)

) ��(0) and ��̇(0)

Classical Statistical Approx.

Initial quantum spectrum is trivial for h(0) and h(1) 
Correlation missed hO[�]i⌘ 6= O[h�i⌘]

Decays with a finite e



Particle Production

Mapping to the Schroedinger equation

12
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Problems in Numerics

Numerical Instability (controllable) 
□Diffusion equation even without interaction may 

develop instability  =>  Implicit method (Crank-Nicolson) 
!

Wrong Answer (much more subtle…) 
□Results may look like non-singular but may be different 

from the physical answer. 
□Boundary condition, non-converging trajectory, etc…
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Improvement Needed

Berges-Borsanyi-Sexty-Stamatescu (2006) 
!
!
!
!
!
Closed-time path formalism ?

14

Initial density matrix ~ thermal 
Stable simulation possible 
How to put a CGC-type init. cond.?

⇢ini
O[⇢(tf)]

Test in the “vacuum” 
Not very stable 
Could hit a wrong answer

�



Simple Numerical Test

“Toy” model 
!
Equation of motion 
!
!
Analytical expectation

15

⌘!(✓) = cos(!0t)

�(t, ✓) =
i

!2
0 � ⇠2 + i✏

⇥
1� ei(!

2
0�⇠2+i✏)✓

⇤
cos(!0t)

Boundary condition in t is chosen by the ie prescription 
=>  “vacuum-to-vacuum” physics

@✓ �(t, ✓) = �i(@2
t + ⇠2 � i✏)�(t, ✓) + cos(!0t)

Unwanted oscillatory part



Dirichlet boundary cond. (very “wrong” choice)

Test with Fixed B.C.
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Test with Free B.C.

Neumann (zero derivative) boundary condition
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Test with Periodic B.C.

Good for the “vacuum” physics
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Small deviation but no blow-up  
Can be overcome with a small e

Corresponds to high-T limit 
in the CTP



Test with Periodic B.C.

Picking up the vacuum part
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✏✓ = 4 Our preferred prescription
✓-averaged (✏ = 0)
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hO[�]i⌘ = lim
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Free Propagator in Frequency Space

Expression (goal of the numerical simulation) 
!
!
Results with an ensemble of 1000 configurations
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G(!, ✓) = Nt
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!2
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i

e = 10 Stable simulation with very  
simple algorithm 
!
Mass singularity appears soon  
but unphysical oscillations  
remain (with e=0)



Averaged Free Propagator

Very fast convergence (might induce artificial 
contributions for composite operators)
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One may think that the inclusion of interaction is a piece of case  
once the free propagator is correctly reproduced… BUT!



So far…

Free propagator quickly emerges in a description 
in Fourier transformed bases. 
!
Inclusion of interaction  =>  Numerical instability 
□Approximation  

Introduce a simple truncation that is exact in the case 
with infinite components N. 

□ Implicit method  
Change the interaction form that has the same 
continuum limit but leads to a better convergence.  

22



Truncation Scheme (large N)

(Implicit method + Interaction) is often unstable 
Truncation motivated from the Hartree approx. 
!
!
!
cf. Hartree approximation
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Results

Mass is replaced with the self-consistent mass that 
incorporates the interaction effects
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Stabilizing the full interaction

Interaction part 
!
!
“Resummed” form
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Stabilizing the full interaction

Interaction part 
!
!
“Resummed” form
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Very stable… but…

Results turned out to be very unphysical 
We can kill numerical instabilities but cannot exclude  
unphysical trajectories.



Summary

Direct real-time simulation has become possible 
thanks to stochastic quantization… in principle! 
There are two obstacles: 
□Numerical instability (controllable but tough) 
□Convergence to wrong results (contaminated by b.c.) 
Periodic boundary condition or the frequency space 

description is useful.  (cf. High-precision turbulence 
simulation is quite often done in momentum space.) 
Hartree-type truncation is proposed and consistency 

with the Hartree approximation is checked.
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Outlook

Full simulation (without truncation) is ongoing.  
Results are close to those in the Hartree approximation 
with artificial width (?) 
Extension from 1+0D to 1+3D is in progress.  

Spontaneous symmetry breaking and pattern formation 
would be very interesting.  Bose-Einstein cond. 
Relation to the holographic quantization.  

The stochastic diagrams look like…  
A new view point to understand the holography and 
the renormalization group. 
Computation of transport coefficients etc…
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Outline 

v  Some results for HIC:  

§  Elliptic flow from Color Glass Condensate (fKLN) 
	  	  	  	  going	  beyond	  εx	  and	  implemen/ng	  also	  	  
	  	  	  	  the	  p-‐space	  with	  the	  Qs	  satura/on	  scale	  
	  

§  	  Isotropiza+on	  &	  Bose-‐Enstein	  Condensa+on	  

v  Boltzmann Kinetic Approach : 
§  Motivations 

§  How to fix locally η/s  

§  First developments including Bose (1+f) terms 



Relativistic Boltzmann-Vlasov approach 

Collisions -> η≠0	  Field Interaction (EoS) 	  Free streaming 

p∗µ∂µ + pν
∗Fµν +m∗∂µm∗#

$
%
&∂µ

p*{ } f (x, p∗) =C[ f ]

One can expand over microscopic details (2<->2 , 2<->3…), but in a hydro  
language this is irrelevant: only the global dissipative effect of C[f] is important!  

f(x,p)	  is	  the	  one-‐body	  distribu+on	  func+on	  

-‐  C[feq+δf]	  ≠	  0	  devia+on	  from	  ideal	  hydro	  (finite	  λ or	  η/s)	  

-‐  We	  map	  with	  C[f]	  the	  phase	  space	  evolu+on	  of	  a	  fluid	  at	  fixed	  η/s	  !	  



Ø   Star+ng	  from	  1-‐body	  distribu+on	  func+on	  f(x,p)	  and	  not	  from	  Tμν:	  
-‐  Implement	  non-‐equilibrium	  implied	  by	  CGC-‐Qs	  scale	  (beyond	  εx)	  

-‐  Include	  off-‐equilibrium	  at	  high	  and	  intermediate	  pT	  
-‐  Relevant	  at	  LHC	  due	  to	  large	  amount	  of	  minijet	  produc+on	  	  	  
-‐  freeze-‐out	  self-‐consistently	  related	  with	  η/s(T)	  
	  

Ø  It’s not a gradient expansion η/s: 
    - valid also at high η/s -‐>	  LHC (T>>Tc) or cross-over region (T≈ Tc) 
 

p∗µ∂µ + pν
∗Fµν +m∗∂µm∗#$ %&∂µ

p*{ } f (x, p∗) =C2↔2 +C2↔3 +...

Motivation for Transport approach 

Collisions -> η≠0	  Field Interaction 
	  	  

Free streaming 



Relativistic Boltzmann Equation 

Collisions Field Interaction  Free streaming 

fg(x,p)	  is	  a	  one-‐body	  distribu+on	  func+on	  for	  fluons	  

pµ∂µ +m
∗∂µm∗∂µ

p{ }fg (x,p) =C2↔2

C22 =
1
2Ep

d3q
(2π)32Eq
∫ d3 #p

(2π)32 #Ep
∫ d3 #q

(2π)32 #Eq
#f ( #q ) #f ( #p )Μgg−>gg ( #p #q → pq)

2'
()

− f(q) f(p)Μgg−>gg (pq→ #p #q )
2*
+,(2π)

4δ4 (p+q− #p − #q )

Gain	  

Loss	  
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Collision	  rate	  

(2π)3ΔNcoll

ΔtΔ3xΔ3p
= g Δ3q

(2π)3
fg p( )fg (q)vrelσp,q→p−k,q+k

Rate	  of	  collisions	  
per	  unit	  +me	  and	  	  

phase	  space	  

Solved	  discre+zing	  the	  	  
space	  in	  (η, x, y)α cells 

Δt→0  
Δ3x→0 

exact  
solution 



What	  is	  the	  rela+on	  η <-‐>	  σ,	  dσ/dΘ,	  M,	  T,	  ρ?	  
-‐	  Check	  η	  with	  the	  Green-‐Kubo	  correlator	  

Part	  I	  –	  Kine+c	  Theory	  at	  fixed	  η/s	  
Instead	  of	  star+ng	  from	  cross-‐sec/ons	  and	  fields,	  	  
we	  reverse	  the	  process	  star+ng	  from η/s	  	  



S. Plumari et al., arxiv:1208.0481;see also:  
Wesp et al., Phys. Rev. C 84, 054911 (2011); 
Fuini III et al. J. Phys. G38, 015004 (2011). 

Shear Viscosity in Box Calculation 
Green-‐Kubo	  correlator	  

Needed very careful tests of convergency 
vs. Ntest, Δxcell, # time steps ! 

macroscopic	  	  
observables	  

η =
1
T

dt
0

∞

∫ d3x
V
∫ Πxy (x, t)Πxy (0, 0)

Πxy (x, t)Πxy (0, 0) = Πxy (0, 0)Πxy (0, 0) ⋅e−t/τ

microscopic	  details	  
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 η ↔ σ(θ), ρ, M, T …. ?	  



Simulate a fixed shear viscosity 

σ tot (n(
r ),T ) = 1

15
pα

g(a)nα
1

η / s
Space-Time dependent cross 
section evaluated locally 

Transport	  code	  

Usually	  input	  of	  a	  transport	  approach	  are	  cross-‐sec/ons	  and	  fields,	  but	  here	  we	  reverse	  
it	  and	  start	  from η/s	  with	  aim	  of	  crea+ng	  a	  more	  direct	  link	  to	  viscous	  hydrodynamics	  

g(a=mD/2T)	  correct	  func+on	  that	  fix	  the	  	  
relaxa+on	  +me	  for	  the	  shear	  mo+on	  

η
s
=
1
15

p ⋅τη =
1
15

p
g(mD

T )σTOTρ

Chapmann-‐Enskog	  

G. Ferini et al., PLB670 (2009) 

Chapman-Enskog agrees with Green-Kubo 

0.1 1
σ (fm2)

0.01

0.1

1

η 
(G

eV
3 )

Green-Kubo, T=0.2 GeV
RTA - IS, T = 0.2 GeV
T = 0.3 GeV
T = 0.4 GeV
T = 0.5 GeV
T = 0.6 GeV

S.Plumari	  et	  al.,	  PRC86(2012)	  

η CE	  good	  one	  !	  

Chapmann-‐Enskog	  	  	  	  

0	  <	  g(mD/2T)	  <	  2/3	  	  
 forward  
peaked 

Isotropic 
mD -> ∞   



Transport at fixed η/s vs Viscous Hydro in 1+1D 

λ
τ

λ
→=

LK K0 =
1
5
T0τ 0
η / s

Knudsen	  number-‐1	  

Comparison	  for	  the	  relaxa+on	  of	  pressure	  anisotropy	  PL/PT	  	  
Huovinen	  and	  Molnar,	  PRC79(2009)	  

In	  the	  limit	  of	  small	  η/s	  (<0.16)	  	  
transport	  converge	  to	  viscous	  hydro	  	  
at	  least	  for	  the	  evolu+on	  pL/pT	  

Large	  K	  small	  η/s	  

η
s
=
1
5
T ⋅λ

Denicol	  et	  al.	  have	  studied	  deriva+on	  of	  viscous	  hydro	  from	  Boltzmann	  kine+c	  theory:	  
	  PRD85	  (2012)	  114047	  	  



El,	  Xu,	  Greiner,	  Phys.Rev.	  C81	  (2010)	  041901	  

Similar results from BAMPS-Frankfurt  

	  -‐	  Convergency	  for	  small	  η/s	  of	  Boltzmann	  
	  	  	  transport	  at	  fixed	  η/s	  with	  viscous	  hydro	  	  
	  
-‐	  Beper	  agreement	  with	  3rd	  order	  viscous	  	  
	  	  	  hydro	  for	  large	  η/s	  



Bhalerao et al., PLB627(2005)   

v 2
/ε
	


Time	  rescaled	  

Ideal -Hydro 

In	  the	  bulk	  the	  transport	  has	  an	  hydro	  v2/ε2	  response!	  

Test in 3+1D: v2/ε response for almost ideal case 
EoS	  cs2=1/3	  	  (dN/dy	  tuned	  to	  RHIC)	  

Transport at η/s fixed 

Integrated	  v2	  vs	  +me	  

v2 =
px
2 − py

2

px
2 + py

2



What	  is	  the	  impact	  of	  non-‐equilibrium	  
Color	  Glass	  condensate	  ini+al	  state?	  

x
y z

px 

py 

Part	  II	  -‐	  Transport	  at	  fixed	  η/s	  with	  Qs	  satura+on	  scale	  	  



ü   η/s increases in the cross-over 
region, realizing a smooth f.o. self-
consistently dependent on h/s:  

ü  Different from hydro that is a 
sudden cut of expansion at some 
Tf.o. 

Cross section and freeze-out  

σ∗ = g(a)σ tot ≈
1
15
p
ρ

1
η / s

Freeze-‐out	  is	  a	  smooth	  process:	  	  scapering	  rate	  <	  expansion	  rate	  
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Cross	  sec+on	  –	  inner	  fireball	  

σpQCD =
9παs

2

mD
2 , αs =

4π

11ln 2πT
Λ
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&
'

(

)
*

, mD
2 = 4παs(T)T

T0=340	  MeV	  à	  σpQCD=	  3.6	  mb	  

ρ(τ0)=23	  fm-‐3,	  η/s=0.08	  à	  σToT=	  6	  mb	  

Au+Au@200AGeV	  ,	  0-‐5%	  

η/s=0.08	  



Unintegrated	  distribu/on	  
func/ons	  (uGDFs)	  

Satura+on	  scale	  Qs	  depends	  on:	  
1.)	  posi&on	  in	  transverse	  plane;	  
2.)	  gluon	  rapidity.	  

Nardi	  et	  al.,	  Nucl.	  Phys.	  A747,	  609	  (2005)	  
Kharzeev	  et	  al.,	  Phys.	  Lep.	  B561,	  93	  (2003)	  
Nardi	  et	  al.,	  Phys.	  Lep.	  B507,	  121	  (2001)	  
Drescher	  and	  Nara,	  PRC75,	  034905	  (2007)	  
Hirano	  and	  Nara,	  PRC79,	  064904	  (2009)	  
Hirano	  and	  Nara,	  Nucl.	  Phys.	  A743,	  305	  (2004)	  
Albacete	  and	  Dumitru,	  arXiv:1011.5161[hep-‐ph]	  
Albacete	  et	  al.,	  arXiv:1106.0978	  [nucl-‐th]	  

Factoriza&on	  hypothesis:	  
convolu+on	  of	  parton	  	  
distribu+on	  func+ons	  	  
in	  the	  parent	  nucleus.	  

fKLN realization of  CGC  

pT	  

dN
/d

2 p
T	  

Qsat(s)	  

p-‐space	   x-‐space	  

εx(fKLN)=0.34	  
εx(Glaub.)=0.29	  

CGC-‐KLN	  εx	  ≈	  30%	  	  
larger	  than	  Glauber	  

T. Hirano et al., PLB636(06) 

Kharzeev et al., PLB561, 93 (2003) 
Nardi et al., PLB507, 121 (2001) 
Drescher et al, PRC75, 034905 (2007) 
Hirano et al., PRC79, 064904 (2009) 
Albacete and Dumitru, arXiv:1011.5161 
… 



V2	  from	  KLN	  in	  Hydro	  
What	  does	  it	  KLN	  in	  	  hydro?	  
1)	  r-‐space	  from	  KLN	  	  (larger	  εx)	  
2)	  p-‐space	  thermal	  at	  t0	  ≈0.6-‐0.9	  fm/c	  	  -‐	  	  No	  Qs	  scale	  ,	  	  We’ll	  call	  it	  fKLN-‐Th	  
	  

Glauber	  à	  η/s	  =	  0.08	  
CGC-‐KLN	  à η/s=0.16	  	  

Larger	  εx	  -‐	  >	  higher	  η/s	  to	  get	  	  
	   	  	  	  	  	  	  	  the	  same	  v2(pT)	  

See	  also:	  
Alver	  et	  al.,	  PRC	  82,	  034913	  (2010)	  
Heinz	  et	  al.,	  PRC	  83,	  054910	  (2011)	  

Luzum	  and	  Romatschke	  
PRC78(2008)	  034915	  



Thermaliza@on	  in	  less	  than	  1	  fm/c,	  	  in	  agreement	  with	  Greiner	  et	  al.,	  NPA806,	  287	  (2008).	  
Not	  so	  surprising:	  η/s	  is	  small	  -‐>	  large	  effec+ve	  scapering	  rate	  -‐>	  fast	  thermaliza+on.	  

Implementing KLN pT distribution 

Using	  kine+c	  theory	  
we	  can	  implement	  full	  KLN	  	  
(x	  &	  p	  space)	  -‐	  εx=0.34,	  Qs	  =1.4	  GeV	  

KLN	  only	  in	  x	  space	  (	  like	  in	  Hydro)	  
εx=0.341,	  	  Qs=0	  -‐>	  Th-‐KLN	  

AuAu@200	  GeV	  –	  20-‐30%	  	  

Glauber	  in	  x	  &	  thermal	  in	  p	  
εx=0.289	  ,	  Qs=0	  	  -‐>	  Th-‐Glauber	  

M.	  Ruggieri	  et	  al.,	  Phys.Lep.	  B727	  (2013)	  177	  	  
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Temperature evolution 

T*=E/N	  	  ,	  in	  the	  local	  rest	  frame	  

T∝ τ−δ

δ=PL/ε	  –	  1D	  boost	  invariance	  
δ=1/3	  	  -‐	  1D	  ideal	  expansion	  
δ=1	  	  	  	  	  	  -‐	  3D	  expansion	  



Longitudinal and transverse pressure 

² PL/PT	  show	  also	  a	  very	  fast	  equilibra+on	  (Δτisotr≈0.5	  fm/c)!	  
² However	  it	  is	  not	  this	  that	  makes	  a	  difference	  for	  v2:	  
	  	  	  	  	  isotropiza+on	  +me	  quite	  similar	  for	  all	  the	  cases	  

t=1/Qs≈0.1-0.2 fm/c 
-> PL/PT > 0 
Gelis & Epelbaum 
arXiV:1307.2214 

CYM (IP-Glasma) 
Courtesy of  B. Schenke 
& R. Venugopalan 



Longitudinal and transverse pressure 

² For	  η/s	  >	  0.3	  one	  misses	  fast	  isotropiza+on	  in	  PL/PT	  (τ ≥ 2-‐3	  fm/c)	  
² For	  η/s	  ≈	  pQCD	  no	  isotropiza+on	  
² Semi-‐quan+ta+ve	  agreement	  with	  Florkowski	  et	  al.,	  PRD88	  (2013)	  034028	  	  
	  	  	  	  	  our	  is	  3+1D	  not	  in	  relax.+me	  but	  full	  integral	  but	  no	  gauge	  field	  

≈	  pQCD	  

70% level of isotropization 

Flow	  boost	  included	  

0 1 2 3 4
τ [fm/c]

0

0.2

0.4

0.6

0.8

1

1.2
P L/P

T
4πη/s=1
4πη/s=4
4πη/s=10

Au-Au@200A GeV

b=7.5 fm

CYM initialization



Hydro	  -‐	  like	   Full	  x	  &	  p	  AuAu@200	  GeV	  

Ø When	  implemen+ng	  KLN	  and	  Glauber	  like	  in	  Hydro	  we	  get	  the	  same	  of	  Hydro	  

Ø When	  implemen+ng	  full	  KLN	  we	  get	  close	  to	  the	  data	  with	  4πη/s	  =1	  :	  
	  	  	  	  	  	  	  larger	  εx	  compensated	  by	  Qs	  satura+on	  scale	  (non-‐equilibrium	  distribu+on)	  

Results with kinetic theory 

M.	  Ruggieri	  et	  al.,	  Phys.LeJ.	  B727	  (2013)	  177	  -‐	  1303.3178	  [nucl-‐th]	  



v We	  clearly	  see	  that	  when	  non-‐equilibrium	  distribu+on	  is	  implemented	  
in	  the	  ini+al	  stage	  	  (≤	  1	  fm/c)	  	  v2	  grows	  slowly	  respect	  to	  thermal	  one	  
	  

v  	  Deforma+on	  of	  pT	  distribu+on	  -‐>	  affects	  v2(pT)	  

What	  is	  going	  on?	  



Evolu+on	  with	  Centrality	  	  	  

§  The	  difference	  fKLN	  ,	  Th-‐fKLN	  and	  	  Th-‐Glauber	  disappears	  at	  central	  
collisions	  (like	  in	  hydro	  for	  Th-‐fKLN	  and	  Th-‐Glauber)	  

§  In	  peripheral	  collisions	  fKLN	  would	  even	  be	  lower	  than	  Th-‐Glauber	  due	  
to	  non-‐equilibrium	  impact	  



Higher	  η/s	  for	  Th-‐KLN	  leads	  to	  small	  v3	  

The	  value	  of	  η/s	  affects	  more	  higher	  harmonics!	  

Adare	  et	  al.,	  [PHENIX	  Collabora+on],	  PRL	  107,	  252301	  (2011)	  

Can	  we	  discard	  KLN	  or	  CGC?!	  
Well	  at	  least	  before	  one	  should	  implement	  both	  x	  and	  p	  space	  



IP-‐Glasma	  

Neglec+ng	  non-‐equilibrium	  in	  p-‐space	  	  
Classic	  Yang-‐Mills	  approach	  to	  gluon	  satura+on	  
able	  to	  describe	  all	  vn	  

C.	  Gale	  et	  al.,	  PRL111(2013)	  



KLN vs Classic Yang-Mills 
Factoriza+on	  of	  parton	  distr.	  funct	  
not	  valid	  	  in	  AA	  -‐>	  Classic	  field	  approach	  

CYM - Courtesy of  B.Schenke 
See also:Blaizot et al., NPA846, (2010) 

The	  	  effect	  nearly	  disappears	  but	  indeed	  there	  is	  nearly	  No	  satura+on!	  
The	  slope	  is	  the	  opposite	  of	  KLN	  



In	  all	  of	  this	  the	  quantum	  nature	  of	  gluon	  has	  been	  ignored	  
In	  the	  regime	  of	  a	  Color	  Glass	  Condensate	  f ≈ 1/αs >1	  

The	  fixed	  point	  is	  not	  a	  Boltzmann	  distribu+on	  	  
but	  a	  Bose	  -‐Einstein	  

pT	  

f(p
) 	   Ideal	  Sketch	  

Treatment	  of	  the	  quantum	  sta+s+cs	  for	  gluons	  neglected	  +ll	  recently	  

Saturation -> Overpopulation -> Condensation? 



Over	  popula+on	  and	  onset	  of	  Bose	  –Einstein	  Condensa+on	  

Argument:	  JP	  Blaizot,	  J.	  Liao,	  L.	  McLerran	  NPA920(2013)	  58	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  Blaizot,	  Gelis,	  Liao,McLerran,	  Venugopalan,	  NPA905	  (2013)	  829	  

pT	  

f(p
) 	  

Qsat(s)	  

Ideal	  Sketch	  

f0	  

Excess	  of	  par+cles	  accomodated	  by	  a	  Bose-‐Einstein	  Condensate?	  

Implies	  an	  energy	  density	  and	  density	  

CGC-‐like	  distribu+on	  naively	  is	  

The	  equilibrium	  value	  for	  a	  massless	  Bose	  Gas	  

n 0ε0
−3 4 ≥ 0.28

For	  a	  Theta	  distribu+on	  this	  happens	  for	  	  	  

Talks	  by	  Bin	  Wu,	  Xu-‐Guang	  Huang	  Yin	  Jiang	  

For	  f(p)=f0	  exp(-‐p/T)	  à	  fc	  ≈	  1.6	  



C22 =
1
2Ep

d3q
(2π)32Eq
∫ d3 #p

(2π)32 #Ep
∫ d3 #q

(2π)32 #Eq
Μpq−> #p #q

2
f( #q )f( #p ) 1+ f(p)( ) 1+ f(q)( )&'

− f(q)f(p) 1+ f( #p )( ) 1+ f( #q )( )()(2π)4δ4(p+q− #p − #q )

Onset of  Bose –Einstein Condensation 

Boltzmann	  with	  Bose	  enhancement	  (1+f)	  -‐>	  Bose-‐Einstein	  distribu+on	  func+on	  

Onset	  of	  BEC	  for	  f0>	  0.16	  

In	  Small-‐angle	  Approxima+on	  à	  Fokker-‐Planck	  	  

µ∗ = T∗ ln 1+ 1
f(0)

"

#
$

%

&
'

equilibrium( →((( µ

Evolu+on	  in	  a	  sta+c	  Box	  

JP	  Blaizot,	  J.	  Liao,	  L.	  McLerran	  NPA920(2013)	  58	  



dσgg→gg

dt
=

9παs
2

mD
2 − t( )

2

C22 =
1
2Ep

d3q
(2π)32Eq
∫ d3 #p

(2π)32 #Ep
∫ d3 #q

(2π)32 #Eq
Μpq−> #p #q

2
f( #q )f( #p ) 1+ f(p)( ) 1+ f(q)( )&'

− f(q)f(p) 1+ f( #p )( ) 1+ f( #q )( )()(2π)4δ4(p+q− #p − #q )

Solving Relativistic-Boltzmann with (1+f) factor 

Using	  	  the	  gg<-‐>gg	  cross	  sec+on	  	  
with	  mD=0.1	  GeV	  	  
[not	  exactly	  like	  in	  in	  Blaizot	  NPA920(2013)]	  

With	  an	  ini+al	  distribu+on	  func+on	  

No	  small	  angle	  or	  mometum	  transfer	  pproximan+on	  

mD=0.1	  GeV	  

P22 =
ΔN2↔2

coll

ΔN1ΔN2
=
Δt
Δ3x

vrelσp,q→ %p , %q 1+ f( %p )[ ] 1+ f( %q )[ ]



µ∗ = T ln 1+ 1
f(0)

"

#
$

%

&
'

equilibrium( →((( µ

Evolu+on	  in	  a	  sta+c	  Box	  	  

Blaizot,Liao,McLerran	  NPA920(2013)	  58	  

Relativistic-Boltzmann vs Fokker-Planck 

Boltzmann with (1+f) Fokker-Planck 

Quite	  good	  agreement,	  transi+on	  to	  BEC	  for	  f0	  >	  0.16	  in	  both	  cases!	  
Generally	  similar	  behavior	  FP	  or	  BM,	  but	  mD	  is	  small	  	  

f0=0.1	  



Upcoming	  and	  Possible	  developments	  

•  Finite	  mass	  screening	  mD	  and	  finite	  gluon	  masses	  -‐>	  FP	  s/ll	  good?	  

•  1D	  Bjorken	  boost	  expansion	  (in	  a	  box)	  à	  what	  is	  the	  f0c?	  

•  Impact	  of	  q	  <-‐>	  g	  conversions	  (Blaizot,	  Wu,	  Yan	  arxiv.1402.5049)	  

•  Apply	  to	  3+1D	  in	  AA	  collisions:	  
	  	  	  	  	  -‐	  strong	  longitudinal	  expansion	  +	  q<-‐>g	  (F.	  Scardina	  et	  al.,	  PLB724	  (2013)	  296)	  
	  	  	  	  	  -‐	  start	  from	  realis+c	  KLN	  and/or	  CYM	  f(p)	  
	  	  	  	  	  -‐	  impact	  on	  observable:	  v2	  and	  higher-‐lower	  harmonics	  vn	  
	  

•  Inclusion	  of	  gauge	  field	  (in	  abelian	  approxima+on)	  

•  Impact	  of	  2	  <-‐>	  3	  inelas+c	  collisions	  



Effect of  screening masses 

If	  we	  keep	  fixed	  the	  total	  cross	  sec+on	  (same	  scapering	  rate)	  and	  increase	  mD:	  
-‐  It	  does	  not	  modify	  the	  f0	  cri+cal	  value	  
-‐  It	  accelerates	  the	  +me	  for	  BEC:	  mD	  from	  0.1	  to	  1	  GeV	  makes	  tBEC	  3	  +mes	  smaller	  

Evolu+on	  in	  a	  sta+c	  Box	  	  

At	  large	  mD	  =	  2-‐3	  T	  the	  Fokker-‐Planck	  may	  be	  not	  fully	  reliable,	  but	  …	  



Occupa+on	  number	  in	  AA	  collisions	  
	  w/o	  (1+f)	  terms	  

v  f	  >1	  need	  of	  Bose-‐Einstein	  sta+s+cs	  
	  	  	  	  	  (1+f)	  terms	  needed	  in	  the	  collision	  integral	  
	  	  -‐>	  possibility	  of	  Bose	  Condensate	  induced	  by	  CGC	  
	  	  	  	  	  	  J.	  P.	  Blaizot	  et	  al.,	  Nucl.	  Phys.	  A905,	  829c	  (2013).	  

ü  Longitudinal expansion lowers average density by τ-1 

     but f(p->0) goes down slowly due to  cooling 
  
ü  f <<1 at pT> 0.5 our effect on v2(pT) manifest at larger 

pT 

f	  ≈	  1/τ	  +	  slope	  change	  	  

M. Ruggieri et al.,arXiv:1312.6060 [nucl-th] 

2	  order	  of	  
magnitudes	  

≈	  costant	  



First very preliminary for AA collision with (1+f) 
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Au+Au@200	  AGeV	  
b=7.5	  fm	  

First	  result	  of	  Boltzmann	  +	  Bose	  factors	  for	  the	  3+1D	  simula+on	  

Very	  preliminary:	  not	  enough	  accurate	  
-‐  Low	  sta+s+cs	  (small	  Ntest)	  
-‐  not	  too	  small	  Δp	  grip	  
	  -‐>	  Systema+c	  error	  	  in	  extrac+ng	  f(p=0)	  
	  
	  
Strong	  Impact	  of	  the	  (1+f)	  terms	  
kept	  also	  in	  3D	  expansion	  -‐>	  
(1+f)	  terms	  in	  the	  collision	  integral	  
increase	  the	  IR	  cascade	  p-‐>0	  

The fact that it stays nearly constant and  
then even decreases is promising! 



Development of kinetic approach at fixed η/s(T) 

§  For	  η/s	  <0.1	  -‐>	  PL	  /PT	  >	  0.7	  at	  Δτisotr <0.5	  fm/c	  	  +	  Δτtherm≈0.8	  fm/c	  
	  	  	  	  	  	  For	  η/s	  ≈1	  no	  pressure	  isotropization	  

§  Boltzmann	  collision	  integral	  with	  (1+f)	  Bose	  terms	  in	  3+1D:	  

	  	  	  	  	  	  	  -‐>	  BEC	  in	  a	  box	  but	  possible	  also	  in	  AA	  collisions?!	  

	  	  	  	  	  	  	  -‐>	  Larger	  mD	  at	  _ixed	  collision	  rate	  accelerate	  the	  process	  
 
 

Studying the CGC (fKLN): 
§  Non-‐equilibrium	  implied	  by	  Qs	  damps	  v2(pT)	  compensating	  	  
the	  larger	  εx	  	  -‐>	  v2(pT)	  described	  with	  4πη/s	  ≈1	  also	  for	  KLN	  

§  pT	  spectra	  deformation	  can	  impact	  signi_icantly	  v2	  
	  

Summary 



Back-‐up	  



Outlook 
for the kinetic theory approach 

v Include	  ini+al	  state	  fluctua+ons	  to	  study	  vn:	  
² 	  more	  constraints	  on	  η/s(T)	  and	  ini+al	  state?	  

² 	  something	  more	  or	  new	  at	  pT	  ≈2-‐4	  GeV	  ?	  

² pA	  …	  

Endeavor already undertaken…. 

v 	  Hadroniza+on:	  
² 	  sta+s+cal	  model	  +Cooper-‐Frye	  vs.	  coalescence	  +	  fragm.	  

v Field	  Dynamics:	  
² Realis+c	  EoS:	  M(T)	  +	  Bag	  	  mean	  field	  dynamics	  	  [Done!]	  



Agreement	  with	  AMY,	  JHEP	  0305	  (2003)	  051	  

close to AMY result JHEP(2003),  
but there is a significant simplification: 
only direct u & t channels  
with simplified HTL propagator 

Viscosity of  a pQCD gluon plasma	


ηRTA / s =
1
15

< p > τ tr =
1
15

< p >
σ trρ

Relaxa@on	  Time	  Approxima@on	


Chapmann-‐Enskog	  (CE)	  	  

g(a=mD/2T)	  correct function that fix the 
momentum transfer for shear motion 

0	  <	  g(mD/2T)	  <	  2/3	  	  
∞ forward  

peaked 
Isotropic 
mD -> ∞   
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Longitudinal and transverse pressure 

² PL/PT	  show	  also	  a	  very	  fast	  equilibra+on	  (Δτisotr≈0.4	  fm/c)!	  
² However	  it	  is	  not	  this	  that	  makes	  a	  difference	  for	  v2:	  
	  	  	  	  	  isotropiza+on	  +me	  very	  similar	  for	  all	  the	  cases	  

t=1/Qs≈0.1-0.2 fm/c 
-> PL/PT > 0 
Gelis & Epelbaum 
arXiV:1307.2214 

Flow	  boost	  included	  

M. Ruggieri et al.,arXiv:1312.6060 [nucl-th] 



Evolu+on	  with	  Energy	  	  	  





pT	  

dN
/d
p 	  

δp	  

V2 =
N(0°)− N(90°)
N(0°)+ N(90°)

pT	  

dN
/d
p 	  

along	  x,	  θ=0	  
δp	  

V2 =
N(0°)− N(90°)
N(0°)+ N(90°)

Put	  it	  very	  simplis+c:	  

f (pT ,φ) = e
−
pT−δpcos(2φ )

T ∗

v2 (pT ,φ) ≅
δp
4T ∗

If	  the	  momentum	  δp	  shim	  is	  the	  same	  
we	  can	  expect	  flaoer	  distribu/on	  
are	  less	  efficient	  in	  build-‐up	  v2	  

What	  is	  v2?	  

smaller	  v2	  
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=
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C22 =
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(2π)32 #Ep
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Solving Relativistic-Boltzmann with (1+f) factor 

Using	  	  the	  gg<-‐>gg	  cross	  sec+on	  	  
with	  mD=0.1	  GeV	  	  
[not	  exactly	  like	  in	  in	  Blaizot	  NPA920(2013)]	  

No	  small	  angle	  or	  mometum	  transfer	  pproximan+on	  

Technically	  quite	  more	  twisted	  	  
than	  simple	  Boltzmann	  integral	  

(2π)3ΔNcoll

ΔtΔ3xΔ3p
= g Δ3q

(2π)3
fg p( )fg (q)vrelσp,q→ %p , %q 1+ f( %p )[ ] 1+ f( %q )[ ]

P22 =
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coll

ΔN1ΔN2
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Δt
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vrelσp,q→ %p , %q 1+ f( %p )[ ] 1+ f( %q )[ ]



Hydro  ß  Transport 

Higher pT (no Ansatz for df) 

Larger η/s, and local 
large stress tensor 

Initial off-equilibrium 

Higher mQ >> T, Λqcd 

Microscopic level: 
Hadronization 

pT	  ≈3T	  

η/s<<1	  

Ideally 
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T )σTOTρ

η/s or details of  the cross section? 

Keep	  same	  η/s	  means:	  	  

σTOT m1D( )
σTOT m2D( )

=
g(m2D )
g(m1D )

for	  mD=0.7	  GeV	  	  -‐>	  factor	  2	  	  larger σtot	  	  

	  	  	  	  	  	  	  	  	  	  is	  needed	  respect	  to	  isotropic	  case	  
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Keep	  same	  η/s	  means:	  	  

σTOT m1D( )
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η/s or details of  the cross section? 
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² 	  η/s	  is	  really	  the	  physical	  parameter	  determining	  	  
	  	  	  	  v2	  at	  least	  up	  to	  1.5-‐2	  GeV	  
² 	  microscopic	  details	  become	  relevant	  at	  higher	  pT	  
² First	  +me	  η/s<-‐>	  v2	  hypothesis	  is	  verified!	  

for	  mD=0.7	  GeV	  	  -‐>	  factor	  2	  	  larger σtot	  	  

	  	  	  	  	  	  	  	  	  	  is	  needed	  respect	  to	  isotropic	  case	  

4πη/s=1	  



Keep	  same	  η/s	  means:	  	  
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η/s or details of  the cross section? 

	  for	  mD=1.4	  GeV	  	  -‐>	  25%	  smaller	  σtot	  

	  for	  mD=5.6	  GeV	  	  -‐>	  40%	  smaller	  σtot	  
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² First	  +me	  η/s<-‐>	  v2	  hypothesis	  is	  verified!	  



Keep	  same	  η/s	  means:	  	  

σTOT m1D( )
σTOT m2D( )

=
g(m2D )
g(m1D )

τη
−1 = g(mD

T )σTOTρ

η/s or details of  the cross section? 
dσ
dΩ

∝
αs
2

q2 (θ )+mD
2#

$
%
&
2 cross	  sec+on	  

η
s
=
1
15

p ⋅τη
² 	  η/s	  is	  really	  the	  physical	  parameter	  determining	  	  
	  	  	  	  v2	  at	  least	  up	  to	  1.5-‐2	  GeV	  
² 	  microscopic	  details	  become	  relevant	  at	  higher	  pT	  
² First	  +me	  η/s<-‐>	  v2	  hypothesis	  is	  verified!	  

eqfT
pp

P
f 2

νµ
µν

ε
π

δ
+

=Differences	  arises	  just	  where	  	  
in	  viscous	  hydro	  δf	  becomes	  relevant	  



Viscous Hydrodynamics 

but	  it violates causality,  
II0 order expansion needed -> Israel-Stewart 
tensor based on entropy increase ∂µ sµ >0	


y
v

A
F x

yz

x

∂

∂
−= η

Relativistic Navier-Stokes  

τη,τζ	  two	  parameters	  appears	  +	  	  
δf	  ~	  feq	  reduce	  the	  pT	  validity	  range	  

- Dissipative correction to uµ, T, n 
- Dissipative correction to f -> feq+δfneq 

There is no one to one correspondence! 

ffTT eqeq δδ µνµν +⇐+

An	  Asantz	  

eqfT
pp

P
f 2

νµ
µν

ε
π

δ
+

=

Grad	  -‐	  this implies RTA and not CE 
- pT~3 GeV  -> δf/f≈ 4 
- Πµν (t0) =0 -> discard initial non-eq (ex. minijets) 



for	  a	  generic	  cross	  sec+on:	  

Non Isotropic Cross Section - σ(θ)	


h(a) = 4a(1+ a) (2a+1)ln(1+ a−1)− 2"# $% , a =mD
2 / s

Chapmann-‐Enskog	  (CE)	  	  

§  	  CE	  and	  RTA	  can	  differ	  by	  about	  a	  factor	  2-‐3	  
§  Green-‐Kubo	  agrees	  with	  CE	  

ηRTA / s =
1
15

< p > τ tr =
1
15

< p >
h(a) σ TOTρ

Green-‐Kubo	  in	  a	  box	  -‐	  σ(θ)	


mD	  regulates	  the	  angular	  dependence	  

Relaxa@on	  Time	  Approxima@on	


0.1 1 10
m

D
 [GeV]

0.1

1

η
 [

G
e
V

3
]

isotropic limit 

RTA - with σ
tr

Green Kubo, T=0.3 GeV

Green Kubo, T=0.4 GeV

Green Kubo, T=0.5 GeV

0.1 1 10
m

D
 [GeV]

isotropic limit

CE - 1st order
Green-Kubo, T= 0.3 GeV

Green-Kubo, T=0.4 GeV

Green Kubo, T=0.5 GeV

dσ
dΩ

∝ q2 (θ )+mD
2( )

−2

g(a)	  correct	  func+on	  that	  fix	  the	  	  
momentum	  transfer	  for	  shear	  mo+on	  

RTA is the one usually emplyed to make theroethical 
estimates: Gavin NPA(1985); Kapusta, PRC82(10); 
Redlich and Sasaki, PRC79(10), NPA832(10); 
Khvorostukhin PRC (2010) …	  

S. Plumari et al., PRC86(2012)054902 

h(a)=σtr/σtot	  	  weights	  cross	  sec+on	  by	  q2	  



Next	  step	  –	  

Include	  Ini@al	  State	  Fluctua@ons	  
(Preliminary	  results)	  

ρ⊥ ∝ exp − x − xi( )2 + y− yi( )2$
%

&
' / 2σ

2{ }
i=1

Npart

∑

Monte	  Carlo	  Glauber	  

σ =	  0.5	  fm	  

εn =
r⊥
n cos n(φ −Φn )[ ]

r⊥
n

Φn =
1
n
arctan

r⊥
nsen n(φ −Φn )[ ]
r⊥
n cos n(φ −Φn )[ ]

G-Y. Qin, H. Petersen, S.A. Bass and B. Muller, PRC82,064903 (2010) 
H.Holopainen, H. Niemi and K.J. Eskola, PRC83, 034901 (2011) 



§  	  v2	  and	  v3	  linearly	  correlated	  to	  the	  corresponding	  eccentrici+es	  ε2	  and	  ε3	  	  

Ini@al	  State	  Fluctua@ons:	  vn	  vs	  εn	  (Preliminary)	  

v2
ε2

≈ 0.21
v3
ε3

≈ 0.11

C(2,2)=0.93	   C(3,3)=0.68	  4πη/s=1	  ≈	  5	  	  	  	  

C(n,m) =
vn − vn( ) εn − εn( )

σVnσεn



§  v4	  and	  ε4	  weak	  correlated	  similar	  to	  hydro	  calcula+ons:	  
	  	  	  	  	  	  	  F.G.Gardim,F.Grassi,M.Luzum	  and	  J.Y.Ollitrault	  NPA904	  (2013)	  503.	  
	  	  	  	  	  	  Niemi,	  Denicol,	  Holopainen	  and	  Huovinen	  PRC87(2013)	  054901.	  

Ini@al	  State	  Fluctua@ons:	  vn	  vs	  εn	  (Preliminary)	  

v2
ε2

≈ 0.21

C(n,m) =
vn − vn( ) εn − εn( )

σVnσεn

C(2,2)=0.93	   4πη/s=1	  ≈	  5	  	  	  	   C(3,3)=0.23	  

General	  agreement	  with	  hydro	  Niemi	  et	  al.	  PRC87(2013),	  but:	  
-  η/s	  not	  constant	  (include	  cross-‐over	  increase)	  
-‐  3+1	  D	  not	  2+1D	  
-  σ =0.5	  fm	  not	  0.8	  fm	  (if	  relevant	  at	  all!)	  



pT	  

dN
/d
p 	  

δp	  

V2 =
N(0°)− N(90°)
N(0°)+ N(90°)

pT	  

dN
/d
p 	  

along	  x,	  θ=0	  
δp	  

V2 =
N(0°)− N(90°)
N(0°)+ N(90°)

Put	  it	  very	  simplis+c:	  

f (pT ,φ) = e
−
pT−δpcos(2φ )

T ∗

v2 (pT ,φ) ≅
δp
4T ∗

If	  the	  momentum	  δp	  shim	  is	  the	  same	  
we	  can	  expect	  flaoer	  distribu/on	  
are	  less	  efficient	  in	  build-‐up	  v2	  

What	  is	  v2?	  

smaller	  v2	  



With	  h/s(T)	  	  T2	  we	  cannot	  reproduce	  the	  data:	  
-‐  RHIC	  we	  can	  recover	  the	  spectra	  by	  lowering	  T0by	  a	  30	  MeV	  
-‐  LHC	  impact	  of	  minijets	  too	  large	  one	  would	  need	  a	  T0	  ≈340	  MeV	  ≈	  RHIC	  

pT-spectra versus h/s(T) 



Transport at fixed η/s vs Viscous Hydro a test in 3+1D 

Changing	  M	  of	  partons	  one	  gets	  	  
different	  	  EoS	  –	  cs(T)	  

v2/εx	  (0)decrease	  with	  cs	  

§  Time	  scales,	  trends	  and	  value	  	  
	  	  	  	  	  	  quite	  similar	  to	  hydro	  evolu+on	  
	  
§  An	  exact	  comparison	  under	  the	  same	  

condi+ons	  has	  not	  been	  done	  

Au+Au@200AGeV	  

σtot=15	  mb	  



² r-‐space:	  standard	  Glauber	  condi+on	  
² p-‐space:	  Boltzmann-‐Jupner	  Tmax=2(3)	  Tc	  [pT<2	  GeV	  ]+	  minijet	  [pT>2-‐3GeV]	  
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Motivation

• Large differences between the longitudinal and transverse expansion rates lead to large shear

viscous effects (longitudinal/transverse pressure anisotropies) in the early stage of heavy-ion

collisions.

• These cause Israel-Stewart theory to break down at early times.

• Anisotropic hydrodynamics (aHydro) deals with the large longitudinal/transverse pressure

anisotropy “nonperturbatively”; this improves the performance of hydrodynamics at early times.

• But: aHydro accounts for only one of the 5 independent components of the shear stress

tensor, ignoring the others =⇒ unreliable for the computation of elliptic flow which is sensitive

to πxx−πyy, for example.

• On the other hand: these 4 remaining components of the viscous stress tensor become never as

large as the longitudinal/transverse pressure difference (with smooth initial density profiles they

start out as zero, with fluctuating initial conditions they are initially small).

• =⇒ Idea: treat large longitudinal/transverse pressure anisotropy “nonperturbatively” with

aHydro, add remaining viscus corrections “perturbatively” à la Israel-Stewart =⇒ vaHydro.

• Expect better performance at all times compared to both aHydro and Israel-Stewart theory.

Approach to Equilibrium Workshop, 4/2/2014 1(18)



Kinetic theory vs. hydrodynamics

Both simultaneously valid if weakly coupled and pressure gradients are small

hydro equations remain structurally unchanged for strongly coupled systems

p
µ
∂µf(x, p) = C(x, p) =

p·u(x)

τrel(x)

(

feq(x, p)−f(x, p)
)

in relaxation time approximation (RTA)

For conformal systems τrel(x) = c/T (x).

Macroscopic currents:

j
µ(x) =

∫

p

p
µ
f(x, p) ≡ 〈p

µ
〉

T
µν(x) =

∫

p

p
µ
p
ν
f(x, p) ≡ 〈p

µ
p
ν
〉

where
∫

p

. . . ≡
g

(2π)3

∫

d3p

Ep
. . . ≡ 〈. . .〉
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Ideal fluid dynamics (I)

Ideal hydro ⇐⇒ f(x, p) = fiso(x, p) ≡ fiso

(

p·u(x)− µ(x)

T (x)

)

(Locally isotropic momentum distribution, not necessarily exponential or in chemical equilibrium)

If not in chemical equilibrium, then ∂µj
µ 6= 0.

If not exponential in (p·u(x) − µ(x))/T (x), then C(x, p) 6= 0, but still
∫

p
pµC = 0 (energy-

momentum conservation).

For ideal hydro

j
µ
id(x) = n(x)uµ(x)

T
µν
id = e(x)uµ(x)uν(x)− P

(

e(x)
)

∆µν(x)

where ∆µν
≡ gµν − uµuν = spatial projector in l.r.f.

Write
p
µ = Eu

µ + p
〈µ〉

where E ≡ u·p=energy in l.r.f., p〈µ〉 ≡ ∆µνpν = spatial momentum in l.r.f.
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Ideal fluid dynamics (II)

Ideal hydro equations follow from

∂µj
µ =

neq − n(x)

τrel(x)

∂µT
µν = 0

which one can solve for n(x), e(x), uµ(x).

Then T (x), µ(x), P (x) follow from the EOS.

Note: if system is locally isotropic but not in chemical and thermal equilibrium, this can
be accounted for by non-equilibrium chemical potentials and a non-equilibrium pressure
in the EOS P (e, n) = P (T, µ). In this case one sees non-zero entropy production
∂µS

µ
∼ 1/τrel 6= 0.
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Israel-Stewart viscous fluid dynamics (I)

f(x, p) = fiso

(

p·u(x)− µ(x)

T (x)

)

+ δf(x, p)

Separation made unique by Landau matching:
first define l.r.f. by Tµνuν = euµ with uνuν = 1 =⇒ fixes flow vector uµ

Next, require

e(x) = eiso(T, µ) ⇒ 〈E2
〉 = 〈E2

〉iso(T, µ)
n(x) = niso(T, µ) ⇒ 〈E〉 = 〈E〉iso(T, µ)

=⇒ 〈E〉δ = 〈E2
〉δ = 0 =⇒ fixes T (x), µ(x)

Viscous decomposition of jµ, Tµν:

jµ = j
µ
id + V µ V µ =

〈

p〈µ〉
〉

δ

Tµν = T
µν
id −Π∆µν + πµν Π = −

1
3

〈

p〈α〉p〈α〉
〉

δ
, πµν =

〈

p〈µpν〉
〉

δ
.

Here A〈µν〉 ≡ ∆µν
αβA

αβ with ∆µναβ = 1
2

(

∆µ
α∆

ν
β + ∆ν

α∆
µ
β

)

− 1
3∆

µν∆αβ

=⇒ πµν = T 〈µν〉 has 5 independent components (3 for (2+1)-d, 1 for (0+1)-d)

Altogether 9 viscous flow degrees of freedom.
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Israel-Stewart viscous fluid dynamics (II)

Israel-Stewart equations of motion for viscous pressures (Israel&Stewart 1979, Muronga 2002):
Define Ḟ ≡ DF ≡ uµ∂µF, θ ≡ ∂·u, σµν = ∂〈µuν〉:

Π̇ = −

1

τΠ

[

Π+ ζθ +ΠζT∂µ

(

τΠu
µ

2ζT

)]

≡ −

1

τ ′Π
[Π + ζ

′
θ] ,

π̇
〈µν〉

≡ ∆µν
αβDπ

αβ = −

1

τπ

[

π
µν

− 2ησµν + π
µν
ηT∂µ

(

τπu
µ

2ηT

)]

≡ −

1

τ ′π
[πµν

−2η′σµν] ,

where η, ζ are shear and bulk viscosity (first order transp. coeffs.), τΠ, τπ are shear and
bulk pressure relaxation times (second order transp. coeffs.), and

τ
′
Π =

τΠ

1 + γΠ

, τ
′
π =

τπ

1 + γπ

, ζ
′
=

ζ

1 + γΠ

, η
′
=

η

1 + γπ

γΠ =
1

2
ζT∂µ

(

τΠu
µ

2ζT

)

−→ 4

3
τΠθ,

γπ =
1

2
ηT∂µ

(

τπu
µ

2ηT

)

−→ 4

3
τπθ,

where the arrow indicates the conformal limit.
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Israel-Stewart viscous fluid dynamics (III)

The Israel-Stewart equations are not the most general form of second order equations
of motion for the viscous pressures. For a complete set of second-order terms, together
with the associated transport coefficients computed from Boltzmann theory, see Denicol,

Molnar, Niemi, Rischke, EPJA 48 (2012) 170 (DMNR).

Problem with applying IS theory to heavy-ion collisions:
for early times, as τ → 0,

τ
2
σ
ηη = −(σxx+σ

yy) → −

2

3τ

=⇒ very large viscous corrections! =⇒ δf no longer small.

This problem is caused by the rapid self-similar longitudinal expansion.
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Anisotropic hydrodynamics (aHydro) (I)
Martinez and Strickland 2009

A non-perturbative method to account for large shear viscous effects stemming from large difference

between longitudinal and transverse expansion rates.

f(x, p) = fiso

(

√

pµΞµν(x)pν − µ̃(x)

Λ(x)

)

≡ fRS(x, p)

where Ξµν(x) = uµ(x)uν(x) + ξ(x)zµ(x)zνx. (Romatschke&Strickland 2003)

3 flow and 3 “thermodynamic” parameters: uµ(x); Λ(x), µ̃(x), ξ(x).

aHydro decomposition:

j
µ
RS = nRSu

µ
, T

µν
RS = eRSu

µ
u
ν
− PT∆

µν + (PL − PT )z
µ
z
ν
,

where, for massless partons (m = 0), the effects of local momentum anisotropy can be factored out:

nRS = 〈E〉RS = R0(ξ)niso(Λ, µ̃),

eRS = 〈E2〉RS = R(ξ)eiso(Λ, µ̃),

PT,L = 〈p2
T,L〉RS = RT,L(ξ)Piso(Λ, µ̃).

(See Strickland’s talk for R-functions.) The isotropic pressure is obtained from a locally isotropic EOS,

Piso(Λ, µ̃) = Piso(eiso(Λ, µ̃), niso(Λ, µ̃))

For massless noninteracting partons, Piso(Λ, µ̃) = 1
3eiso(Λ, µ̃) independent of chemical composition.
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Anisotropic hydrodynamics (aHydro) (II)
Martinez and Strickland 2009

If we want to compare aHydro with ideal and IS viscous hydro, we need to assign the locally anisotropic

system an appropriate temperature T (x) = T
(

ξ(x),Λ(x), µ̃(x)
)

and chemical potential µ(x) =

µ
(

ξ(x),Λ(x), µ̃(x)
)

, and think of fRS(ξ,Λ) as an expansion around the locally isotropic distribution

fiso(T ). This is done by “dynamical Landau matching”: We demand that eRS(ξ,Λ, µ̃) = eiso(T, µ)

and nRS(ξ,Λ, µ̃) = R0(ξ)niso(T, µ).

For example, using a Boltzmann distribution for fiso(x, p) with µ = µ̃ = 0, one finds (Martinez &

Strickland 2010)

T = ΛR1/4(ξ)

With this matching we can write

T
µν
RS = T

µν
id − (∆P + ΠRS)∆

µν
+ π

µν
RS

where

∆P + ΠRS = −1

3

∫

p

pα∆
αβpβ(fRS − fiso) (= 0 for m = 0),

π
µν
RS =

∫

p

p
〈µ
p
ν〉
(fRS − fiso) = (PT−PL)

xµxν + yµyν − 2zµzν

3

We see that πµν
RS has only one independent component, PT−PL, so aHydro leaves 4 of the 5

components of πµν unaccounted for.
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Anisotropic hydrodynamics (aHydro) (III)
Martinez and Strickland 2009

For massless particles we have

PT − PL

Piso(e)
= RT (ξ)−RL(ξ),

so the EOM for πµν
RS can be replaced by an EOM for ξ.

For m 6= 0, to separate ∆P from the viscous pressure Π, we need an “anisotropic EOS”
for

∆P

Piso
≡

2PT + PL

3Piso
− 1.
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Viscous anisotropic hydrodynamics (vaHydro) (I)

f(x, p) = fRS(x, p) + δf̃(x, p) = fiso

(

√

pµΞµν(x)pν − µ̃(x)

Λ(x)

)

+ δf̃(x, p)

Landau matching: Tµ
νu

ν = euµ with uµuµ = 1 =⇒ fixes uµ

no contribution to e, n from δf̃ : 〈E〉δ̃ = 〈E〉δ̃ = 0 =⇒ fixes Λ, µ̃.

no contribution to PT−PL from δf̃ :
xµxν+yµyν−2zµzν

2 〈p〈µpν〉〉δ̃ = 0 =⇒ fixes ξ.

vaHydro decomposition:

j
µ = j

µ
RS + Ṽ

µ
, Ṽ

µ =
〈

p
〈µ〉
〉

δ̃
,

T
µν = T

µν
RS − Π̃∆µν + π̃

µν
, Π̃ = −

1

3

〈

p
〈α〉

p〈α〉
〉

δ̃
, π̃

µν =
〈

p
〈µ
p
ν〉
〉

δ̃
,

uµπ̃
µν = π̃µνuν = (xµxν+yµyν−2zµzν)π̃

µν = π̃µ
µ = 0 =⇒ π̃µν has 4 degrees of freedom.

Strategy: solve hydrodynamic equations for aHydro (which treat PT − PL nonper-
turbatively) with added viscous flows from δf̃ , together with IS-like “perturbative”
equations of motion for Π̃, Ṽ µ, π̃µν.
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Viscous anisotropic hydrodynamics (vaHydro) (II)

Hydrodynamic equations of motion:

∂µj
µ = C ≡

∫

p
C(x, p) =⇒ ṅRS = −nRSθ − ∂µṼ

µ +
nRS−niso

τrel
in RTA

∂µT
µν = 0 =⇒

ė = −(e+PT )θ⊥ − (e+PL)
u0
τ − Π̃θ + π̃µνσµν,

(e+PT+Π̃)u̇⊥ = −∂⊥(PT+Π̃) − u⊥(ṖT+
˙̃Π) − u⊥(PT−PL)

u0
τ +

(

ux∆
1
ν+uy∆

2
ν

u⊥

)

∂µπ̃
µν,

(e+PT+Π̃)u⊥φ̇u = −D⊥(PT+Π̃) − uy∂µπ̃
µ1−ux∂µπ̃

µ2

u⊥
,

where θ⊥ = ∂τu0 + ∇⊥·u⊥ and D⊥ = (ux∂y − uy∂x)/u⊥.

To derive equations of motion for Π̃, Ṽ µ, and π̃µν, we follow DMNR (2012).
Ignoring heat conduction by setting µ̃ = 0 and taking m = 0 we find (Bazow, UH,

Strickland, 1311.6720)

˙̃π
µν

= −2u̇απ̃
α(µ

u
ν) − 1

τrel

[

(P−PT)∆
µν

+ (PL−PT )z
µ
z
ν
+ π̃

µν
]

+ Kµν
0 + Lµν

0 + Hµνλ
0 żλ

+Qµνλα
0 ∇λuα + X µνλ

0 uα∇λzα − 2λ0
πππ̃

λ〈µσν〉
λ + 2π̃λ〈µων〉

λ − 2δ0πππ̃
µνθ,
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Test of vaHydro: (0+1)-dimensional expansion (I)
As you heard in Mike Strickland’s talk, for (0+1)-d (longitudinally boost-invariant) expansion, the BE

can be solved exactly in RTA, and the solution can be used to test the various macroscopic hydrodynamic

approximation schemes.

Setting homogeneous initial conditions in r and ηs and zero transverse flow, π̃µν reduces to a single

non-vanishing component π̃: π̃µν = diag(0,−π̃/2,−π̃/2, π̃) at z = 0.

We use the factorization nRS(ξΛ) = R0(ξ)niso(Λ) etc. to get EOMs for ξ̇, Λ̇, ˙̃π:

ξ̇

1+ξ
− 6

Λ̇

Λ
=

2

τ
+

2

τrel

(

1 −
√

1+ξR3/4
(ξ)

)

,

R′(ξ)ξ̇ + 4R(ξ)
Λ̇

Λ
= −

(

R(ξ) +
1

3
RL(ξ)

)

1

τ
+

π̃

eiso(Λ)τ
,

˙̃π = − 1

τrel

[

(

R(ξ)−RL(ξ)
)

Piso(Λ) + π̃

]

− 38

21

π̃

τ

+12

[

Λ̇

Λ

(

RL(ξ)−
1

3
R(ξ)

)

+

(

1+ξ

τ
− ξ̇

2

)(

Rzzzz
−1 (ξ)− 1

3
Rzz

1 (ξ)

)]

Piso(Λ),

τdel and η/s are related by (Denicol, Koide, Rischke, PRL 105 (2010))

τrel = 5
η/s

T
= 5

η/s

R1/4(ξ)Λ
We solve these equations and compare with the exact solution:
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Test of vaHydro: (0+1)-dimensional expansion (II)

Pressure anisotropy PL/PT vs. τ :
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Test of vaHydro: (0+1)-dimensional expansion (III)
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Conclusions

• For early times and/or near the transverse edge in heavy-ion collision fireballs, rapid

longitudinal expansion generates large inverse Reynolds numbers for the shear pressure,

R−1
π =

√
πµνπµν/Piso, causing Israel-Stewart second order viscous hydrodynamics to break

down.

• The large local pressure anisotropies caused by a large difference in longitudinal and transverse

expansion rates can be treated efficiently by using the non-perturbative aHydro approach

which is based on an expanseion around a locally spheroidally deformed distribution fRS.

• This strongly reduces the shear inverse Reynolds numbers R̃−1
π =

√

π̃µνπ̃µν/Piso associated

with the remaining shear stress tensor π̃µν resulting from the much smaller deviation δf̃ of the

local distribution function from fRS.

• vaHydro combines the advantages of aHydro with a complete (although perturbative)

second-order treatment of all remaining viscous effects à la Israel-Stewart.

• In a test of (0+1)-d expansion, which maximizes the difference between longitudinal and

transverse expansion rates, against an exact solution of the Boltzmann equation, vaHydro

outperforms all other known hydrodynamic approximation schemes by a considerable margin.

• This should open the door in (3+1)-d systems to match microscopic pre-equilibrium theories to

viscous hydrodynamics at earlier times than possible with IS-theory and its variants.
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The approach to hydrodynamics	

in holographic gauge theories



holography	

   =for us	


ab initio approach to certain YM theories* 

* All that I am going to say applies directly to N=4 SYM 	

at large Nc and strong ’t Hooft coupling. This theory is conformal.



MPH, R. A. Janik & P. Witaszczyk1302.0697 [hep-th] PRL 110 (2013) 211602:

at large orders	

factorial growth of gradient 	

contributions with order

T 00 = ✏(⌧) ⇠
1X

n=2

✏n(⌧
�2/3)n (T�1rµu

⌫ ⇠ ⌧�2/3)

First evidence that hydrodynamic expansion has a zero radius of convergence!

at low orders	

behavior is different

2

longitudinal direction. This symmetry can be made man-
ifest upon passing to curvilinear proper time ⌧ - rapidity
y coordinates related to the lab frame time x

0 and posi-
tion along the expansion axis x1 via

x

0 = ⌧ cosh y and x

1 = ⌧ sinh y. (1)

In the case of (3+1)-dimensional conformal field theory
plasma, the most general stress tensor obeying the sym-
metries of the problem in coordinates (⌧, y, x1

, x

2) reads

T

µ
⌫ = diag(�✏, pL, pT , pT )

µ
⌫ , (2)

where the energy density ✏ is a function of proper time
only and the longitudinal pL and transverse pT pressures
are fully expressed in terms of the energy density [9]

pL = �✏� ⌧ ✏

0 and pT = ✏+
1

2
⌧ ✏

0
. (3)

Note that, in the proper time - rapidity coordinates (1),
there is no momentum flow in the stress tensor (2) and
so the flow velocity is trivial and takes the form u =
@⌧ . Hydrodynamic constituent relations lead, then, to
gradient expanded energy density of the form

✏ =
3

8
N

2

c ⇡
2

1

⌧

4/3

✓
✏

2

+ ✏

3

1

⌧

2/3
+ ✏

4

1

⌧

4/3
+ . . .

◆
, (4)

where the choice of ✏
2

sets an overall energy scale, in par-
ticular for the quasinormal frequencies (7) and 9). The
prefactor was chosen to match the N = 4 super Yang-
Mills theory at large-Nc and strong coupling. In the fol-
lowing, we choose the units by setting ✏

2

= ⇡

�4.
Large-⌧ expansion of the energy density in powers of

⌧

�2/3, as in (4), is equivalent to the hydrodynamic gra-
dient expansion and arises from expressing gradients of
velocity (rµu⌫ ⇠ ⌧

�1) in units of the e↵ective tempera-
ture (T ⇠ ✏

1/4 ⇠ ⌧

�1/3). The value of the coe�cient ✏

3

is related to the shear viscosity ⌘, whereas ✏

4

is a sum
of two transport coe�cients: relaxation time ⌧

⇧

and the
so-called �

1

[10]. Higher order contributions to the en-
ergy density are expected to be linear combinations of so
far unidentified transport coe�cients. Note also that the
expansion (4) is sensitive to both linear and nonlinear
gradient terms.

As explained in [11, 12] (see also Supplemental ma-
terial), higher order contributions to the energy density
(4) can be obtained by solving Einstein’s equations with
a negative cosmological constant for the metric ansatz of
the form

ds

2 = 2d⌧dr�Ad⌧

2+⌃2

e

�2B
dy

2+⌃2

e

B(dx2

1

+dx

2

2

), (5)

where the warp factors A, ⌃ and B are functions of r
and ⌧ constructed in the gradient expansion as required
by the fluid-gravity duality. At leading order, the warp
factors are that of a locally boosted black brane and this

solution gets systematically corrected in ⌧

�2/3 expansion,
as is the case with the energy density in the dual field
theory (4).
The background expanded in ⌧

�2/3 around a locally
boosted black brane is slowly evolving and captures only
hydrodynamic degrees of freedom. One can, in ad-
dition, consider the incorporation of nonhydrodynamic
(fast evolving) degrees of freedom by linearizing Ein-
stein’s equations on top of the hydrodynamic solution,
i.e. B = B

hydro

+ �B, and similarly for A and ⌃, and
looking for �B corresponding to (at very large time) the
exponentially decaying contribution to the stress tensor
depending only on ⌧ . For the static background analo-
gous calculation would lead to the spectrum of nonhydro-
dynamic quasinormal modes carrying zero momentum,
which is known to be the same as the spectrum of zero
momentum quasinormal modes for the massless scalar
field [13].
In the leading order of the gradient expansion, the re-

sulting modes, on the gravity side, indeed essentially re-
duce to the scalar quasinormal modes but obtain an ad-
ditional factor of 3

2

and are damped exponentially in ⌧

2

3

[14]. Upon including viscous correction, the modes ob-
tain a further nontrivial powerlike preexponential factor

�✏ ⇠ ⌧

↵qnm exp (�i

3

2
!qnm ⌧

2/3). (6)

Explicit gravity calculation for the lowest mode yield

!qnm = 3.1195�2.7467, ↵qnm = �1.5422+0.5199 i. (7)

The frequency !qnm agrees with the frequency of the
lowest nonhydrodynamic scalar quasinormal mode and
was calculated before in [14], whereas the prediction of
↵qnm is a new result specific to the dissipative modifi-
cations of the expanding black hole geometry (see the
Supplemental Material for further details). In the fol-
lowing, we will be able to reproduce numerically (7) just
from the large order behavior of the hydrodynamic series.
Large order behavior of hydrodynamic energy

density. Numerical implementation of the methods out-
lined in [11, 12] allow for e�cient calculation of hydrody-
namic series given by (4), up to a very large order, since
one is e↵ectively solving a set of linear ODE’s (coming
from Einstein’s equations) at each order. Using spectral
methods we iteratively solved these equations in the large
time expansion reconstructing the energy density up to
the order 240, i.e. up to the term ✏

242

in (4). To the best
of our knowledge this is the first approach allowing us to
access information about the large order behavior of the
hydrodynamic series in any physical system or model.
As a way of monitoring the accuracy of our procedures

we compared normalized values of evaluated Einstein’s
equations at each order of the ⌧

�2/3 expansion to the
ratio of coe�cients of gradient-expanded energy density
to gradient expanded warp factors. This ensures that
our results for the energy density are reliable. We also

(n!)1/n ⇠ (2⇡n)1/2n

e
· n

1/14

���
✏n
✏2

���
1/n

Hydrodynamics is an asymptotic series



Fast hydrodynamization

1st, 2nd and 3rd order hydro 

similar findings in Chesler & Yaffe 0906.4426 & 1011.3562

    hydrodynamization       thermalization:	


Viscous hydro works remarkably well despite	

huge anisotropies due to (shear) gradients.	


!

MPH, R. A. Janik & P. Witaszczyk1103.3452 [hep-th] PRL 108 (2012) 201602:

6=

⌧ · Teff (⌧)

✏(⌧)� 3 pL(⌧)

✏(⌧)

2/14

(RHIC c=0-5%:                                      ) 0.25 fm⇥ 500MeV = 0.63
0801.4361 [nucl-th] W. Broniowski et al.

✏(⌧)� 3pL(⌧)

✏(⌧)
= 0.6

pT (⌧)� pL(⌧)
1
3✏(⌧)

= 0.9



Consequences of hydrodynamization 2
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FIG. 1: (Color online) Energy density distribution in the transverse plane for one event with b = 2.4 fm at the initial time

(left), and after τ = 6 fm/c for the ideal case (middle) and with η/s = 0.16 (right).

In this study, we found that setting the local viscosity
to zero when finite viscosity causes negative pressure in
the cell as advocated in [25] and reducing the ideal part
by 5% works well to stabilize the calculations without
introducing spurious effects.
While in standard hydrodynamic simulations with av-

eraged initial conditions all odd flow coefficients vanish
by definition, fluctuations generate triangular flow v3 as
a response to the finite initial triangularity.
We follow [15] and define an event plane through the

angle

ψn =
1

n
arctan

⟨pT sin(nφ)⟩

⟨pT cos(nφ)⟩
, (9)

where the weight pT is chosen for best accuracy [26].
Then, the flow coefficients can be computed using

vn = ⟨cos(n(φ− ψn))⟩ . (10)

The initialization of the energy density is done using
a Glauber Monte-Carlo model (see [27]): Before the col-
lision the density distribution of the two nuclei is de-
scribed by a Woods-Saxon parametrization, which we
sample to determine the positions of individual nucleons.
The impact parameter is sampled from the distribution
P (b)db = 2bdb/(b2max−b2min), where bmin and bmax depend
on the given centrality class. Then we determine the dis-
tribution of binary collisions and wounded nucleons. Two
nucleons are assumed to collide if their relative transverse
distance is less than D =

√

σNN/π, where σNN is the in-
elastic nucleon-nucleon cross-section, which at top RHIC
energy of

√

s = 200AGeV is σNN = 42mb. The energy
density is distributed proportionally to the wounded nu-
cleon distribution. For every wounded nucleon we add a
contribution to the energy density with Gaussian shape
(in x and y) and width σ0 = 0.4 fm. In the rapidity
direction, we assume the energy density to be constant
on a central plateau and fall like half-Gaussians at large
|ηs| (see [16]). This procedure generates flux-tube like
structures compatible with measured long-range rapidity
correlations [28–30]. The absolute normalization is deter-
mined by demanding that the obtained total multiplicity
distribution reproduces the experimental data.

As equation of state we employ the parametrization
“s95p-v1” from [31], obtained from interpolating between
lattice data and a hadron resonance gas.
In Fig. 1 we show the energy density distribution in

the transverse plane for an event with impact parameter
b = 2.4 fm at the initial time τ0 = 0.4 fm/c and at time
τ = 6 fm/c for η/s = 0 and η/s = 0.16. This clearly
shows the effect of dissipation.
We perform a Cooper-Frye freeze-out using

E
dN

d3p
=

dN

dypTdpTdφp
= gi

∫

Σ

f(uµ
pµ)p

µ
d
3Σµ , (11)

where gi is the degeneracy of particle species i, and Σ
the freeze-out hyper-surface. In the ideal case the distri-
bution function is given by

f(uµ
pµ) = f0(u

µ
pµ) =

1

(2π)3
1

exp((uµpµ − µi)/TFO)± 1
,

(12)
where µi is the chemical potential for particle species
i and TFO is the freeze-out temperature. In the finite
viscosity case we include viscous corrections to the dis-
tribution function, f = f0 + δf , with

δf = f0(1 ± f0)p
α
p
β
Wαβ

1

2(ϵ+ P)T 2
, (13)

where W is the viscous correction introduced in Eq. (5).
Note that the choice δf ∼ p2 is not unique [32].
The algorithm used to determine the freeze-out surface

Σ has been presented in [16]. It is very efficient in de-
termining the freeze-out surface of a system with fluctu-
ating initial conditions. To demonstrate this, we present
the freeze-out surface in the x-τ -plane in the vicinity of
y = 0 fm and ηs = 0 for two different initial distribu-
tions compared to that for an averaged initial condition
in Fig. 2. The arrows are projections of the normal vector
on the hyper-surface element onto the x-τ plane.
We include resonances up to the φ-meson. We found

that the pseudorapidity dependence of both v2 and v3 is
affected notably by the inclusion of resonance decays, im-
proving the agreement of v2(ηp) with data significantly.

arXiv:1009.3244 [hep-ph]	

Schenke, Jeon & Gale

Using hydro under such circumstances	

might not be a totally outrageous idea.

3/14

Possibility of significant entropy production during 
hydrodynamics expansion due to large shear

�S
hydro

�S
total

can be ~ 15-30 %

MPH, R. A. Janik & P. Witaszczyk
1103.3452 [hep-th] PRL 108 (2012) 201602:

estimated using the data from



A new look at the generalized	

Müller-Israel-Stewart theory

1404.xxxx [hep-th]: MPH, R. Janik, M. Spaliński, P. Witaszczyk



DOFs of strongly coupled plasmas Kovtun & Starinets	

 [hep-th/0506184]

Tµ⌫ =
1
8
⇡2N2

c T 4 diag (3, 1, 1, 1)µ⌫ +�T
µ⌫

(⇠ e�i!(k) t+i

~

k·~x)

Consider small amplitude perturbations (                ) on top of a holographic plasma�Tµ⌫/Nc
2 ⌧ T 4

Dissipation leads to modes with complex      , which look like!(k)
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Figure 6: Real and imaginary parts of three lowest quasinormal frequencies as function of spatial
momentum. The curves for which →0 as →0 correspond to hydrodynamic sound mode in the dual
finite temperature N=4 SYM theory.

behavior of the lowest (hydrodynamic) frequency which is absent for Eα and Z3. For Ez and

Z1, hydrodynamic frequencies are purely imaginary (given by Eqs. (4.16) and (4.32) for small

ω and q), and presumably move off to infinity as q becomes large. For Z2, the hydrodynamic

frequency has both real and imaginary parts (given by Eq. (4.44) for small ω and q), and

eventually (for large q) becomes indistinguishable in the tower of other eigenfrequencies. As an

example, dispersion relations for the three lowest quasinormal frequencies in the sound channel

(including the one of the sound wave) are shown in Fig. 6. The tables below give numerical

values of quasinormal frequencies for = 1. Only non-hydrodynamic frequencies are shown

in the tables. The position of hydrodynamic frequencies at = 1 is = −3.250637i for the

R-charge diffusive mode, = −0.598066i for the shear mode, and = ±0.741420−0.286280i

for the sound mode. The numerical values of the lowest five (non-hydrodynamic) quasinormal

frequencies for electromagnetic perturbations are:

Transverse channel Diffusive channel

n Re Im Re Im

1 ±1.547187 −0.849723 ±1.147831 −0.559204

2 ±2.398903 −1.874343 ±1.910006 −1.758065

3 ±3.323229 −2.894901 ±2.903293 −2.891681

4 ±4.276431 −3.909583 ±3.928555 −3.943386

5 ±5.244062 −4.920336 ±4.946818 −4.965186

and for gravitational perturbations are:

Scalar channel Shear channel Sound channel

n Re Im Re Im Re Im

1 ±1.954331 −1.267327 ±1.759116 −1.291594 ±1.733511 −1.343008

2 ±2.880263 −2.297957 ±2.733081 −2.330405 ±2.705540 −2.357062

3 ±3.836632 −3.314907 ±3.715933 −3.345343 ±3.689392 −3.363863

4 ±4.807392 −4.325871 ±4.703643 −4.353487 ±4.678736 −4.367981

5 ±5.786182 −5.333622 ±5.694472 −5.358205 ±5.671091 −5.370784

– 26 –

Im!/2⇡T

Re!/2⇡T

k/2⇡T

k/2⇡T

1st

2nd

3rd

1st

2nd

3rd

!(k) ! 0          as        : slowly dissipating modes (hydrodynamic sound waves)k ! 0

all the rest: far from equilibrium (QNM) modes dampened over 

@!

@k

���
k!0

= c
sound

ttherm = O(1)/T
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Generalized Müller-Israel-Stewart relativistic “hydro”

acausal modes: 

Idea:                                                           + pheno EoM for        such that:	

1) the set reproduces low order hydro, 2)  acausal modes, 3)    entropy current.

rµ

⇣
✏uµu⌫ + P (✏) {gµ⌫ + uµu⌫}+⇧µ⌫

⌘
= 0 ⇧µ⌫

9

With the restriction of transversality and tracelessness, there are eight possible contribu-

tions to the stress-energy tensor:

∇⟨µ ln T ∇ν⟩ ln T, ∇⟨µ∇ν⟩ ln T, σµν(∇·u), σ⟨µ
λσ

ν⟩λ

σ⟨µ
λΩ

ν⟩λ, Ω⟨µ
λΩ

ν⟩λ, uαR
α⟨µν⟩βuβ, R⟨µν⟩ .

(3.6)

By direct computations we find that there are only five combinations that transform

homogeneously under Weyl tranformations. They are

Oµν
1 = R⟨µν⟩ − (d − 2)

(

∇⟨µ∇ν⟩ ln T −∇⟨µ ln T ∇ν⟩ ln T
)

, (3.7)

Oµν
2 = R⟨µν⟩ − (d − 2)uαRα⟨µν⟩βuβ , (3.8)

Oµν
3 = σ⟨µ

λσ
ν⟩λ , Oµν

4 = σ⟨µ
λΩ

ν⟩λ , Oµν
5 = Ω⟨µ

λΩ
ν⟩λ . (3.9)

In the linearized hydrodynamics in flat space only the term Oµν
1 contributes. For conve-

nience and to facilitate the comparision with the Israel-Stewart theory we shall use instead

of (3.7) the term
⟨Dσµν ⟩ +

1

d − 1
σµν(∇·u) (3.10)

which, with (3.5), reduces to the linear combination: Oµν
1 − Oµν

2 − (1/2)Oµν
3 − 2Oµν

5 . It is

straightforward to check directly that (3.10) transforms homogeneously under Weyl transfor-

mations.

Thus, our final expression for the dissipative part of the stress-energy tensor, up to second

order in derivatives, is

Πµν = −ησµν

+ ητΠ

[

⟨Dσµν ⟩ +
1

d − 1
σµν(∇·u)

]

+ κ
[

R⟨µν⟩ − (d − 2)uαRα⟨µν⟩βuβ
]

+ λ1σ
⟨µ
λσ

ν⟩λ + λ2σ
⟨µ
λΩ

ν⟩λ + λ3Ω
⟨µ
λΩ

ν⟩λ .

(3.11)

The five new constants are τΠ, κ, λ1,2,3. Note that using lowest order relations Πµν = −ησµν ,

Eqs.(3.5) and Dη = −η∇·u, Eq. (3.11) may be rewritten in the form

Πµν = −ησµν − τΠ

[

⟨DΠµν ⟩ +
d

d − 1
Πµν(∇·u)

]

+ κ
[

R⟨µν⟩ − (d − 2)uαRα⟨µν⟩βuβ
]

+
λ1

η2
Π⟨µ

λΠ
ν⟩λ −

λ2

η
Π⟨µ

λΩ
ν⟩λ + λ3Ω

⟨µ
λΩ

ν⟩λ .

(3.12)

This equation is, in form, similar to an equation of the Israel-Stewart theory (see Section 6).

In the linear regime it actually coincides with the Israel-Stewart theory (6.1). We emphasize,

however, that one cannot claim that Eq. (3.12) captures all orders in the momentum expansion

(see Section 6).

– 8 –

The following equation turns out to do the job:

The generalized Müller-Israel-Stewart theory is a UV-completion of hydro.

0712.2451 [hep-th] R. Baier et al.

! = �i
⌘

✏+ P
k2

5/14

Why? Because its structure leads to the nonhydro mode                                     .⇧µ⌫ � (�⌘�µ⌫) ⇠ e�⌧�1
⇧ t



EOMs for non-hydrodynamic DOFs

6/14

The lowest quasinormal mode controls the direct approach to hydrodynamics.

Idea: “improve” hydrodynamics in a systematic way by including this new DOF.
ideologically, similar to anisotropic hydro           M. Strickland’s talk

MIS theory does sth similar, but with                ! How to add these oscillations?Re(!) = 0

Basic idea: add the second derivative to MIS constitutive relation for        .⇧µ⌫

see also 1104.2415 [hep-th]: Noronha & Denicol

1

T
D 1

T
D⇧µ⌫ + 2 Im(!)

1

T
D⇧µ⌫ +

�
Re(!)2 + Im(!)2

 
⇧µ⌫ = 0

MIS (neglecting gradients of fluid variables’ and nonlinearities):

where

c1 = � 1

6⇡
. (38)

Both the naive equation and the Weyl-refined equation of motion predict the
same ! in terms of !

R

and !
I

! = ⇤2/3(±!
R

� i!
I

), (39)

which obviously agrees with (36) for the value of ⇤ used in [2]. Coming to
↵, we get subsequently

↵
naive

= �ic1(±!
R

� i!
I

), (40)

↵
Weyl

= �4

3
� ic1(±!

R

� i!
I

). (41)

The right answer turns out to be ↵
Weyl

.
One has to think carefully whether also at the viscous fluid level we can

nicely reabsorb v and � into T and uµ.

3.2 Simple generalization of Muller-Israel-Stewart the-
ory to account for the quasinormal mode

In order to be closer to the pheno of the generalized Muller-Israel-Stewart
theory, one can write the equations of motion in the following form

r
µ

n

P (T )(⌘µ⌫ + 4uµu⌫) + ⇧
µ⌫

o

= DW

µ

n

P (T )(⌘µ⌫ + 4uµu⌫) + ⇧
µ⌫

o

= 0 (42)

1

T
DW

1

T
DW⇧µ⌫ + 2!

I

1

T
DW⇧µ⌫ +

⇣

!2
I

+ !2
R

⌘

(⇧µ⌫ + ⌘�µ⌫) = 0, (43)

where �µ⌫ is the shear tensor. Then, 2!I
T (!2

R+!

2
I )

plays a role of the relaxation

time. Comparing to N = 4 SYM, we get

⌧⇧ =
2� log 2

2⇡T
⇡ 0.21

T
⇡ 2⇥ 2!

I

T (!2
R

+ !2
I

)
. (44)

Of course, we should be able to add to (42) nonlinear terms that are not pre-
dicted by our analysis, which reproduce the most general second order trans-
port. It would be interesting to check whether (42) have acausal modes. Also,
it would be interesting to take some numerical results for non-equilibrium
Bjorken flow close enough to hydrodynamization and check that solving (42)
with the relevant initial conditions reproduces well the microscopic answer.

11

where

c1 = � 1

6⇡
. (38)

Both the naive equation and the Weyl-refined equation of motion predict the
same ! in terms of !

R

and !
I

! = ⇤2/3(±!
R

� i!
I

), (39)

which obviously agrees with (36) for the value of ⇤ used in [2]. Coming to
↵, we get subsequently

↵
naive

= �ic1(±!
R

� i!
I

), (40)

↵
Weyl

= �4

3
� ic1(±!

R

� i!
I

). (41)

The right answer turns out to be ↵
Weyl

.
One has to think carefully whether also at the viscous fluid level we can

nicely reabsorb v and � into T and uµ.

3.2 Simple generalization of Muller-Israel-Stewart the-
ory to account for the quasinormal mode
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plays a role of the relaxation

time. Comparing to N = 4 SYM, we get
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⇡ 2⇥ 2!
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R
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I
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. (44)

Of course, we should be able to add to (42) nonlinear terms that are not pre-
dicted by our analysis, which reproduce the most general second order trans-
port. It would be interesting to check whether (42) have acausal modes. Also,
it would be interesting to take some numerical results for non-equilibrium
Bjorken flow close enough to hydrodynamization and check that solving (42)
with the relevant initial conditions reproduces well the microscopic answer.
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and ⌧̂⇧
1

T
D⇧µ⌫ +⇧µ⌫ = 0 with D = uµrµ

schematically



Test: the boost-invariant flow
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Holographic collisions

1305.4919 [hep-th] PRL 111 (2013) 181601: J. Casalderrey-Solana, MPH, D. Mateos & W. van der Schee
1312.2956 [hep-th] Casalderrey-Solana, MPH, Mateos, van der Schee



Towards holographic “HIC”: the projectiles
Chesler & Yaffe 1011.3562 [hep-th]Janik & Peschanski [hep-th/0512162]

Let’s focus now on Gaussians                                           . No scale (CFT!), so	

only             matters. In HIC                and                  corresponds to Pb at RHIC.  e ⇠ ��1/2 eCY ⇡ 0.64e = ⇢ �

hT tti = hT zzi = ±hT tzi = N2
c

2⇡2
h(t⌥ z)

8/14

practical viewpoint: collide two lumps of matter moving at relativistic speeds.

state of the art (Apr 2014): planar shock wave collisions

the shock wave: infinite sheet of matter moving at the speed of light with

 and h “arbitrary”

h(t± z) = ⇢4 exp
⇥
�(t± z)2/2�2

⇤



Confusion about the initial boost-invariance

Boost-invariance: the system is invariant under the longitudinal boosts.

9/14

The collision needs to be a point-like event in the longitudinal direction

The initial state needs to be boost-invariant. For the CGC we have

The initial state there is thus boost-invariant, but this symmetry gets broken.

�(x±)

How about the shock-waves? 

changes its form under the longitudinal boosts.

We should not expect the boost-invariant outcome soon after the collision.

Problematic resolutions:                              or                            .

discussion with F. Gelis & R. Janik 

hT shock

µ⌫

i dxµ

dx

⌫ ⇠ �(x±) (dx±)2

hT shock

±± i ⇠ �(x±)2 hT shock

±± i ⇠ �

0(x±)

Jµdx
µ ⇠ �(x±)dx±

�(x0±)dx0±



Dynamical crossover
eleft = 2 eCY

shocks coalesce and explode  hydro-
dynamically (similar to the Landau picture)

hydro applicable only at mid-
rapidities and late enough!!!

3

⇢t

⇢z

S�⇢4

⇢t

⇢z

S�⇢4

FIG. 2. Energy flux for collisions of thick (left) and thin (right) shocks. The dotted curves show the location of the maxima of
the flux.

⇢z⇢z

⇢t

FIG. 3. 3�P loc

L �Eloc for thick (left) and thin (right) shocks. The white areas indicate the vacuum regions outside the light cone.
The grey areas indicate regions where hydrodynamics deviates by more than 100%. The dotted curves indicate the location of
the maxima of the energy flux, as in Fig. 2.

the energy flux in this region is less than 10% of the max-
imum incoming flux, as illustrated by Fig. 2(left). At late
times, the velocity of the receding shocks can be read o↵
from the same figure as the inverse slope of the dotted
line. This is not constant in time, but at late times it
reaches a maximum of about v � 0.88. The validity of
the hydrodynamic description can be seen in Fig. 3(left)
and Fig. 4(left column). Hydrodynamics becomes appli-
cable even earlier than t

max

, and the region where it is
applicable extends from z = 0 to the location of the re-
ceding maxima. This is intuitive since gradients become
smaller as the width of the shocks increases. We conclude
that the thick-shocks collisions results in hydrodynamic
expansion with initial conditions in which all the veloci-
ties are close to zero, in close similarity with the Landau

model [5].

The thin shocks illustrate the transparency scenario.
In this case the shocks pass through each other and,
although their shape gets altered, they keep moving at
v � 1, as seen in Fig. 2(right). The most dramatic modifi-
cation in their shape is a region of negative E and P

L

that
trails right behind the receding shocks. While the nega-
tive E only develops away from the center of the collision,
the negative P

L

is already present at z = 0, as shown more
clearly in the top-right plot of Fig. 4. These features are
compatible with the general principles of Quantum Field
Theory [6], since the ‘negative region’ is far from equi-
librium and highly localized near a bigger region with
positive energy and pressure. In the case of thin shocks,
we see from Fig. 3(right) and Fig. 4(right column) that
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the flux.
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The grey areas indicate regions where hydrodynamics deviates by more than 100%. The dotted curves indicate the location of
the maxima of the energy flux, as in Fig. 2.

the energy flux in this region is less than 10% of the max-
imum incoming flux, as illustrated by Fig. 2(left). At late
times, the velocity of the receding shocks can be read o↵
from the same figure as the inverse slope of the dotted
line. This is not constant in time, but at late times it
reaches a maximum of about v � 0.88. The validity of
the hydrodynamic description can be seen in Fig. 3(left)
and Fig. 4(left column). Hydrodynamics becomes appli-
cable even earlier than t

max

, and the region where it is
applicable extends from z = 0 to the location of the re-
ceding maxima. This is intuitive since gradients become
smaller as the width of the shocks increases. We conclude
that the thick-shocks collisions results in hydrodynamic
expansion with initial conditions in which all the veloci-
ties are close to zero, in close similarity with the Landau

model [5].

The thin shocks illustrate the transparency scenario.
In this case the shocks pass through each other and,
although their shape gets altered, they keep moving at
v � 1, as seen in Fig. 2(right). The most dramatic modifi-
cation in their shape is a region of negative E and P

L

that
trails right behind the receding shocks. While the nega-
tive E only develops away from the center of the collision,
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librium and highly localized near a bigger region with
positive energy and pressure. In the case of thin shocks,
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FIG. 1. Energy and pressures for collisions of thick (left column) and thin (right column) shocks. The grey planes lie at the
origin of the vertical axes.

2. A dynamical cross-over. Fig. 1 shows the energy
density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,

Dispels the myth that strong coupling necessarily leads to immediate stopping*

eright = 0.125 eCY

1305.4919 [hep-th] PRL 111 (2013) 181601:	

 J. Casalderrey-Solana, MPH, D. Mateos & W. van der Schee

hT tti = N2
c

2⇡2
E
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Plasma creation for thin shocks collision

PL

E
&
PT

E

⇢ t

P
E

���
equilibrium

=
1

3

Assume boost-invariance: PL = �E � ⌧ E 0 and PT = E +
1

2
⌧ E 0

E
���
⌧=0

⇠ 1 leads to                            and                       
PL

E

���
⌧=0

= �1

PL

E

���
⌧=0

= �3

PT

E

���
⌧=0

= 1

leads to                            and                       
PT

E

���
⌧=0

= 2E
���
⌧=0

⇠ ⌧2
shock waves seem	


to be different!
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1305.4919 [hep-th] PRL 111 (2013) 181601: J. Casalderrey-Solana, MPH, D. Mateos & W. van der Schee

what one gets	

in the CGC 

hydrodynamization

z = 0 slice



at hydrodynamization

The dynamics is not boost-invariant in	

the sense introduced by Bjorken.
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cosh(y)�4/3

y 2 (�5, 5)

e
z

z/t e

e

⌧
y

e (t, z) = f(t) f(t)
f(t) ⇠ t�4/3

e ⇠ (⌧ cosh(y))�4/3.

E /E ⇡ 0.3

cosh(y)�4/3

1305.4919 [hep-th] PRL 111 (2013) 181601: 	

J. Casalderrey-Solana, MPH, D. Mateos & W. van der Schee

W. van der Schee’s Ph.D. thesis
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cosh (y)4/3

Gaussian fit



Jorge Casalderrey-Solana, Hard Probes 2013

Holography and Physics at T-Scale

➤ Coherent response depends on longitudinal structure

➤ Structures of size < 1/ πThyd are not resolved by the 
collision dynamics

➤ Structures of size < 1/ πThyd act incoherently

ε⁄µ4 ε⁄µ4

zµ zµ

tµ tµ

Coherence effects1312.2956 [hep-th] Casalderrey-Solana, MPH, Mateos, van der Schee
(Asymmetric) collisions in the centre of mass frame, e.g.
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FIG. 1. Energy density for the collision of a single constituent shock against a two close constituents shock (left) and a well
separated two constituents shock (right). The black lines are streamlines of the produced plasma.
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FIG. 2. Energy density as a function of the z at tµ = xx for di↵erent shock collisions characterised by the parameters displayed
in Table I. The energy density for single thin shock µw = xx is shown in both panels (solid line) for comparsion

TABLE I. Parameters of the shocks displayed in Fig. 2

Left Right
µw µ�z+ µ�z� µw µ�z+ µ�z�

Black solid 0.05 0 0 0.05 0 0
Green 0.10 0 0 0.75 0 0

Dashed-Dotted 0.13 0 0 1.9 0 0
Dotted blue 0.05 0.1 0 0.05 0.4 0.4

Blue 0.05 0.2 0 0.05 0.8 0.8
Red 0.05 0.2 0.2 0.05 0.6 0

the shocks survives the collisions, showing two decaying
maxima. On the contrary, the central region, far away
from the light cone, does not show any remnant of the
initial structure of the shocks; in fact, it closely resembles
the energy density distribution obtained from single thin
shocks. The right panel shows the collision of shocks with
well separated constituents, whereby the plasma di↵ers
significantly, as we will show next.

Fig. 2 displays the energy density profile at a fixed time
after hydrodynamization tµ = 1.6 for a variety of initial
shock configurations with the same total energy. In the
left panel we show four cases with small microstructure

and in the right panel we show three resolved configura-
tions. The parameters that characterise each of the dis-
played shocks are summarised in Table I. In both panels
we show, for comparison, the energy density associated to
the symmetric collision of two thin shocks (µw = 0.05).

In the left panel, since the collision dynamics cannot
resolve the microstructure of the shocks, the mid-rapidity
region is identical in all the cases we study, and coincides
with the energy density distribution of the single shocks.
These single shocks were also studied in [9, 10], where it
can already be seen that properties of the plasma, such as
t

hyd

and T

hyd

, are insensitive to the width of the shocks,
provided wµ . 0.2. This has to be understood as a clear
manifestation of the coherence introduced here.

The right panel depicts the outcome of the collisions
of shocks with broad structures and hence illustrates the
incoherent regime. One clearly sees that the stress tensor
then depends on the the longitudinal structure of the
shocks at all distances from the collision point.

The physical interpretation of the above results from
the gauge-theory point of view is simple. The smallest
longitudinal structure that the fields in the mid-rapidity
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FIG. 1. Energy density for the collision of a single constituent shock against a two close constituents shock (left) and a well
separated two constituents shock (right). The black lines are streamlines of the produced plasma.
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TABLE I. Parameters of the shocks displayed in Fig. 2

Left Right
µw µ�z+ µ�z� µw µ�z+ µ�z�

Black solid 0.05 0 0 0.05 0 0
Green 0.10 0 0 0.75 0 0

Dashed-Dotted 0.13 0 0 1.9 0 0
Dotted blue 0.05 0.1 0 0.05 0.4 0.4

Blue 0.05 0.2 0 0.05 0.8 0.8
Red 0.05 0.2 0.2 0.05 0.6 0

the shocks survives the collisions, showing two decaying
maxima. On the contrary, the central region, far away
from the light cone, does not show any remnant of the
initial structure of the shocks; in fact, it closely resembles
the energy density distribution obtained from single thin
shocks. The right panel shows the collision of shocks with
well separated constituents, whereby the plasma di↵ers
significantly, as we will show next.

Fig. 2 displays the energy density profile at a fixed time
after hydrodynamization tµ = 1.6 for a variety of initial
shock configurations with the same total energy. In the
left panel we show four cases with small microstructure

and in the right panel we show three resolved configura-
tions. The parameters that characterise each of the dis-
played shocks are summarised in Table I. In both panels
we show, for comparison, the energy density associated to
the symmetric collision of two thin shocks (µw = 0.05).

In the left panel, since the collision dynamics cannot
resolve the microstructure of the shocks, the mid-rapidity
region is identical in all the cases we study, and coincides
with the energy density distribution of the single shocks.
These single shocks were also studied in [9, 10], where it
can already be seen that properties of the plasma, such as
t

hyd

and T

hyd

, are insensitive to the width of the shocks,
provided wµ . 0.2. This has to be understood as a clear
manifestation of the coherence introduced here.

The right panel depicts the outcome of the collisions
of shocks with broad structures and hence illustrates the
incoherent regime. One clearly sees that the stress tensor
then depends on the the longitudinal structure of the
shocks at all distances from the collision point.

The physical interpretation of the above results from
the gauge-theory point of view is simple. The smallest
longitudinal structure that the fields in the mid-rapidity
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“Landau hydro” vs. “transparency” (“coherence”)2
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FIG. 1. Energy and pressures for collisions of thick (left column) and thin (right column) shocks. The grey planes lie at the
origin of the vertical axes.

2. A dynamical cross-over. Fig. 1 shows the energy
density and the pressures for thick and thin shock colli-
sions. In the case of E and P

L

one can see the incoming
shocks at the back of the plots, the collision region in the
center, and the receding maxima at the front. The in-
coming shocks are absent in the case of P

T

, as expected.
A simultaneous rescaling of ⇢ and w that keeps ⇢w fixed
would change the overall scales on the axes of these fig-
ures but would leave the physics unchanged.

The thick shocks illustrate the full-stopping scenario.

As the shocks start to interact the energy density gets
compressed and ‘piles up’, comes to an almost complete
stop, and subsequently explodes hydrodynamically. In-
deed, at the time ⇢t

max

� 0.58 at which the energy den-
sity reaches its maximum in the top-left plot, the energy
density profile is very approximately a rescaled version of
one of the incoming Gaussians, with about three times its
height (see table I) and 2/3 its width. At this time, 90%
of the energy is contained in a region of size �z � 2.4w in
which the flow velocity is everywhere �v� � 0.1. Similarly,

T tt =
N2

c

2⇡2
E

3

⇢t

⇢z

S�⇢4

⇢t

⇢z

S�⇢4

FIG. 2. Energy flux for collisions of thick (left) and thin (right) shocks. The dotted curves show the location of the maxima of
the flux.

⇢z⇢z

⇢t

FIG. 3. 3�P loc

L �Eloc for thick (left) and thin (right) shocks. The white areas indicate the vacuum regions outside the light cone.
The grey areas indicate regions where hydrodynamics deviates by more than 100%. The dotted curves indicate the location of
the maxima of the energy flux, as in Fig. 2.

the energy flux in this region is less than 10% of the max-
imum incoming flux, as illustrated by Fig. 2(left). At late
times, the velocity of the receding shocks can be read o↵
from the same figure as the inverse slope of the dotted
line. This is not constant in time, but at late times it
reaches a maximum of about v � 0.88. The validity of
the hydrodynamic description can be seen in Fig. 3(left)
and Fig. 4(left column). Hydrodynamics becomes appli-
cable even earlier than t

max

, and the region where it is
applicable extends from z = 0 to the location of the re-
ceding maxima. This is intuitive since gradients become
smaller as the width of the shocks increases. We conclude
that the thick-shocks collisions results in hydrodynamic
expansion with initial conditions in which all the veloci-
ties are close to zero, in close similarity with the Landau

model [5].

The thin shocks illustrate the transparency scenario.
In this case the shocks pass through each other and,
although their shape gets altered, they keep moving at
v � 1, as seen in Fig. 2(right). The most dramatic modifi-
cation in their shape is a region of negative E and P

L

that
trails right behind the receding shocks. While the nega-
tive E only develops away from the center of the collision,
the negative P

L

is already present at z = 0, as shown more
clearly in the top-right plot of Fig. 4. These features are
compatible with the general principles of Quantum Field
Theory [6], since the ‘negative region’ is far from equi-
librium and highly localized near a bigger region with
positive energy and pressure. In the case of thin shocks,
we see from Fig. 3(right) and Fig. 4(right column) that
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Thermalization

A general question of non-equilibrium many-body system:

How the system gets thermalized?
How the initial states map to final states?
How long the thermalization takes?
What can the intermediate states be?
... ...
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Heavy-Ion Collisions

We are interested in HIC.
Time evolution of HIC:
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Heavy-Ion Collisions

We are interested in HIC.
Time evolution of HIC:
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Fast thermalization of quark-gluon plasma

Thermalization of QGP is not only a fundamental problem, but also
a need to understand the effectiveness of hydrodynamical evolution.

QGP: hydrodynamical evolution: collective flow, ... ...

Matching hydro. to data needs a very fast therm.,τtherm ∼ 1 fm.

Puzzle: Why and how a “weakly interacting” system thermalize fast?
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Fast thermalization of quark-gluon plasma

This puzzle is partially understood by the saturation physics:
xG(x, p < Qs) ∼ 1/αs.

After collision, in a short time scale τ0 ∼ 1/Qs, coherent
chromo-EM fields decay to gluon quanta with the same order of
density, f ∼ 1/αs. Quarks can be neglected.

High occupation of gluon make the system effectively “strongly
interacting”, with an effective coupling fαs ∼ 1.

It permits fast thermalization. Question is how? And what can
occur during thermalization.
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Kinetic description
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A scenario for thermalization
Blaizot, Gelis, Liao, McLerran, and Venugopalan, Nucl. Phys. A 873, 68 (2012). 1

Initial distribution is fp ∼ (1/αs)Θ(Qs − p) at t0 = 1/Qs, energy
distribution is ∼ pf0Θ(Qs − p), peaks at p ∼ Qs.
Thermalization needs entropy to grow:

Two scales emerge from Qs, one hard Λ for energy cascade, one soft
Λs for number cascade.
Thermalized when they are naturally separated, Λs ∼ αsΛ.

1See also: Berges and Sexty, Phys. Rev. Lett. 108, 161601 (2012); Kurkela and Moore, JHEP
12, 044 (2011).
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Evaporative cooling of the cold Bose gases

An example: BEC in equilibrium cold Bose gases.

Cooling procedure:
Take out fast atoms and let the system relax to new equilibrium.

Energy cascade towards UV region while particle cascade towards IR
region, finally condensate emerges.
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Boltzmann equation for “static box” gluons

Quantitative study, from simplest case: gluons in a static, uniform,
isotropic box, subject to 2→ 2 and 2→ 3 scattering.

Gluon distribution function(Ng = 2(N2
c − 1)):

fp(t) ≡
(2π)3

Ng

dN(t)

d3xd3p
.

Boltzmann equation:

∂tfp = C2→2[fp] + C2→3[fp].

Elastic 2→ 2 collision kernel:

C2→2[fp] =
1

Ng

1

2

∫
123

1

2Ep
|M12→3p|2(2π)4δ4(p1 + p2 − p3 − p)

×[(1 + fp)(1 + f3)f1f2 − fpf3(1 + f1)(1 + f2)].

|M2→2|2 has small angle singularity for t, u→ 0 (regularized by
screening effects),

|M2→2|2 ≈ −2× 8g4N2
cNg

su

t2
.
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Boltzmann equation for “static box” gluons

Inelastic 2→ 3 collision kernel:

C2→3[fp] = Ca2→3[fp] + Cb2→3[fp],

Ca2→3[fp] =
1

Ng

1

6

∫
123k

1

2Ep
|M1p→23k|2(2π)4δ4(p+ p1 − p2 − p3 − k)

× [(1 + fp)(1 + f1)f2f3fk − fpf1(1 + f2)(1 + f3)(1 + fk)],

Cb2→3[fp] =
1

Ng

1

4

∫
123k

1

2Ep
|M23→1kp|2(2π)4δ4(p+ p1 + k − p2 − p3)

× [(1 + fp)(1 + f1)(1 + fk)f3f2 − fpf1fk(1 + f3)(1 + f2)].

|M1p→23k|2 and |M23→1kp|2 have small angle singularity, collinear
singularity, and soft singularity. Gunion-Bertsch:

|Ma
1p→23k|2 ≈ 6× 64g6N3

cNg
(p · p1)3

q2(q − k)2(p · k)(p1 · k)
,

|Mb
23→1kp|2 ≈ 4× 64g6N3

cNg
(p2 · p3)3

q2(q + k)2(p2 · k)(p3 · k)
.
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Boltzmann equation for “static box” gluons

The very complicated Boltzmann equation can be simplified at small
angle, collinear, and soft limit:

∂tfp = Ceff
2→2[fp] + Ceff

1→2[fp],

where

Ceff
2→2 = α2

sξ(1 +D)
1

p2
∂p

{
p2

[
Ia
∂fp
∂p

+ Ibfp(1 + fp)

]}
,

with (Denote A =
∫ 1

−1
dx/(1− x) from collinear singularity)

ξ =
2N2

c

π

∫
dq

q
from small angle singularity,

D = 2A
g2Nc
(2π)2

∫ mD

0

dk
1 + 2fk

k
from soft singularity,

Ia =

∫ ∞
0

dpp2fp(1 + fp),

Ib =

∫ ∞
0

dppfp.
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Boltzmann Equation for “static box” gluons

The expression for Ceff
1→2 is

Ceff
1→2 = α2

sRξ
Ia
Ib

{∫ zc

0

dz

z

[
gpf(1−z)pfzp − fpg(1−z)pgzp

]
+

∫ zc

0

dz

(1− z)4z

[
gpgzp/(1−z)fp/(1−z) − fpfzp/(1−z)gp/(1−z))

]}
,

R =
12AN3

c Ib
π2ξ

αs

∫
dq

q3
∼ O(1),

zc is a cut that implements the phase space constraint k < p under
which Ceff

1→2 is derived.⇒ zc < 1/2, we take zc = 1/2.

We will rescale time by α2
sξ, so that we can drop one parameter ξ.

We have 2 parameters D,R in the equation, plus another parameter
f0 in the initial condition.

Note 2→ 3 inelastic process contribute at the same order as 2→ 2
elastic process.
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Elastic processes dominated thermalization

First let us consider elastic dominated thermalization, D = R = 0
case2.
Well-defined the mathematical problem:

Evolution equation:

∂tfp =
1

p2
∂p
[
p2
(
Iaf
′
p + Ibfp(1 + fp)

)]
,

Ia =

∫ ∞
0

dpp2fp(1 + fp),

Ib =

∫ ∞
0

dppfp.

Initial condition for static box at t0 = 1/Qs

fp = f0Θ(Qs − p).

Aim: solve for fp(t), get ttherm when fp(t) becomes BE distribution.
Explore how this happens.
Universal evolution: independent of αs.

2See also Blaizot, Gelis, Liao, McLerran, and Venugopalan, Nucl. Phys. A 873, 68 (2012),

and Blaizot, Liao, and McLerran, Nucl. Phys. A 920, 58 (2013).
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Elastic processes dominated thermalization

Thermodynamical consideration

Initial energy density and number density

ε0 = f0
Q4

s

8π2
, n0 = f0

Q3
s

6π2
⇒ n0ε

−3/4
0 = f

1/4
0

25/4

3π1/2

In a saturated thermal equilibrium state (BE distribution with any
temperature T and zero chemical potential)

εeq =
π2T 4

30
, neq =

ζ(3)T 3

π2
⇒ neqε

−3/4
eq ≈ 0.28

If f0 < fc
0 ≈ 0.154, underpopulated, system smoothly evolves to BE

distribution with a negative µ.
If f0 > fc

0 ≈ 0.154 (indeed for glasma initial condition), the initial
state contains too many gluons than a smooth thermal state can
permit! Overpopulated!

Where the excess gluons accommodate? Bose-Einstain Condensate?
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Elastic processes dominated thermalization

Solution of the Boltzmann equation for f0 = 0.1 < f c0 :
underpopulation

Thermalize to BE distribution with T = 0.34 determined by energy
conservation and µ = −0.103 by number conservation

t = 1, 2.71, 7.38, 20.09, 163.8, 367 in unit of 1/Qs. Black dots is BE
distribution.

The system is thermalized: entropy is maximized and stationary
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Elastic processes dominated thermalization

Solution of the Boltzmann equation for f0 = 1 > f c0 : overpopulation

Hit BEC at Qst ≈ 2.0! Singularity at p ∼ 0

Not thermalized!
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Elastic processes dominated thermalization

f0 = 1 > f c0 : overpopulation

Entropy and chemical potential

Entropy does not reach its maximum, still in non-equilibrium.
Chemical potential touch zero: a criterion of onset of BEC for
massless boson

A non-equilibrium BEC of gluons!
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Inelastic effects
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Inelastic processes dominated thermalization

Natural question: can inelastic processes forbid BEC?

Let us first explore the purely inelastic case.

For f0 = 1, we do not expect any singularity.

f0=1, zc=0.5, purely inelastic
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Elastic + inelastic

f0 = 1, R dependence: the importance of inelastic processes.

Low p region get fast thermalized to a BE form,
∼ 1/(e(p−µ∗)/T∗ − 1) (discuss it latter).
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BEC appears much earlier that pure elastic case!
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Elastic + inelastic

f0 = 1, R = 1, entropy and distribution.

f0=1.0, zc=0.5, D=0
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BEC appears much earlier that pure elastic case! Inelastic kernel
catalyze the onset of BEC!

Question: how to understand it?
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Small p analysis

Inelastic effects: for long enough time, if nε−3/4 < 0.28, it increases
particle number; if nε−3/4 > 0.28, it decreases particle number.

In a short time scale, before any singularity appears. We can do
small p expansion:

Ceff
1→2 ≈ R

Ia
Ib

[
A0h0 +A1pf

′
0(1 + 2f0) +O(p)2

]
,

where hp = fp(1 + fp) and

A0 = ln
1

1− zc
+

1

6

zc(11z2
c − 27zc + 18)

(1− zc)3
,

A1 = ln
1

1− zc
− 1

12

zc(25z3
c − 88z2

c + 108zc − 48)

(1− zc)4

All these A’s are positive for 0 < zc < 1.

Inelastic kernel always produces zero momentum gluon, thus can
catalyze onset of BEC.
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Small p analysis

Elastic kernel has a 1/p IR structure:

Ceff
2→2 ≈ 2(Iaf

′
0 + Ibh0)

p
+ 3(Iaf

′
0 + Ibh0)′

+2p(Iaf
′
0 + Ibh0)′′ +

5p2

6
(Iaf

′
0 + Ibh0)′′′ +O(p)3.

Quickly arranges IR gluons towards a local BE distribution:

fp =
1

exp
(
p−µ∗

T∗

)
− 1

+
K2

2
p2 +O(p)3,

with T ∗ = Ia/Ib.

Small p distribution is always thermal form, indicating that
“thermalization” happens first for soft gluon

“Thermalization” grows toward higher momentum, bottom-up
picture: K2 → 0, K3 → 0, · · ·
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Small p analysis

Something wrong. The assumption that there is no singularity is not
always true, because inelastic term always try to kill µ∗ → 0, then fp
becomes singular at p = 0.

Small p expansion breaks, but because the elastic term contains

Ceff
2→2 3 1

p2
∂p[p

2f ′p] ∼ ∇2fp.

Substituting fp ∼ T ∗/p, it develops a δ(3)(p) function, that is the
BEC.

BEC is driven by elastic process, while inelastic processes catalyze
the vanishing of µ∗ and thus speed up the onset of BEC.
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A possible evolution picture

Stronger inelastic processes, earlier the appearance of the BEC.

Stronger inelastic processes, faster the destroy of the BEC.

Two time scales compete, a possible picture is:

Still an open problem of determination of the two scales.
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Summary and outlook

Fast thermalization is possible in weakly interacting, highly
occupied, gluon system

A new scenario for thermalization in gluon system by Blaizot, Gelis,
Liao, McLerran, and Venugopalan, in which a non-equilibrium gluon
BEC state is possible.

Inelastic processes speed up the onset of BEC

LPM effect will change quantitative results

Effect of longitudinal expansion and anisotropic distribution

How inelastic finally destroy BEC? Need kinetic equation within
BEC.

What is the nature of the condensation of gauge boson?

Phenomenology of this non-equilibrium gluon BEC.

Other intermediate state? Turbulence?

... ...
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Thank you!
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Thermalization: An experimentalist’s view 
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A big mystery: fast equilibration 
  Build up pressure fast 

Else too little elliptic flow (v2) 

  Hydrodynamics works! 
But only if you start it within 1 

fm/c of collision 
  Hydro implies (local) 

equilibrium 
Cascade of q and g collisions 

can’t get there in time! 
  So what gives? 

Fast equilibration due to tiny 
black hole? 

Plasma instabilities? 
Smart ideas discussed here? 
Gluons start out closer to a 

thermal distribution? 
3 

x!

y!
z!



4 

An interesting question 
  Just WHAT is inside the hot dense QCD plasma? 

                   Individual gluons? 
        Pure fields? 

Multi-gluons that continuously  
         split & re-form? 
i.e. composite quasiparticles 
   (in classical liquids voids fill this role) 

  Energy loss: radiative? elastic?  
Excite collective modes in QGP? 

  Quantify dynamical properties of this new material: 
Viscosity, speed of sound, diffusion 

  Properties           thermalization mechanism 

q q
g

L
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What can an experimenter say? 

  EM Observables in A+A 
Reflect early time (pre-equilibrium?) 

  Teeny tiny drops of plasma? 
Collective behavior in p/d+A 

  Structure vs. dynamics in cold nuclear matter 
 Initial and final state parton energy loss 



Can we measure thermalization  
in action? 

6 
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Thermal radiation 

PRL 104, 132301 (2010)  

Low mass, high pT e+e- →              
      nearly real photons 
Large enhancement above  
     p+p in the thermal region 

 pQCD γ spectrum  
  (Compton scattering @ NLO) 
agrees with p+p data 

γ	

γ*	


e+ 

e- 
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8 

•  Exponential fit in pT: 
Tavg = 221 ±23 ±18  MeV 

•  Multiple hydrodynamics 
models reproduce data  
Tinit ≥ 300 MeV 

direct photons: Tinit > Tc ! 

NB: Tc ~ 150 MeV 
@ LHC Tavg = 304±51 MeV 
 hydrodynamic Tinit ~ 30% 
higher than at RHIC  



Di-electrons from thermal γ conversions in Au+Au 

9 

dNγ/dy ~ aNpart
1.5 

 similar in hydro  
    (U. Heinz)  reaction plane: 1< |η|<2.8  

Au+Au 200 GeV min. bias 

photons flow! 
  but more than in hydro 



Larry	  told	  us:	  glasma	  emits	  photons	  

10 



Thermalization in tiny systems? 

11 



86Two-particle angular correlations

CMS, PLB 724 (2013) 213
 CMS, JHEP 1009 (2010) 91

CMS, PLB 718 (2012) 795 ATLAS, PRL 110 (2013) 182302 ALICE, PLB 719 (2013) 29

pp PbPb

pPb pPb pPb

Near-side ridges
apparent in high
multiplicity events
at LHC energies

12 

Looks like flow at LHC in small systems when the 
number of final particles > 100 

C. Loizides 



How about at RHIC? 
  To quantify the Fourier expansion  

                                                   must remove the jet 

  Do by subtraction: (central d+Au – peripheral d+Au) 
 i.e. high multiplicity – low multiplicity 

13 

86Two-particle angular correlations

CMS, PLB 724 (2013) 213
 CMS, JHEP 1009 (2010) 91

CMS, PLB 718 (2012) 795 ATLAS, PRL 110 (2013) 182302 ALICE, PLB 719 (2013) 29

pp PbPb

pPb pPb pPb

Near-side ridges
apparent in high
multiplicity events
at LHC energies
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Fourier coefficients & v2 value 
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Extract v2: 
C2(pTa, pTb)= v2(pTa) v2(pTb) 

A. Sickles 

v2 > v2 at LHC 
ε2 d+Au > ε2 p+Au 
v2 agrees w/hydro!  
   η/s ≤ 0.08 
v3 ~ 0 



Larger rapidity gap reduces jet contribution 

15 

Look at ET ≥ 300 MeV/c clusters 

trigger 

partner 



Long range correlations in d+Au at RHIC! 

16 

cen
trality

“ridge” @ large η     NB: jets not removed; v3 ~0  

S. Huang 



Even larger rapidity gap 

  v2 is still non-zero! 
  Looks like 

hydrodynamic flow… 
  Other evidence? 

17 

12 

A ridge is observed with|  |>6.0 

 Correlation between Au-going and d-going MPC towers  
12 

A ridge is observed with|  |>6.0 

 Correlation between Au-going and d-going MPC towers  

Δη>6 

S. Huang 



Radial expansion, too 
  Radial	  velocity	  boost	  -‐>	  mass	  dependent	  momentum	  boost	  

18 

21 

Identified  particles’  v2 from EP methods 

Mass ordering is observed in 0-5% d+Au 

Weaker radial flow in dAu? 

22 

 The magnitude of mass ordering in p+Pb is larger than in d+Au 
Weaker radial flow in d+Au due to smaller energy density? 

  Mass	  spli;ng	  seen;	  smaller	  than	  at	  LHC…	  less	  dense	  &	  less	  flow	  



PosiDon-‐momentum	  correlaDons?	  HBT!	  

More	  evidence	  for	  hydro	  expansion,	  as	  in	  Au+Au!	  	  

same	  Npart	  =	  same	  emission	  duraDon	  (but	  smaller	  system)	  19 
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A drop of QGP is made in p/d+Au? 

20 

Deepens mystery: how can so little matter thermalize 
so fast? 

  Hydrodynamics needs 
equipartition of particle 
momenta  to be usable 
(~local equilibrium) 
+ sufficient volume to 

call it “matter” 

  Also in small systems? 
Seem to evolve 

hydrodynamically! 
Plasma with R not > 

rinterparticle? 

  Until a few years ago,  
everyone thought “no” 



 DGLAP 

 BFKL 

 BK/JMWLK 

Structure deep inside nuclei? 
  High gluon density, small coupling at low x (pg/pN) 

More in nuclei than nucleons 

  Can describe saturated 
gluon distribution as a field 

  Easier to equilibrate if we start from this? 

21 

QS: Matter of Definition and Frame (II)

7

Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows
• BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL: BK adds:

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?

m
ax

. d
en

si
ty

Qs kT

~ 1/kT

k T
 φ

(x
, k

T2 )

• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)

Linear	  QCD	  

BFKL:	  gluon	  	  

emission	  

QS: Matter of Definition and Frame (II)

7

Infinite Momentum Frame:
• BFKL (linear QCD): splitting functions ⇒ gluon density grows
• BK (non-linear): recombination of gluons ⇒ gluon density tamed

BFKL: BK adds:

αs << 1αs ∼ 1 ΛQCD

know how to 
do physics here?

ma
x. 

de
ns

ity

Qs kT

~ 1/kT

k T φ
(x,

 k T2 )

• At Qs:   gluon emission balanced by recombination

Unintegrated gluon distribution
depends on kT and x:
the majority of gluons have 
transverse momentum kT ~ QS
(common definition)

Nonlinear	  QCD	  

BK/JMWLK	  
gluon	  
recombinaDon	  

See Ann. Rev. Nucl Part (60) 2010 F. Gelis et al., , arXiv:1002.0333) 

(McLerran, Venugopalan) 

 	  What	  effects	  of	  incoming	  parton	  dynamics?	  



First hints at RHIC for saturation of gluons  

22 

PT is balanced 
by many gluons 

Dilute 
parton 
system 

(deuteron) 

Dense gluon 
field (Au) 

	  

SaturaDon	  =	  dense	  gluon	  field	  

Easier	  to	  equilibrate???	  



p+A in 2015 at RHIC 

Si/W preshower + PbW cal.  
	
γ vs. π0 decay 

Substantially improve nPDFs! 
 to x ~ 10-3 and at high x 

Measure p+A/p+p 
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γ + h for parton dynamics 



Caution – 
ignore parton dynamics  

at your own peril! 

24 



Initial State  
    structure 

JHEP04(2009)065

0.2

0.6

1.0

1.5

10-3 10-2 10-1 1

ya

ye

xa xe

y0 shadowing

antishadowing

EMC-
effect

Fermi-
motion

Figure 1. An illustration of the fit function RA
i (x) and the role of the parameters xa, xe, y0, ya,

and ye.

xa and xe, eliminates 6 out of the 13 parameters. The remaining ones are expressed in

terms of the following 6 parameters with obvious interpretations:

y0 Height to which shadowing levels as x → 0

xa, ya Position and height of the antishadowing maximum

xe, ye Position and height of the EMC minimum

β Slope factor in the Fermi-motion part,

the remaining parameter c0 is fixed to c0 = 2ye. The roles of these parameters are illustrated

in figure 1 which also roughly indicates which x-regions are meant by the commonly used

terms: shadowing, antishadowing, EMC-effect, and Fermi-motion.

The A-dependence of the fit parameters is assumed to follow a power law

dA
i = dAref

i

(

A

Aref

) pdi

, (2.5)

where di = xa, ya . . ., and where the reference nucleus is Carbon, Aref = 12.

The baryon number and momentum sum rules eliminate y0 and py0
for valence quarks

and gluons, leaving us with 32 free parameters. This is still way too large number of

parameters to be determined only by the data — further assumptions (based on prior

experience) are needed to decide which parameters can truly be deduced from the data

and which can be taken as fixed.

2.3 Experimental input and cross-sections

The main body of the data in our analysis consists of " + A DIS measurements. We also

utilize the DY dilepton production data from fixed target p+A collisions at Fermilab and

inclusive neutral-pion production data measured in d+Au and p+p collisions at RHIC.1

Table 1 lists the sets included in our analysis and figure 2 displays their kinematical reach

1In contrast to our previous analysis [4], we do not include the BRAHMS forward rapidity charged

hadron d+Au data here. These data will be separately discussed in section 4.
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Shadowing,	  breakup	  &	  Cronin	  effect	  
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 	  pT	  broadens	  (mulDple	  sca_ering)	  
w/Ncoll;	  effect	  stronger	  at	  y=0	  

 	  J/ψ	  suppressed	  to	  higher	  pT	  @	  
mid	  &	  forward	  y	  (lower	  x	  in	  Au);	  

 RdA>1	  at	  high	  pT	  backward	  	  
(Cronin	  effect	  in	  Au	  nucleus	  )	  
 	  pT,	  y,	  centrality	  dependence	  was	  
not	  reproduced	  by	  the	  models	  

PRC87, 034911 (2013) 

J/ψ	




but 
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coherent parton energy loss and 
pT broadening from multiple 
scattering in the nucleus is 
consistent with the data! 
ˆq0 = 0.075 GeV2/fm  
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Figure 3. Model predictions for the J/ψ nuclear suppression factor RpA(p⊥) in minimum bias d–Au
collisions at RHIC, at backward (left), central (middle) and forward (right) rapidities (solid curves).
The dashed lines indicate the effect of momentum broadening only, Rbroad

pA (y, p⊥), Eq. (2.14).
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Figure 4. Same as Fig. 3 in the four centrality classes (from top left to bottom right in each panel)
at backward, central and forward rapidities (upper left, upper right, bottom).
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Figure 4. Same as Fig. 3 in the four centrality classes (from top left to bottom right in each panel)
at backward, central and forward rapidities (upper left, upper right, bottom).
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Larger,	  less	  Dghtly	  bound	  c-‐cbar:	  ψ’	  

  Clearly more suppressed than 
J/ψ 

  Cannot be shadowing or 
parton energy loss 
These are initial state effects 
  & affect c-cbar precursor 

28 

  ψ’/ J/ψ decreases 
linearly with dNch/dη	


  Break-‐up	  of	  some	  sort!	  
early	  or	  late?	  

arXiv: 1305.5516 



To sort out parton dynamics 

  Direct	  γ reflect structure + initial state energy loss 
  CorrelaDons:	  γ vs. h reflect final state parton dynamics 

   probe as function of y 29 
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A ridge is observed with|  |>6.0 

 Correlation between Au-going and d-going MPC towers  



What gluon structure does the system 
thermalize FROM? 

  Measure gluon distribution in p/d+A  
 pro: will do it next year! 
 con: incoming/outgoing parton dynamics  
   (e.g. energy loss) 

  Future electron-A collider to measure parton structure 
   pro: electron probe cleaner  
BUT: must wait for EIC 
          need heavy nuclei 

        see gluons indirectly 
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In the longer term 
An electron-ion collider 
 probe structure directly 

31 

Enhance QS with A, not energy  



 3
2 

Detector	  concepts:	  spin	  AND	  e+A	  gluon	  studies	  	  



Conclusions 

  Perhaps we start off with a gluon system 
approaching an equilibrium distribution? 

  Probe in near term with QCD Compton scattering 
in p+A collisions 
Work hard to disentangle dynamics & structure 

  Probe structure directly with electrons at EIC 
Work hard to ensure heavy nuclei beams! 
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Open problems to tackle 
  Use data to extract transport coefficients using hydro, 

e.g. bulk viscosity 
Measure vn’s for systems of different sizes 
Characterize the hadronic phase better 
In cold atoms: study thermalization, scale invariant 

systems, how to understand steady state near 
quantum critical point? 

Measure shear viscosity in highly correlated electron 
systems, graphene 

  Holography 
Apply to very low temperature systems 
Establish connection to condensed matter  
What bounds might exist near superconducting phase 

transition? How to use quantum critical points to 
gain a common language? 
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Page 2. 
  Holography, continued 

  Identify more cases amenable to holography 
 What ground state solutions in holography? 
 Figure out how to solve holographic results also in field 
theory 
 How to evade eta/s lower bound? How strong would the 
experimental evidence need to be? 
 Need a decent formulation of classical string theory on 
highly curved manifolds 

  Is there an effective theory of QCD in the vicinity of Tc? 
  Can we institute a classification system for non-

equilibrium systems? E.g. an RG for time evolution?  
  How does long thermalization look in holography? 

37 



Page 3 
  Can we separate problems by the nature of the initial 

state?  
Is many-body localization useful as a more general 

concept? What is specific and what is general? 

38 
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  Backup 



Centrality dependence 

Similar slope vs. 
Npart as in  
 Au+Au 

What do we learn 
from the fact 
that the system 
is smaller?  
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Many types of strongly coupled matter 
Quark gluon plasma is like other systems with strong 

coupling - all flow and exhibit phase transitions 

Cold atoms: 
coldest & hottest 
matter on earth 
are alike! 

Dusty plasmas & 
warm, dense plasmas 
have liquid and even 
crystalline phases 

Strongly correlated 
condensed matter: 
liquid crystal 
phases and 
superconductors    

In all these cases have a competition: 
Attractive forces ⇔ repulsive force or kinetic energy 
  High Tc superconductors: magnetic vs. potential energy 
Result:  many-body interactions, not pairwise! 
     QCD is a great test lab: we know the Lagrangian! 



Upgrade PHENIX for jets at RHIC 

42 Compact, hermetic jet and quarkonium detector 



PRL107, 252301(2011)  

η/s=0.08 

Higher harmonics exist & are useful! 
Nucleons move around 

inside the nucleus 
-> locations of NN 

scattering fluctuate 
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  Hydro gets it right if 
initial conditions are 
allowed to fluctuate 

  Better sensitivity to the 
viscosity/entropy ratio 
(viscosity increases 
dissipation) 

  η/s = 0.08 works better! 

vn(η/s=0.16)/vn(ideal)	

vn(η/s=0.08)/vn(ideal)	
  Hydro gets it right if 

initial conditions are 
allowed to fluctuate 



At the LHC 

44 

v2 v3 

ALICE 

  Hydro: Tinit 30% higher than at RHIC 



Same behavior in QGP at LHC 

  Can reproduce energy loss 
and flow at both energies 

  Charm quarks diffusing thru 
strongly coupled QGP 45 



Jet Fragmentation function 

46 

D(z) = 1/Njet dN(z)/dz; z = phad/pjet 

Measure: count partners per trigger 
as fraction of trigger momentum    

               zT = pTa/pTt  ~ z for γ trigger 

               ξ = ln(1/zT)	

Modification factor similar to RAA: 

FFn	  experimental	  challenge:	  

measure	  the	  parton	  p	  
Use	  trigger	  γ	  or	  jet	  



Frag. Function via γ-h correlation 

47 

“Extra”	  sog	  
parDcles	  at	  
larger	  angles	  
near	  the	  away	  
side	  jet	  

Provide	  
constraints	  on	  
gluon	  spli;ng	  
Is	  it	  
perturbaDve?	  

γ:	  parton	  energy,	  h:	  fragmenta4on	  fn. 

Au+Au/	  

	  	  	  p+p 

PRL 111, 032301 
(2013) 



Heavy quark probe answers this year! 
  Do even b quarks come to a screeching halt? 

 Mb ~ 4.2 GeV/c2 
What does b fate tell us about interactions inside? 

  Add silicon detector arrays around beam pipe to both 
PHENIX and STAR; ALICE already has one 
Tag displaced vertex  
   to separate c,b  
Reconstruct D & B mesons 
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+ photons from expanding hadron gas  

49 

vanHees, Gale & Rapp, arXiv:1108.2131 

Answer = yes, if “extras” come from a very rapidly expanding 
hadron gas, that lives longer than initially expected 
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Lepton pair emission ↔ EM correlator 

Emission rate of dileptons per volume 

Boltzmann factor 
temperature 

EM correlator 
Medium property 

γ*ee  
decay 

From emission rate of dileptons, the medium effect on the EM correlator as well as  
temperature of the medium can be decoded. 

e.g. Rapp, Wambach Adv.Nucl.Phys 25 (2000)  

Hadronic contribution 
Vector Meson Dominance 

qq annihilation  

Medium modification of meson 
Chiral restoration 

q 

q 
Thermal radiation from 
partonic phase (QGP) 

Yasuyuki Akiba - PHENIX QM09 
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e+e- looks intriguing 

2004 data 
arXiv: 
0912.0244 
PRC, in press 

We’re 
taking  
more, 
better  
data now 



Fluctuations, flow and the quest for η/s  
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  Glauber 
  Glauber initial state 
  η/s = 1/4π	


  MC-KLN 
  CGC initial state 
  η/s = 2/4π	


v2 described by both Glauber and CGC 
      but different values of η/s 

2 models with 
Different fluctuations, 

Eccentricity, ρ distribution 

200 GeV Au+Au 

Theory calculation: 
Alver et al. 
PRC82,034913   

Lappi, Venugopalan, PRC74, 054905 
Drescher, Nara, PRC76, 041903 

Stefan Bathe for PHENIX, QM2011 

arXiv:1105.3928 

arXiv:1105.3928 

Theory calculation: 
Alver et al. 
PRC82,034913   

v3 described only by Glauber 
   breaks degeneracy 
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c,b decays via single electron spectrum 

compare data to “cocktail” of (measured) hadronic decays 
PRL 96, 032301 (2006) 
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minimum η at phase boundary? 

Csernai, Kapusta & McLerran  
PRL97, 152303 (2006) 

quark gluon plasma 

B. Liu and J. Goree,  
cond-mat/0502009 

minimum observed in other strongly coupled systems – 
kinetic part of η decreases with Γ while potential part increases  

strongly coupled dusty plasma 
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Thermalization according to AdS/CFT 
  Horizon of black hole in AdS at distance 1/πT 

from boundary 
Sets light arrival time 
Black holes form by gravity 
Gravitons travel at c 

   Timescale for black hole formation is τ = 1/πT  
For T=318 MeV, τ = hbar c /1 GeV = 0.2 fm 

  Decay rate for non-hydro modes 
τe-fold ~ 1/8.6Tinit  yielding τ~0.3 fm/c 

  still need to separate τ and Tinit 

  Of course, the coupling is NOT ∞ 

Gubser & Karch, Ann Rev. Nucl. Part. Sci. 59, 145 (2009) 
Friess, Gubser, Michalogiorgakis, Pufu, JHEP 04, 80 (2008)) 



Medium effect on  
Glasma evolution 

Yin Jiang 
Indiana University, Physics Dept. & CEEM 

In collaboration with Jean-Paul Blaizot and Jinfeng Liao. 

Particular thanks to Larry McLerran for discussions and the early stage 

of this work. 
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Outline 

• Motivation 

• Boltzmann equation with mass effect 

• Evolution of under- and over-populated systems 

• Scaling behavior 

• Self- consistent mass 

• Conclusions 
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Motivation 
• In pre-equilibrium stage of heavy ion collision, high over-population gluon 

system is produced. 

• Large occupation number(𝑓~1/𝛼𝑠, 𝑛0휀0
−3/4

≫ 𝑂(1)) and weak coupling 

lead to a BEC of gluons. 

1. Bose-Einstein Condensation and Thermalization of the Quark Gluon Plasma     Jean-

Paul Blaizot, Francois Gelis , Jin-Feng Liao, Larry McLerran, Raju Venugopalan.  Nucl.Phys. A873 (2012) 

68-80 . 

2. Gluon Transport Equation in the Small Angle Approximation and the Onset of Bose-

Einstein Condensation   Jean-Paul Blaizot, Jinfeng Liao, Larry McLerran. Nucl.Phys. A920 (2013) 58-

77 . 

 Rapid IR “Local Thermalization”. 

 Onset of Dynamical BEC  and scaling exponent. 

 Massless gluons  
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Motivation 

• Medium effect on evolution and scaling behavior. 

• Screening mass as one of most important 

medium effects. 

What is the mass effect on both the IR 

thermalization and onset of BEC? 

Whether the critical scaling behavior will be 

changed by screening mass? 
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Boltzmann equation for gluons 
• Only consider 2 to 2 interaction 

• 𝜕𝑡𝑓1 =  
1

1 2 3 4
|𝑀|2[ 1 + 𝑓1 1 + 𝑓2 𝑓3𝑓4 − 1 + 𝑓1 1 + 𝑓2 𝑓3𝑓4]2,3,4

 

• Small angle approximation, including mass naively 

      |𝑀|2 = 72𝑔4 3 −
𝑡𝑢

𝑠2
−

𝑠𝑡

𝑢2
−

𝑢𝑠

𝑡2
→ −144𝑔4

𝑠(4𝑚2−𝑠)

𝑡2−𝑚𝑖𝑛𝑡
2   

 and  ε = 𝑘2 +𝑚𝑒𝑥𝑡
2  

• In small angle approximation, collision term can be reduced 

to a diffusion in momentum space 

𝜕𝑡𝑓 = −𝛻𝑝 ∙ 𝑆  
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Isotropic case 

• In isotropic case 𝑓 𝑝 = 𝑓(휀), flux reduced as 

• 𝑠 =

𝑒 𝑝 1
36𝛼2

𝜋
 
𝑑𝑞

𝑞
 𝑑𝑝2𝑝2

2 𝑍 𝑞,𝑣1,𝑣2

𝑣1
(ℎ1𝑓 2 − ℎ2𝑓 1) 

    where ℎ1 = 𝑓1(1 + 𝑓1). 

•  q can be analytically integrated out. No IR 

divergence. 
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Isotropic case 

• Effective temperature  

𝑠 = 𝑒 𝑝 1
36𝛼2

𝜋
 
𝑑𝑞

𝑞
 𝑑𝑝2𝑝2

2
𝑍 𝑞, 𝑣1, 𝑣2

𝑣1
(ℎ1𝑓 2 − ℎ2𝑓 1)

= 𝑒 𝑝 1(ℎ1𝐼𝑏(𝑝1) − 𝐼𝑎(𝑝1)𝑓 1) 

    Near thermalization point 𝑇𝑒𝑓𝑓 = 𝐼𝑎 𝐼𝑏  in small p limit. 

• Solving the equation with implicit Gaussian method. 

Redefining time as  τ =
36𝛼2𝑡

𝜋
. Two parameter 𝑓0 and 𝑚. 
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Approach to thermalization 

• Underpopulated case: 𝑓𝜏=0 =
𝑓0

𝑒10(𝜀−1.5)+1
 with 

𝑓0 = 0.1 and 

n = 0.0056 < 𝑛𝑚𝑎𝑥 =  𝑓𝐵𝐸(𝜇 = 𝑚, 𝑇(𝐸))
𝑝 

= 0.0089. 

•  Fit with 𝑓 =
1

𝑒(𝜀−𝜇)/𝑇−1
 at τ = 6.  

Particle and energy  
conservation 

Energy cascade 

Particle cascade 
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Approach to BEC onset 
• Overpopulated case 𝑓𝜏=0 =

𝑓0

𝑒10(𝜀−1.5)+1
 with  𝑓0 = 1.0 and 

n = 0.056 > 𝑛𝑚𝑎𝑥 = 0.051. 

• Fit with BE distribution(local IR 𝑓−1 ≈
−𝜇

𝑇
=

1

𝑇
(
𝑝2

2𝑚
+ 𝛿𝜇)) at 

τ = 0.1.  

Particle cascade 

Condensation onset 

𝜇 → 𝑚 
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Approach to BEC onset 
• Overpopulated case 𝑓𝜏=0 =

𝑓0

𝑒10(𝜀−1.5)+1
, 𝑓0 = 1.0 with 

different masses(0.1, 0.5 and 0.7).  

𝜇 → 𝑚 
Condensate onset 

𝑛 > 𝑛𝑚𝑎𝑥 

10 

𝑓−1 ≈
휀 − 𝜇

𝑇
 

𝜏 ⟹ 
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Approach to BEC onset 
• Overpopulated case 𝑓𝜏=0 =

𝑓0

𝑒10(𝜀−1.5)+1
, with different   

𝑓0 = 1.0~2.0 and n > 𝑛𝑚𝑎𝑥. 

• Chemical potential approaches the mass 𝜇 → 𝑚. Onset of BEC. 

• How to obtain this  

     critical scaling exponent  

     analytically? 

     𝜇 ≈ 𝑚 − 𝐶 𝜏𝑐 − 𝜏 𝜂 

         = 𝑚 − 𝐶 ∙ 𝛿𝜏𝜂 
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Scaling behavior 

• Near thermal point 𝑓 ≈
𝑇 𝜏

𝑝2

2𝑚
−𝛿𝜇 𝜏

 at IR range, 𝛿𝜇 = 𝑚 − 𝜇. 

• Effective temperature almost invariant. 

• Rescaling distribution  with  

     𝛿𝜇(𝜏) 

     𝑓 ≈
1

𝛿𝜇(𝜏)

𝑇

𝑝 2 2𝑚 
 , 

    where 𝑝 = 𝑝/ 𝛿𝜇(𝜏). 

• Boltzmann equation gives 𝛿𝜇 𝜏 ∝ 𝛿𝜏. 
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Scaling behavior 

• 𝑝 = 𝑝/𝐴(𝜏), and set 𝐼 𝑎,𝑏 = 𝐼𝑎,𝑏 𝑝 .  

• Starting from self similarity solution 𝑓 𝑝 = 𝐴𝑛𝑝 𝑘, 

Boltzmann equation gives 

𝜕𝜏𝐴 = 𝑐𝑜𝑛𝑠𝑡 ∙ 𝐴2𝑛+3 

𝑛 − 𝑘 𝑝 𝑘 = 𝑐𝑜𝑛𝑠𝑡 ∙ [𝐼 𝑎 𝑘2 + 𝑘 𝑝 𝑘−2 + 𝐼 𝑏/𝑚(2𝑘 + 3)𝑝 2𝑘] 

• 𝑛 = 𝑘 = −2, 𝑓 𝑝 = 𝐴−2𝑝 −2 is a solution.  

• And 𝐴 𝜏 = 𝑚 − 𝜇(𝜏) = 𝛿𝜇.  

𝛿𝜇 = 𝑐𝑜𝑛𝑠𝑡 ∙ 𝛿𝜏 
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Condensation of bosons in kinetic regime  
D.V. Semikoz, I.I. Tkachev.  Phys.Rev. D55 (1997) 489-502  
  



Scaling behavior 

m=0.3 

• Chemical potential approaches mass linearly. 

 

 

 

 

 

 

 

• Numerical results 

confirms our analysis, 

𝜇 ≈ 𝑚 − 𝐶(𝜏𝑐 − 𝜏)𝜂 or 𝛿𝜇 ∝ 𝛿𝜏𝜂, 𝜂 = 1. 

𝑓0=1.0 
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Scaling behavior 
• Fit the last 10(black) and 30(red) points with 𝛿𝜏𝜂  

1 − 𝑅2 = 
(𝑓𝑖 − 𝑦𝑖)

2

(𝑦 − 𝑦𝑖)
2

𝑖
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𝑅2 = 1, perfect fit 



Self-consistent mass 

• Using HTL result 𝑚2 = 2𝑔2𝐶𝐴  𝑓(𝑝 )/𝑝 

• Time dependent mass will break energy conservation 

slightly. 𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.33 
𝑚 = 0.468 
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Self-consistent mass 

• Using HTL result 𝑚2 = 2𝑔2𝐶𝐴  𝑓(𝑝 )/𝑝 

• Overpopulated case 𝑓𝜏=0 =
𝑓0

𝑒10(𝜀−1.5)+1
 

 

 

 

 

 

 

𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.33 
𝑚 = 0.468 

𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 3.45 
𝑚 = 4.42 
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Self-consistent mass 

• Mass 𝑚2 = 2𝑔2𝐶𝐴  𝑓(𝑝 )/𝑝
𝑝 

 does not change 

scaling behavior for 𝑚2 𝑝 = 𝑚2(𝑝 ). 

 

 

 

 

• 𝛿𝜇 ∝ 𝛿𝜏𝜂，𝜂 = 1. 

𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 0.33 
𝑚 = 0.468 

𝑚𝑖𝑛𝑖𝑡𝑖𝑎𝑙 = 3.45 
𝑚 = 4.42 
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Conclusion 

• We have studied the dense gluon system with transport 

equation including the screening mass generated by 

medium. 

• Numerically we have shown that the underpopulated 

system will thermalize while the overpopulated system will 

approach the BEC onset. 

• Analytically and numerically we have found the critical 

scaling behavior of BEC onset, 𝛿𝜇 ∝ 𝛿𝜏𝜂, 𝜂 = 1. 

• The same behavior is also found in the case when screening 

mass is generated in a self-consistent way. 
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Thank you! 
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Energy and particle conservation 

• Energy and particle conservation are respected 

during evolution. 

• Both preserved at 

    <0.1% level. The  

    other cases are  

    at the same order. 

m=0.3 
𝑓0=1.0 
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Rescaling behavior 

• Power law distribution 𝑓 𝑝 = 𝐴𝑛𝑝 𝑘 

• Small p limit ℎ = 𝑓 1 + 𝑓 ≈ 𝑓2 

• Rescaling 

𝐼𝑎 =  𝑑𝑝𝑝2𝑣ℎ → 𝐼 𝑎 = 𝑚−1  𝑑𝑝 𝑝 2𝑝 𝑝 2𝑘 and 

𝐼𝑏 = − 𝑑𝑝𝑝2𝑣𝑓 → 𝐼 𝑏 = − 𝑑𝑝 𝑝 2𝜕𝑝 𝑝 
𝑘 
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UV cascade of over-occupied gluons

Aleksi Kurkela, CERN
with Mark Abraao York, Egang Lu, and Guy Moore

What: Thermalization of overoccupied isotropic gauge fields

How: Using effective kinetic theory, α ≪ 1

New: Scaling solution f ∝ 1/p



Over-occupied cascade

What happens if you have too many soft gluons, f ∼ 1/α

ln(p)

ln(f)

Thermal

f ~ 1

Initial condition

(eβp-1)-1

1/α

Q



Over-occupied cascade

What happens if you have too many soft gluons, f ∼ 1/α

ln(p)

ln(f)

Thermal

f ~ 1

Initial condition

(eβp-1)-1

Self-similar cascade

p
max      

~ t1/7

f(p
max

)~ t-4/7

1/α

Q

This talk: what are the details of the cascade



Motivation

Related to HIC:

Clean toy model with interesting physics

BEC condensation, strong IR physics?

Kolmogorov turbulence, p−4/3?

Vacuum fluctuations?

Theoretically very tractable, overlapping
dual descriptions for α ≪ 1, 1 ≪ f ≪ 1/α

Classical field theory

Effective kinetic theory

Platform to develop and test technology.

If BMSS is correct, this is exactly the technology we need.



Effective kinetic theory Arnold et al. hep-ph/0209353

Vacuum 2 ↔ 2 term suffers from Coulomb divergence q⊥ → 0

Γq⊥
[f ] =

dΓel

d log q2
⊥

∼
α2

q2
⊥

∫

d3p fp (1 + fp)

Regulated by physics of screening at scale

m2 ∼ α

∫

d3p
f (p)

p

Frequent soft scatterings induce soft and collinear radiation

dΓinelastic

d log p d log θ
∼ αΓm(1 + fp)

Collinear divergence regulated by physics of LPM suppression.

Based on massless spectral functions, fails at p . m no BEC or Weibel



Loss of information, non-thermal fixed point

Need only few (large-angle) collisions to lose information of initial
state fi :

ΓQ [fi ] ∼ (α2Q−2)(Q3fi)fi ∼ Q

Need many collisions to go from p ∼ Q to T . For sure the system
doesn’t thermalize before T 4

∼ α
−1Q4

ΓT [fT ] ∼ α2T ∼ α7/4Q

ln(p)

ln(f)

f ~ 1

1/α

Q

Γ
Q
[f

i
] Γ

T
[f

T
]

Parametrically long time during which the system is insensitive to initial
conditions but not thermal.



Information on the initial condition lost quickly AK, Moore 1207.1663

6 very different initial conditions:

Differences vanish by ΓQ [fi ]t ∼ Qt ∼ 64

See also Schlichting 1207.1450, Berges et al. 1312.5216



Evolution of the cascade AK, Moore 1107.5050, 1207.1663

Dynamics: expect collision rate Γpmax
[f ]t ∼ 1:

tα2pmaxf
2 ∼ 1 p4

maxf ∼ Q4/α

Solved by
pmax ∼ Q(Qt)1/7 f ∼ α−1(Qt)−4/7

0.1 1
Momentum p
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t/a = 250 000, Qt = 33925

Qa = 0.1357

V = 2563 , SU(2), fixed lattice spacing, single initial condition see also Blaizot et al. 1107.5296



Evolution of the cascade AK, Moore 1107.5050, 1207.1663

Dynamics: expect collision rate Γpmax
[f ]t ∼ 1:

tα2pmaxf
2 ∼ 1 p4

maxf ∼ Q4/α

Solved by
pmax ∼ Q(Qt)1/7 f ∼ α−1(Qt)−4/7

0.1 1

Momentum p
~
 = p/Q (Q t)

-1/7
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0.0001
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1
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t/a = 1 000,     Qt = 135.7
t/a = 10 000,   Qt = 1357
t/a = 100 000, Qt = 13570
t/a = 250 000, Qt = 33925

Qa = 0.1357

V = 2563 , SU(2), fixed lattice spacing, single initial condition see also Blaizot et al. 1107.5296



Scaling solution

Self-similarity:

f (p, t) = (Qt)−4/7 f̃ (p̃, t) p̃ = p/Q(Qt)1/7

Claim: Scaling solution f̃ independent of time at late times



Scaling solution

Self-similarity:

f (p, t) = (Qt)−4/7 f̃ (p̃, t) p̃ = p/Q(Qt)1/7

Claim: Scaling solution f̃ independent of time at late times

t
d f̃

dt
=

1

7

(

4f̃ + p̃
d f̃

d p̃

)

− C̃ [f̃ (p̃)]1↔2 − C̃ [f̃ (p̃)]2↔2 −→ 0

Both sides scale homogenously (Qt)−4/7 because of overoccupation.

Rescaled collision terms depend only on p̃ and f̃ not on p.
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f (p, t) = (Qt)−4/7 f̃ (p̃, t) p̃ = p/Q(Qt)1/7

Claim: Scaling solution f̃ independent of time at late times

t
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=
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(

4f̃ + p̃
d f̃

d p̃

)

− C̃ [f̃ (p̃)]1↔2 − C̃ [f̃ (p̃)]2↔2 −→ 0

Both sides scale homogenously (Qt)−4/7 because of overoccupation.

Rescaled collision terms depend only on p̃ and f̃ not on p.

If there is an attractive solution, the system will quickly relax to it.

...Except that |M|2 contains the screening scale, and scales trivially
only for p ≫ m



Form of the scaling solution?

ln(p)

ln(f)

Thermal

f ~ 1

(eβp-1)-1

p
max

~ t1/7

1/α

m ~ t -1/7

t2/7

f~pa

UV-tail f~e-kp

Scaling window

Screening physics

All the scales below pmax have had time to undergo scattering and
therefore have had time to reach thermal form f (p) ∝ p−1

AK, Moore 1107.5050 also Blaizot et al. arXiv:1107.5296



What does the data say? Abraao York, AK, Lu, Moore 1401.3751.
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Turbulence in action? Berges et al. 0811.4293

This empirical fact was actually observed already in 2008.
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Interpretation through Kolmogorov energy cascade towards UV with
p−4/3 or p−3/2.

also Berges et al. 1203.4646



Can the data be trusted? Abraao York, AK, Lu, Moore 1401.3751

0 =

∫

p̃

([

4

7
f̃ +

p̃

7

df̃

dp̃

]

︸ ︷︷ ︸

ñ/7

−C̃1↔2 − C̃2↔2
︸ ︷︷ ︸

0

)

The contribution from inelastic scattering
∫

p̃

C̃1↔2 = 4π

∫

p̃>k̃

dp̃dk̃ γ̃(p̃ + k̃; p̃, k̃)f̃
p̃+k̃

f̃p̃ f̃k̃

(

f̃ −1
p̃+k̃

− f̃ −1
p̃ − f̃ −1

p̃

)

with γ ∝ 1
k̃

at the Bethe-Heitler limit k ≪ p
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If data can’t be trusted, need better data:

Abraao York, AK, Lu, Moore 1401.3751
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The bump and the dip

Kinetic theory simulations ∼ 1000 times faster
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The bump and the dip
Kinetic theory simulations ∼ 1000 times faster
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Effect of elastic and inelastic scatterings:
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Inelastic collisions destroy particles at IR and create at UV

Elastic carry particle number to IR and to UV from p̃ ∼ 1

See also Liao, Hu 1303.7214, Blaizot et al. 1402.5049



Conclusions:

Overoccupied gluons thermalize through a self-similar cascade.

Mystery resolved, 1/p tail hidden by the bump and the dip.

We have demonstrated the usefulness of the effective kinetic theory
for quantitive considerations.

The agreement of effective kinetic theory and lattice is a remarkable
demonstration of particle-field duality.

Outlook:

No need to take the overoccupied limit. Results are coming soon.
Bottom-up thermalization.



And if there is still something to talk about after this

workshop:

Equilibration mechanisms in Weakly
and

Strongly Coupled Quantum Field Theory

August 3, 2015 - August 28, 2015 (4 weeks)

Organizers: F. Gelis, A. Kurkela, J.C. Solana, A. Vuorinen



Dominance of scattering against hard particles:
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Spatial Wilson loops in the glasma

T. Lappi

University of Jyväskylä, Finland

RBRC approach to equilibrium workshop, April 2014
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Outline

I CGC, Glasma, JIMWLK evolution
I JIMWLK as initial condition for CYM T.L., [arXiv:1105.5511], PLB 2011

I Wilson loop in glasma with MV or JIMWLK initial conditions
Dumitru, T.L., Nara [arXiv:1401.4124]

Comments:

I This talk is purely 2+1d boost-invariant.
I Only Qsτ . 10
I Starting point for isotropization
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Gluon saturation, Glass and Glasma

Small x : the hadron/nucleus
wavefunction is characterized by
saturation scale Qs � ΛQCD.

⇓
p ∼ Qs: strong fields Aµ ∼ 1/g

I occupation numbers ∼ 1/αs

I classical field approximation.
I small αs, but nonperturbative 10-5
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CGC: Effective theory for wavefunction of nucleus
I Large x = source ρ, probability distribution Wy [ρ]

I Small x = classical gluon field Aµ + quantum flucts.

Glasma: field configuration of two colliding sheets of CGC.
JIMWLK: y -dependence of Wy [ρ]; Langevin implementation
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Wilson line

Classical color field described as Wilson line

U(x) = P exp
{

ig
∫

dx−A+
cov(x, x−)

}
∈ SU(3)

Color charge ρ : ∇2A+
cov(x, x−) = −gρ(x, x−)

( x± = 1√
2
(t ± z) ; A± = 1√

2
(A0 ± Az) ; x 2d transverse )

Qs is characteristic momentum/distance scale

Precise definition here is:

1
Nc

〈
Tr U†(0)U(x)

〉
= e−

1
2

⇐⇒ x2 =
2

Q2
s 4 8 16 32 64 128

r/a

0

0.2

0.4

0.6

0.8

1

C
(r

)

y = 0
y = 1.30
y = 2.59
y = 3.89
y = 5.18
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Gluon fields in AA collision

Classical Yang-Mills

η = cst.

t

z

x+x−

(3)

Aµ = ?

(4)

Aµ = 0

(2)

Aµ = pure gauge 2

(1)

Aµ = pure gauge 1

τ = cst.

2 pure gauges

Ai
(1,2) =

i
g

U(1,2)(x)∂iU
†
(1,2)(x)

U(1,2)(x) = Peig
R

dx− ρ(x,x−)

∇2

At

τ = 0:

Ai
∣∣∣
τ=0

= Ai
(1) + Ai

(2)

Aη|τ=0 =
ig
2

[Ai
(1),A

i
(2)]

τ > 0 Solve numerically Classical Yang-Mills CYM equations.
This is the glasma field =⇒ Then average over initial Wilson lines.

Gluons with p ∼ Qs — strings of size R ∼ 1/Qs
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Gluon spectrum in the glasma
T.L., Phys.Lett. B703 (2011) 325

Qs is only dominant scale

Parametrically gluon spectrum
dNg

dy d2x d2p
=

1
αs

f
(

p
Qs

)
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(Here: midrapidity, y ≡ ln
p

s/s0)
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Gluon multiplicity and mean pT

Qs is only dominant scale

Parametrically
dNg

dy d2x
= cN

CF

2π2αs
Q2

s 〈p〉 ∼ Qs

Note: in full CYM total gluon multiplicity is IR finite, no cutoff.
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Scaled multiplicity increases with
energy (Midrapidity, y ≡ ln

p
s/s0)
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Harder gluon spectrum
=⇒ higher 〈p〉/Qs as scaling
regime sets in.
(Still very large lattice cutoff effects.)
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Side note: CYM vs. kT -factorization
Blaizot, T.L., Mehtar-Tani 2010 Compare to perturbative spectrum

dN
d2p dy

=
#

αs

1
p2

∫
k

[
θ(p − k)

]
φy (k)φy (p− k)

0 1 2 3 4
k/g

2µΑ

0
5e

-0
5

0.
00

01
k2  d

N
/d

2 k

CYM
k

T
-fact

k
T
-fact w/ c.o. 1

k
T
-fact w/ c.o. 2

pA: kT -factorization works

0 1 2 3 4 5
k/g

2µ

0
0.

01
0.

02
0.

03
0.

04
0.

05
k2  d

N
/d

2 k

CYM
k

T
-fact

k
T
-fact w/ cutoff

AA: only for hard modes

kT -factorization works only for pT & Qs

I OK for high-pT spectra: freely streaming gluons
I Modes with pT . Qs: still dominated by nonlinear interactions
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Universality in the IR spectrum?

0.25 1 4 16
p

T
/Q

s

adj

0

0.2

0.4

0.6

0.8

1

1.2

p T

2  d
N

/d
2 p T

y = 0
y = 1.30
y = 2.59
y = 3.89
y = 5.18

I Gluon spectrum in the UV
depends on anomalous
dimension =⇒ different for
MV (y = 0) , JIMWLK (y > 0)

I IR seems to scale, close to

dN
d2p

∼ 1
pT

Gauge inv. probe for p . Qs?
Spatial Wilson loop

W (A) =
1

Nc
Tr P exp

{
ig
∮

A
dx · A

}
2d lattice: transverse links:

= Ui (x) = exp {igaAi}

W (A) =
1

Nc
Tr
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Measure Wilson loops
Dumitru, Nara, Petreska [arXiv:1302.2064], PRD 2013
& this work Dumitru, T.L., Nara [arXiv:1401.4124]

Calculation is simple:
I Construct initial glasma fields

at τ = 0 using e.g.
I MV model
I rcJIMWLK
I fcJIMWLK

(Try to have same Qsa to minimize
lattice effects)

I Evolve forward in τ
I Measure W (A)

0.1 1 10 100
AQ

s

2

0
0.

2
0.

4
0.

6
0.

8
1

W

JIMWLK Q
s
τ = 0

JIMWLK Q
s
τ = 2 ... 10

MV Q
s
τ = 0

MV Q
s
τ = 2 ... 10

Behavior in both UV (AQ2
s . 1) and IR (AQ2

s & 1) parametrized as

W = exp {−(σA)γ}

Fit is quite good: solid lines in figure.
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Fit to Wilson loop area dependence

W = exp {−(σA)γ} ⇐⇒ ln(− ln W ) = γ ln(AQs) + γ ln(σ/Q2
s )

0.1 1 10
AQ

s

2

-10

-5

0

ln
(-

ln
(W

))

MV Q
s
τ = 0

MV Q
s
τ = 1 ... 5

rc-J Q
s
τ = 0

rc-J Q
s
τ = 1 ... 5

fc-J Q
s
τ = 0

fc-J Q
s
τ = 1 ... 5

Main observations
I UV (small loop): initial slope γ stays
I IR (big loop): all init. conditions collapse to universal behavior
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Wilson loop scaling exponents

0 2 4 6 8 10
Q

s
τ

1
1.

2
1.

4
1.

6
1.

8
γ U

V

MV, 1024
MV, 2048
rc JIMWLK, 1024
rc JIMWLK, 2048
fc JIMWLK, 1024
fc JIMWLK 2048

UV (e−3.5 < AQ2
s < e−0.5)

Remembers initial condition

0 2 4 6 8 10
Q

s
τ

0.
6

0.
8

1
1.

2
1.

4
γ IR

MV, 1024
MV, 2048
rc JIMWLK, 1024
rc JIMWLK, 2048
fc JIMWLK, 1024
fc JIMWLK 2048

IR (e0.5 < AQ2
s < e5)

Initial conditions collapse to
γIR ≈ 1.2,

decreasing slowly with τ
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“String tension” coefficients

In expanding system fields naturally decrease as

τ � 1/Qs=⇒Aµ ∼ 1/
√
τ=⇒σ/Q2

s ∼ 1/(Qsτ)

Plot “string tenstion” σ as scaling variable στ/Qs

0 2 4 6 8 10
Q

s
τ

0
0.

1
0.

2
0.

3
0.

4
0.

5
0.

6
τσ

/Q
s (

U
V

)

MV, 1024
MV, 2048
rc JIMWLK, 1024
rc JIMWLK, 2048
fc JIMWLK, 1024
fc JIMWLK, 2048

UV: initial conditions differ

0 2 4 6 8 10
Q

s
τ

0
0.

1
0.

2
τσ

/Q
s (

IR
)

MV, 1024
MV, 2048
rc JIMWLK, 1024
rc JIMWLK, 2048
fc JIMWLK, 1024
fc JIMWLK, 2048

IR: even σ universal within ∼ 10%

(Note: the numerical value of σ depends on the convention used to define Qs)

At τ = 0: σ/Q2
s ≈ 0.55 . . . 0.6 (UV) and σ/Q2

s ≈ 0.35 . . . 0.45 (IR)
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Magnetic field correlator
Wilson loop measures magnetic flux:

W (A) =
1

Nc
Tr P exp

{
ig
∮

A
dx · A

}
=

1
Nc

Tr exp
{

ig
∫

d2xBz(x)

}
If magnetic field consists of uncorrelated Gaussian domains:

〈W (A)〉 = exp

{
−1

2
1

Nc
Tr

〈[∫
d2xgBz(x)

]2
〉}

=⇒ W (A) related to 〈B(x)B(y)〉
Here: no gauge fixing, connect B(x) and B(y) with gauge link

Check: compare
I Direct measurement of W (A)

I Reconstruction from
BB-correlator

good agreement.
0.1 1 10

Q
s
A/τ

0
0.

5
1

1.
5

2
W

Q
sA

/τ

MV, 1024
2
, Q

s
τ = 10

BB
MV, 2048

2
, Q

s
τ = 5

BB
rcJ, 1024, Q

s
τ = 10

BB
rcJ, 2048

2
, Q

s
τ = 5

BB
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Magnetic field correlator

However: no obvious scaling
seen in BB-correlator

0 1 2 3
Q

s
r

-2

0

2

4

6

8

rC
B
(r

)/
Q

s3

MV, Q
s
τ = 0

MV, Q
s
τ = 10 (x 100)

rc JIMWLK, Q
s
τ = 0

rc JIMWLK, Q
s
τ = 10 (x 100)

Same on log plot

C(|x−y|) ≡ Tr
〈

[B(x)B(y)]gauge link

〉

0.5 1 2 4
Q

s
r

1e
-0

7
1e

-0
6

1e
-0

5
C

B
(r

)

MV
rc JIMWLK
fc JIMWLK
~ (rQ

s
)
-1.55

Straight line: ∼ (rQs)−1.55.

(For C(r) ∼ (rQs)−α one would get γ = 2− α/2⇐⇒ α = 4− 2γ;
from W (A) measured γ = 1.22)
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Conclusions

I CYM initial state for AA collision
I Universal behavior in the for pT � Qs seen in gluon spectrum

I Nontrivial area dependence of the loop W ∼ exp{−A1.2}
I New observation: same universality seen in spatial Wilson loop
I Note: this is still in the boost-invariant 2d theory.

I Effect of instabilities, isotropization on the soft modes?



The	  Glasma	  and	  Thermaliza/on:	  	  Ups	  and	  Downs	  

Glasma	  Ini/al	  Condi/ons:	  	  A	  Classical	  Field	  
	  

One	  scale:	  	  	  	  Qsat

Coupling:	   ↵s

Aµ ⇠ 1/g

< N >⇠< a†a >⇠ 1/↵s

Phase	  space	  density	  is	  very	  high:	  

dN

d

3
xd

3
p

⇠ 1/↵s, p < Qsat

⇠ 0, p > Qsat



Similar	  to	  a	  recently	  cooled	  Bosonic	  atomic	  gas	  

E

T

M � µ

dN

d

3
xd

3
p

1	  

dN

d

3
xd

3
p

=
1

e

(E�µ)/T � 1

µ < M

⇠ T

E � µ

When	  high	  end	  of	  
momentum	  distribu/on	  
is	  blown	  away,	  system	  is	  
cooled,	  but	  it	  is	  over	  

occupied	  



There	  is	  a	  maximum	  occupa/on	  for	  a	  thermalized	  	  Bosonic	  system	  
	  

Easiest	  to	  understand	  for	  a	  massless	  system	  like	  gluons:	  

⇢ ⇠ Q3
sat/↵s ✏ ⇠ Q4

sat/↵s

⇢ ⇠ ✏3/4/↵1/4
s � ✏3/4

The	  Glasma	  is	  over	  occupied:	  
	  Perhaps	  par/cle	  number	  adjusts	  itself	  by	  inelas/c	  processes	  

Perhaps	  one	  needs	  top	  include	  a	  condensa/on	  

dN

d

3
xd

3
p

⇠ ⇢c �

(3)(~p)



How	  might	  a	  condensate	  form	  dynamically:	  	  The	  UV	  and	  IR	  cascades	  

E

dN

d

3
xd

3
p

Diffusion	  into	  the	  UV	  and	  a	  Kolmogorov	  Spectrum	  
	  

Diffusion	  into	  the	  infrared	  un/l	  a	  wall	  at	  p	  =	  0	  

Talks	  by	  Huang,	  Jiang,Liao,	  Pawlowski,	  Sexty,	  Wu,	  Zhang	  



The	  Turbulent	  Cascade	  to	  Thermaliza/on:	  
	  

Let	  there	  be	  an	  infrared	  scale	  where	  the	  distribu/on	  has	  strength	  of	  order	  

1/↵s

Let	  there	  be	  an	  ultraviolet	  scale	  where	  the	  distribu/ons	  become	  of	  order	  1	  

⇤IR,⇤

Ini/ally	  these	  scales	  are	  close	  together	  in	  the	  Glasma	  
	  

For	  a	  thermalize	  Bosonic	  system,	  these	  scales	  must	  be	  separated	  by	  

⇤IR ⇠ ↵s⇤

This	  separa/on	  of	  scales	  takes	  /me	  and	  cannot	  be	  done	  by	  a	  few	  scaWerings	  
	  

The	  separa/on	  of	  scales	  occurs	  when	  the	  fields	  are	  mul/ply	  occupied	  so	  a	  
classical	  approxima/on	  should	  be	  good	  

Need	  seed	  fluctua/on	  fields	  of	  order	  g,	  that	  grow	  to	  order	  1/g	  through	  turbulence	  
Typically	  exponen/al	  growth	  of	  seed	  fields:	  	  source	  is	  quantum	  fluctua/ons	  



A	  simple	  model	  for	  the	  Glasma	  	  
	  (LM	  &	  Schenke;	  Blaizot,	  Gelis,	  Liao,	  McLerran	  and	  Venugopalan;	  Kurkela,	  Moore)	  

nq =
1

eE/⇤ + 1ng =
⇤IR

⇤Nc↵s

1

eE/⇤ � 1

⇤(t0) = ⇤IR(t0)

ng ⇠ T/E, E << ⇤, T =
⇤IR

Nc↵s

⇤IR(tth) ⇠
Nc↵s


⇤(tth)

Energy	  density:	   ✏g ⇠ 1

↵s
⇤IR⇤

3

Pressure	  	  	  
{allowing	  for	  possible	  momentum	  asymmetry):	   P = �✏

ScaWering	  /me:	   ⌧ ⇠ ⌧scat ⇠ ⇤/⇤2
IR

Coupling	  constant	  disappears	  from	  es/mate	  of	  scaWering	  /me	  



Find	  power	  law	  behaviour	  for	  the	  momentum	  scales	  

⇤
IR

= ⇤0
IR

✓
t
o

t

◆(4+�)/7

⇤ = ⇤0

✓
t
o

t

◆(1+2�)/7

Why	  a	  constant	  momentum	  asymmetry:	  

In	  hydrodynamics:	  

PL

PT
= 1� c

⌧scat

⌧

⇠ constant

Analysis	  is	  different	  if	  we	  are	  close	  to	  zero	  of	  the	  scaWering	  kernal	  of	  the	  
transport	  equa/on,	  ie	  close	  to	  thermaliza/on	  



So	  what	  do	  we	  see	  by	  simula/on:	  

Epelbaum	  and	  Gelis:	  

↵s ⇠ 10�3, PL/PT << 1 ↵s ⇠ 10�2, PL/PT ⇠ 1

Behaviour	  in	  /me	  looks	  like	  hydrodynamics	  



On	  the	  other	  hand:	  	  	  
Computa/ons	  at	  very	  weak	  coupling	  suggest	  a	  different	  story	  	  

Becomes	  very	  anisotropic	  at	  late	  /me	  

Different	  ini/al	  condi/on	  but	  claim	  there	  
is	  a	  universal	  thermal	  fixed	  point	  

Results	  should	  be	  reliable	  at	  very	  weak	  
coupling	  

Berges,	  Bugaslavsky,	  Schlich/ng	  and	  Venugopalan	  

Universal	  fixed	  point:	  	  	  
	  

But	  can	  one	  approach	  a	  
thermal	  fixed	  point	  before,	  
above	  some	  small	  coupling?	  

	  
The	  approach	  to	  fixed	  point	  

depends	  upon	  ini/al	  
condi/ons.	  	  Can	  one	  be	  
outside	  the	  basin	  of	  

aWrac/on	  for	  the	  fixed	  point	  
for	  some	  ini/al	  condi/ons?	  

	  
Need	  to	  know	  the	  ini/al	  

condi/ons?	  



Universality	  of	  scalar	  case:	  but	  very	  long	  
/me	  scales	   Power	  law	  behaviour:	  	  

But	  not	  similar	  to	  classical	  thermal	  
distribu/on	  

Results	  are	  cutoff	  dependent:	  
Found	  in	  case	  of	  coupling	  

� = 1

But	  s/ll	  weak	  interac/on	  strength	  
�

16⇡2
⇠ 10�2



Gelis,	  Epelbaum	  and	  Wu	  

Non-‐renormalizability	  of	  classical	  computa/on	  with	  small	  classical	  fluctua/ons	  added	  

Simula/ons	  involve	  smooth	  classical	  field	  of	  order	  1/g	  plus	  quantum	  
fluctua/ons	  added	  to	  the	  classical	  field	  	  of	  order	  g	  

	  
There	  are	  some	  quantum	  fluctua/ons	  of	  order	  g	  which	  are	  ignored	  

	  
This	  leads	  to	  a	  non-‐renormalizable	  approxima/on:	  

Mass	  and	  coupling	  constant	  redefini/ons	  will	  not	  make	  the	  result	  finite	  

First	  non-‐renormalizable	  correc/on	  to	  classical	  equa/ons	  occur	  in	  
second	  order	  correc/ons	  to	  scalar	  self	  energy.	  	  There	  is	  a	  generated	  

imaginary	  part	  of	  order	  	  	  

�2⇤2

This	  becomes	  of	  order	  the	  classical	  kine/c	  energy	  term,	  when	  

⇤IR ⇠ �⇤

Maybe	  these	  correc/ons	  are	  small	  so	  long	  as	  we	  are	  below	  the	  thermal	  fixed	  point?	  	  	  



Is	  there	  some	  window	  where	  one	  can	  do	  the	  computa/ons,	  for	  a	  cutoff	  not	  to	  big	  for	  
a	  fixed	  small	  coupling?	  

	  
Can	  one	  fix	  the	  equa/ons	  by	  adding	  in	  terms	  to	  cancel	  the	  non-‐renormalizable	  terms?	  

	  
Is	  there	  an	  effec/ve	  hard	  thermal	  loop	  theory	  where	  one	  can	  integrate	  out	  the	  UV	  

modes	  to	  generate	  a	  well	  defined	  effec/ve	  theory	  for	  the	  infrared?	  
	  

Is	  it	  incurable	  and	  all	  of	  this	  is	  nonsense?	  



Some	  phenomenology	  of	  the	  Glasma:	  
Photons	  

Chiu,	  Hemmick,	  Khachatryan,	  Leonidov	  ,Liao,	  Klein-‐
Boesling,	  Schenke,	  LDM	  	  
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⇡R2

dN
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= F (Qsat/pT )

pp,	  dA	  and	  AA	  at	  all	  centrali/es	  
at	  RHIC	  and	  PbPb	  

Data	  are	  on	  the	  same	  universal	  
scaling	  curve!	  



Suggest	  may	  be	  early	  /me	  phenomena	  but	  what	  about	  flow?	  
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combined evolution
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ALICE

For	  an	  isotropic	  Glasma,	  
get	  a	  good	  descrip/on	  of	  

photon	  spectrum	  

Emission	  /mes	  much	  larger:	  	  Time	  for	  flow	  to	  develop?	  



Summary:	  

Fundamental	  theore/cal	  issue	  about	  how	  to	  make	  the	  theory	  of	  classical	  fields	  plus	  
quantum	  correc/ons	  in	  real	  /me	  renormalizable	  or	  an	  effec/ve	  theory	  where	  the	  UV	  

degrees	  of	  freedom	  have	  been	  integrated	  out.	  
	  

Computa/onal	  ques/ons	  about	  the	  determina/on	  of	  the	  /me	  evolu/on	  of	  the	  Glasma	  
and	  its	  par/cle	  distribu/ons	  .	  

	  
Deep	  ques/ons	  about	  universality,	  chaos	  and	  turbulence	  and	  thermaliza/on	  

	  
Phenomenological	  ques/ons	  about	  how	  the	  Glasma	  and	  similar	  systems	  shows	  

themselves	  in	  nature.	  
	  

Rela/ons	  to	  other	  fields	  such	  as	  cold	  atomic	  gasses	  and	  cosmology	  of	  infla/on	  and	  axions	  
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Entropy production in the classical Yang-Mills 
theory as the coherent state dynamics

Based on the works, 

Towards a Theory of Entropy Production in the Little and Big Bang, T. Kunihiro, B. Müller, A. Ohnishi, A. 
Schäfer, Prog. Theor. Phys. 121 ('09), 555 [arXiv:0809.4831].

Chaotic behavior in classical Yang-Mills dynamics, T. Kunihiro, B. Müller, A. Ohnishi, A. Schäfer, T. T. 
Takahashi, A. Yamamoto, Phys. Rev. D 82 (2010), 114015 [arXiv:1008.1156].

Entropy production in classical Yang-Mills theory from Glasma initial conditions, H. Iida, T. Kunihiro, B. 
Müller, A. Ohnishi, A. Schäfer, T. T. Takahashi, Phys. Rev. D 88 (2013), 094006 [arXiv:1304.1807].

H. Iida, T. Kunihiro, A. Ohnishi, T.T. Takahashi, arXiv:1404.xxxx

Akira Ohnishi (YITP, Kyoto U.)
in collaboration with

H. Iida, T. Kunihiro (Kyoto), T.T.Takahashi (Gunma CT),
A. Schafer (Regensburg), B. Muller (Duke/BNL), A. Yamamoto (Tokyo)

The Approach to Equilibrium in Strongly Interacting Matter
April 2-4, 2014, BNL
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Thermalization in High-Energy Heavy-Ion Collisions
Time Evolution at RHIC & LHC

τ τ = 0 τ = τth τ = τhad τ = τFO

CGC Glasma

CYM
+Jet
(+KB?)

Hydro
+Jet Hadron

Cascade

QGP Hadron Gas

Phen. Challenges
  flow, jet, hard probes
  → hydro., transport coef., 

  E-loss, hadron prop.,
  phase diagram, ...

Theor. Challenges
●  Thermalization under
    dynamical classical field
●  Theoretically interesting
    and Phenomenologically important. 
    dN/ dη, init. cond. of hydro.
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Entropy Production in Heavy-Ion Collisions
We have been working on entropy production in non-equilibrium 
stage, since the international Molecule-type workshop on 
“Entropy Production before QGP” (2008.08.01-28)
(A. Schafer, R. Fries, B. Mueller, M. Strickland, T. Schafer, 
M. Natsuume, Y. Nara, T. Hirano, K. Fukushima, T. Kunihiro, AO)

Muller, Schafer ('11)
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Entropy production in Classical Yang-Mills dynamics
Perturbative estimate of thermalization time is longer than expected 
from hydrodynamics simulations.
→ Classical Yang-Mills field is expected to play a role of entropy prod.
 Baier, A.Mueller, Schiff, Son ('01); Chatterjee, Srivastava ('09), Heinz, Kolb ('02)

How does CYM field have entropy ? Chaos & Decoherence !
Entropy from chaoticity

(Husimi-)Wehrl entropy  Kunihiro, B. Müller, AO, Schäfer ('09)

Entropy production rate = Kolmogorov-Sinaii entropy
B. Muller, Trayanov ('92), Biro, Gong, B. Muller ('94), Bolte, B. Muller ('00).
Kunihiro, B. Müller, AO, Schäfer, Takahashi, Yamamoto ('10), Iida, 
Kunihiro, B.Müller, AO, Schäfer, Takahashi ('13)

Decoherence entropy
B.Muller, Schafer ('03, '06), Fries, B. Muller, Schafer ('09), Iida, Kunihiro, AO, 
Takahashi ('14)

Classical Statistical simulation 
Berges, Scheffler, Sexty ('08), Epelbaum, Gelis ('13)  

SWehrl=−∫ d n x d n p
(2π)n

H logH (H=phase space prob. fn.)
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Contents

Introduction
Entropy production from chaotic nature of CYM

Chaoticity, Lyapunov exponent, and Kolmogorov-Sinaii entropy
KS entropy from CYM
T. Kunihiro, B. Müller, AO, A. Schäfer, T.T. Takahashi, A. Yamamoto, PRD82('10),114015 
[arXiv:1008.1156].
H.Iida, T.Kunihiro, B.Müller, AO, A.Schäfer, T.T.Takahashi, PRD88('13),094006 [arXiv:1304.1807].

CYM as a coherent state and decoherence entropy
Decoherence entropy
CYM as a coherent state
Decoherence entropy from CYM dynamics
H.Iida, T.Kunihiro, AO, T.T.Takahashi, arXiv:1404.xxxx (to be submitted soon).

Summary

We discuss the CYM entropy and its production rate
with emphasis on the decoherence entropy

We discuss the CYM entropy and its production rate
with emphasis on the decoherence entropy
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Entropy production
from chaotic nature of CYM

Entropy production
from chaotic nature of CYM
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Chaoticity, Lyapunov exponent, and KS entropy
Entropy in classical dynamics = Wehrl entropy

(dΓ= dx dp = phase space, H= phase space dist. fn., e.g. Husimi fn.)
Lyapunov exponent and Kolmogorov-Sinaii entropy

δ X =  difference of two trajectories from adjacent initial conditions
λ = initial state sensitivity (Lyapunov exponent, measure of chaoticity)
When λ > 0, exponentially growing number of phase space cells are visited
→ phase space dist. fn. becomes smooth after proper coarse graining
→ entropy production (Kolmogorov-Sinaii entropy)

S=−∫d ΓH log H

δ X i(t )=δ X i(t0)exp [λi(t−t0)] (X=(x , p)) ,
dS /dt=SKS≡ ∑

i ,λ i>0
λi

λ>0

λ<0
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Evolution of the Wigner Function

λ=1, λt=0, 2

Liouville theorem → conservation of the phase space volume
Exponential growth in (x+p/λ), Exponential narrowing in (x-p/λ) 

Kunihiro, Müller, AO, Schäfer ('09)
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Evolution of the Husimi Function

λ=1, λt=0, 2

Coherent state broadening of phase space
Minimum width in (x-p/λ) → phase space dist. func. is smeared !

Kunihiro, Müller, AO, Schäfer ('09)
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Classical Yang-Mills dynamics on the lattice
Lattice CYM Hamiltonian in temporal gauge (A0=0) in the lattice unit

Non-compact (A, E) form !
Demerit: Gauge invariance is not fully satisfied at finite lattice spacing.
Merit: Easy to consider the coherent state, and conformality is manifest.

Initial conditions (Ei
a(x)=0 is assumed here.)

Random initial condition: Ai
a(x) = random in [-η, η], 

Modulated init. cond.:

Constant-A init. cond.                                                               Berges et al.('12)

H=1
2 ∑
x , a , i

[E ia (x)2+Bia(x )2 ]
F ij
a (x)=∂i A j

a(x )−∂ j Ai
a(x )+∑

b , c
f abc Ai

b(x)A j
c (x)=εijk Bk

a(x )
Non-linear & coupling

Ai
a(x)=√B / g (δi2δ

a3+δi3δ
a2)

magnetic field ~ z direction ( ε1 >> ε2 ), w and w/o fluc.
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How to obtain Lyapunov exponents
EOM of δX → Integral

Diagonalizing U and the eigen value becomes λt.

Matrix size = 3 (xyz) x (Nc
2-1) x L3 x 2 (A,E)  

Ẋ=( ẋṗ)=( H p

−H x) → δ Ẋ=( H px H pp

−H xx −H xp)δ X≡H̃ δ X

(H px≡∂2H /∂ p∂ x etc)

δ X (t )=T exp(∫0
t
dt ' H̃ (t ' ))δ X (t=0)≃T ∏

k=1,N
(1+H̃ Δ t )δ X (t=0)

=U (0, t)δ X (t=0)
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Typical Lyapunov spectrum
Sum of all Lyapunov exponent = 0 (Liouville theorem)
1/3 Positive, 1/3 negative, and 1/3 zero (or pure imag.)

1/3 of DOF = gauge DOF

Iida, Kunihiro, B.Müller, AO, Schäfer, Takahashi ('13)
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KS entropy in CYM from random init. cond.

Evolution of distance from adjacent init. cond.
Exponential growth of distance → Instability or Chaoticity

Lyapunov exponent distribution
Rapid spread of positive LEs and macroscopic # of positive LEs
→ Chaoticity

Kunihiro, Müller, AO, Schäfer, Takahashi, Yamamoto ('10)

Time

D
ist

an
ce

Index (descending order)

λ 
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KS entropy in CYM from random init. cond.

Energy density dependence
Larger energy → Larger Lyapunov exp.

CYM is conformal → λ  ∝ ε1/4  (ε = E/V)

Kunihiro, Müller, AO, Schäfer, Takahashi, Yamamoto ('10)

dS
dt=S KS∼cKS ε

1/4 , cKS∼2 (Lattice unit)

Time

D
ist

an
ce

E/V

LEs
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Random

KS entropy in CYM from glasma-like init. cond.
Instability under strong color-magnetic field
Nielsen, Olesen ('78), Fujii, Itakura ('08), Berges, Scheffler, Schlichting, Sexty ('12)

No chaotic behavior is observed
with sine waves and constant-A
w/o fluctuations. 
Small fluctuations activate instability
and chaoticity. 
Chaoticity emerges after instability
spreads to many modes.

Const.-A+Fluc

Modulated+Fluc.
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CYM as a coherent state 
and 

Decoherence entropy

CYM as a coherent state 
and 

Decoherence entropy
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Decoherence Entropy

Coherent State

n-quanta states are coherently superposed in a coherent state.
When this coherence is broken, entropy is generated
(decoherence entropy)

Muller, Schafer ('03,'06), Fries, Muller, Schafer ('09), Iida, Kunihiro, AO, Takahashi ('14)

â |α>=α |α>

|α>=N exp(α â+) |0>=exp(−∣α∣2/2)∑
n

αn

√n!
|n>

P n=
∣α∣2n

n ! exp(−|α |
2) (Poisson dist.)

→ S dec=−∑
n=0

∞
P n log Pn>0

n̄=∣α∣2

Muller, Schafer ('03)

Seq

Sdec
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CYM as a Coherent State

What kind of state does the CYM correspond to ?
→ Natural guess = Coherent State

Decoherence entropy from CYM

Is the above assignment unique ?
Coherent state in each “coherent domain” Fries, Muller, Schafer ('09)  
Deviation from Poisson dist. with coupled oscillator
Glauber ('66), Gelis, Venugopalan ('06)   

Muller, Schafer ('03,'06), Fries, Muller, Schafer ('09), Iida, Kunihiro, AO, Takahashi ('14)

| CYM >≃ ∏
k , a , i

|αk ai>

S dec=− ∑
k , a ,i

∑
n
Pn(αk ai) log Pn(αk ai)

αk ai=
1

√2ωk
[ωk Aai(k , t)+i Eai (k , t)] , ωk=√sin2 k x+sin2 k y+sin2 k z
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Initial Condition and Time Evolution
“Glasma-like” init. cond.

MV model (boost inv.)
+ Longitudinal fluctuations
→ Bx,y, Ex,y, Bη, Eη
McLerran, Venugopalan ('94), Romatschke, 
Venugopalan ('06), Fukushima, Gelis ('12)

Non-expanding geometry is assumed, 
Substitute Bη and Eη in MV model
into Bz and Ez at t=0.

Time-evolution
Short time behavior of E2 does not 
depend on the fluctuation strength.
(and similar to expanding geo. results.)
E.g. Lappi, McLerran ('06)

Long-time behavior: 
Earlier “isotropization” in perp. and 
long. directions of E2.

Iida, Kunihiro, AO, Takahashi ('14)

203 lattice
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Initial Condition and Time Evolution

Iida, Kunihiro, AO, Takahashi ('14)Lappi, McLerran ('06)
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Physical Scale
Rough estimate: L2 ~ π RAu

2  → 1/a = g2μ ~ 0.32 GeV (a ~ 0.63 fm)

Thermal energy estimate Kunihiro et al.('10), Muller,Schafer('11)   

CYM energy density should not exceed Stefan-Boltzmann energy density 
in equilibrium.

This estimate gives 
    a > 0.8 fm (T=350 MeV), 
    a > 0.6 fm (T=500 MeV).

εCYM=2(N c
2−1) T

a3
, εSB=2(N c

2−1) π
2

30T
4

εCYM<εSB

→ a> 1T (30π2)
1/3

∼1.4T
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Decoherence Entropy of CYM
How about the decoherence entropy ?

< δE2>/<E2> ~ 0.1 ( Δ=0.05) and 0.3 ( Δ=0.1)
Sdec ~ 2.3 (Δ=0) and 33 (Δ=0.05, 0.1)

Entropy from initial state fluc. and chaoticity 
No long. fluc. results in 2D (pz=0 mode) entropy,
while 3D entropy is realized with finite long. fluc. (non-zero Δ).

Time

Sdec/site
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Decoherence Entropy Production Rate
Decoherence entropy growth rate should be compared with KS entropy 

dSdec/dt ~ 0.88 (Δ=0.01), 1.05 (Δ=0.05), 1.36 (Δ=0.1)

KS entropy estimate: SKS ~ cKS ε1/4, cKS ~ 2 (conformal chaotic value)

Energy density: ε = 0.17 ( Δ=0.01), 0.18 ( Δ=0.05), 0.21 (Δ=0.1)
→ cKS = dSdec/dt/ε1/4 = 1.4 ( Δ=0.01), 1.6 ( Δ=0.05), 2.0 (Δ=0.1)

KS entropy
= Potentially realized 
   growth rate
   

1
SKS

dS dec

dt ∼(0.7−1.0)

Δ=0: unstable
    but stationary
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Physical Scale
Rough estimate: L2 ~ π RAu

2  → 1/a = g2μ ~ 0.32 GeV (a ~ 0.63 fm)

Thermal energy estimate Kunihiro et al.('10), Muller,Schafer('11)   

CYM energy density should not exceed Stefan-Boltzmann energy density 
in equilibrium.

This estimate gives 
    a > 0.8 fm (T=350 MeV), 
    a > 0.6 fm (T=500 MeV).

First 6 fm/c corresponds to 
lattice time g2μt < 10 !

εCYM=2(N c
2−1) T

a3
, εSB=2(N c

2−1) π2

30
T 4

εCYM<εSB

→ a> 1
T (30π2 )

1/3

∼1.4
T

relevant to HIC

Time

Sdec/site
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Summary
We have evaluated the entropy from classical Yang-Mills field using

Kolmogorov-Sinai entropy (as a growth rate),
Decoherence entropy.

Entropy could be produced even before classical Yang-Mills field 
decays into particles.

Suggested scenario: Fluctuation
→ Realization of instability & Spread to many modes → Chaoticity
Rough estimate of entropy production rate in non-expanding CYM

Decoherence entropy grows at about the cKS = (1-2) rate, and saturates,
and it is sensitive to longitudinal fluctuations. 
For the initial stage entropy, both the time-evolution and the initial 
entropy value would be important.

dS
dt

=S KS∼cKS ε
1/4 , cKS∼2 (Lattice unit)
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Future works
Decoherence entropy in expanding glasma 
with realistic fluctuation strength
E.g. Epelbaum, Gelis ('13)
Estimate of decoherence time during CYM evolution
and Defining coherent domain in CYM
c.f. Fries, Muller, Schafer ('09)
Coupling to particle DOF

Fluctuation in classical statistical simulation ~ particles ?
CYM + gluon test particles
Dumitru, Nara, Strickland ('07)
2PI formalism of CYM and gluon propagator
c.f. Nishiyama, AO ('10, w/o CYM), Hatta, Nishiyama ('11), Cassing ('09)
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Thank you for your attention !



Jan M. Pawlowski

 Universität Heidelberg & ExtreMe Matter Institute

  BNL, April 3    2013

Non-equilibrium dynamics of gauge theories 
and  

transport coefficients 

rd
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                                 Outline  
                           

!  Gauge dynamics far from equilibrium

!  Spectral functions and transport coefficients

!Summary and outlook
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Gauge dynamics far from equilibrium
Gasenzer, McLerran, JMP, Sexty ‘13
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Gasenzer, McLerran, JMP, Sexty ‘13

Abelian Higgs model in 2+1 dim

S[Aµ,�] = �
Z

x


1

4
Fµ�F

µ� + (Dµ�)
⇤Dµ�+ V (�)

�
Classical action:

� Higgs

�

|�| = ei�phase

Gauge dynamics far from equilibrium
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Abelian Higgs model in 2+1 dim

S[Aµ,�] = �
Z

x


1

4
Fµ�F

µ� + (Dµ�)
⇤Dµ�+ V (�)

�
Classical action:

� Higgs

�

|�| = ei�phase

Classical action of Yang-Mills theory in diagonalisation gauges:

SYM ' 1

2

Z

x
trF 2

µ̄�̄ +
1

2

Z

x
tr (Dµ̄A2)

2

Wilson loop 

W2 = P exp

(
i

Z L2

0
dx2 A2(x)

)
= exp{i�} n(S) = 1

16⇥ i

I

S
d2x �ijtr ⇤̂ ⌅i⇤̂ ⌅j ⇤̂ �̂ =

�

k�k

Vortex winding phase

A2 = A

c
2(x0, x1)

Gauge dynamics far from equilibrium
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Complex scalar vs Abelian Higgs

Which is which?

Quiz 

classical statistical lattice simulations

‘tachyonic’ initial conditions

phase     of scalar field'

5



2+1 dim

Abelian Higgs model in 2+1 dim

magnetic field phase of Higgs

Gauge dynamics far from equilibrium

‘tachyonic’ initial conditions

classical statistical lattice simulations

Gasenzer, McLerran, JMP, Sexty ‘13

6



‘overpopulation’ initial conditions

Abelian Higgs model in 2+1 dim

Gauge dynamics far from equilibrium

GU (⇥x, ⇥y, t) = h�(⇥x, t)U(⇥x, ⇥y, t)�(⇥y, t)⇤icl
parallel transport U

⇥ =
6e2

�

coupling

� = 0.025

relative phasemodulus of Higgs

charge

Gasenzer, McLerran, JMP, Sexty ‘13

'

U (~x, t) = arg(GU (~0, ~x, t))

relative phase
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Gauge dynamics far from equilibrium

⇥ =
6e2

�

coupling

‘overpopulation’ initial conditions Gasenzer, McLerran, JMP, Sexty ‘13

� = 1.0

⇠ = 0.252
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Spectral functions & transport coefficients
M. Haas, Fister, JMP ´13

Christiansen, M. Haas, JMP, Strodthoff, in prep.

                   Helmboldt, JMP, Strodthoff, in prep.
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Heavy ion collisions

U. Heinz, talk at RETUNE ’12
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Heavy ion collisions

Computing 
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∂t = − 1

2
+ + − 1

2

1

M. Haas, Fister, JMP ´13

Transport in QCD
correlations of energy-momentum tensor 

⇢⇡⇡
=

1

⇢⇡⇡

⇢T/L

full vertex

v
=

1

⇢⇡⇡

⇢T/L

classical  vertex

=⇢⇡⇡ + + + ... 

Diagrammatic representation

full computation Christiansen, Haas, JMP, Strodthoff, in prep.

+ ... 

Vertex corrections

closed form

Flow
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∂t = − 1

2
+ + − 1

2

1

M. Haas, Fister, JMP ´13

Transport in QCD
correlations of energy-momentum tensor 

⇢⇡⇡
=

1

⇢⇡⇡

⇢T/L

full vertex

v
=

1

⇢⇡⇡

⇢T/L

classical  vertex

=⇢⇡⇡ + + + ... 

Diagrammatic representation
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 Viscosity in pure glue
imaginary time correlations
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 Viscosity in pure glue
gluon spectral functions
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 Viscosity in pure glue

Complex DSEs
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 Viscosity in pure glue

JMP, Strodthoff, in preparation
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 Viscosity in pure glue

JMP, Strodthoff, in preparation
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 Viscosity in pure glue
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 Viscosity in pure glue
shear viscosity

entropy lattice
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! Gauge dynamics far from equilibrium 

!Spectral functions and transport coefficients

Summary & outlook

magnetic field phase of Higgs

Abelian Higgs

spectral functions viscosity over entropy ratio
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Lattice calculation of a second order transport 
coefficient for hydrodynamics

Owe Philipsen

   Brookhaven,  04.04.14

Introduction

The first full lattice calculation of a real time quantity without MEM 

JHEP 1402 (2014) 003

                     and Christian Schäfer 

Approach to Equilibrium in Strongly Interacting Matter

1



Motivation + Introduction

Measurement of elliptic flow v2 at RHIC and LHC

Well described by viscous hydrodynamics with fitted transport coefficients

Hydrodynamics = effective theory for long time evolution

Transport coefficients predicted by underlying microscopic theory: QCD

2



Relativistic Hydrodynamics

Central quantity: energy momentum tensor

Relativistic, ideal fluid

 

Relativistic, viscous fluid

Represent       and         by gradient expansion

3



Second order gradient expansion in N=4 SYM

Defines the transport coefficients such as the shear viscosity,
the relaxation time     ,  14 second order coefficients 

“Thermodynamical” vs. “dynamical” coefficients

Thermodynamical coefficients non-zero in complete equilibrium:  8 

Kubo relations to retarded correlators at zero frequency = euclidean correlators

Only three independent ones:         (two-point fcn.),        ,      (three-point fcns.)

known to LO in perturbation theory

Moore, Kiyoumars, Sohrabi:  arXiv:1210.3340

4



AdS/CFT

For N=4 SYM:

To compare with QCD, rescale with entropy:

5



Shear viscosity from the lattice

6



Thermal field theory, real time

Retarded energy momentum correlator in the shear channel

Describes linear response to metric perturbation, 
 gradient expansion                momentum expansion   

 

Can be related to euclidean correlation function

7



Relation by analytic continuation (unique with suitable b.c.)

Trivial continuation at zero frequency, but correct for contact term 

OPE:  B is momentum independent 

Altogether:  low momentum euclidean correlator, allows lattice extraction

8



The lattice framework

 SU(3) Yang-Mills theory 

Anisotropic, hypercubic lattice

Wilson action

Field strength tensor represented by (clover) plaquettes (noise reduction)

9



Euclidean correlator of interest in momentum space

Convenient for renormalisation purposes: express by diagonal elements

Requirements for small momentum regime 

Need at least 3 momenta,         fixed by T and lattice spacing

Expensive! Need large       ,             helps:  

〈T12(x)T12(y)〉 =
1
2

(
〈T11(x)T11(y)〉 − 〈T22(x)T22(y)〉

)

10



Perturbation theory

Leading order = ideal gas: 

Requires 16 terms of the generalised form

Continuum result:

Lattice perturbation theory:   

11



Correlator in momentum space for vanishing coupling

Matsubara sums, momentum integration

12



Continuum limit at fixed T: 

Cut-off effects depend on 
anisotropy, there is an optimal value,
(known in perturbation theory only)

<10% cut-off effect for ξ = 2, Nτ ≥ 6

ξopt

(
κ T
2

) (
0
)
∣ ∣ ∣(

κ T
2

) (
2
)∣ ∣ ∣

ξ

Nτ = 4
Nτ = 6
Nτ = 8

κ(0)

13



Fully interacting: renormalisation

Correlator UV divergent

Additive renormalisation: subtract vacuum divergence

Requires two simulations per lattice spacing and temperature

                             ;  choose                    ,  
pressure still exponentially small  

Significant loss of accuracy 
(cf. equation of state)
main weakness of the calculation!

Tvac = 0⇒ Nτ =∞

0
T Tvac T − Tvac

14



Energy momentum tensor is Noether current of translation invariance

Continuum:  protected against renormalisation by symmetry

Lattice: translation invariance broken to discrete sub group

Multiplicative renormalisation necessary

Anisotropic lattice requires two renormalisation factors:

plaquettes in t-direction spatial plaquettes

15



Ratio of renormalisation factors from RG-invariant quantities, e.g.   

 Absolute renormalisation by matching to continuum pressure

16



Full simulation vs. lattice perturbation theory

17



Temperature and cut-off dependence

18



The computing platform

19



Temperature and cut-off dependence

Cut-off dependence smaller than statistical error

Errors dominated by vacuum subtraction

No T-dependence within current resolution

20



Conclusions

First lattice computation of a transport coefficient without MEM

Calculation in momentum space costly

Large statistical error by vacuum subtraction, try methods without this step

In principle: 8 coefficients doable; is it worth the effort?

Result is not far from LO perturbative prediction, try NLO, HTL in the continuum!
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Strong Coupling Far-From 
Equilibrium Thermalization for 

‘nuclei’  

Paul Romatschke 
University of Colorado, Boulder 

In	  collabora*on	  with	  D.	  Grumiller,	  B.	  Wu,	  J.D.	  Hogg,	  W.	  van	  
der	  Schee	  and	  S.	  Pra?	  



Motivation 

Estimate for QCD coupling in HIC: 
 

αs~0.3, g~2 
 

For quantitative answers: 
Weak coupling methods not applicable 
Strong coupling methods not applicable 

We probably need both 



Motivation 

•  Strong Coupling Dynamics cannot be 
simulated in QCD 

•  Early Phase of Heavy-Ion Collisions probes 
QCD at ‘sizeable’ coupling 

•  Would like a model that naturally leads to 
hydrodynamics (thermalizes) and provides 
hydro initial conditions at τhydro 

•  Final results should be independent from τhydro 



Why is this important at all? 

•  Hydro requires Initial Conditions 
•  These are chosen ‘ad-hoc’:  

Author Hydro Start Time  Flow velocity Equili-
brated? 

Schenke et al. (2013) 0.2 fm/c Non-zero (glasma) no 

Bozek & Broniowski (2013) 0.2/0.6 fm/c zero no 

Heinz et al. (2013) 0.9 fm/c zero no 

Niemi et al (2013) 0.05-0.2 fm/c Non-zero (minijet) no 

[your name here] 



Hydro Initial Conditions Matter 

•  Different initial conditions for hydrodynamics 
lead to different particle spectra 

•  Unfortunately (some of) these differences can 
also be generated by changing ‘physical’ 
parameters such as transport coefficients 
(viscosities), EoS, … 

This	  limits	  our	  ability	  to	  learn	  about	  QCD!	  



Hydro Initial Conditions Matter 

We would like a model for how system 
equilibrates rather than guessing its state after 

hydrodynamics starts to apply 

AdS/CFT	  may	  provide	  
such	  a	  model	  



Heavy Ion Collisions as BH 
Collisions in AdS5 

•  Dynamical QCD not solvable exactly (e.g. sign 
problem in lattice QCD, strong coupling, many 
body system, …) 

•  Try changing the problem: 

QCD	  -‐>	  N=4	  SYM	  
Nc,	  αs-‐>∞	  	   Voila,	  we	  can	  use	  

AdS/CFT!	  
…but	  we	  have	  lost	  asympto*c	  freedom,	  
confinement	  and	  have	  many	  more	  dofs..!	  



Want: QCD, Nc=3, g=1 
Can do: N=4 SYM, Nc=∞, g=∞ via holography 

So	  we	  propose	  to	  approximate	  what	  we	  want	  by	  
•  a	  theory	  theory	  not	  realized	  in	  nature	  
•  a	  wrong	  gauge	  group	  
•  a	  wrong	  coupling	  value	  
•  Using	  a	  method	  that	  is	  only	  conjectured	  to	  work	  



Why? Because we are desperate ! 

•  At g=2, we don’t trust weak coupling methods 
•  Lattice QCD doesn’t work for dynamics 
•  AdS/CFT is the only generic strong coupling 

technique we have 



Why not AdS/CFT 

IMHO, there are many applications for which 
AdS/CFT is be a bad model… 



Why AdS/CFT 

… but I will argue that it is a robust model for 
thermalization in heavy-ion collisions in a 

universe where αs is extremely large 



Some ‘issues’ of N=4 SYM may not be so bad: 
•  While QCD is not conformal, we apply our 

model only at T>400 MeV where cs
2~0.3 

•  QCD is confining but at T~170 MeV, much 
below the scale we stop applying our model 

•  Nc=∞ may not be such a bad description of 
Nc=3 in view of success of large Nc QCD 

 
So if we’re interested in the bulk dynamics of a 
gauge theory at strong coupling, AdS/CFT may 

even be quantitatively close to sQCD 



Heavy Ion Collisions as BH 
Collisions in AdS5 

If we are willing to accept these ‘approximations’, 
then holographic renormalization lets us recast 
‘nuclear collisions’ in 3+1d with 
 
as shock wave collisions in AdS5: 

established the form of the line element for given (energy-) density profiles of nuclei, a
lower bound on the total entropy produced in the collision of two of the shock waves.
Moreover, using techniques from numerical relativity on the collision of black holes
in various dimensions, the actual equilibration of the gauge theory from a far-from
equilibrium state to hydrodynamics has been observed in numerical simulations with
a high degree of symmetry (the nuclei where assumed to be translationally invariant
in the plane transverse to the collision axis) [25, 26]. However, these simulations
could not provide information on the pre-equilibrium dynamics in the transverse
plane, which is of interest because it could potentially lead to observable effects in
nuclear collision experiments at RHIC and the LHC. The aim of the present article
is to provide the foundation to lift this shortcoming by providing the metric shortly
after the head-on collision of two gravitational shock waves, including the extraction
of the early-time gauge-theory energy-momentum tensor. By the nature of the early-
time series employed, the results obtained will be quantitatively reliable only at
mid-rapidity and close to the boundary of AdS space. Nevertheless, we presume
that using these results in conjunction with recent numerical advances in solving the
Einstein equations in AdS

5

(cf. [32]) will allow observation of equilibration of the
system including full transverse dynamics.

2 Setup: Heavy-ion collisions as gravitational shock waves

Boosting a charge to very high velocities, its energy-density distribution becomes
highly singular. This is very similar to the case of boosting a mass to very high
velocities. However, in the latter case it has been understood by Aichelburg and
Sexl in the 1970’s that a reasonable description of the energy-momentum tensor can
be given by rescaling the mass with the boost factor [33]. By complete analogy, the
energy-momentum tensor of a boosted charge ⇢ can be calculated analytically by
means of a rescaling of the coupling constant [34], arriving at a form of
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Heavy Ion Collisions as BH 
Collisions in AdS5 

•  Two infinitely boosted ‘nuclei’ superimposed 
become two shock waves in gravity 

•  Extremely high-energy analogue of black-hole 
collisions (Aichelburg-Sexl shock waves) 

•  Hard to treat collision process via numerical 
relativity 

•  Some insight may be gained analytically 



Shock Wave Collisions in AdS5 

•  Coordinate Transformation turns delta-
functions into C2 functions in the metric: 

 



Shock Wave Collisions in AdS5:  
perturbative GR (pGR) 

•  Close to collision point u=0, v=0, may find 
line element after collision by solving Einstein 
Equations (‘early time perturbation theory’) 

•  Via AdS/CFT, can obtain information about 
QFT energy-momentum tensor 

[Grumiller&PR	  2008;	  PR	  &	  Hogg	  2013]	  

Problem:	  Expansion	  uncontrolled	  close	  to	  horizon,	  would	  
need	  to	  resum	  (see	  Bha?acharyya	  &	  Minwalla,	  JHEP	  909])	  



pGR shock collisions 

•  Analytic results predicts non-equilibrium ‘flow’: 

•  Pre-equilibrium transverse flow is consistent 
with ideal hydro (with s=ρ(r)) 

•  Pre-equilibrium energy density evolution is NOT 
consistent with hydro 

[Grumiller&PR	  2008;	  PR	  &	  Hogg	  2013]	  

uξ=3	  τ2	  ρ(r)	  ξ	  



From pGR to full GR 

•  Use analytic post-collision line element to 
obtain (approximate) initial data & follow full 
evolution using numerical GR 

•  Simplest case: planar shocks --- we did this 
using a characteristic scheme (Chesler-Yaffe) 

•  More realistic: shocks with transverse profile 
(corresponding to head-on ‘nuclear’ collisions) 

[Wu	  &	  PR,	  2011]	  

[van	  der	  Schee,	  PR	  &	  Pra?,	  2013]	  



From pGR to full GR 

In all the cases we study, the analytic post-
collision line element is not quite ‘good enough’ 

to serve as valid initial data. Reason: poor 
convergence of perturbative series close to 

horizon.  
We resort to adding a regulator to the analytic 
data that smoothes the data in the bulk while 
leaving the near-boundary data unaffected. 

Because of this, our results have to be taken with 
a grain of salt. 



Planar Shock Collisions in AdS5 

[Wu	  &	  PR,	  2011]	  Consistent	  with	  numerical	  treatment	  of	  
collision,	  Casalderrey-‐Solana	  et	  al.,	  PRL	  111	  



Planar Shock Collisions in AdS5 

[Wu	  &	  PR,	  2011]	  



Planar Collisions -- Summary 

•  We find that despite far from equilibrium 
initial state the system always equilibrates 

•  Details of the equilibration process depend on 
our regulator function, but local energy density 
tends to first rise and then fall according to 
late-time hydrodynamic behaviour 



Shocks with Transverse Profiles 
•  We	  are	  able	  to	  generalize	  our	  methods	  to	  

collide	  shock	  waves	  with	  arbitrary	  transverse	  
profiles	  and	  thus	  have	  a	  model	  of	  pre-‐
equilibrium	  radial	  flow	  

•  Radius	  of	  Au/Pb	  ion	  sets	  transverse	  scale.	  This	  
fixes	  scale	  conversion	  of	  model	  to	  physical	  units	  	  



AdS+hydro+cascade 
•  We are able to follow dynamics until (and 

beyond) equilibration 
•  Resulting Energy-Stress Tensor is used as 

initial data in subsequent hydrodynamic 
evolution code (matching) with QCD EoS 

•  Hydro evolution proceeds until system has 
cooled below QCD phase transition. Evolution 
is stopped and data is fed into a standard 
hadron cascade code 

•  Particle spectra from cascade are compared to 
experiment 



AdS+hydro+cascade 

[van	  der	  Schee,	  PR	  &	  Pra?,	  2013]	  



AdS+hydro+cascade 

[van	  der	  Schee,	  PR	  &	  Pra?,	  2013]	  



AdS+hydro+cascade 

[van	  der	  Schee,	  PR	  &	  Pra?,	  2013]	  



AdS+hydro+cascade 

AdS/CFT+hydro	  results	  are	  	  
independent	  of	  choice	  of	  

switching	  *me	  

You	  get	  what	  you	  get.	  
No	  ‘tuning’	  



Why AdS/CFT if hydro works 
anyway? 

•  Hydro requires Initial Conditions 
Author Hydro Start Time  Flow velocity Equili-

brated? 
Schenke et al. (2013) 0.2 fm/c Non-zero (glasma) no 

Bozek & Broniowski (2013) 0.2/0.6 fm/c zero no 

Heinz et al. (2013) 0.9 fm/c zero no 

Niemi et al (2013) 0.05-0.2 fm/c Non-zero (minijet) no 

Van der Schee et al (2013) Arbitrary, >0.5 fm/c Non-zero (AdS/CFT) yes 



[van	  der	  Schee,	  PR	  &	  Pra?,	  2013]	  

Shocks with Transverse Profiles 



Shocks with Transverse Profiles 

[van	  der	  Schee,	  PR	  &	  Pra?,	  2013]	  



Strong vs. Weak Coupling 

[van	  der	  Schee,	  PR	  &	  Pra?,	  2013]	   [Epelbaum,	  Gelis,	  2013]	  

g=0.5	  g=∞	  

How	  about	  making	  more	  comparisons	  like	  these???	  



Summary and Conclusion 

•  AdS/CFT is robust tool to model early-time 
heavy-ion collisions at very large coupling 

•  Leads natural to thermalization for τ>0.5 fm/c 
•  Results have fewer parameters than standard 

hydro models, but still depend on regulator 
 Wish	  list:	  
•  Simulate	  non-‐central	  and	  ‘lumpy	  hotspot’	  shocks	  
•  Finite	  Coupling	  Correc*ons	  (match	  dN/dYexperiment?)	  
•  Perform	  boosted	  BH	  collisions	  in	  AdS5	  
•  Weak	  coupling	  thermaliza*on	  results	  to	  compare	  to	  
	  



My message 

It’s	  not	  Weak	  Coupling	  vs.	  AdS/CFT.	  We	  may	  need	  both	  to	  
describe	  nature	  at	  g~2.	  



Backup 



Towards real BH collisions in 
AdS 

•  Results so far use analytic approximate metric 
as initial data for GR evolution 

•  Advantages: ‘easy’ for numerical GR, 
promises quick contact with experiment 

•  Disadvantage: require (unphysical?) regulator 
•  Alternative: collide black holes in global AdS5 

(ongoing work with Hans Bantilan) 



BH ‘collisions’ in global AdS5 

•  Coordinates 
•   Line element:  
ds2=gttdt^2+gtχdtdχ+gtrdtdr+grχdrdχ
+gχχdχ2+grrdr2+gψ(dϑ2+sin2ϑdϕ2) 
•  Gauge Condition: Generalized Harmonic (Hµ 

is lengthy!) 



BH ‘collisions’ in global AdS5 



BH ‘collisions’ in global AdS5 



BH ‘collisions’ in global AdS5 



BH ‘collisions’ in global AdS5 



BH ‘collisions’ in global AdS5 



GEOMETRY AND FLUCTUATIONS 
IN LARGE AND SMALL 
NUCLEAR COLLISION SYSTEMS
B J Ö R N  S C H E N K E ,  B R O O K H A V E N  N AT I O N A L  L A B O R AT O R Y

Z
dx

T H E  A P P R O A C H  T O  E Q U I L I B R I U M

!

I N  S T R O N G LY  I N T E R A C T I N G  M A T T E R   
A P R I L  4  2 0 1 4



• Heavy Ion Collisions: 
Initial state fluctuations and collective  
flow can describe lots of experimental data  

• Details of the fluctuations are important 

• How to distinguish between different models of 
multi-particle production 

• Are the physics the same in small systems?

I N T R O D U C T I O N

2



• Gluon saturation at  

• Strong fields with occupation  
Classical description possible 

• IP-Sat model parametrizes  
(simple way to include impact parameter dependence) 

• Fit parameters to HERA diffractive data  

C O M P U T I N G  T H E  I N I T I A L  S TAT E

3

!
B . S C H E N K E ,  P. T R I B E D Y,  R . V E N U G O PA L A N ,  P R L 1 0 8 ,  2 5 2 3 0 1  ( 2 0 1 2 ) ,  P R C 8 6 ,  0 3 4 9 0 8  ( 2 0 1 2 )

� �/�Ã

+Ã(Ý,b)

K O W A L S K I ,  T E A N E Y,  P H Y S . R E V.  D 6 8  ( 2 0 0 3 )  1 1 4 0 0 5

«/ � +Ã(Ý,b)



• Sample nucleon positions from Woods-Saxon distribution 

• Add all (Gaussian) thickness functions 

• Extract                 and get color charge density distribution

C O M P U T I N G  T H E  I N I T I A L  S TAT E

4

!
B . S C H E N K E ,  P. T R I B E D Y,  R . V E N U G O PA L A N ,  P R L 1 0 8 ,  2 5 2 3 0 1  ( 2 0 1 2 ) ,  P R C 8 6 ,  0 3 4 9 0 8  ( 2 0 1 2 )

d�p
dip

d�x/
(r/, Ý,x/) = �N (r/, Ý,x/) = �

�
� � exp

�
� ë�

� V
r�/�Ã(+

�)Ý}(Ý,+�)
Ƃ�

�=�
/«(x/ � x�/)

��
+Ã(Ý,x/)



C O M P U T I N G  T H E  I N I T I A L  S TAT E

5

• Sample color charge density 

• For nucleus A and B compute the path-ordered 
exponential over its longitudinal extend  
 

• m is an infrared cutoff of order 

• Wilson lines after the collision are then obtained from         

!
B . S C H E N K E ,  P. T R I B E D Y,  R . V E N U G O PA L A N ,  P R L 1 0 8 ,  2 5 2 3 0 1  ( 2 0 1 2 ) ,  P R C 8 6 ,  0 3 4 9 0 8  ( 2 0 1 2 )

6Ƃ/	(x/) =

 Þ�

�=�
exp

�
� �}

�Ƃ/	
� (x/)

��
/ +��

�

�Ƃ/	(x/)

�QCD

and      via the Yang-Mills equations6Ƃ 6	



C O M P U T I N G  T H E  I N I T I A L  S TAT E

6

• Yang-Mills equations determine: 

• Initial gluon fields from color charges 

• Energy density after the collision 

• Early non-equilibrium time evolution 

!
B . S C H E N K E ,  P. T R I B E D Y,  R . V E N U G O PA L A N ,  P R L 1 0 8 ,  2 5 2 3 0 1  ( 2 0 1 2 ) ,  P R C 8 6 ,  0 3 4 9 0 8  ( 2 0 1 2 )

K R A S N I T Z ,  V E N U G O PA L A N ,  N U C L . P H Y S .  B 5 5 7  ( 1 9 9 9 )  2 3 7



I N I T I A L  S TAT E  A N D  F L U I D  D Y N A M I C S

7

!
C . G A L E ,  S . J E O N ,  B . S C H E N K E ,  P. T R I B E D Y,  R . V E N U G O PA L A N ,  P H Y S . R E V. L E T T.  1 1 0 ,  0 1 2 3 0 2  ( 2 0 1 3 )

/ê�• Compute energy-momentum tensor  
of the classical fields 

• Extract energy density and flow vector via 

• This provides the initial conditions  
for fluid dynamic simulations 

• At the moment set initial 

Õê/ê� = �Õ�

�ê� = �



I N I T I A L  S TAT E  A N D  F L U I D  D Y N A M I C S

8

�/Ã = � �/Ã = �.� �/Ã = �.�

!
C . G A L E ,  S . J E O N ,  B . S C H E N K E ,  P. T R I B E D Y,  R . V E N U G O PA L A N ,  P H Y S . R E V. L E T T.  1 1 0 ,  0 1 2 3 0 2  ( 2 0 1 3 )



E V E N T- B Y- E V E N T  F L U I D  D Y N A M I C S

• Evolve many initial shapes using fluid dynamics 

• Convert energy density to particles (“freeze-out”) 

• Determine     coefficients of particle distributions 

• Average and compare to experimental data

9

!
C . G A L E ,  S . J E O N ,  B . S C H E N K E ,  P. T R I B E D Y,  R . V E N U G O PA L A N ,  P H Y S . R E V. L E T T.  1 1 0 ,  0 1 2 3 0 2  ( 2 0 1 3 )

Û�



A T L A S  C O L L A B O R A T I O N ,  J H E P  1 3 1 1  ( 2 0 1 3 )  1 8 3  
C M S  C O L L A B O R A T I O N ,  P R C  8 7 ( 2 0 1 3 )  0 1 4 9 0 2 ,  A R X I V: 1 3 1 0 . 8 6 5 1

Û�
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• Study correlation  
between    and multiplicity  

• MC-Glauber gets 
(anti-)correlation 
because of          in
` 
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= �pp

�
Ý coll + (� � Ý) part

�
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 coll

• IP-Glasma finds weaker anti-correlation
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Au+Au, side-side Au+Au, “tip-tip”

• Uranium: prolate 
• Gold: oblate
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p+A will look like this
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Multiplicity distributions in p+p and p+Pb collisions 
are not as wide as the experimental data 
Introduce fluctuation of color charge density 
Hadronization can also widen the distribution

C M S  C O L L A B O R A T I O N ,  J H E P  1 1 0 1 ,  0 7 9  ( 2 0 1 1 )
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C M S  C O L L A B O R A T I O N ,  P H Y S . L E T T.  B 7 2 4  ( 2 0 1 3 )  2 1 3 - 2 4 0  

Red points: IP-Glasma + MUSICOpen symbols: Pb+Pb 
Filled symbols: p+Pb
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Why doesn’t it work? 
Two possibilities: 
!

a) We neglected correlations from the initial state 
!

They are there in IP-Glasma - just need to keep them 
!

b) The proton is not spherical and its shape fluctuates 
!

Will this give the right centrality dependence?

K .  D U S L I N G ,  R .  V E N U G O PA L A N ,  P H Y S . R E V.  D 8 7  0 5 4 0 1 4  ( 2 0 1 3 )



• IP-Glasma + fluid dynamics does very good job  
in describing experimental data in A+A collisions 

•     distributions in peripheral events are well described 
when nonlinear effects from the evolution are included 

• Ultra-central collisions of deformed nuclei can give 
information on particle production mechanism 

• Within IP-Glasma+MUSIC model and ignoring initial 
state correlations,     in p+Pb are not well described

S U M M A R Y
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Sensitivity of v
n

on viscosity and fluctuations
B. Schenke, S. Jeon, C. Gale, Phys.Rev.C85, 024901 (2012)
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Björn Schenke (BNL) BNL, December 18 2013 53/50

Û�



T E M P E R AT U R E  D E P E N D E N T  

38

Temperature dependent ⌘/s C. Gale, S. Jeon, B.Schenke,
P.Tribedy, R.Venugopalan, PRL110, 012302 (2013)

Use ⌘/s(T ) as in Niemi et al., Phys.Rev.Lett. 106 (2011) 212302
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One (⌘/s)(T ) will be able to describe both RHIC and LHC data
Used parametrization not yet perfect: no surprise
More detailed study needed - include different RHIC energies and LHC

Björn Schenke (BNL) BNL, December 18 2013 54/50
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Turbulent thermalization process 
in high-energy heavy-ion collisions 

Soeren Schlichting
In collaboration with
Juergen Berges, Kirill Boguslavski (Heidelberg)
Raju Venugopalan (Brookhaven)

RBRC Workshop, BNL, 04/04/2014



  

Heavy Ion physics 
& the thermalization problem

colliding
nuclei

HadronizationHadronization

Kinetic
freeze-out

Time

Non-
equilibrium
dynamics Viscous hydrodynamics free streaming

Final detected
particle distributions

Experimentally 
measured

Phenomenologically constrained

τ~1fm/c

Standard Model of Heavy Ion Collisions

Initial 
energy density

When and to what extent is a thermalized QGP achieved? How does this happen?

Introduction Turbulent Thermalization  Heavy Ion collisions at very high energies

Soeren Schlichting | Brookhaven National Lab2 



  

First principles description 
in two limiting cases

 Strong coupling in related theories (            ) (e.g.          SYM)

Gauge gravity duality – Collision of gravitational shock waves
 

g2 Nc≫1 N=4

 QCD at weak coupling (         ) and high occupancy (         ) 

Effective field theory description (CGC) of the primary collision 
leads to a state where the energy density is dominated by a large 
number of gluons with typical momenta      at times               after 
the collision
 

 

g2
≪1 g2 f∼1

τ∼1/Q sQs

ϵ∼Qs
4
/α s f ( p∼Q s)∼1/αsInitial energy density: i.e. 'occupancy' 

ϵ∼T 4 f ( p∼T )∼1Thermal equilibrium: i.e. 'occupancy' 

→ Strongly correlated & far from equilibrium

http://strings.net.technion.ac.il

Schenke,Tribedy, 
Venugopalan Phys.Rev. 
C86 (2012) 034908Â 

→ c.f. talks by Romatschke,Heller, Balasubramanian

Introduction Turbulent Thermalization  Heavy Ion collisions at very high energies

Soeren Schlichting | Brookhaven National Lab3 

Introduction Turbulent Thermalization  Heavy Ion collisions at very high energies

Soeren Schlichting | Brookhaven National Lab3 



  

Theoretical methods

 There are two complementary methods to study non-equilibrium dynamics at 
weak coupling (         ) and high occupancy (               )

 
f (t , p )∼1 /α s 1/αs> f (t , p)>1 f (t , p )∼1

αs≪1

('overoccupied plasma') ('classical particles') ('quantum')

1/αs> f >1

Classical-statistical lattice gauge theory Kinetic theory

Description in terms of classical field 
equations of motion

→ Solved numerically on a space-time lattice 
using lattice gauge theory techniques

Description in terms of quasi particle 
excitations. 

→ Study the effect of different scattering 
processes (e.g. 2 ↔2; 2↔3) analytically

DμF
μ ν
=J ν ∂t f (t , p)=C [ f ](t , p)
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From the violence of the collision
...to the calm of the quark-gluon fluid
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 Thermalization in scalar field theories – Cosmology
(Micha, Tkachev PRD 70 (2004) 043538)
(Berges, Boguslavski, SS, Venezuelan  arXiv:1312.5216)
→ c.f. talk by Kirill Boguslavski

 Thermalization in non-Abelian gauge theories in a 'static box'
(Berges,SS,Sexty PRD 86 (2012) 074006; SS PRD 86 (2012) 065008)
(Kurkela, Moore PRD 86, (2012) 056008)
(York, Kurkela, Lu, Moore,  arXiv:1401.3751)
→ c.f. talk by Aleksi Kurkela

 Thermalization in heavy-ion collisions at very high energies
(Berges,Boguslavski,SS,Venugopalan  arXiv:1303.5650,  arXiv:1311.3005) 

The  thermalization process at weak coupling proceeds in a similar 
way for a large class of strongly correlated many-body systems
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Thermalization process
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f(p)

p

Thermal 
equilibrium

Q T

 Consider homegenous and isotropic systems which are initially highly 
occupied and initially characterized by a single momentum scale Q 

Initial over-
occupation

How does thermalization proceed? 
 What are the relevant (kinetic) processes? 

???
Energy transport 

towards UV

→ Since classical-statistical lattice gauge theory and kinetic theory have an overlap 
in the range of validity they can be combined to obtain a detailed understanding of 
the thermalization process
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Non-Abelian plasma in a 'static box'
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 Initial conditions chosen to mimic quasi-particle picture

(see e.g. Kurkela, Moore  PRD 86, (2012) 056008; 
Berges,Boguslavski,SS, Venugopalan  arXiv:1311.3005 )

 Define single particle distribution 
to facilitate comparison with kinetic theory

Aμ
a (t 0, x)=∫

d 3k

(2π)3
√ f (k , t0)×[cλ , a

k ξμ
(λ)k (t0)e

ikx+c.c ]

f ( p , t )=〈∣ξμ(λ)k (t )∂t A a
μ (t , p )∣

2
〉

(Coulomb gauge)

G
lu

o
n

 s
p

ec
tr

u
m

:
g2
f(
p
,t
)

N 3
=2563

Qa=1 /4
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Classical-statistical lattice simulations
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 Evolution at late times shows 
a self-similar behavior 

with dynamical scaling 
exponents 

consistent with elastic & 
inelastic scattering processes

α = -4/7 

β = -1/7

(SS PRD 86 (2012) 065008; Kurkela, Moore  PRD 86, (2012) 056008) 

(c.f. Kurkela, Moore JHEP 1112 
(2011) 044;  Blaizot et al. 
Nucl.Phys. A873 (2012) 68-80)

f ( p , t )=(Qt )α f S((Qt )
β p)

Energy transport 
towards UV
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Thermalization for a system far from equilibrium proceeds as a 
self-similar evolution associated to the presence of a 
non-thermal fixed point 

How does this picture apply to relativistic heavy-ion 
collisions in the weak coupling limit? 

Introduction Turbulent Thermalization  Heavy Ion collisions at very high energies

Far from 
equilibrium

Thermal 
equilibrium

Non-thermal 
fixed point

Initial over-population 

Self-similarity
Turbulence 

f ( t , p)= tα f S( t
β p)

Quantumeffects

f eq  p

Soeren Schlichting | Brookhaven National Lab10 

Time t therm∼Q
−1
αS
−7 /4

t fp∼Q
−1

f (t0, p)∼Q∼
1
αS

Turbulent thermalization process



  

The 'Glasma' and the over-occupied QGP

Colliding sheets 
of CGC

Highly anisotropic 
'Glasma'

Over-occupied
plasma
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 There is always a competition between interactions and the 
longitudinal expansion, which may render the system anisotropic on 
large time scales.

 

Longitudinal Expansion:
 red-shift of longitudinal momenta p
 → increase of anisotropy
 dilution of the system

Interactions:
 isotropize the system

Thermalization of the over-occupied QGP

Introduction Turbulent Thermalization  Heavy Ion collisions at very high energies
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 Different scenarios of how thermalization proceeds have been 
proposed in the literature

 

Baier et al. ( BMSS ),
PLB 502 (2001) 51-58

Kurkela, Moore ( KM ),
JHEP 1111 (2011) 120

Blaizot et al. ( BGLMV ), 
Nucl. Phys. A 873 (2012) 68-80

  

Introduction Turbulent Thermalization  Heavy Ion collisions at asymptotic energies

Initial 
time

End of 
classical 
regime

 Difference arises from the treatment of soft (non-perturbative) physics of 
modes below the Debye scale.

Soeren Schlichting | Brookhaven National Lab13 03/07/14

Kinetic theory description

→ Since the classical-statistical theory and kinetic theory have an 
overlap in the range of validity, non-perturbative lattice simulations can 
be used to determine which scenario is realized

 



  

Classical-statistical simulations

Choose a large range of different initial conditions to describe the properties of 
the system at the initial time                              very shortly after the collision 

(Coulomb gauge)

Computations performed at very weak coupling                       to ensure 
accurate description of the dynamics at all times in simulation.

Corresponds to                       ,  i.e. much smaller than expected 
thermalization time at weak coupling 

τ0=1/Qs ln
2
(1/αs)

Qs τ therm≈105
−1013

αs∼10−2
−10−5

Qs τ0≈20−100

f ( pT , pZ , τ0)=
n0
αs
θ(Qs−√ pT2+ξ0

2 pZ
2 )

Controls initial 
momentum space anisotropy

Controls initial 
overoccupation

G
lu

o
n

 d
is

tr
ib

u
tio

n

Momentum 

n0
αs

Qs

f(
p T
,p

Z
,τ

0
)
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Bulk anisotropy

 Small occupancy leads to initial 
free streaming behavior.

 Large initial anisotropy leads to 
transient increase of isotropy via 
plasma instabilities 

 The system remains strongly 
interacting throughout the entire 
evolution. 

 At late times, the evolution 
becomes insensitive to the 
details of the initial conditions 
and the anisotropy increases.

in
st

ab
ili

tie
s

f ( pT , pZ , τ0)=
n0
αs
θ(Qs−√ pT2+ξ0

2 pZ
2
)Initial distribution:
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 The typical longitudinal 
momentum of hard excitations 
exhibits a universal scaling 
behavior 

Q τ0=20

Q τ0=100

 The typical transverse 
momentum of hard excitations 
remains approximately constant 

Λ
T

Λ
L

(αS∼10−5
)

(αS∼10−2
)

Time : τ / τ0

Time : τ / τ0

1 10

1 10

1              5

1                      10
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Soeren Schlichting | Univ. Heidelberg 05/23/1317 

  Universal scaling 
independent of the 
lattice discretization

 Need very large lattices 
up to

to properly resolve all 
the relevant scales

256x256x4096

Q τ0=100
(αS∼10−5)

Time : τ / τ0
1 10
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Gluon spectra

Transverse spectrum Longitudinal spectrum

G
lu

on
 s

pe
ct

ru
m

:

Transverse spectrum quickly approaches 
'thermal' like          shape, with decreasing 
amplitude

T / pT

τ / τ0=5
τ / τ0=10
τ / τ0=20
τ / τ0=40

Significant momentum (     ) broadening 
observed. However not strong enough to 
compensate for the red shift.

pZ
G

lu
on

 s
pe

ct
ru

m
:
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Self-similarity
R

es
ca

le
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gl
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n 
sp
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um
:

The system reaches a non-thermal fixed point, where the space-time evolution

 becomes self-similar, i.e.

with a stationary distribution       and scaling exponents

f ( pT , pZ , τ)=(Q τ)
α f S((Q τ)

β pT ,(Q τ)
γ pZ )

 f S α=−2/3 ,β=0 ,γ=1 /3
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Kinetic interpretation

Consider the Boltzmann equation

with a self-similar evolution  

→ Non-thermal fixed point solution

→ Scaling exponents determined by scaling relations for

 

f ( pT , pZ , τ)=(Q τ)
α f S((Q τ )

β pT ,(Q τ)
γ pZ )

[∂τ−
pZ
τ ∂ pZ ] f ( pT , pZ , τ)=C [ f ]( pT , pZ , τ)

 Small angle elastic scattering

 Energy conservation

 Particle number conservation

(α−3β−γ=−1)

(α−2β−γ=−1)

(2α−2β+γ=−1)

α=−2/3 ,β=0 ,γ=1 /3→  in excellent agreement with lattice data!    

[α+β pT ∂pT+(γ−1) pZ ∂pZ] f S( pT , pZ)=Q
−1C [ f S ]( pT , pZ )

(f≫1)
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Comparison with weak-coupling
thermalization scenarios

'Bottum up' scenario* emerges as a non-thermal fixed point of the evolution!

*Baier,Mueller,Schiff and Son, Phys. Lett. B 502, 51 (2001)
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Turbulent thermalization process

Time τ inst∼Q
−1 ln2

(αS
−1
) τquant∼Q

−1
αS
−3 /2 τ therm∼Q

−1
αS
−13/5

Extrapolation to realistic coupling               forαS∼0.3 Q∼2GeV

τ inst∼0.1 fm /c τquant∼0.6 fm /c τ inst∼2 fm /c

Far from 
equilibrium

eff. memory loss

Thermal 
equilibrium

Non-thermal 
fixed point

Self-similarity

Classical regime

Elastic 
scattering

“bottom up” 
 thermalization

Inelastic 2 ↔3 
processes

Quantum regime

2D thermal 
like T/p

T

Introduction Turbulent Thermalization  Heavy Ion collisions at very high energies
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Quantum 
attractor?



  

Summary & Conclusions
 The thermalization process at weak coupling (       ,       ) is governed by 

non-thermal fixed points, where the system exhibits the self-similar dynamics 
characteristic of wave turbulence.

 Generic feature of strongly correlated many-body systems across different
energy scales ('big bang', 'little bang', 'ultracold bang')

 We have established the connection between non-perturbative classical statistical 
lattice simulations and kinetic theory for the expanding non-Abelian plasma.

 Extrapolation to realistic values of the coupling yields reasonable results, consistent 
with heavy-ion phenomenology.

 

g2
≪1 g2 f∼1

 How does the approach to the weak coupling attractor occur for more realistic 
initial conditions and values of the coupling constant?

 How exactly is thermalization completed in the quantum regime?

Open questions



  

Backup Slides
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Thermalization process

elastic scattering   + 2↔3 processes
 ('bottum-up')

2D thermal 
like T / pT

Timeτ inst∼Q
−1 ln2

(αS
−1
) τquant∼Q

−1
αS
−3 /2

τ therm∼Q
−1
αS
−13 /5

Extrapolation to realistic coupling               forαS∼0.3 Q∼2GeV

τ inst∼0.1 fm /c τquant∼0.6 fm /c τ inst∼2 fm /c



  

Comparison with Epelbaum & Gelis

Soeren Schlichting | Brookhaven National Lab26 

Time τ inst∼Q
−1 ln2

(αS
−1
) τquant∼Q

−1αS
−3 /2

τ therm∼Q
−1αS

−13/5
τ=0

I) Time scales are very different

II) Different range of couplings → classical-statistical method still reliable?  

→ Need more detailed comparison to establish how the weak coupling 
attractor is approached & whether there may be a change of behavior 

at larger values of the coupling (work in progress)

Epelbaum, Gelis 
PRL 111 (2013) 232301

Berges, Boguslavski, SS, Venugopalan
 arXiv:1303.5650; arXiv:1311.3005;
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Thermalization process - Cosmology

Introduction Turbulent Thermalization  Heavy Ion collisions at asymptotic energies

Model for thermalization of the early universe: 

Scalar field theory (λФ4); Small coupling

At the end of inflation: Background field Ф
0
 ~1/        + vacuum fluctuations 

f(p)

p

Thermal 
equilibrium

Q T

Far from 
equilibrium

???
Energy transport 

towards UV

Soeren Schlichting | Brookhaven National Lab27 01/16/14Soeren Schlichting | Univ. Heidelberg 05/23/1327 
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Time:

Momentum:

M
om

en
t: 

k 
4
 f(

k)

Self-similar evolution

Thermalization process - Cosmology

Non-thermal fixed point

 The thermalization process is described by a quasi-stationary evolution 
with scaling exponents Dynamic: α=-4/5    β=-1/5 Spectral:   κ=-3/2

(Micha, Tkachev PRD 70 (2004) 043538)

Introduction Turbulent Thermalization  Heavy Ion collisions at asymptotic energies

 The evolution becomes self-similar

Soeren Schlichting | Brookhaven National Lab28 01/16/14Soeren Schlichting | Univ. Heidelberg 05/23/1328 
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Independence of Initial conditions

 The turbulent scaling behavior is really a property of the thermalization 
process – independent of the underlying initial conditions
 
 An effective memory loss occurs already at the early stages of the 
thermalization process

(Berges,Boguslavski,SS,Venugopalan  arXiv:1312.5216)

Introduction Turbulent Thermalization  Heavy Ion collisions at asymptotic energies

Time: Qt

C
on

de
ns

at
e

Momentum: p / Q

O
cc

up
at

io
n 

nu
m

be
r:

  
λ 

f(
p)
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Manifestation of turbulence

-(κ+z)E(k) ~ k

source sink

-(κ+z)E(k) ~ k

 Stationary scaling solution 
associated to scale invariant 
energy flux

“Driven” Turbulence – 
Kolmogorov wave turbulence 

“Free” Turbulence – 
Turbulent Thermalizationvs.

 quasi-stationary solution 
with universal non-thermal 
spectral exponents

 Self-similar evolution with 
universal dynamical scaling 
exponents

closed system

Introduction Turbulent Thermalization  Heavy Ion collisions at asymptotic energies

Uriel Frisch, “Turbulence. The Legacy of A. N. Kolmogorov.”

Zakharov, V. E.; L'vov, V. S.; Falkovich, G, “Kolmogorov spectra 
of turbulence 1. Wave turbulence.”

Soeren Schlichting | Brookhaven National Lab30 01/16/14Soeren Schlichting | Univ. Heidelberg 05/23/1330 



  

Turbulent thermalization process

Soeren Schlichting | Brookhaven National Lab31 

Thermalization process is controlled by the transport of conserved quantities 
(energy and particle number) over a large separation of scales

Similar manifestations across far from equilibrium systems at all energy scales
 

→ Wave turbulence

→ Universality far
 from equilibrium

Cosmology Cold quantum gases
WMAP Science Team

Micha, Tkachev PRD  70 (2004) 043538 Nowak, Sexty, Gasenzer, PRB 84 (2011) 020506(R)
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Non-equilibrium Bose-Einstein condensation
 in scalar and gauge systems

Dénes Sexty

Uni Heidelberg

Approach to Equilibrium in Strongly Interacting Matter  
April 3, 2014 , BNL



  

Non-equilibrium initial state

Turbulent flow 

Thermal equilibrium



  

Kolmogorov turbulence

“local” interactions in momentum space

Constant flux in momentum space

log E(k)

log k

E(k) ~ P 2/3 ρ1/3 k—5/3   

pump

dump

Dimensional analysis:

3D:

 

Radial energy density E [kg s—2]
  Radial energy flux  P [kg m—1 s—3]
   Density ρ [kg m—3]

    

Scale invariant transport

Turbulence in an incompressible fluid



  

Weak wave turbulence

[Micha, Tkachev (2004)]

Particle cascade 
Energy cascadeInteraction through m-vertex

nk , t ~t− p n0 k t− pSelf similar evolution:

Power law distributions nk ~k−

=d m−2−1−m =
d
m−1

=d p=
1

2 m1
v=

2
2m−1

ṅk =I [nk ] k-independent 
stationary flow

Fluctuation decay 〈2〉conn~t−v

Universality far from equilibrium

Turbulence = scale invariance = universality



  

“Natural” nonequilibrium initial conditions 

Instability for some momentum band

Amplitude grows

Secondary modes

At                all diagrams become

n~1/

~O 1



Non-linear physics;  instability saturates
n p

p

n~1/

Q s

Overoccupation

Tachyonic reheating
Parametric reheating
Weibel instability
CGC

n~−2/3



  

Turbulence and condensation in scalar field theories



  

Bose-Einstein Condensation and Thermalization 
  of the Quark Gluon Plasma

[Blaziot et al, 2011]

Overpopulation leads to emergence of condensate

eq~T 4 neq~T 3  n0 e0
−3 /4~1

Initial  CGC: 0~
Q s

4

 s
n0~

Q s
3

s
 n0 e0

−3/4~s
−1/4

Thermal eq:

Elastic processes dominate

Particles pile up in the IR



  

What is a condensate?

Macroscopic occupation of the zero mode

N=V∫ d3 k

23

1

ek−−1
In equilibrium: Maximum at =0

Condensation: NNmax

Condensate fraction
N0

N

nk=F k k⇒

Particle distribution:

F x , y ={x , y }

F k=0~V

=∫d3 x x

V 
2

=
F k=0

V
condensate Independent of the volume

In terms of 2point function

nk=
3k n0n ' k



  

Non-equilibrium Bose condensation

= 〈 ∫d3 xa x 

V 
2

〉
ens

condensate

O(4) massless relativistic scalars

Initial conditions: overpopulation

[Berges, Sexty (2012)]



  

O(2)

O(4)

O(10)

Decay of the condensate

Particle number changing processes suppressed          condensation 

Suppression compared to 2->2   ~
1
N

decay of condensate 



  

IR resummation – Strong turbulence

1/N resummation: effective vertex

 p=∫kql
 eff  pqG qG k G l 4 pqkl 

eff  p=


1 R
 p1 A

 p
With one loop bubble:

 p=∫q
G  pG  p−q

In the IR:  p≫1 The vertex scales: 
eff s p=s2reff  p with r=3−d

=4  or 5  (in d=3)Strong turbulence in the IR:

In the UV: eff=
sp= p



  

From 2PI to kinetic equations

F p X =∫d 4 s exp −ip sF  Xs /2 , X−s /2

Using Wigner coordinates

Define:
F p X =n pX 1/2p X 

Gradient expansion, spatially homogeneous ensemble:

∂t p X =0

2 p0∂t F p X = p

X F p X − p

F
X p X 

neff t , p=∫0

∞ dp0

2
2 p0p X n p X 

∂t neff t , p=∫d22 [1n p1nlnq nr−n p nl 1nq1nr ]eff  pl 

On-shell limit, only 2->2 contributes

Effective kinetic description also valid at n1
[Berges, Sexty (2011)]

~



  

[Berges, Schlichting, Sexty (2012)]

UV cascade in gauge theories

SU(2) gauge theory 
after Weibel instability and isotropisation

[Berges, Scheffler, Sexty (2009)]

For short times κ=3/2

Overpopulation

Indication of condensation?



  

Scalar electrodynamics in 2+1d

Action, couplings, vortices, initial cond

[Gasenzer, McLerran, Pawlowski, Sexty(2013)]

S [Aμ ,φ]=−∫ [ 14 F μ νF μ ν+(Dμ φ)
∗ Dμφ+V (φ) ]

V (φ)=
1
2

m2
∣φ∣

2
+ λ

24
∣φ∣

4Dμ=∂μ+i e Aμ
ξ=

6e2

λ
Ginzburg-Landau parameter

Initial conditions, parameters

1. Tachyonic instability

2. Overpopulation 
m2<0 ,  φ(t=0)=0,  nk (t=0)=0     Late times→  Higgs phase 

m2
=0 ,   nk (t=0)=

C
λ
Θ(Q−k )   Late times →  Coulomb phase

How to measure gauge invariant condensate?

Gauge invariant two point function
Screening properties



  

Condensate in a gauge theory

ξ=0.09

overpopulation initial cond.

Naive observable shows no condensation

F ( p=0)
V

=
1

V 2∫ dx dy GU
( x , y , t)

G( x , y , t )=〈φ( x , t)U ( x , y , t )φ ∗ ( y , t )〉

F ( p=0)
V

=
1

V 2∫ dx dy G ( x , y , t)

G( x , y , t )=〈φ( x , t)φ ∗ ( y ,t )〉

U (x , y , t )=exp (i e∫γ( x , y )
dxμ Aμ)

Condensation is present



  

Large gauge coupling

ξ=1ξ=0.36

large         condensation does not happen ξ→

Strong initial grow, 
   but decay starts earlier



  

Turbulent behavior 

ξ=0.0252

ξ=1

Large gauge coupling:

IR cascade not present
no condensation

Small gauge coupling:

IR cascade nicely visible
feeds condensation



  

Charge screening

Electric charges inserted into plasma

t>0: E x( x )∼exp(−x / x0)  screened

t=0: E x ( x)∼1 / x2  unscreened

m2<0,ξ=1   Higgs phase m2=0,ξ=1  overpopulation

Screeining behaviour for intermediate times

ρex=cδ( x− x1)−c δ(x−x2)

Screening is present



  

Strong scaling and topological defects
[Nowak, Sexty, Gasenzer (2011)]
[Nowak, Schole, Sexty, Gasenzer(2012)]

Non relativistic scalars described by complex field 

Gross-Pitaevski equation: i∂t  x ,t =− ∂i
2

2m
g∣ x ,t ∣2  x , t 

 x ,t 

Particle number density: ∣Ψ( x )2∣

Topological defects

nonzero almost everywhere

Zero density

Going around: phase changes by 2π

in 2D: positive and negative vortices
in 3D: vortex lines

Corresponds to discretized vortices 
(quantum turbulence) In hydrodynamics



  

2D 3D

Points with ∣Ψ( x )2∣<0.05ρPhase distribution



  

Particle spectrum

Physics of strong turbulence                   topological defects 

  In the ensemble average
      Homogeneous state
      Two point function 
                 strong power law exponent 

In typical configurations
   topological defects present



  

Charge Separation in Reheating

Parametric reheating scenario for O(2) scalars 

Affleck-Dine scenario of baryogenesis

First in 2D for better visualization

t=9000

Using conformal time, rescalings, zero bare mass :   (∂t
2−Δ+Φ2)Φa=0

Spatial dependence of field length Particle spectrum

[Gasenzer, Nowak, Sexty (2012)]



  

Field length Charge density

“Worms” are at the boundary of differently charged regions

No charge          
      field oscillates through zero  
                       boundary is lit up periodically



  

Charge separation appears without symmetry breaking

Symmetry breaking might induce net charge creation before equilibration 

No phase transitionm2>0



  

Gauged U(1) Higgs

Charge density Field modulus



  

Conclusions

Scalar case well understood

Turbulence, Universal behavoiur

Dual cascade

Condensation

Weak and strong wave exponents 
          from kinetic theory (with resummation)

Gauge theory

U(1) Gauge-Higgs model:  condensation for small      

Gauge invariant condensate, screening behaviour

Connection with topological excitations

Numerical inditcation of scaling behaviour with

                                                                 (before 4/3 sets in)
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why strings?
• using pQCD (quarks and gluons) it is very hard to 

explain the QCD phase transition to confinement 

• using strings it is very easy: it is due to their 
exponentially growing density of states =>           
the Hagedorn phenomenon near TH: 

• condensation of ``thermal scalar” mode => deconfined phase 

• string balls prepare small size and large entropy of black holes 



outline
• min.bias pp, pA: Pomerons, strings, spaghetti, Lund model 

• QCD strings and their interaction 

• spaghetti collapse 

• (fundamental) string balls 

• QCD string balls 

• holographic Pomeron and its phases  

• stringballs in high multiplicity pp 



short history of QCD strings

• 1960’s: Regge phenomenology, Veneziano amplitude. Strings have 
exponentially growing density of states N(E)!

• 1970’s Polyakov,Susskind => Hagedorn phenomenon near deconfinement!

• 1980’s: Lund model (now Pythia,Hijing): string stretching and breaking!

• 1990-now lattice studies. Dual Abrikosov flux tubes. (Very few) papers on 
string interaction!

• 2013 Zahed et al: holoraphic Pomeron and its regimes



the simplest multi-string 
state: the spaghetti

N(strings)=2N(Pomerons) 

2NP

!
in small multiplicity bins strings are broken  independently (the Lund 

model),!
!

but one should obviously think about their interaction if their number 
grows!

!



intro into pA collisions

20 50 100 200
10-7

10-5

0.001

0.1
!

Multiplicity distribution from CMS, pPb!
!
maximal mean number of participants !
is along the Pb diameter, about 16!
!
blue line is Poisson with <Np>=16!
red with <Np>=20!
geometry — columns with smaller Np -!
explains well the left side (Bozek 2011)!
!
what explains the large tail to the right?!
not the “wounded nuclei model” in which!
Nch/Np=const (= independent string !
fragmentation, Lund model)!
!
!
!

are the two sides!
any different?!

one needs to explain extra multiplicity,!
and — more importantly — appearance of!
radial, elliptic and triangular flows



CMS pPb: v2 from 2 and 4-particles

!

Gunther Roland RBRC Workshop, Apr 15-17, 2013 

v2 in pPb and PbPb 

v2 smaller in pPb than PbPb 

v2{4} drops at low multiplicity  

“Peripheral subtraction” has small effect at high multiplicity 

PbPb pPb 

Gunther Roland RBRC Workshop, Apr 15-17, 2013 

v2 in pPb and PbPb 

PbPb pPb 
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Figure 36: The differential v2{2} and v3{2} values (open markers) as a function of pT obtained
for |h| < 2.4 from long-range two-particle correlations with |Dh| > 2 for 1 < passoc

T < 2 GeV/c
is shown, together with the differential v2{4} values (solid markers) as a function of pT for
|h| < 2.4 obtained with three reference particles in the pT range of 0.3-3 GeV/c. The results refer
to 2.76 TeV PbPb collisions (left) and to 5.02 TeV pPb collisions (right).

(v2{2, |Dh| > 2}) for 1 < passoc
T < 2 GeV/c, are shown in Fig. 36 in open markers. At a given pT509

value, v2 is observed to be 3–4 times bigger than v3. While the requirement of |Dh| > 2 com-510

pletely removes the near-side jet-like correlations, additional non-hydrodynamical correlations511

from back-to-back jets, as well as effects of energy-momentum conservation on the away side512

of two-particle correlation function could still contaminate the v2 and v3 values obtained from513

two-particle correlations.514

In order to further restrict the residual non-flow effect on the away side, the technique of four-515

particle cumulant is used to extract the v2 value (v2{4}). See section. 6.2 for more details about516

this method. Note that no Dh gap is applied here (as well as in the two-particle correlation517

method) since, upon correlating four particles at the same time the non-flow correlations are518

naturally suppressed, especially for high multiplicity events (in fact, it is suppressed by an519

additional factor of 1/N as compared to two-particle correlation method). The measured v2{4}520

values as a function of pT are also shown in Fig. 36 in solid markers. As one can see, v2{4} is521

below v2{2} over the whole pT range, with similar behavior in pPb and PbPb collisions. This is522

expected because the event-by-event v2 fluctuation contribute to v2{4} and v2{2} in opposite523

ways, approximately following the relations:524

v2{2} =
q
< v2 >2 +s2

v2
, v2{4} =

q
< v2 >2 �s2

v2
, (30)

which always results in a larger value for v2{2} than v2{4}.525

Fig. 37 shows the multiplicity dependence of v2{2}, v2{4} and v3{2} for 1 < pT < 2 GeV/c526

in PbPb and pPb collisions. For Noffline
trk & 40, v2{2} and v3{2} show moderate increase with527

Noffline
trk in PbPb collisions, while they are approximately constant in pPb collisions. On the other528

hand, the v2{4} results show a very intriguing behavior, rapidly turning on at Noffline
trk ⇠ 40� 60529

in both pPb and PbPb , and then remaining approximately constant in Noffline
trk up to the highest530

multiplicity ranges explored in this analysis. Furthermore, the amount of event-by-event v2531

40 7 Results

fluctuations could be estimated from Eq. 30, if one assumes that hydrodynamic flow would be532

the only source of correlations in v2{2} and v2{4}. Considering that this could be the case, then533

sv2

v2
=

s
v2

2{2}� v2
2{4}

v2
2{2}+ v2

2{4}
. (31)

The results for pPb and PbPb collisions are shown in the bottom panel of Fig. 37, indicating534

about 45–55% v2 fluctuations in PbPb collisions, as compared to ⇠ 60% in pPb collisions. Con-535

sidering the expected non-flow effects in v2{2}, these data serve as an estimate of an upper536

limit on v2 fluctuations in pPb and PbPb collisions.537
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“Fluctuations” larger in pPb, 

with moderate multiplicity 

dependence 

Which is the real end of 
hydro! 

4 particle one is a	

clear sign of	

 collectivity	


it has clear onset 
 at multiplcity of 

around 80 
!

in AA fluctuations 
are too large
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High-multiplicity pp and pA collisions: Hydrodynamics at its edge

Edward Shuryak and Ismail Zahed
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(Received 26 February 2013; published 24 October 2013)

With growing multiplicity, the pp and pA collisions enter the domain where the macroscopic description
(thermodynamics and hydrodynamics) becomes applicable. We discuss this situation, first with simplified thought
experiments, then with some idealized representative cases, and finally address the real data. For clarity, we do not
do it numerically but analytically, using the Gubser solution. We found that the radial flow is expected to increase
from central AA to central pA, while the elliptic flow decreases, with higher harmonics being comparable. We
extensively study the magnitude and distribution of the viscous corrections, in Navier-Stokes and Israel-Stuart
approximations, ending with higher gradient resummation proposed by Lublinsky and Shuryak. We found that
those corrections grow from AA to pA to pp, but remain tractable even for pp.

DOI: 10.1103/PhysRevC.88.044915 PACS number(s): 12.38.Mh

I. INTRODUCTION

High energy heavy ion collisions are theoretically treated
very differently from pp and pA ones. While the for-
mer are very well described using macroscopic theories—
thermodynamics and relativistic hydrodynamics—the latter
are subject to what we would like to call the “pomeron
physics”, described with a help of microscopic dynamics in
terms of (ladders of) perturbative gluons, classical random
gauge fields, or strings. The temperature and entropy play a
central role in the former case, and are not even mentioned or
defined in the latter case.

The subject of this paper is the situation when these two
distinct worlds (perhaps) meet. In short, the main statement
of this paper is that specially triggered fluctuations of the pp
and pA collisions of particular magnitude should be able to
reach conditions in which the macroscopic description can
be nearly as good as for AA collisions. While triggered by
experimental hints at the Cern Large Hadron Collider (LHC)
to be discussed below, this phenomenon has not yet been a
subject of a systematic study experimentally or theoretically,
and is of course far from being understood. So on onset let us
enumerate few key issues to be addressed.

(i) How do the thermodynamical and hydrodynamical
(viscosities, relaxation time, etc.) quantities scale with
the change in the system size R and the multiplicity N?
What are the criteria for macroscopic (hydrodynamical)
behavior?

(ii) What are the consequences of the fact that the strongly
coupled quark-gluon plasma (sQGP) phase of matter is
approximately scale invariant?

(iii) Do high multiplicity pp and pA collisions in which the
(double) “ridge” has been recently observed at the LHC
[1–3] fit into the hydrodynamical systematics tested so
far for AA collisions?

(iv) What is the expected magnitude of the radial flow in
pp and pA collisions, and how is it related to that in
AA? What are the freeze-out conditions in these new
explosive systems?

(v) How do amplitudes of the second and higher angular
harmonics vn scale with n, R, and η/s? In which pt

region do we expect hydrodynamics to work, and for
with vn?

The major objective of the heavy ion collision program
is to create and study properties of a new form of matter,
the quark-gluon plasma. Among many proposed signatures
proposed in [4], the central role is played by production
of macroscopic fireball of such matter, with the subsequent
collective explosion described by the relativistic hydrodynam-
ics. Its observable effects include radial and elliptic flows,
supplemented by higher moments vm,m > 2. At the BNL
Relativistic Heavy Ion Collider (RHIC) and LHC the AA
collisions has been studied in detail by now, with multiple
measured dependences, with excellent agreement with hydro-
dynamics in a wide domain, for n < 7 and in the range of
pt < 3 GeV.

Let us start with a very generic discussion of applicability
of hydrodynamics. The basic condition is that the system’s
size R should be much larger than microscopic scales such as,
e.g., the correlation lengths or the inverse temperature T −1.
The corresponding ratio is one small parameter

1
T R

≈ O(1/10) ≪ 1, (1)

where the value corresponds to well-studied central AA
collisions. Another important small parameter which we seem
to have for sQGP is the viscosity-to-entropy-density ratio

η

s
= 0.1 . . . 0.2 ≪ 1. (2)

This tells us that viscous scale—the mean free path in kinetic
terms—is additionally suppressed compared to the micro scale
1/T by strong interaction in the system. The product of both
parameters appearing in expressions below suggests that one
can hope to apply even ideal hydrodynamics in AA collisions
with few percent accuracy, as also is seen phenomenologically.

The reason why the fireballs produced in AuAu collisions
at RHIC and PbPb at LHC behaves macroscopically is related
to the large size of the colliding nuclei used. Yet smaller
systems, with sizes O(1 fm) occurring in pp or pA, should
also be able to do so, provided certain conditions are met. Let
us thus start to define a proper comparison, starting with our
thought experiment 0, in which two systems (see a sketch in
Fig. 1) A and B have the same local quantities—temperatures,
viscosities and the like—but different sizes RA > RB . (For
example, think of AuAu and CuCu collisions at the same

044915-10556-2813/2013/88(4)/044915(13) ©2013 American Physical Society
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FIG. 8. (Color online) The slopes of the m⊥ distribution T ′ (GeV)
as a function of the particle mass, from [13]. The numbers on the right
are track multiplicity.

In the remaining radial Cooper-Fry integral over the freeze-
out surface one should substitute proper time τ (r) and its
derivative, as well as transverse rapidity κ(τ (r), r), defined
via tanh(κ) = v⊥. The spectra are fitted to exponential form at
large m⊥ [see Fig. 9(a)] and finally in Fig. 9(b) we compare
the slopes T ′ observed by the CMS (in the highest multiplicity
bin) to theoretical results.

We start doing it by comparing to other models. We do
not include the parton cascade models Hijing, as it has no
flow by design and obviously fails in such a comparison. The
(latest version of the) hydrodynamical model “Epos LHC” [25]
predicts spectra with slopes shown by asterisks: as evident
from Fig 9.(b) it misses the slope by a lot, for the protons
by about factor 2. Even further from the data are the slopes
calculated from the AMPT model [26] (diagonal crosses and
dashed line).

Upper two lines in Fig. 9(b) show our results, corresponding
to two selected values of Tf , 0.12, and 0.17 GeV. The former
is in the ballpark of the kinetic freeze-out used for AA data:
but as Fig. 9(b) shows it overpredicts the radial flow for the
pA case. The second value corresponds to the QCD critical
temperature Tc: it is kind of the upper limit for Tf since it is
hard to imagine freeze-out in the QGP phase. As seen from
the figure, such value produces reasonable amount for the
collective radial flow as observed by the CMS. The same level
of agreement holds not only in the highest multiplicity bin, but
for most of them. We thus conclude that in pA the chemical
and kinetic freeze-out coincide.

Apart from the effective m⊥ slopes T ′ for each multiplicity
bin and particle type, the paper [23] also gives the mean
transverse momenta. Like slopes, they also display that
radial flow in few highest multiplicity pA do exceed that in
central AA. Those data also agree reasonably well with our
calculation.

(a)

dN

dydm2
⊥

(y = 0)

m⊥(GeV )

(b)

m(GeV )

T (GeV )

FIG. 9. (Color online) (a) A sample of spectra calculated for
π, K, p, top-to-bottom, versus m⊥ (GeV), together with fitted
exponents.(b) Comparison of the experimental slopes T ′(m) versus
the particle mass m (GeV). The solid circles are from the highest
multiplicity bin data of Fig. 8, compared to the theoretical predictions.
The solid and dash-dotted lines are our calculations for freeze-
out temperatures Tf = 0.17, 0.12 GeV, respectively. The asterisk-
marked dashed lines are for Epos LHC model, diagonal crosses on
the dashed line are for AMTP model.

(The reader may wander why we do not compare the spectra
themselves. Unfortunately we cannot do it now, neither in
normalization more in shape because of significant “feed-
down” from multiple resonance decays, strongly distorting
the small-pt region. Event generators like HIJING and AMPT
use “afterburner” hadron cascade codes for that.)

B. Higher harmonics

The repeated motive of this paper is that the smaller systems
should have stronger radial flow, as they evolve “longer” (in
proper units, not absolute ones) and the pressure gradient
driving them never disappears. Higher harmonics are not
driven permanently but are instead oscillating, plus damped
by the viscosity. Since the only harmonics in the pA and pp

044915-11
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to two selected values of Tf , 0.12, and 0.17 GeV. The former
is in the ballpark of the kinetic freeze-out used for AA data:
but as Fig. 9(b) shows it overpredicts the radial flow for the
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for most of them. We thus conclude that in pA the chemical
and kinetic freeze-out coincide.

Apart from the effective m⊥ slopes T ′ for each multiplicity
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(The reader may wander why we do not compare the spectra
themselves. Unfortunately we cannot do it now, neither in
normalization more in shape because of significant “feed-
down” from multiple resonance decays, strongly distorting
the small-pt region. Event generators like HIJING and AMPT
use “afterburner” hadron cascade codes for that.)

B. Higher harmonics

The repeated motive of this paper is that the smaller systems
should have stronger radial flow, as they evolve “longer” (in
proper units, not absolute ones) and the pressure gradient
driving them never disappears. Higher harmonics are not
driven permanently but are instead oscillating, plus damped
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We predicted the radial flow 
in pp/pA to be even stronger  
than in central AA

Not the Mt scaling at large 
Ntr => not a large Qs   

but a collective flow: p=m v



1 flux tube on the lattice

The dual superconductor: !
Higgs=monopole condesate

G. S. Bali, hep-ph/9809351.	
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Fig. 6. Differential forms in D = 3 dimensions.
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Fig. 7. Electric field E and magnetic super current k between two static sources.

4.4. The Dual Superconductor in Detail

In order to obtain an effective low-energy Lagrangian with monopoles and photons
as fundamental degrees of freedom one can attempt to determine the free parameters
by numerically matching the effective action to that of APSU(2).9,20 To complement
such studies, one might probe the APSU(2) vacuum with electric (or magnetic) test
charges to verify predictions of the effective theory and measure the values of the
model parameters, which is the line I am going to follow here. Investigations of field
distributions in presence of charges have been performed previously.38 I will concentrate
on the results from a more recent study.39

We are probing the vacuum with static electric sources. For this purpose we
consider three dimensional spatial cross sections (time slices) of the lattice. In Fig. 6,
I have visualised where on the lattice different objects are “living”. The advantage in
working with differential forms is that the Stokes theorem is guaranteed to be exact
and not subject to lattice artefacts: if the differential Maxwell equations are fulfilled,

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7
x/a

E(x)/E(0)
f(x)

Fig. 8. The electric field and the amplitude of the Ginzburg-Landau wave function against
the distance from the centre of the ANO vortex.39

while the other components vanish. For non-constant density of magnetic charges, the
London equation Eq. (22) is modified and becomes the second GL equation,

(

Cθ(x) −
Φel

2πx

)

+
λ2

f 2(x)
kθ(x) = 0. (29)

We can solve this equation with respect to F (x) = f(x)/λ after having reconstructed
Cθ(x) via Eq. (28).

The result is displayed in Fig. 8, together with Ez(x). Data obtained at x < 2.2a
has to be treated with care since the difference between lattice and continuum versions
of “curl” turns out to be bigger than our statistical uncertainty. For x > 4.2a the errors
on f explode: here, no contradiction to the London limit has been found. We fit F (x)
with the ansatz,

F (x) =
f(x)

λ
=

1

λ
tanh(x/α), (30)

which conforms to the right boundary conditions. The fit is included into the figure
as well as the result of a fit of Ez to a more involved four parameter ansatz that also
respects the boundary conditions on f .39 From the fit Eq. (30) we obtain λ = 1.62(2)a.
The fit to Ez yields λ = 1.84(8)a while a simultaneous fit to Ez and kθ yields λ =
1.99(5)a. This has to be compared with the value λ = 1.82(7)a from the London limit
fit of Eq. (25). We end up with the conservative estimate,

λ = 1.84+20
−24a = (0.15 ± 0.02) fm, Φel = 1.08 ± 0.02. (31)

One should settle in a scaling study whether the deviation from Φel = 1 can be at-
tributed to a non-trivial vacuum dielectricity constant due to anti-screening.

.



2 flux tubes  on the lattice

M. Zach, M. Faber and P. Skala, Nucl. Phys. 
B 529, 505 (1998) [hep-lat/9709017].	
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Figure 11: The interaction (field) energy of a pair of double charges as a function of charge
distance at β = 0.96.
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Figure 12: Longitudinal electric field profile of two interacting flux tubes in the symmetry plane
(E∥, solid line). The length of flux tubes is d = 22a, the transverse distance of equal charges is 4a.
For comparison, the dotted lines show the results for single flux tubes at x = −2a and x = +2a,
and the dashed line corresponds to the superposition E∥1 +E∥2 of these two non-interacting flux
tubes.
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SELF-INTERACTING STRINGS!

The lightest J PC = 0++  σ meson, or f0(500) in the PDG13 
listings. Its mass mσ = 0.4 − 0.55 GeV is comparable to its 
width Γσ = 0.4 − 0.7 GeV: 
!
Sigma mass is expected to decrease near Tc as it meets its 
chiral partner, the pion

It is basically responsible for binding nuclei

3

It has been recently pointed out in [12] that the Hage-
dorn phenomenon and the resulting string balls natu-
rally appear in this setting. The first step is to recognize
that the tube geometry of the surface naturally leads to
a periodic coordinate and thermal description: the cir-
cumference of the “tube” is identified with the Matsub-
ara time ⌧ = 1/T , inverse to the e↵ective string tem-
perature. Furthermore, the tube profile is not uniform
along the tube, and, therefore, the temperature T de-
pends on the longitudinal coordinate on a tube that we
call �W 2 (0, 1),

T (�W ) =
�

2⇡b

1

cosh(�(�W � 1/2))
, (6)

with its highest value at the center or T (�W = 1/2) ⌘
T = �/2⇡b. The parameter � = ln(s/s

0

) corresponds
to rapidity of the colliding dipoles, which in Euclidean
formulation becomes the usual angle between them. In
string di↵usion equation it also has the meaning of the
di↵usion time: so with growing s this time increases,
string tube gets longer and the cross section grows.

The second step is to note that at certain values of
the impact parameter b this temperature corresponds to
the Hagedorn value; the e↵ective tension of the string
decreases and its high excitations become possible. As a
result, as one can expect (and, indeed, sees it directly in
the observed elastic scattering profile) that the scatter-
ing amplitude for such b exceeds the value interpolated
by a Pomeron string expression from large b. One also
finds abrupt change to b-independent profile at smaller
b, interpreted in [12] as the end of the mixed phase and
transition to deconfined (or black hole) phase. Such in-
terpretation suggests prompt production of the “string
balls” in a mixed phase, between “cold string” Pomerons
at large b and a perturbative domain at small b. High
entropy of these balls may lead to very high multiplicity
events observed.

It is important to emphasize that the temperature here
is just e↵ective description of quantum string excitations
in Euclidean partition function under-the-barrier. String
balls we discuss in this section therefore appear instan-
taneously, at t = 0, as they emerge in the (Minkowski or
real time) part of the system’s path, from the Euclidean
tunneling path. In distinction to heavy ion collisions, no
time is needed for this “thermalization”.

While in this paper we will discuss QCD strings in
d = 3 spatial dimension, corresponding to the mixed
phase of QCD, we also would like to keep in mind that
at time zero the “prompt” near-critical string balls in
pp collisions should not be very di↵erent. In particular,
the lack of one coordinate – the system has near-zero
size along the beam direction – is compensated by the
presence of an extra holographic direction z, so it is 3-
dimensional. (Of course, z is curved and has some end,
so it is not exactly the same as another spatial dimen-
sion. Also the self-interaction is a bit di↵erent. But we do
not think that those e↵ects modify the main physics too
much.) What is very di↵erent is the fate of such string

balls: after t = 0 they are violently stretched along the
beam directions, as the ends of the strings are still at-
tached to the beam particle fragments, moving with a
large rapidity.

II. SELF-INTERACTING STRINGS

A. Self-interaction and nuclear physics

For the purpose of this first qualitative study we focus
only on the lightest scalar state, known in hadronic phe-
nomenology as the � meson, or f

0

(500) in the PDG13
listings. Its mass m� = 0.4 � 0.55GeV is comparable
to its width �� = 0.4 � 0.7GeV: that is one of several
reasons why this mesonic JPC = 0++ resonance has a dif-
ficult history, appearing and disappearing in the Particle
Data Group tables. The interpretation of its parameters
and its dynamical origin has been varying as well, as ar-
guments on this subject had not yet converged. Avoiding
the debate we fix the mass in vacuum to bem� = 0.6GeV
and assume zero width. Below we will also use variable
mass T -dependent mass, and discuss its coupling to QCD
strings. We will use “dilatonic” notations, as if the inter-
action is made with Tµµ.
For one particle species – the nucleon N – its coupling

is reasonably well known, as it is the main component of
the attractive central part of nuclear potential. It takes
the Yukawa form

VNN (r) =
g2�NN

4⇡

exp(�m�r)

r
(7)

and is mostly responsible for the nuclear binding.
For non-nuclear physicists it may be worth reminding

at this point that in NN case it is nearly completely
cancelled by the repulsive vector ! exchanges, coupled
to the nucleon baryon number. We also remind that this
sigma term can be found in phenomenological potentials
such as Paris and Bonn ones, or the so-called Walecka
model of nuclear forces. More recent treatment uses a
more accurate “correlated ⇡⇡” exchange to account for
it.
For non-string theorists it may be worth reminding

that the fundamental strings and D-branes have also cer-
tain charges and repulsive vector forces, canceling attrac-
tive ones and making them “BPS-protected”. Our QCD
string is not like that, it is just a bosonic string without
charges, there are no traces of supersymmetry or BPS
protection.
So, one may think of the string balls we study as some

“simplified nuclei”, for which the Fermi blocking, the
repulsive vector interactions, and forces related to the
spin-isospin interaction are all switched out, with only
�-induced attraction left, binding them together.
There are two color ’t Hooft diagrams (see Fig. 2) con-

tributing to this coupling: the first suppressed at the
limit of large number of colors, and the second (non-
planar one) is in fact suppressed twice, both in the num-
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FIG. 2: Color diagrams for � exchange

ber of colors and flavors. Obviously, only the first one
can contribute to the self-interaction of strings. Since we
don’t know the relative contributions of those diagrams,
or, alternatively, the fraction of the “dilaton” in the �
meson, we take the strength of the �NN coupling as an
estimate on its upper limit. In terms of the “scalar New-
ton’s constant” gN for the self-interaction of QCD strings
its benchmark value is

gmax
N =

g2�NN

4⇡m2

N

⇡ 357

4⇡

m2

�

m4

N

⇡ 13GeV�2 (8)

In what follows we will treat gN as an unknown param-
eter: in the next subsection we will discuss its values
indicated by lattice simulations.

The simplest problem in nuclear matter one can con-
sider analytically is the infinite matter with constant (ze-
roth order mass) density ⇢

0

. The shift in the energy
density due to the self-interaction is proportional to the
space integral of the potential

|�⇢|
⇢
0

= ⇢
0

Z
d3xV (|x|) = 4⇡gN⇢

0

m2

�

(9)

Note that the correction diverges for the (gravity-like)
massless limit gN = const,m� ! 0, as the static Uni-
verse filled with matter cannot exist. However, in the
last expression the sigma mass cancels out and, there-
fore, the result does not depend on its (rather uncertain)
value. (This happens because its nuclear parametrization
in the form (8) was done with the idea of keeping prop-
erties of the nuclear matter independent on it as well).

The previous expression naturally leads to a concept
of the critical mass density, at which the negative self-
interaction energy cancels the original zeroth order mass,
�⇢+ ⇢

0

= 0,

⇢c =

✓
m4

N

357.
⇡ 0.28

GeV

fm3

◆
gmax
N

gN
(10)

For the maximal coupling gN = gmax
N it is about twice the

mass density for the symmetric nuclear matter ⇢n.m. ⇡
0.149GeV/fm3. However, the energy density of the
mixed phase of interest is in fact up to an order of mag-
nitude higher: this suggests that the coupling gN should
in fact be substantially smaller than gmax

N .
At the density ⇢ > ⇢c, it becomes energetically more

favorable to produce new string segments. The process

of production stabilizes at the upper high energy den-
sity cuto↵ of our model. This is a scenario preceding a
gravitational collapse. On the other hand, we consider
our strings to be in a contact with a heat bath of a cer-
tain temperature: therefore their stability depends on
a (much stronger) condition, based on the free energy
rather than the energy itself.
Of course, these arguments only apply to very large

systems, much larger than the correlation length m�1

� ,
and below we will study finite size string balls. We solved
some spherically symmetric examples as well, but the
results are not particularly instructive to be discussed.
Our main objective is to study string configurations of an
arbitrary shape, which is a suitable task for the numerical
simulations.
Can a collapsing ball be stabilized? One natural cut-

o↵ for the strings density follows from the self-avoiding
rule in our lattice model. One may also wonder, since �
is a meson, if its e↵ective Lagrangian includes repulsive
nonlinear terms O(�4), on top of its kinetic and mass
terms leading to the Yukawa expression used. We have
not studied this option, partly because in the AdS/QCD
setting – which we describe shortly – the nonlinear ac-
tions are well defined and known, yet the gravitational
collapse is unavoidable.
The intriguing feature of a collapsing ball is a contin-

uous production of entropy, resulting from the fact that
very dense string balls have a huge number of (classical)
configurations. So, we have our version of the informa-
tion paradox. Like evaporating Hawking black holes fi-
nally disappear, the string balls at the mixed phase all
eventually decay into hadrons, as the heavy ion collision
reaches its hadronic phase. The string entropy stored
in these balls should also be eventually released into the
final clusters.

B. Self-interaction on the lattice

While observation of QCD flux tubes was one of the
major achievements of the lattice gauge theory, unfortu-
nately their interaction has not yet been systematically
addressed. This section is a summary of what we were
able to find in the literature.
Among the first papers in which the issue has been

studied on the lattice was a paper by the Vienna group
[20] in 1997. Using for technical reasons U(1) lattice
gauge theory in 2+1 and 3+1 dimensions, they observed
that in the latter case strong attractive interaction be-
tween two parallel single-flux tubes. The e↵ect is strongly
enhanced near the phase transition. In section 6 of this
paper they in particularly study an arrangement of two
tubes of length d = 22a induced by charges separated by
d = 4a and show that in the middle two tubes basically
merge into one – see their Fig. 12. Interesting obser-
vation is that the longitudinal electric field retains the
same magnitude as in a single tube and changes little in
its total energy: the whole e↵ect comes from the “coil”
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Radial flow is characterized by the dependence on
the particle mass M (for identified secondaries ⇡,K, p,⇤
etc) of either (i) their mean hp?(M)i or (ii) the of M?
distribution slope T

eft

(M), see e.g. [? ]. The data do
not show such dependence for the lower multiplicities (8
and 32) but the e↵ect clearly is there for higher ones (84
to 235).

Elliptic flow is in those cases measured also in two
ways, either by the two-particle or four-particle correla-
tion parameters known as v2{2} and v2{4} [? ]. The
latter for pA is multiplicity independent above N

tr

> 80,
but rapidly drops below it. This is perhaps the best in-
dicator for the onset of explosive regime we so far have.
For AA data for N

tr

< 80 are too uncertain to see any
trends there.

(The careful reader may notice that this value coin-
cides with the small peak of the multiplicity distribution
shown in Fig. 1 and dividing the miltiplicity distribution
into two parts, the geometry dominated and the high
multiplicity tail. This must be a coincidence, since it is
specific to the size of Pb nuclei used: the 16 wounded
nucleons is the mean value for a proton going along its
diameter.)

III. COLLECTIVE STRING INTERACTIONS

Stretching of these strings longitudinally creates what
we would call “the spaghetti stage”.

A. Interaction in multi-string systems

One Pomeron - 2 strings so N
p

= 20 event corresponds
to N

s

= 40 strings.
In order to study interaction, we need to know how far

from each other they are and how thick is the string
The typical impact parameter in a collision at LHC

energies is

b̄ ⇠
r

�
in

⇡
⇡ 1.5 fm (6)

while the string radius is rather small, e.g. according to
lattice studies [? ] r

s

⇡ .15 fm, an order of magnitude
lower. The fraction of the volume occupied by N

s

strings
in a cylinder is thus

N
s

⇣r
s

b̄

⌘2
⇠ 10�2N

s

(7)

For a “minimally biased” (typical) pA collisions, with
just few strings, it is a rather dilute system: so the inde-
pendence of string fragmentation – assumed by the Lund
model and its descendants – seems reasonable. But for
N

p

= 40 or more, this assumption should obviously be
questioned and revisited.

The system of strings, once produced by color ex-
changes as the target and projectile pass each other at

t ⇡ 0, is then stretched between their remnants, with ra-
pidities +Y and �Y where Y is related to NN center of
mass energy. An the generic rapidity �Y < y < Y (not
too close to each end) one can view the set of strings
as approximately parallel and directed along the beam
direction.
Interaction between the QCD strings was the subject

of our previous paper [8], to which we refer the reader for
motivations and the details. Following it, we will assume
it to be mediated by the lightest scalar �. For one string
the sigma “cloud” has the form

h�(r?)W i
hW ih�i = 1� CK0(m�

r̃?) (8)

where K0 is the Bessel function and the “regulated”
transverse distance is

r̃? =
q

r2? + s2
string

(9)

which smoothens the 2d Coulomb singularity ⇠ ln(r?) at
small r. The parameters values are consistent with the
string width.
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FIG. 2. (Color online). Points are lattice data from [12], the
curve is expression (8) with C = 0.26, s

string

= 0.176 fm.

Lattice simulations such as [12] have found vacuum
modifications due to presence of a QCD string. We
argued [8] that those data can be well described by a
“sigma cloud”. In Fig. 2 one can see our two-parameter
fit to those data (The sigma mass here was taken to be
m

�

= 600MeV as an imput, and not fitted/modified.)
The problem is thus reduced to the set of 2-dimensional

point particles with the interaction 2d Yukawa interac-
tion.
The main parameter of the string-string interaction is

thus numerically small

g
N

�
T

⌧ 1 (10)

typically in the range 10�1 � 10�2. So it is correctly
neglected in the situations – for which the Lund model
has been originally invented – in which only O(1) strings
are created. It is only comes into play when the number
of strings is so large, that this smallness can be overcome.
Instantaneous e↵ects first The magnitude of the quark

condensate � = hq̄qi at the string location is only 0.8
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p

= 20 event corresponds
to N

s

= 40 strings.
In order to study interaction, we need to know how far

from each other they are and how thick is the string
The typical impact parameter in a collision at LHC

energies is

b̄ ⇠
r

�
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⇡
⇡ 1.5 fm (6)

while the string radius is rather small, e.g. according to
lattice studies [? ] r

s

⇡ .15 fm, an order of magnitude
lower. The fraction of the volume occupied by N

s

strings
in a cylinder is thus
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(7)

For a “minimally biased” (typical) pA collisions, with
just few strings, it is a rather dilute system: so the inde-
pendence of string fragmentation – assumed by the Lund
model and its descendants – seems reasonable. But for
N

p

= 40 or more, this assumption should obviously be
questioned and revisited.

The system of strings, once produced by color ex-
changes as the target and projectile pass each other at

t ⇡ 0, is then stretched between their remnants, with ra-
pidities +Y and �Y where Y is related to NN center of
mass energy. An the generic rapidity �Y < y < Y (not
too close to each end) one can view the set of strings
as approximately parallel and directed along the beam
direction.
Interaction between the QCD strings was the subject

of our previous paper [8], to which we refer the reader for
motivations and the details. Following it, we will assume
it to be mediated by the lightest scalar �. For one string
the sigma “cloud” has the form

h�(r?)W i
hW ih�i = 1� CK0(m�

r̃?) (8)

where K0 is the Bessel function and the “regulated”
transverse distance is

r̃? =
q

r2? + s2
string

(9)

which smoothens the 2d Coulomb singularity ⇠ ln(r?) at
small r. The parameters values are consistent with the
string width.
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FIG. 2. (Color online). Points are lattice data from [12], the
curve is expression (8) with C = 0.26, s

string

= 0.176 fm.

Lattice simulations such as [12] have found vacuum
modifications due to presence of a QCD string. We
argued [8] that those data can be well described by a
“sigma cloud”. In Fig. 2 one can see our two-parameter
fit to those data (The sigma mass here was taken to be
m

�

= 600MeV as an imput, and not fitted/modified.)
The problem is thus reduced to the set of 2-dimensional

point particles with the interaction 2d Yukawa interac-
tion.
The main parameter of the string-string interaction is

thus numerically small

g
N

�
T

⌧ 1 (10)

typically in the range 10�1 � 10�2. So it is correctly
neglected in the situations – for which the Lund model
has been originally invented – in which only O(1) strings
are created. It is only comes into play when the number
of strings is so large, that this smallness can be overcome.
Instantaneous e↵ects first The magnitude of the quark

condensate � = hq̄qi at the string location is only 0.8
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Peripheral AA are modeled in the standard Glauber
way, except that we take the number of participants being
in exactly the same bins, namely N

p

= 5, 10, 15, 20, 25,
for comparison.

B. Time evolution

Basically strings can be viewed as a 2-d gas of particles
with unit mass and forces between them are given by the
derivative of the energy (8) , and so

~̈r
i

= ~f
ij

=
~r
ij

r̃
ij

(g
N

�
T

)m
�

2K1(m�

r̃
ij

) (19)

with ~r
ij

= ~r
j

� ~r
i

and “regularized” r̃ (9).
We have used a classical molecular dynamics code

based on CERN library FORTRAN double precision
solver DDEQMR and this force to follow the particle evo-
lution in the transverse plane. In Figs. 4 and 6 we show
an example of one particular configuration with N

s

= 40.
In order to study longer time evolution, we took a some-
what larger coupling ???. As seen from Fig. 4 the con-
servation of the (dimensionless) total energy

E
tot

=
X

i

v2
i

2
� 2g

N

�
T

X

i>j

K0(m�

r
ij

) (20)

is indeed observed: its accuracy is about 10�4. Even
higher accuracy is observed for the total momentum
(which remains zero).

The evolution consists of two qualitatively distinct
parts: (i) early implosion, which converts potential en-
ergy into the kinetic one, which has its peak when frac-
tion of the particles “gravitationally collapse” into a
tight cluster; and (ii) subsequent approach to a “mini-
galaxy” in virial quasi-equilibrium. To illustrate better
the first stage of the motion we made a number of movies:
three first screenshots for this configurations are shown
in Fig. 6. Running multiple files we occasionally see more
complicated scenarios realized, e.g. two “mini-galaxies”
departing from each other.

One can see that the total kinetic energy approaches
over time some mean value, which of course should be
related to the “virial’ value

2hE
kin

i =
*
X

i

~r
i

@U

@~r
i

+
(21)

as time goes to infinity. (It is standard outcome of molec-
ular dynamics studies, e.g. stars in Galaxies have similar
quasi-equilibrium.).

The simulations for peripheral AA have a particular
feature. As exemplified in Fig. 5, the initial strong defor-
mation of the system – its y-direction size is much larger

than that in x-direction, the collapse goes in two stages.
First one finds rapid 1d collapse along the x axes, supple-
mented by much more slower collapse along y direction.
If the simulation runs long enough, the resulting cluster
becomes of course isotropic.

C. Results

We generated similar time evolutions for an ensembles
of randomly generated initial conditions. Out of many
possible observables we selected the following one : Lo-
cal density in the generated clusters ✏

max

defined by the
following procedure. Step one, resembling early searches
for the location of the black hole in our Galaxy center,
is the location of most rapidly moving particle. After it
is found, its position is taken as a cluster center, and
the number of particles inside the circle of fixed radius
r0 = 0.3 fm is used to calculate the maximal 2d density
n
max

The results are converted to maximal energy den-
sity of a run by

✏
max

= �
T

n
max

(22)

and averaged over the runs.
Systematic results were organized as follows. We have

sets of 10 runs for each set of parameters, the string
number N

s

= 10, 20, 30, 40, 50, the coupling constants
g
N

�
T

= 0.01, 0.02, 0.03, 0.05, 0.08, 0.10, 0.20 and two dif-
ferent initializations, corresponding to central pA or pe-
ripheral AA.

The output is shown in Fig. 6 as the maximal energy
density reached (during the proper time ⌧ < 2 fm/c. The
main result is that the implosion of the system produces
values which are significantly higher than at the initial
time ⌧ = 0, namely ✏0 = 2 to 9 GeV/fm3 for those sets.

While the rate of the evolution depends on the strength
of the coupling, the maximal energy density reached is
much less sensitive to it. As one can see from it, for
small number of strings ⇠ 10 there is no dependence on
the coupling, in the range selected: those are too small to
create any e↵ect. However as N

s

> 30 the coupling be-
comes important: it increases the density by a significant
factor, reaching values as large as ✏

max

⇠ 80 GeV/fm3.
As such high energy density is being reached, the string

description of the system can no longer be maintained.
As the kinetic energy dissipates into multiple strings
states, they become highly excited. The equilibrium fully
equilibrated into the sQGP, the temperature would be
about T

i

⇠ 500MeV ⇠ 3T
c

, enough to generate very
robust hydro explosion.

D. Elliptic deformations

V. SUMMARY
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FIG. 3. (Color online) Example of changing transverse po-
sitions of the 50 string set: three pictures correspond to one
initial configuration evolved to time ⌧ = 0.1, 0.5, 1, 1.5 fm.
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FIG. 4. (Color online) The (dimensionless) kinetic and po-
tential energy of the system (upper and lower curves) for the
same example as shown in Fig. 6, as a function of time t(fm).
The horizontal line with dots is their sum, namely E

tot

, which
is conserved.
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FIG. 5. (Color online) Example of peripheral AA collisions,
with b = 11 fm and the 50 string set. Four snapshots of the
string transverse positions x, y(fm) correspond to times ⌧ =
0.1, 0.5, 1., 2. fm.



0.0 0.5 1.0 1.5 2.0 2.5
0
20
40
60
80
100
120

peripheral AA 
contraction in x first 
(and only: limited   

time scale)

string stretching - about 1fm/c 
!

1/4 period of yo-yo - another 0.5 
!

so too small coupling does not work
gNσT =0.01,0.02,0.03,0.05,0.08,0.10,0.20.	




fundamental string balls

2

rized in Section VIA, further directions of research are
discussed in Section VIB.

B. From strings to black holes

Historically, the subject of string self-interaction have
been first discussed in the context of fundamental strings
in critical dimensions (26 for bosonic strings and 10 for
superstrings). The string coupling gs in this case is a
function of the vacuum expectation value of the dilaton
field, �: gs = e� for closed strings and gs = e�/2 for open
strings. The power of gs in the string amplitude is then
given by the Euler characteristic � of the string world-
sheet. As it is well known, the massless modes of closed
strings include gravitons: therefore it is a candidate for
the theory of quantum gravity. The subject relevant for
this work is the transition between the states of massive
“string balls” and the ones of black holes. When any
object gets very massive, one expects it to be described
classically. Su�ciently massive string balls should thus
become black holes of the classical gravity.

A string ball can be naively generated by a “random
walk” process, of M/Ms steps, where Ms ⇠ 1/

p
↵0 is the

typical mass of a straight string segment. If so, the string
entropy scales as the number of segments

Sball ⇠ M/Ms (1)

The Schwarzschild radius of a black hole in d spatial
dimensions is

RBH ⇠ (M)
1

(d�2) (2)

and the Bekenstein entropy

SBH ⇠ Area ⇠ M
d�1
d�2 (3)

Thus the equality Sball = SBH can only be reached at
some special critical mass Mc. When this happens, the
Hawking temperature of the black hole is exactly the
string Hagedorn value TH and the radius is at the string
scale. So, at least at such value of the mass a near-critical
string ball can be identified – at least thermodynamically
– with a black hole.

However, in order to understand how exactly this state
is reached, one should first address the following puz-
zle. Considering a free string ball (described by the
Polyakov’s near-critical random walk), one would esti-
mate its radius to be

Rball,r.w.

ls
⇠

p
M (4)

for any dimension d. This answer does not fit the
Schwarzschild radius RBH given above (2).

The important element missing is the self-interaction
of the string ball: perhaps, Susskind was the first who
pointed it out. More quantitative study started by

FIG. 1: (Color online) Dipole-dipole scattering due to the
“tube” string configuration. The impact parameter b is the
dipole transverse separation.

Horowitz and Polchinski [8] had used the mean field ap-
proach, and then Damour and Veneziano [9] completed
the argument by using the correction to the ball’s mass
due to the self-interaction. Their reasoning can be sum-
marized by the following schematic expression for the
entropy of a self-interacting string ball of radius R and
mass M ,

S(M,R) ⇠ M

✓
1� 1

R2

◆✓
1� R2

M2

◆✓
1 +

g2M

Rd�2

◆
(5)

where all numerical constants are for brevity suppressed
and all dimensional quantities are in string units given
by its tension. The coupling g in the last bracket is the
string self-coupling constant to be much discussed below.
For a very weak coupling the last term in the last bracket
can be ignored and the entropy maximum will be given
by the first two terms: this brings us back to the random
walk string ball. However, even for a very small g, the
importance of the last term depends not on g but on
g2M . So, very massive balls can be influenced by a very
weak gravity (what, indeed, happens with planets and
stars). If the last term is large compared to 1, the self-
interacting string balls become much smaller in size and
eventually fit the Schwarzschild radius.

C. String balls emerging in high energy pp
scattering

Pomeron description of the high energy hadronic
scattering includes production of (two) QCD strings
stretched between the receding color dipoles. Zahed and
collaborators [10, 11] proposed a semiclassical deriva-
tion of the tunneling (Euclidean) stage of the process,
based on the so-called “tube” string configuration shown
schematically in Fig. 1. Depending on how it is cut, it
can be viewed as either a production of two open strings
or a closed string exchange between the two color dipoles.
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Historically, the subject of string self-interaction have
been first discussed in the context of fundamental strings
in critical dimensions (26 for bosonic strings and 10 for
superstrings). The string coupling gs in this case is a
function of the vacuum expectation value of the dilaton
field, �: gs = e� for closed strings and gs = e�/2 for open
strings. The power of gs in the string amplitude is then
given by the Euler characteristic � of the string world-
sheet. As it is well known, the massless modes of closed
strings include gravitons: therefore it is a candidate for
the theory of quantum gravity. The subject relevant for
this work is the transition between the states of massive
“string balls” and the ones of black holes. When any
object gets very massive, one expects it to be described
classically. Su�ciently massive string balls should thus
become black holes of the classical gravity.

A string ball can be naively generated by a “random
walk” process, of M/Ms steps, where Ms ⇠ 1/
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↵0 is the

typical mass of a straight string segment. If so, the string
entropy scales as the number of segments

Sball ⇠ M/Ms (1)

The Schwarzschild radius of a black hole in d spatial
dimensions is

RBH ⇠ (M)
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and the Bekenstein entropy

SBH ⇠ Area ⇠ M
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d�2 (3)

Thus the equality Sball = SBH can only be reached at
some special critical mass Mc. When this happens, the
Hawking temperature of the black hole is exactly the
string Hagedorn value TH and the radius is at the string
scale. So, at least at such value of the mass a near-critical
string ball can be identified – at least thermodynamically
– with a black hole.

However, in order to understand how exactly this state
is reached, one should first address the following puz-
zle. Considering a free string ball (described by the
Polyakov’s near-critical random walk), one would esti-
mate its radius to be

Rball,r.w.

ls
⇠

p
M (4)

for any dimension d. This answer does not fit the
Schwarzschild radius RBH given above (2).

The important element missing is the self-interaction
of the string ball: perhaps, Susskind was the first who
pointed it out. More quantitative study started by

FIG. 1: (Color online) Dipole-dipole scattering due to the
“tube” string configuration. The impact parameter b is the
dipole transverse separation.
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proach, and then Damour and Veneziano [9] completed
the argument by using the correction to the ball’s mass
due to the self-interaction. Their reasoning can be sum-
marized by the following schematic expression for the
entropy of a self-interacting string ball of radius R and
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where all numerical constants are for brevity suppressed
and all dimensional quantities are in string units given
by its tension. The coupling g in the last bracket is the
string self-coupling constant to be much discussed below.
For a very weak coupling the last term in the last bracket
can be ignored and the entropy maximum will be given
by the first two terms: this brings us back to the random
walk string ball. However, even for a very small g, the
importance of the last term depends not on g but on
g2M . So, very massive balls can be influenced by a very
weak gravity (what, indeed, happens with planets and
stars). If the last term is large compared to 1, the self-
interacting string balls become much smaller in size and
eventually fit the Schwarzschild radius.

C. String balls emerging in high energy pp
scattering

Pomeron description of the high energy hadronic
scattering includes production of (two) QCD strings
stretched between the receding color dipoles. Zahed and
collaborators [10, 11] proposed a semiclassical deriva-
tion of the tunneling (Euclidean) stage of the process,
based on the so-called “tube” string configuration shown
schematically in Fig. 1. Depending on how it is cut, it
can be viewed as either a production of two open strings
or a closed string exchange between the two color dipoles.
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C. Self-interaction of holographic strings

Although we do not really discuss holographic
AdS/QCD string balls in this work, let us still comment
on those. Most of the works on holography are done in
the limit Nc ! 1, to put those into classical gravity
domain, while the number of quark flavors Nf is consid-
ered to be finite. This approximation is similar to the
“quenched” one in lattice gauge theories, and it ignores
the backreaction of quarks on the glue. An analog of sim-
ulations with the dynamical quarks in the holographic
world is known as the Veneziano limit Nc, Nf ! 1,
Nf/Nc = const, sometimes called V-QCD.

In all such approaches there are massless fields in the
bulk Lagrangian, such as the dilaton and the graviton.
They are interacting with the stress tensor, Tµµ and Tµ⌫ ,
respectively, in a standard manner. Existence of the con-
fining wall in holographic direction leads to the quanti-
zation of the motion in this direction, e↵ectively making
propagation in other directions massive. For a specific
choices of the wall – e.g. the so-called “soft wall” [17] –
one can easily calculate the mass spectrum of hadrons:
typically one gets linear Regge trajectories. In this sense,
massless bulk dilaton and graviton correspond to a whole
trajectory of massive hadrons in the gauge theory.

As a recent example of a holographic AdS/QCDmodel,
working in the Veneziano limit one can take Ref. [7],
in which holographic dual gravity solution is developed.
What is more relevant for us, is that in this work the
masses of scalar hadrons are calculated as a function of
Nf . In Fig. 7 of that work one finds such behavior for
four lowest scalar (flavor single) states: the lowest is the �
meson, the next is the “scalar glueball”, and one excited
state of each species. The mass ratio of the first pair is
mglueball/m� ⇡ 2.5, close to the ratio in the real world.
An extension of this calculation in V-QCD for finite
temperatures is not done yet (but should be done). The
authors of [7] also focus on the transition to conformal
regime at critical Nf/Nc ⇡ 4. As one can see from their
results, near this transition the sigma mass m�/⇤QCD

rapidly drops, too. As all holographic models, that on
contains also the analog of the flux tube – the fundamen-
tal string in the bulk. It would be interesting to calculate
in this model the strength and range of the string self-
interaction.

A comment on the dimensionality of the string ball pro-
duced by the holographic Pomeron. Specific dynamics of
a high energy collision leads to the near-vanishing values
of time and longitudinal (beam) coordinates x0, x1 ⇡ 0,
so only the “transverse” coordinates x2, x3, x5 = z are
left for string fluctuations. As a result, the e↵ective space
is also 3-dimensional, as for the usual QCD strings in
space. The di↵erence comes from the metric curved in
z-direction.

Even though the subsequent evolution of the string
ball at t > 0 has not yet been studied, the gravitational
language of the holography allows us to introduce the
notion of the “trapped surface”. It can be calculated
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FIG. 4: (Color online) Example of a two-string configuration
(a sparse string ball): two strings are plotted as blue and red.

instantaneously, at t = 0. It may or may not exist for
a given matter distribution: for example, in holographic
collisions with a nonzero impact parameter there is a crit-
ical value bc above which the trapped surface disappears
[18, 19].

III. THERMAL STRINGS ON THE LATTICE

After our extensive introduction, we introduce the nu-
merical model we use to study the string balls with self-
interaction. While we discuss the details of the setting
below in this section, let us emphasize on the onset its
main physics pre-requisites, namely that the ball surface
should be approximately near the Hagedorn temperature,
making the string to fluctuate widely outward.
Following a bit Wilson’s strong coupling expansion, we

place the strings on links of a (d = 3)-dimensional lat-
tice. Strings are assumed to be in contact with a certain
heat bath, and partition function includes all possible
string configurations, without self-intersection. Instead
of using boxes (with or without periodic boundary con-
ditions) as is customary in the lattice gauge theory and
many other statistical applications, we opted for an infi-
nite space (no box). Instead the temperature T is space
dependent. We think it better corresponds to experimen-
tal situation. Furthermore, string ball surface is auto-
matically near criticality and thus strongly fluctuating:
this aspect will be important for our application of initial
deformations below.
The “physical units” in gluodynamics, as in lattice tra-

dition, are set by putting the string tension to its value
in the real world

�T = (0.42GeV)2 (16)

Numerical lattice simulations have shown that gluody-
namics with Nc > 2 has first order deconfinement phase
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transition, with Tc/
p
�T very weakly dependent on Nc

(for review see e.g. [15, 16]). Numerically, critical tem-
perature of the gluodynamics is Tc ⇡ 270MeV.

It has been further shown that the e↵ective string ten-
sion of the free energy �F (T ) decreases with T : a point
where it vanishes is known as the Hagedorn point. Since
this point is above Tc, some attempts have been made
[14] to get closer to it by “superheating” the hadronic
phase, yet some amount of extrapolation is still needed.
The resulting value was found to be

TH

Tc
= 1.11 (17)

The nature of the lattice model we use is very di↵erent
from that of the lattice gauge theory (LGT). First of all,
we do not want to study quantum strings and generate
2-d surfaces in the Matsubara RdS1 space, restricting
ourselves to the thermodynamics of strings in d spatial
dimensions.

The lattice spacing a in LGT is a technical cuto↵,
which at the end of the calculation is expected to be
extrapolated to zero, reaching the so-called continuum
limit. In our case a is a physical parameter characterizing
QCD strings: its value is selected from the requirement
that it determines the correct density of states. Since we
postulate that the string can go to any of 2d�1 directions
from each point (going backward on itself is prohibited),
we have (2d � 1)L/a possible strings of length L. Our
partition function is given by

Z ⇠
Z

dL exp


L

a
ln(2d� 1)� �TL

T

�
, (18)

and hence the Hagedorn divergence happens at

TH =
�Ta

ln(2d� 1)
. (19)

Setting TH = 0.30GeV, according to the lattice data
mentioned above and the string tension, we fix the 3-
dimensional spacing to be

a
3

= 2.73GeV�1 ⇡ 0.54 fm. (20)

It is, therefore, a much more coarse lattice, compared to
the ones usually used in LGT.

If no external charges are involved, the excitations are
closed strings. At low T one may expect to excite only
the smallest ones. With “no self-crossing” rule we apply,
that would be an elementary plaquette with 4 links. Its
mass,

Eplaquette = 4�Ta ⇡ 1.9GeV , (21)

is amusingly in the ballpark of the lowest glueball masses
of QCD. (For completeness: the lowest “meson” is one
link or mass 0.5 GeV, and the lowest “baryon” is three
links – 1.5GeV of string energy – plus that of the “baryon
junction”.)
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FIG. 5: Upper plot: distribution of all points through all the
ensembles along one of the spatial coordinates (in units of a),
compared to a Gaussian distribution. Lower plot: dependence
of the string length L (a units) on the computer time t (in
units of 10 full iterations). Both for the zero self-coupling and
T0 = 1GeV, sT = 2a ⇡ 1 fm simulation.

At temperatures below and not close to TH one finds
extremely dilute O(e�10) gas of glueballs, or straight ini-
tial strings we put in. Only close to TH multiple string
states get excited, the strings rapidly grow and start oc-
cupying larger and larger fraction of the available space.
Before we show the results of the simulation, let us dis-

cuss the opposite “dense” limit of our model. We do not
allow strings to overlap: the minimal distance between
them is one link length, or again about 0.5 fm. Is it large
enough for string to be considered well separated? We
think so, as it is about three times the string radius (see
discussion below around (34)).
The most compact (volume-filling or Hamiltonian)

string wrapping visits each site of the lattice. If the string
is closed, then the number of occupied links is the same
as the number of occupied sites. Since in d = 3 each site
is shared among 8 neighboring cubes, there is e↵ectively
only one occupied link per unit cube, and this wrapping
produces the maximal energy density,

✏max

T 4

c

=
�Ta

a3T 4

c

⇡ 4.4 (22)

(we normalized it to a power of Tc, the highest tempera-
ture of the hadronic phase). It is instructive to compare
it to the energy density of the gluonic plasma, for which
we use the free Stefan-Boltzmann value

✏gluons
T 4

= (N2

c � 1)
⇡2

15
⇡ 5.26 (23)

and conclude that our model’s maximal energy density
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ensembles along one of the spatial coordinates (in units of a),
compared to a Gaussian distribution. Lower plot: dependence
of the string length L (a units) on the computer time t (in
units of 10 full iterations). Both for the zero self-coupling and
T0 = 1GeV, sT = 2a ⇡ 1 fm simulation.

At temperatures below and not close to TH one finds
extremely dilute O(e�10) gas of glueballs, or straight ini-
tial strings we put in. Only close to TH multiple string
states get excited, the strings rapidly grow and start oc-
cupying larger and larger fraction of the available space.
Before we show the results of the simulation, let us dis-

cuss the opposite “dense” limit of our model. We do not
allow strings to overlap: the minimal distance between
them is one link length, or again about 0.5 fm. Is it large
enough for string to be considered well separated? We
think so, as it is about three times the string radius (see
discussion below around (34)).
The most compact (volume-filling or Hamiltonian)

string wrapping visits each site of the lattice. If the string
is closed, then the number of occupied links is the same
as the number of occupied sites. Since in d = 3 each site
is shared among 8 neighboring cubes, there is e↵ectively
only one occupied link per unit cube, and this wrapping
produces the maximal energy density,

✏max

T 4

c

=
�Ta

a3T 4

c

⇡ 4.4 (22)

(we normalized it to a power of Tc, the highest tempera-
ture of the hadronic phase). It is instructive to compare
it to the energy density of the gluonic plasma, for which
we use the free Stefan-Boltzmann value

✏gluons
T 4

= (N2

c � 1)
⇡2

15
⇡ 5.26 (23)

and conclude that our model’s maximal energy density
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is comparable to the physical maximal energy density of
the mixed phase we would like to study.

One remaining issue is treatment of color number. In
practice we ignore it, considering thermal excitations of
two strings we always initiate the system with. We also
think of those strings are direct and reverse color fluxes
from two neutral hadrons, which appear in hadronic col-
lisions: it basically mean that all our strings have all only
one and the same color. Their mutual repulsion – or no-
crossing rule – is in this case natural. All we simulate
is the Hagedorn phenomenon due to exponentially large
number of string states, ignoring pre factors due to the
Nc.

Some justification for that comes from the fact that
(apart from the properties of the deconfined phase itself)
very little Nc dependence is seen in the lattice gluody-
namics data, for a review see [15, 16]. One may however
still wander if one should assign specific colors to strings
in the model and account for the fact that two overlap-
ping flux tubes with different colors may be partially
allowed. In this first study we simply did not want to
make our model too complex.

IV. NUMERICAL SIMULATIONS

A. String ball without a self-interaction

Our algorithm consists of a sequence of updates for the
each string segment, such that the configuration gradu-
ally approaches equilibrium. In order to thermalize the
string and to generate a statistical ensemble, we use the
following three types of elementary updates:

r
r r

r �! r r (24)

r
r r

 !
r
rr (25)

r r �! r
r r

r (26)

There is no 1 to 2, because those are “local updates”,
done with the ends fixed. Where the new “corners” and
“staples” are chosen in a way avoiding self-intersections.
A new configuration is then accepted with the probability
from the heat bath (Metropolis) algorithm,

PA = min


1, exp

✓
E

old

� E
new

T

◆�
, (27)

where (E
old

) E
new

is the total energy of the (old) new
configuration, and T is the temperature in the region of
space, where the update is performed. We introduce a
space-dependent temperature with a Gaussian profile

T (r) = T
0

exp

✓
� r2

2s2T

◆
(28)

As the self-interaction is absent (gN = 0), the physics
is simple: in the “cold” regions of space T (x) < TH the
string’s entropy times temperature is less than its energy
and the string segments are only present if they should
cross the region in order to connect fixed string ends.
In the “hot” region, where T (x) > TH the string gets
strongly excited.
Since in hadronic collisions the color flux conservation

requires production of an even number of strings, (most)
of our simulations are initialized by the two-string config-
urations. The endpoints are separated by a fixed distance
3a ⇠ 1.5 fm and are not moved by the update algorithm.
In Fig. 5 we show an example of history of such sim-

ulations, as the string length versus the computer time
t/tm. The time is in units tm = 10 of the entire string up-
date cycles. The total run (equilibration time excluded)
is typically about (1� 3)⇥ 104 iterations. The necessary
run length actually was found to be dependent on the
ball size: the example we will now use corresponds to a
“medium-size ball” with a length of about 50 links and
a mass of about 25 GeV.
The integral distribution over all three coordinates is

close to the Gaussian one, as is exemplified in the upper
figure. Yet it is not just a Gaussian ensemble of random
points, as the points constitute extended objects - strings.
One can see in the lower part of Fig. 5 that the (computer
time) history of the system displays rather large fluctua-
tions. Yet the average over points (not shown) does not
show any obvious time dependence, which means that the
average properties of the ensemble has stabilized. The
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FIG. 6: (Color online) Upper plot: distribution over the string
lengths (in units of a) in our simulations. Dark (blue) his-
togram is for T0 = 1GeV, sT = 1.5a, the light (orange) one
is for T0 = 1GeV, sT = 1.0a. The lower plot shows a typi-
cal configuration in the second ensemble, with only one string
excited.
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FIG. 7: Upper plot: The energy of the cluster E (GeV)
versus the length of the string L/a. Lower plot: The en-
ergy of the cluster E (GeV) versus the “Newton coupling”
gN (GeV�2). Points show the results of the simulations in
setting T0 = 1GeV and size of the ball sT = 1.5a, 2a, for
circles and stars, respectively.

reason for those is the near-critical conditions at the ball
surface, where the string has e↵ectively a very small e↵ec-
tive tension. Furthermore, if one looks at the individual
configurations – e.g. those displayed in Fig. 4 – one can
see that, in spite of relatively heavy string balls, most of
the space remains unoccupied.

As the parameter sT of the ball size is reduced, the
mean length (and thus the ball’s mass) is strongly di-
minished as well. Two examples of the length distribu-
tion shown in Fig. 6 make this point clear. While at
T
0

= 1GeV, sT = 1.5a (dark blue histogram) one finds a
string ball of an average length of about 20 links, further
reduction to sT = 1.0a (light orange histogram) shows
that the most probable is the shortest configuration with
8 points (6 links), corresponding to an unexcited initial
configuration. Yet even in this case, the population of the
excited strings still show a long tale, with population up
to 25 links (in this simulation), with a probability rate
of about a percent. Inspection of those configurations
shows that it is dominated by the excitation of one of
the strings only, see lower part of Fig. 6.

B. Self-interaction included

Now we are ready to see how nonzero string self-
interaction modifies the properties of the system. While
increasing the corresponding parameter – “scalar New-
ton’s constant” gN – we observe that above its critical
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FIG. 8: (Color online) A typical configuration in the entropy-
rich self-balanced string balls ensemble. Simulation parame-
ters: T0 = 1GeV, sT = 1.5a, gN = 4.4 (GeV�2).

value even the most basic features of the system change.
In Fig. 7 (upper figure) we show the calculated rela-

tion between the average string length L and its energy
E. Each point is a run of about 10"000 iterations of the
entire string updates after equilibration. While at small
coupling E and L are simply proportional to each other,
like for non-interacting strings described above, this be-
havior changes abruptly. As the negative self-interaction
energy become important, the total energy E of the ball
becomes decreasing with the string length L. In Fig. 7
(lower figure) we show more details of this behavior: this
plot demonstrates how total energy E depends on the
coupling value gN . We find a jump at the critical cou-
pling (for this setting) gc1N , which in a simulation looks
like a first order transition, with double-maxima distribu-
tions in the energy and length. As is seen from the figure,
the precise value of the coupling somewhat depends on
the system size. At this coupling the jump in energy is
always about a factor 3, and the jump in string length
(or entropy) is even larger.
In this way we observe a new regime for our system,

which we will call the “entropy-rich self-balanced string
balls”. For a given fixed mass M we thus find that string
balls may belong to two very distinct classes: (i) small
near-random balls and (ii) large ones in which the string
can be very long, but balances its tension by a compara-
ble collective attraction. Discovery of this second regime
is the main result of this paper.

Finally, there exists the second critical coupling, which
found to be gc2N ⇡ 4.5GeV�2, above which balancing the
energy becomes impossible and simulations show imme-
diate collapse of the system, in which the energy quickly
falls to large negative values, clearly of no physical mean-
ing.

Example of a corresponding configuration is shown in
Fig. 8. Note that, in spite of a very large string length

we observe a new regime: the 
entropy-rich self-balanced 
string balls	
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FIG. 7: Upper plot: The energy of the cluster E (GeV)
versus the length of the string L/a. Lower plot: The en-
ergy of the cluster E (GeV) versus the “Newton coupling”
gN (GeV�2). Points show the results of the simulations in
setting T0 = 1GeV and size of the ball sT = 1.5a, 2a, for
circles and stars, respectively.

reason for those is the near-critical conditions at the ball
surface, where the string has e↵ectively a very small e↵ec-
tive tension. Furthermore, if one looks at the individual
configurations – e.g. those displayed in Fig. 4 – one can
see that, in spite of relatively heavy string balls, most of
the space remains unoccupied.

As the parameter sT of the ball size is reduced, the
mean length (and thus the ball’s mass) is strongly di-
minished as well. Two examples of the length distribu-
tion shown in Fig. 6 make this point clear. While at
T
0

= 1GeV, sT = 1.5a (dark blue histogram) one finds a
string ball of an average length of about 20 links, further
reduction to sT = 1.0a (light orange histogram) shows
that the most probable is the shortest configuration with
8 points (6 links), corresponding to an unexcited initial
configuration. Yet even in this case, the population of the
excited strings still show a long tale, with population up
to 25 links (in this simulation), with a probability rate
of about a percent. Inspection of those configurations
shows that it is dominated by the excitation of one of
the strings only, see lower part of Fig. 6.

B. Self-interaction included

Now we are ready to see how nonzero string self-
interaction modifies the properties of the system. While
increasing the corresponding parameter – “scalar New-
ton’s constant” gN – we observe that above its critical
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FIG. 8: (Color online) A typical configuration in the entropy-
rich self-balanced string balls ensemble. Simulation parame-
ters: T0 = 1GeV, sT = 1.5a, gN = 4.4 (GeV�2).

value even the most basic features of the system change.
In Fig. 7 (upper figure) we show the calculated rela-

tion between the average string length L and its energy
E. Each point is a run of about 10"000 iterations of the
entire string updates after equilibration. While at small
coupling E and L are simply proportional to each other,
like for non-interacting strings described above, this be-
havior changes abruptly. As the negative self-interaction
energy become important, the total energy E of the ball
becomes decreasing with the string length L. In Fig. 7
(lower figure) we show more details of this behavior: this
plot demonstrates how total energy E depends on the
coupling value gN . We find a jump at the critical cou-
pling (for this setting) gc1N , which in a simulation looks
like a first order transition, with double-maxima distribu-
tions in the energy and length. As is seen from the figure,
the precise value of the coupling somewhat depends on
the system size. At this coupling the jump in energy is
always about a factor 3, and the jump in string length
(or entropy) is even larger.
In this way we observe a new regime for our system,

which we will call the “entropy-rich self-balanced string
balls”. For a given fixed mass M we thus find that string
balls may belong to two very distinct classes: (i) small
near-random balls and (ii) large ones in which the string
can be very long, but balances its tension by a compara-
ble collective attraction. Discovery of this second regime
is the main result of this paper.

Finally, there exists the second critical coupling, which
found to be gc2N ⇡ 4.5GeV�2, above which balancing the
energy becomes impossible and simulations show imme-
diate collapse of the system, in which the energy quickly
falls to large negative values, clearly of no physical mean-
ing.

Example of a corresponding configuration is shown in
Fig. 8. Note that, in spite of a very large string length

in spite of a very large string length	


L/a ∼ 700, the total energy is only E ≈ 17GeV, 	


as a result of the balancing between 	


the string tension and self- interaction.	




very strong dependence on 
the value of the sigma mass
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L/a ⇠ 700, the total energy is only E ⇡ 17GeV, as
a result of the balancing between the mass and self-
interaction. Note furthermore that that configurations
are very asymmetric: one string is excited much more
than the other, since longer string has much more states
than the shorter one. The same feature has been noticed
on the lattice as well: typically, one very long string forms
a large cluster, dominating over few small clusters. Note
further, that nearly all space inside the ball with T > TH

is occupied. High entropy corresponds to a (astronomi-
cally) large number of shapes this string may have.

So far we only used the vacuum value of the sigma
meson mass, m� = 0.6GeV. What happens if its value is
reduced is shown in Fig. 9. As one can see from this plot,
the critical self-coupling is reduced by about an order of
magnitude between subsequent values of m�. Indeed, as
the mass decreases by roughly a factor 2, the volume of
the region where r  1/m� is increased roughly by the
factor 8.

Summary of this section: at certain critical coupling
the string ball undergoes transition to a self-binding high
entropy phase. Its value depends strongly on the value
of the sigma meson mass at Tc. (Both the mass and the
coupling in the QCD near Tc are not yet known.)

V. APPLICATIONS

A. Jet quenching during the mixed phase

Hard collisions, creating quark and gluon jets, provide
an “X-ray tomography” of the excited fireball produced
in heavy ion collisions. “Quenching” (absorption, modi-
fication) of such jets is one of the main diagnostic tools
used to probe various phases of the hadronic matter ap-
pearing during the fireball expansion. The theory of jet
quenching is rather involved, and the phenomenology is
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FIG. 9: (Color online) Blue circles, yellow squares and red
stars show the dependence of the string ball energy E(GeV)
on the coupling gN (GeV�2) for m� = 0.1, 0.3, 0.6GeV, re-
spectively. These simulations are performed in the setting
T0 = 1GeV, sT = 2a .

even more complicated, due to the time evolution of the
fireball. For a recent summary see e.g. a report of the
JET collaboration [23] and references therein. For our
purposes it is enough to mention that the relevant mat-
ter properties are described by a single quantity,

q̂ =
dhp2?i
dl

, (29)

characterizing increase of the mean squared momentum
perpendicular to the direction of motion, per unit length.
Most early works on the subject assumed that this

quantity is simply proportional to the entropy density
s of the matter,

q̂

s
⇡ const , (30)

since both of the have the same mass dimension. Such a
naive assumption is reasonable for the QGP phase, which
is quasi-conformal and possesses only one scale – say T–
of its own. But obviously there is no reason to extend
this assumption to the mixed and hadronic phases, as
their structure is quite di↵erent, especially in respect to
the color field distribution a↵ecting q̂. The characteristic
values used in current jet quenching models can be seen
in Fig. 10 of [23]: for T = Tc (the mixed phase) they
range in the following interval

✓
q̂

T 3

c

◆

min

⇡ 1,

✓
q̂

T 3

c

◆

max

⇡ 6 . (31)

Note that the analysis in [23] is so far based only on the
quenching strength itself: analysis of the quenching for
jet paths with di↵erent azimuthal angles – or the so-called
v
2

= hcos(2�)i at large pt – is yet to be performed.
It has however been pointed out long ago [24] that large

experimental values of v
2

are di�cult to explain by any
simple model of quenching, in particular, they were in a
strong contradiction with the simplest assumption (30).
One possible solution to this puzzle has been suggested
few years ago in Ref. [6]: the v

2

data can be reproduced,
if q̂ is significantly enhanced in the mixed phase. More
recent data, especially from LHC, had shown that v

2

has,
in fact, a rather strong pt dependence and is decreasing
with pt of the observed hadron: so the issue seems to
exist only for pt < 40GeV or so. Comparison of those
data with various models and discussion can be found in
Refs. [25, 26].
Here we want to point out that a natural explanation

for the enhanced q̂ in the mixed phase can be provided
by the strings. As far as we know, the “kicks” induced by
the color electric field inside the QCD strings has been ig-
nored in all jet quenching phenomenology: only the fields
of “charges” (quarks and gluons in QGP, hadrons alterna-
tively) were included, in the spherical Debye approxima-
tion. However, if the entire flux of the color-electric field
is inside the QCD strings, there are no Coulomb fields
of the charges and their Debye cloud. There are, in fact,
two di↵erent reasons for it to be the case: (i) a generic
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L/a ⇠ 700, the total energy is only E ⇡ 17GeV, as
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interaction. Note furthermore that that configurations
are very asymmetric: one string is excited much more
than the other, since longer string has much more states
than the shorter one. The same feature has been noticed
on the lattice as well: typically, one very long string forms
a large cluster, dominating over few small clusters. Note
further, that nearly all space inside the ball with T > TH

is occupied. High entropy corresponds to a (astronomi-
cally) large number of shapes this string may have.

So far we only used the vacuum value of the sigma
meson mass, m� = 0.6GeV. What happens if its value is
reduced is shown in Fig. 9. As one can see from this plot,
the critical self-coupling is reduced by about an order of
magnitude between subsequent values of m�. Indeed, as
the mass decreases by roughly a factor 2, the volume of
the region where r  1/m� is increased roughly by the
factor 8.

Summary of this section: at certain critical coupling
the string ball undergoes transition to a self-binding high
entropy phase. Its value depends strongly on the value
of the sigma meson mass at Tc. (Both the mass and the
coupling in the QCD near Tc are not yet known.)
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A. Jet quenching during the mixed phase

Hard collisions, creating quark and gluon jets, provide
an “X-ray tomography” of the excited fireball produced
in heavy ion collisions. “Quenching” (absorption, modi-
fication) of such jets is one of the main diagnostic tools
used to probe various phases of the hadronic matter ap-
pearing during the fireball expansion. The theory of jet
quenching is rather involved, and the phenomenology is
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FIG. 9: (Color online) Blue circles, yellow squares and red
stars show the dependence of the string ball energy E(GeV)
on the coupling gN (GeV�2) for m� = 0.1, 0.3, 0.6GeV, re-
spectively. These simulations are performed in the setting
T0 = 1GeV, sT = 2a .

even more complicated, due to the time evolution of the
fireball. For a recent summary see e.g. a report of the
JET collaboration [23] and references therein. For our
purposes it is enough to mention that the relevant mat-
ter properties are described by a single quantity,

q̂ =
dhp2?i
dl

, (29)

characterizing increase of the mean squared momentum
perpendicular to the direction of motion, per unit length.
Most early works on the subject assumed that this

quantity is simply proportional to the entropy density
s of the matter,

q̂

s
⇡ const , (30)

since both of the have the same mass dimension. Such a
naive assumption is reasonable for the QGP phase, which
is quasi-conformal and possesses only one scale – say T–
of its own. But obviously there is no reason to extend
this assumption to the mixed and hadronic phases, as
their structure is quite di↵erent, especially in respect to
the color field distribution a↵ecting q̂. The characteristic
values used in current jet quenching models can be seen
in Fig. 10 of [23]: for T = Tc (the mixed phase) they
range in the following interval
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Note that the analysis in [23] is so far based only on the
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jet paths with di↵erent azimuthal angles – or the so-called
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if q̂ is significantly enhanced in the mixed phase. More
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has,
in fact, a rather strong pt dependence and is decreasing
with pt of the observed hadron: so the issue seems to
exist only for pt < 40GeV or so. Comparison of those
data with various models and discussion can be found in
Refs. [25, 26].
Here we want to point out that a natural explanation

for the enhanced q̂ in the mixed phase can be provided
by the strings. As far as we know, the “kicks” induced by
the color electric field inside the QCD strings has been ig-
nored in all jet quenching phenomenology: only the fields
of “charges” (quarks and gluons in QGP, hadrons alterna-
tively) were included, in the spherical Debye approxima-
tion. However, if the entire flux of the color-electric field
is inside the QCD strings, there are no Coulomb fields
of the charges and their Debye cloud. There are, in fact,
two di↵erent reasons for it to be the case: (i) a generic
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reduced is shown in Fig. 9. As one can see from this plot,
the critical self-coupling is reduced by about an order of
magnitude between subsequent values of m�. Indeed, as
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factor 8.
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entropy phase. Its value depends strongly on the value
of the sigma meson mass at Tc. (Both the mass and the
coupling in the QCD near Tc are not yet known.)
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pearing during the fireball expansion. The theory of jet
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FIG. 9: (Color online) Blue circles, yellow squares and red
stars show the dependence of the string ball energy E(GeV)
on the coupling gN (GeV�2) for m� = 0.1, 0.3, 0.6GeV, re-
spectively. These simulations are performed in the setting
T0 = 1GeV, sT = 2a .

even more complicated, due to the time evolution of the
fireball. For a recent summary see e.g. a report of the
JET collaboration [23] and references therein. For our
purposes it is enough to mention that the relevant mat-
ter properties are described by a single quantity,
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characterizing increase of the mean squared momentum
perpendicular to the direction of motion, per unit length.
Most early works on the subject assumed that this

quantity is simply proportional to the entropy density
s of the matter,

q̂

s
⇡ const , (30)

since both of the have the same mass dimension. Such a
naive assumption is reasonable for the QGP phase, which
is quasi-conformal and possesses only one scale – say T–
of its own. But obviously there is no reason to extend
this assumption to the mixed and hadronic phases, as
their structure is quite di↵erent, especially in respect to
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for the enhanced q̂ in the mixed phase can be provided
by the strings. As far as we know, the “kicks” induced by
the color electric field inside the QCD strings has been ig-
nored in all jet quenching phenomenology: only the fields
of “charges” (quarks and gluons in QGP, hadrons alterna-
tively) were included, in the spherical Debye approxima-
tion. However, if the entire flux of the color-electric field
is inside the QCD strings, there are no Coulomb fields
of the charges and their Debye cloud. There are, in fact,
two di↵erent reasons for it to be the case: (i) a generic
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interaction. Note furthermore that that configurations
are very asymmetric: one string is excited much more
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FIG. 9: (Color online) Blue circles, yellow squares and red
stars show the dependence of the string ball energy E(GeV)
on the coupling gN (GeV�2) for m� = 0.1, 0.3, 0.6GeV, re-
spectively. These simulations are performed in the setting
T0 = 1GeV, sT = 2a .
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2
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data with various models and discussion can be found in
Refs. [25, 26].
Here we want to point out that a natural explanation

for the enhanced q̂ in the mixed phase can be provided
by the strings. As far as we know, the “kicks” induced by
the color electric field inside the QCD strings has been ig-
nored in all jet quenching phenomenology: only the fields
of “charges” (quarks and gluons in QGP, hadrons alterna-
tively) were included, in the spherical Debye approxima-
tion. However, if the entire flux of the color-electric field
is inside the QCD strings, there are no Coulomb fields
of the charges and their Debye cloud. There are, in fact,
two di↵erent reasons for it to be the case: (i) a generic
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string enhancement due to the Hagedorn phenomenon;
and (ii) further enhancement energy due to the string
self-interaction, the main subject of this paper. We will
discuss below those two e↵ects subsequently.

As we repeatedly emphasized already, in the mixed
phase the strings are close to their Hagedorn tempera-
ture, so they get easily excited. Let us refer to their av-
erage length as L̄, and to the string radius as rs. The ge-
ometrical cross section of the jet-string interaction scales
as their product: we will use 2L̄rs.

More accurately, approximating the QCD cross-over
transition by a first order transition, one defines the
mixed phase as T = Tc ⇡ 0.17GeV and variable energy
(and/or entropy) density. The normalized energy den-
sity according to lattice calculations (now for the QCD
with quarks, not just for gluodynamics, as in section III),
✏/T 4, ranges from 3 at T = Tc to about 12 at T = 1.2Tc.
Assuming that all this energy comes from a string, and
dividing naively by the vacuum (T=0) string tension �T ,
one finds that inside each 1 fm3 cube there is a string of
length changing between L̄min = 0.4 and L̄max = 1.4 fm,
across the mixed phase.

Let us now estimate q̂, by a simple classical argument.
The mean square of the momentum kick we write as

hp2?i ⇡ (gErs)
2 , (32)

which is a color force, gE, times the time it acts while
the jet is traversing the string, (some coe�cient of the or-
der one times) rs. This combination of the field strength
and the radius can be directly obtained from the follow-
ing consideration: the string tension, i.e. the energy per
length, is that of the field inside the string plus the en-
ergy of the “coil” (the magnetic current holding the field).
The former one is (E2/2)⇡r2s : and the latter should be
comparable. Assuming it is the same, and eliminating
1/2 we get �T = ⇡r2sE

2 from which it follows that

hp2?i ⇡ 4↵s�T (33)

The geometric probability for a jet to cross the string is
2

3

2

¯Lrs
fm

2 over each fm longitudinally. Here (2/3) excludes
string segments along the jet, in which the kick is longi-
tudinal. So,

q̂ ⇡ 16

3
↵s�T

L̄rs

fm3

. (34)

We still need to know the string radius and, fortunately,
its value and the string profile have been extensively stud-
ied on the lattice. Furthermore, in the so-called dual
Abelian model the QCD strings – flux tubes – are the
well known Abrikosov vortex solutions. Numerical data
and the dual theory do, in fact, agree quite well: see, in
particular, a review by Bali [27], from which we borrow
a fit to the lattice data, by the profile function

E(x) =
�e

2⇡r2s
K

0

(x/rs) (35)

withK
0

being the Bessel function. The main point here is
the value of the string radius rs = 1/(1.3GeV) = 0.15 fm.
The normalization parameter is �e = 1.44.
Now all parameters in the q̂ expression above are fixed

and we can evaluate q̂ numerically. With ↵s = 1/2 one
finds the range across the mixed phase to be

q̂min = 0.028, q̂max = 0.10

✓
GeV2

fm

◆
. (36)

Comparing these estimates with the values used in the
phenomenological models by the JET collaboration (31)
mentioned in the beginning of this subsection. Putting
them in the same absolute units one finds those to be

q̂min = 0.025, q̂max = 0.15

✓
GeV2

fm

◆
, (37)

which is in a good correspondence with our estimates.
This agreement does not, of course, mean that either

the estimate or empirical inputs used are, in fact, correct.
Recall that the JET collaboration’s analysis is done for
the hadron pt ⇠ 10 GeV, well inside the region, in which
the large v

2

puzzle remains unresolved. If these data are
to be included in their analysis, the values would go up.
From the theory side, the presented estimate looks sus-

picious, because it does not include the second enhance-
ment e↵ect, that is due to the string self-interaction.
Indeed, above we assumed the energy of the string to
be just linear in length due to its (vacuum) tension, i.e.
L�T . But, as we demonstrated in the upper Fig. 7, the
“entropy-rich branch” of the string balls has a di↵erent
relation between the total energy and the string length
L: self-interaction can compensate a large fraction of the
energy. For the same total ball energy its string length L
can, in fact, be up to an order of magnitude larger, reach-
ing, perhaps, q̂ ⇠ 1GeV2/fm magnitude range, which is
usually associated with the QGP phase. Since the string
inside still contains the same electric flux etc, it means
that q̂ can be enhanced by this mechanism by about
an order of magnitude. (Another glance at our extreme
string-ball configurations shown in Fig. 8 may be needed
at this point, for most skeptical readers.) If this is the
case, the mechanism behind large v

2

will be explained!
Of course, it is just a possibility at this point: as we had

shown, it happens provided the self interaction parameter
happen to be of the right magnitude. Unfortunately, we
don’t really know what is its real-world value. (Again,
we only see that what is needed is several times smaller
than sigma coupling to the nucleons, which binds them
into nuclei.)

B. Angular correlations

The first di↵erence between the typical and high-
multiplicity pp and pA collisions first discovered was the
so-called “ridge” correlations. Soon LHC experiments
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which is a color force, gE, times the time it acts while
the jet is traversing the string, (some coe�cient of the or-
der one times) rs. This combination of the field strength
and the radius can be directly obtained from the follow-
ing consideration: the string tension, i.e. the energy per
length, is that of the field inside the string plus the en-
ergy of the “coil” (the magnetic current holding the field).
The former one is (E2/2)⇡r2s : and the latter should be
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We still need to know the string radius and, fortunately,
its value and the string profile have been extensively stud-
ied on the lattice. Furthermore, in the so-called dual
Abelian model the QCD strings – flux tubes – are the
well known Abrikosov vortex solutions. Numerical data
and the dual theory do, in fact, agree quite well: see, in
particular, a review by Bali [27], from which we borrow
a fit to the lattice data, by the profile function
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being the Bessel function. The main point here is
the value of the string radius rs = 1/(1.3GeV) = 0.15 fm.
The normalization parameter is �e = 1.44.
Now all parameters in the q̂ expression above are fixed

and we can evaluate q̂ numerically. With ↵s = 1/2 one
finds the range across the mixed phase to be
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Comparing these estimates with the values used in the
phenomenological models by the JET collaboration (31)
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them in the same absolute units one finds those to be
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which is in a good correspondence with our estimates.
This agreement does not, of course, mean that either

the estimate or empirical inputs used are, in fact, correct.
Recall that the JET collaboration’s analysis is done for
the hadron pt ⇠ 10 GeV, well inside the region, in which
the large v
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puzzle remains unresolved. If these data are
to be included in their analysis, the values would go up.
From the theory side, the presented estimate looks sus-

picious, because it does not include the second enhance-
ment e↵ect, that is due to the string self-interaction.
Indeed, above we assumed the energy of the string to
be just linear in length due to its (vacuum) tension, i.e.
L�T . But, as we demonstrated in the upper Fig. 7, the
“entropy-rich branch” of the string balls has a di↵erent
relation between the total energy and the string length
L: self-interaction can compensate a large fraction of the
energy. For the same total ball energy its string length L
can, in fact, be up to an order of magnitude larger, reach-
ing, perhaps, q̂ ⇠ 1GeV2/fm magnitude range, which is
usually associated with the QGP phase. Since the string
inside still contains the same electric flux etc, it means
that q̂ can be enhanced by this mechanism by about
an order of magnitude. (Another glance at our extreme
string-ball configurations shown in Fig. 8 may be needed
at this point, for most skeptical readers.) If this is the
case, the mechanism behind large v

2

will be explained!
Of course, it is just a possibility at this point: as we had

shown, it happens provided the self interaction parameter
happen to be of the right magnitude. Unfortunately, we
don’t really know what is its real-world value. (Again,
we only see that what is needed is several times smaller
than sigma coupling to the nucleons, which binds them
into nuclei.)

B. Angular correlations

The first di↵erence between the typical and high-
multiplicity pp and pA collisions first discovered was the
so-called “ridge” correlations. Soon LHC experiments
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a fit to the lattice data, by the profile function
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hp2?i ⇡ (gErs)
2 , (32)

which is a color force, gE, times the time it acts while
the jet is traversing the string, (some coe�cient of the or-
der one times) rs. This combination of the field strength
and the radius can be directly obtained from the follow-
ing consideration: the string tension, i.e. the energy per
length, is that of the field inside the string plus the en-
ergy of the “coil” (the magnetic current holding the field).
The former one is (E2/2)⇡r2s : and the latter should be
comparable. Assuming it is the same, and eliminating
1/2 we get �T = ⇡r2sE

2 from which it follows that

hp2?i ⇡ 4↵s�T (33)

The geometric probability for a jet to cross the string is
2

3

2

¯Lrs
fm

2 over each fm longitudinally. Here (2/3) excludes
string segments along the jet, in which the kick is longi-
tudinal. So,

q̂ ⇡ 16

3
↵s�T

L̄rs

fm3

. (34)

We still need to know the string radius and, fortunately,
its value and the string profile have been extensively stud-
ied on the lattice. Furthermore, in the so-called dual
Abelian model the QCD strings – flux tubes – are the
well known Abrikosov vortex solutions. Numerical data
and the dual theory do, in fact, agree quite well: see, in
particular, a review by Bali [27], from which we borrow
a fit to the lattice data, by the profile function

E(x) =
�e

2⇡r2s
K

0

(x/rs) (35)

withK
0

being the Bessel function. The main point here is
the value of the string radius rs = 1/(1.3GeV) = 0.15 fm.
The normalization parameter is �e = 1.44.
Now all parameters in the q̂ expression above are fixed

and we can evaluate q̂ numerically. With ↵s = 1/2 one
finds the range across the mixed phase to be

q̂min = 0.028, q̂max = 0.10

✓
GeV2

fm

◆
. (36)

Comparing these estimates with the values used in the
phenomenological models by the JET collaboration (31)
mentioned in the beginning of this subsection. Putting
them in the same absolute units one finds those to be

q̂min = 0.025, q̂max = 0.15

✓
GeV2

fm

◆
, (37)

which is in a good correspondence with our estimates.
This agreement does not, of course, mean that either

the estimate or empirical inputs used are, in fact, correct.
Recall that the JET collaboration’s analysis is done for
the hadron pt ⇠ 10 GeV, well inside the region, in which
the large v

2

puzzle remains unresolved. If these data are
to be included in their analysis, the values would go up.
From the theory side, the presented estimate looks sus-

picious, because it does not include the second enhance-
ment e↵ect, that is due to the string self-interaction.
Indeed, above we assumed the energy of the string to
be just linear in length due to its (vacuum) tension, i.e.
L�T . But, as we demonstrated in the upper Fig. 7, the
“entropy-rich branch” of the string balls has a di↵erent
relation between the total energy and the string length
L: self-interaction can compensate a large fraction of the
energy. For the same total ball energy its string length L
can, in fact, be up to an order of magnitude larger, reach-
ing, perhaps, q̂ ⇠ 1GeV2/fm magnitude range, which is
usually associated with the QGP phase. Since the string
inside still contains the same electric flux etc, it means
that q̂ can be enhanced by this mechanism by about
an order of magnitude. (Another glance at our extreme
string-ball configurations shown in Fig. 8 may be needed
at this point, for most skeptical readers.) If this is the
case, the mechanism behind large v

2

will be explained!
Of course, it is just a possibility at this point: as we had

shown, it happens provided the self interaction parameter
happen to be of the right magnitude. Unfortunately, we
don’t really know what is its real-world value. (Again,
we only see that what is needed is several times smaller
than sigma coupling to the nucleons, which binds them
into nuclei.)

B. Angular correlations

The first di↵erence between the typical and high-
multiplicity pp and pA collisions first discovered was the
so-called “ridge” correlations. Soon LHC experiments

across the mixed phase, to be compared with values 
by the Jet coll. at Tc
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string enhancement due to the Hagedorn phenomenon;
and (ii) further enhancement energy due to the string
self-interaction, the main subject of this paper. We will
discuss below those two e↵ects subsequently.

As we repeatedly emphasized already, in the mixed
phase the strings are close to their Hagedorn tempera-
ture, so they get easily excited. Let us refer to their av-
erage length as L̄, and to the string radius as rs. The ge-
ometrical cross section of the jet-string interaction scales
as their product: we will use 2L̄rs.

More accurately, approximating the QCD cross-over
transition by a first order transition, one defines the
mixed phase as T = Tc ⇡ 0.17GeV and variable energy
(and/or entropy) density. The normalized energy den-
sity according to lattice calculations (now for the QCD
with quarks, not just for gluodynamics, as in section III),
✏/T 4, ranges from 3 at T = Tc to about 12 at T = 1.2Tc.
Assuming that all this energy comes from a string, and
dividing naively by the vacuum (T=0) string tension �T ,
one finds that inside each 1 fm3 cube there is a string of
length changing between L̄min = 0.4 and L̄max = 1.4 fm,
across the mixed phase.

Let us now estimate q̂, by a simple classical argument.
The mean square of the momentum kick we write as

hp2?i ⇡ (gErs)
2 , (32)

which is a color force, gE, times the time it acts while
the jet is traversing the string, (some coe�cient of the or-
der one times) rs. This combination of the field strength
and the radius can be directly obtained from the follow-
ing consideration: the string tension, i.e. the energy per
length, is that of the field inside the string plus the en-
ergy of the “coil” (the magnetic current holding the field).
The former one is (E2/2)⇡r2s : and the latter should be
comparable. Assuming it is the same, and eliminating
1/2 we get �T = ⇡r2sE

2 from which it follows that

hp2?i ⇡ 4↵s�T (33)

The geometric probability for a jet to cross the string is
2

3

2

¯Lrs
fm

2 over each fm longitudinally. Here (2/3) excludes
string segments along the jet, in which the kick is longi-
tudinal. So,

q̂ ⇡ 16

3
↵s�T

L̄rs

fm3

. (34)

We still need to know the string radius and, fortunately,
its value and the string profile have been extensively stud-
ied on the lattice. Furthermore, in the so-called dual
Abelian model the QCD strings – flux tubes – are the
well known Abrikosov vortex solutions. Numerical data
and the dual theory do, in fact, agree quite well: see, in
particular, a review by Bali [27], from which we borrow
a fit to the lattice data, by the profile function

E(x) =
�e

2⇡r2s
K

0

(x/rs) (35)

withK
0

being the Bessel function. The main point here is
the value of the string radius rs = 1/(1.3GeV) = 0.15 fm.
The normalization parameter is �e = 1.44.
Now all parameters in the q̂ expression above are fixed

and we can evaluate q̂ numerically. With ↵s = 1/2 one
finds the range across the mixed phase to be

q̂min = 0.028, q̂max = 0.10

✓
GeV2

fm

◆
. (36)

Comparing these estimates with the values used in the
phenomenological models by the JET collaboration (31)
mentioned in the beginning of this subsection. Putting
them in the same absolute units one finds those to be

q̂min = 0.025, q̂max = 0.15

✓
GeV2

fm

◆
, (37)

which is in a good correspondence with our estimates.
This agreement does not, of course, mean that either

the estimate or empirical inputs used are, in fact, correct.
Recall that the JET collaboration’s analysis is done for
the hadron pt ⇠ 10 GeV, well inside the region, in which
the large v

2

puzzle remains unresolved. If these data are
to be included in their analysis, the values would go up.
From the theory side, the presented estimate looks sus-

picious, because it does not include the second enhance-
ment e↵ect, that is due to the string self-interaction.
Indeed, above we assumed the energy of the string to
be just linear in length due to its (vacuum) tension, i.e.
L�T . But, as we demonstrated in the upper Fig. 7, the
“entropy-rich branch” of the string balls has a di↵erent
relation between the total energy and the string length
L: self-interaction can compensate a large fraction of the
energy. For the same total ball energy its string length L
can, in fact, be up to an order of magnitude larger, reach-
ing, perhaps, q̂ ⇠ 1GeV2/fm magnitude range, which is
usually associated with the QGP phase. Since the string
inside still contains the same electric flux etc, it means
that q̂ can be enhanced by this mechanism by about
an order of magnitude. (Another glance at our extreme
string-ball configurations shown in Fig. 8 may be needed
at this point, for most skeptical readers.) If this is the
case, the mechanism behind large v

2

will be explained!
Of course, it is just a possibility at this point: as we had

shown, it happens provided the self interaction parameter
happen to be of the right magnitude. Unfortunately, we
don’t really know what is its real-world value. (Again,
we only see that what is needed is several times smaller
than sigma coupling to the nucleons, which binds them
into nuclei.)

B. Angular correlations

The first di↵erence between the typical and high-
multiplicity pp and pA collisions first discovered was the
so-called “ridge” correlations. Soon LHC experiments

But in high entropy self-supporting balls it can be !
up to one order of magnitude larger!
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L/a ⇠ 700, the total energy is only E ⇡ 17GeV, as
a result of the balancing between the mass and self-
interaction. Note furthermore that that configurations
are very asymmetric: one string is excited much more
than the other, since longer string has much more states
than the shorter one. The same feature has been noticed
on the lattice as well: typically, one very long string forms
a large cluster, dominating over few small clusters. Note
further, that nearly all space inside the ball with T > TH

is occupied. High entropy corresponds to a (astronomi-
cally) large number of shapes this string may have.

So far we only used the vacuum value of the sigma
meson mass, m� = 0.6GeV. What happens if its value is
reduced is shown in Fig. 9. As one can see from this plot,
the critical self-coupling is reduced by about an order of
magnitude between subsequent values of m�. Indeed, as
the mass decreases by roughly a factor 2, the volume of
the region where r  1/m� is increased roughly by the
factor 8.

Summary of this section: at certain critical coupling
the string ball undergoes transition to a self-binding high
entropy phase. Its value depends strongly on the value
of the sigma meson mass at Tc. (Both the mass and the
coupling in the QCD near Tc are not yet known.)

V. APPLICATIONS

A. Jet quenching during the mixed phase

Hard collisions, creating quark and gluon jets, provide
an “X-ray tomography” of the excited fireball produced
in heavy ion collisions. “Quenching” (absorption, modi-
fication) of such jets is one of the main diagnostic tools
used to probe various phases of the hadronic matter ap-
pearing during the fireball expansion. The theory of jet
quenching is rather involved, and the phenomenology is
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FIG. 9: (Color online) Blue circles, yellow squares and red
stars show the dependence of the string ball energy E(GeV)
on the coupling gN (GeV�2) for m� = 0.1, 0.3, 0.6GeV, re-
spectively. These simulations are performed in the setting
T0 = 1GeV, sT = 2a .

even more complicated, due to the time evolution of the
fireball. For a recent summary see e.g. a report of the
JET collaboration [23] and references therein. For our
purposes it is enough to mention that the relevant mat-
ter properties are described by a single quantity,

q̂ =
dhp2?i
dl

, (29)

characterizing increase of the mean squared momentum
perpendicular to the direction of motion, per unit length.
Most early works on the subject assumed that this

quantity is simply proportional to the entropy density
s of the matter,

q̂

s
⇡ const , (30)

since both of the have the same mass dimension. Such a
naive assumption is reasonable for the QGP phase, which
is quasi-conformal and possesses only one scale – say T–
of its own. But obviously there is no reason to extend
this assumption to the mixed and hadronic phases, as
their structure is quite di↵erent, especially in respect to
the color field distribution a↵ecting q̂. The characteristic
values used in current jet quenching models can be seen
in Fig. 10 of [23]: for T = Tc (the mixed phase) they
range in the following interval

✓
q̂

T 3

c

◆

min

⇡ 1,

✓
q̂

T 3

c

◆

max

⇡ 6 . (31)

Note that the analysis in [23] is so far based only on the
quenching strength itself: analysis of the quenching for
jet paths with di↵erent azimuthal angles – or the so-called
v
2

= hcos(2�)i at large pt – is yet to be performed.
It has however been pointed out long ago [24] that large

experimental values of v
2

are di�cult to explain by any
simple model of quenching, in particular, they were in a
strong contradiction with the simplest assumption (30).
One possible solution to this puzzle has been suggested
few years ago in Ref. [6]: the v

2

data can be reproduced,
if q̂ is significantly enhanced in the mixed phase. More
recent data, especially from LHC, had shown that v

2

has,
in fact, a rather strong pt dependence and is decreasing
with pt of the observed hadron: so the issue seems to
exist only for pt < 40GeV or so. Comparison of those
data with various models and discussion can be found in
Refs. [25, 26].
Here we want to point out that a natural explanation

for the enhanced q̂ in the mixed phase can be provided
by the strings. As far as we know, the “kicks” induced by
the color electric field inside the QCD strings has been ig-
nored in all jet quenching phenomenology: only the fields
of “charges” (quarks and gluons in QGP, hadrons alterna-
tively) were included, in the spherical Debye approxima-
tion. However, if the entire flux of the color-electric field
is inside the QCD strings, there are no Coulomb fields
of the charges and their Debye cloud. There are, in fact,
two di↵erent reasons for it to be the case: (i) a generic

?

string length inside 
1 fm^3
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FIG. 7: Upper plot: The energy of the cluster E (GeV)
versus the length of the string L/a. Lower plot: The en-
ergy of the cluster E (GeV) versus the “Newton coupling”
gN (GeV�2). Points show the results of the simulations in
setting T0 = 1GeV and size of the ball sT = 1.5a, 2a, for
circles and stars, respectively.

reason for those is the near-critical conditions at the ball
surface, where the string has e↵ectively a very small e↵ec-
tive tension. Furthermore, if one looks at the individual
configurations – e.g. those displayed in Fig. 4 – one can
see that, in spite of relatively heavy string balls, most of
the space remains unoccupied.

As the parameter sT of the ball size is reduced, the
mean length (and thus the ball’s mass) is strongly di-
minished as well. Two examples of the length distribu-
tion shown in Fig. 6 make this point clear. While at
T
0

= 1GeV, sT = 1.5a (dark blue histogram) one finds a
string ball of an average length of about 20 links, further
reduction to sT = 1.0a (light orange histogram) shows
that the most probable is the shortest configuration with
8 points (6 links), corresponding to an unexcited initial
configuration. Yet even in this case, the population of the
excited strings still show a long tale, with population up
to 25 links (in this simulation), with a probability rate
of about a percent. Inspection of those configurations
shows that it is dominated by the excitation of one of
the strings only, see lower part of Fig. 6.

B. Self-interaction included

Now we are ready to see how nonzero string self-
interaction modifies the properties of the system. While
increasing the corresponding parameter – “scalar New-
ton’s constant” gN – we observe that above its critical
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FIG. 8: (Color online) A typical configuration in the entropy-
rich self-balanced string balls ensemble. Simulation parame-
ters: T0 = 1GeV, sT = 1.5a, gN = 4.4 (GeV�2).

value even the most basic features of the system change.
In Fig. 7 (upper figure) we show the calculated rela-

tion between the average string length L and its energy
E. Each point is a run of about 10"000 iterations of the
entire string updates after equilibration. While at small
coupling E and L are simply proportional to each other,
like for non-interacting strings described above, this be-
havior changes abruptly. As the negative self-interaction
energy become important, the total energy E of the ball
becomes decreasing with the string length L. In Fig. 7
(lower figure) we show more details of this behavior: this
plot demonstrates how total energy E depends on the
coupling value gN . We find a jump at the critical cou-
pling (for this setting) gc1N , which in a simulation looks
like a first order transition, with double-maxima distribu-
tions in the energy and length. As is seen from the figure,
the precise value of the coupling somewhat depends on
the system size. At this coupling the jump in energy is
always about a factor 3, and the jump in string length
(or entropy) is even larger.
In this way we observe a new regime for our system,

which we will call the “entropy-rich self-balanced string
balls”. For a given fixed mass M we thus find that string
balls may belong to two very distinct classes: (i) small
near-random balls and (ii) large ones in which the string
can be very long, but balances its tension by a compara-
ble collective attraction. Discovery of this second regime
is the main result of this paper.

Finally, there exists the second critical coupling, which
found to be gc2N ⇡ 4.5GeV�2, above which balancing the
energy becomes impossible and simulations show imme-
diate collapse of the system, in which the energy quickly
falls to large negative values, clearly of no physical mean-
ing.

Example of a corresponding configuration is shown in
Fig. 8. Note that, in spite of a very large string length
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Holographic Pomeron 
based on AdS/QCD

• the answer to the question is No: 	


• Only one Pomeron because  the gauge description 
on the boundary is dual to string description in the 
bulk. Weak and strong coupling are its limits	


• Concrete model of this type has been worked out by 
Zahed et al (Stoffers,Basar, Kharzeev): I will call it Z+	


• Our main statement: as a function of b there are 
three distinct regimes: subcritical, near-critical and 
supercritical!
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FIG. 1: Dipole-dipole scattering configuration in Euclidean
space. The dipoles have size a and are b apart. The dipoles
are tilted by ±✓/2 (Euclidean rapidity) in the longitudinal
x0xL

plane.

width a that is slopped at an angle ✓ with respect to the
vertical imaginary time direction (see FIG. 1). The two
dimensional integral in (4) is over the impact parameter
b with t = �q

2

?

, and the averaging is over the gauge
configurations using the QCD action.

In (4-5), the dipole sizes are fixed ; as such T is their
scattering amplitude. In [3], this amplitude is folded
with the target/projectile dipole distributions to generate
the pertinent hadron-hadron scattering amplitude. We
note their size a is generic for either longitudinal (aL) or
transverse (aT ) dipole size. In general, the dipole-dipole
scattering amplitude depends on the orientation of the
dipoles. We expect the amplitude to be of the form:

a

2 ! a

2

T + a

2

L/sin
2(✓/2) (6)

After analytic continuation to Minkowski space, the lon-
gitudinal orientation is suppressed by a power of 1/s
which is just the Lorentz contraction factor. Throughout,
a

2 will refer to a

2

T as the longitudinal dipole orientation
is suppressed at large s.

We will assume that the impact parameter b is large
in comparison to the typical time characteristic of the
Coulomb interaction inside the dipole, i.e. b � ⌧

0

⇡
a/g

2. As a result the dipoles are color neutral, and the
amplitude in perturbation theory is dominated by 2 gluon
exchange. Thus [8]

T (✓, b) ⇡ N

2

c � 1

N

2

c

(ga)4

32⇡2

cotan2 ✓

b

4

, (7)

for two identical dipoles of size a with polarizations along
the impact parameter b. The analytic continuation shows
that cotan ✓ ! 1, leading to a finite total cross section.
We note that T ⇠ (a/b)4�/N2

c , and thus subleading at
large Nc.

III. HOLOGRAPHIC COMPUTATION AND
THE SCHWINGER MECHANISM

In this section, di↵ractive dipole-dipole scattering in
holographic QCD will be pursued through closed string
exchanges between the two dipole Wilson loops. Instead
of working in the semi-classical approximation as origi-
nally proposed in [13–16] and dictated by the tenets of
holography, in the present approach we will attempt to
compute a full string partition function with reasonable
approximations. As a consequence some of our results in-
clude subleading ↵

0-corrections such as the intercept, al-
though the main focus of our discussion is on the leading
large � contributions dominated by semi-classical world-
sheets. Our motivation is to identify these contributions
via a more rigorous computation compared to the vari-
ational approaches taken in [14–16], resolving some of
the issues related to the multibranch structures in them.
Also, our computation will give us more physicsal insight
on the nature of these semi-classical worldsheets in terms
of a stringy version of the Schwinger mechanism with an
electric field induced by the probes relative rapidity.
For small dipoles and large impact parameter b, we

assume that most of the string worldsheet stays at the
IR end point, so that we have e↵ectively a flat-space with
an e↵ective string tension neglecting fluctuations along
the holographic direction. This approximation is based
on the generic form of the confining metric

ds

2 =
dz

2

z

2

f(z)
+

dx · dx
z

2

+ · · · , (8)

where dx · dx is the 4 dimensional flat metric and · · ·
stands for an extra compact space depending on a par-
ticular string theory compactification which is not im-
portant for our argument. For confinement, the func-
tion f(z) has a zero at some finite z = z

0

in the holo-
graphic direction. In order to minimize its area, the
string worldsheet connecting the dipoles that are placed
on the boundary z = 0 and separated by a large im-
pact parameter b, rapidly falls down to the IR end-point
z = z

0

. At the horizon where the string lives, the string
area is measured in units set by the e↵ective string ten-
sion �T ⌘ 1

2⇡↵0 =
1

2⇡l2s

1

z2

0

. For example, for Witten’s [18]

confining metric we have �T = 2

27⇡M
2

KK�. In fact, this
flat-space approximation is valid only in the regime of
the soft Pomeron where (�t)  M

2

KK [19], and this will
be assumed throughout our paper.
Also, we will neglect the fermionic degrees of freedom

on the string worldsheet, which is a deviating point from
the analysis in[19]. This is a question of worldsheet one-
loop determinant corrections to the leading semi-classical
string partition function. It is motivated by the results
in [27] for the standard Wilson loop, where it was shown
that for the static Wilson loop (✓ = 0), the worldsheet
one-loop contribution to the quark-antiquarkWilson loop
is dominated by massless bosonic degrees of freedom giv-
ing a Lüscher-type contribution, whereby the bosonic

• If cut horizontally, it !
describes production of !
a pair of open strings!
!
• If cut vertically, it describes!
an exchange by a closed !
string!
!
• string fluctuations are included!
mode-by-mode
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simple sum of fundamental strings, and it is typically de-
scribed by D-branes wrapping appropriate cycles. For
example, in Witten’s geometry, the k-antisymmetrized
representation, corresponding to k-string, is described by
D4 brane wrapping the internal S3 ⇢ S

4 cycle, whose
string tension features Casimir scaling [38]

�k = �T k(Nc � k)/(Nc � 1) , (69)

although the precise form of the string tension �k is
model-dependent [39].

On these composite worldsheets made of k
max

funda-
mental strings, it is indeed possible to attach k multi-
winding worldsheets of fundamental strings up to k 
k

max

. It is easy to understand this as in FIG. 4.
For example, if dipole the Wilson loops in the k

max

-
antisymmetrized representation emit/absorb k multi-
wound strings, the interior of the funnel should be a
(k

max

� k)-string worldsheet by string charge conserva-
tion. This gives an inequality k  k

max

. Therefore, in
the sum (65) one might keep the terms up to k  k

max

.
However, there are two subtleties regarding this. The

first one is the additional large Nc suppression as k be-
comes close to k

max

. The way to count the Nc depen-
dence is the following. One can think of a k

max

-string as
a simple sum of a k

max

number of fundamental strings for
the purpose of large Nc counting. Assume that one fun-
damental string gets emitted from them. The emission
from a single string entails gs ⇠ 1

Nc
, and there are k

max

possible ways to attach the emitted string, so this process
has k

max

Nc
factor as a coupling constant. For the two string

emission (corresponding to k = 2), one has k
max

(k
max

�1)

2N2

c

because a single string cannot emit two strings without a
large Nc suppression. For a general k, it is k

max

Ck ·N�k
c .

When k

max

⇠ Nc, there is indeed no additional large
Nc suppression in the summation over k for small k, but
when k ⇠ k

max

it is clear that they are a↵ected by an ad-
ditional large Nc suppression. Another subtlety is that
the k’th contribution in (65) contains the tension of k

number of strings as k�T , which can be seen in the first
term in the exponent of the second line. When k ⇠ Nc

in the case of k
max

⇠ Nc, this tension should be replaced
by the suitable k-string tension, for example (69). As
a result, one can really trust the k-sum in (65) only for
small k ⌧ Nc.

IV. HOLOGRAPHY: ELASTIC AMPLITUDE

The elastic dipole-dipole scattering amplitude follows
from (4) after inserting the pole contributions (65). Per-
forming the integration over transverse b yields

1

�2is
T (s, t) ⇡ ⇡

2

g

2

sa
2

2

k
maxX

k=1

1X

n=0

(�1)k

k

✓
k⇡

ln s
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with k

max

depending on the representation. Although
the Gaussian b-integral is dominated by the imaginary
saddle point
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p�t/k , (71)

in the real b-space it is clear that the dominant region is
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◆
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All the n 6= 0 contributions from string vibrations are
suppressed by s

�2n/k relative to n = 0 contributions at
large s. Thus
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where

↵Pk(t) = 1 +
D

?
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+

↵
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2k
t . (74)

Therefore we have multiple Pomeron-like trajectories of
↵Pk(t). One has ↵Pk(t) > ↵P(k+1)
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KK� , (75)

which is always satisfied for the soft Pomeron regime,
so that the leading Pomeron trajectory for dipole-dipole
scattering follows from a closed string exchange with k =
1.
In [14, 16] a result similar to (74) was derived for quark-

quark scattering using a classical helicoidal surface ex-
change and then corrected by one-loop bosonic quantum
fluctuations. Our construction is physically transparent
as it details the physical nature of the mechanism, and
describes the produced states at the origin of the inelas-
ticity in dipole-dipole scattering. The produced states
are initially heavy extended strings of typical energy
EL ⇠ b�T ⇠ bM

2

KK� that ultimately decay (in 1/Nc)
to lighter closed string glueballs of energy EG ⇠ MKK�

0

[40].
The Pomeron slope for dipole-dipole scattering is ↵0

/2.
The contribution D

?

/12 in the intercept is the Lüscher-
type contribution [41] noted in [16], although it di↵ers by
a factor of 1/8 from our result. Numerically, the leading
Pomeron parameters of (74) are

(↵P1

,↵

0

P1

) = (1.58, 0.45 GeV�2) , (76)

for D

?

= 7 and ↵

0 = 0.9 GeV�2 from fit to heavy-
quarkonium data. They may be compared with the
values (↵P,↵

0

P) = (1.08, 0.25 GeV�2) extracted exper-
imentally for the “soft” Pomeron. However, our treat-
ment assumes that the dipole size is small, so the ap-
propriate intercept to compare with is the one extracted
from di↵ractive scattering at larger values of Q2 where

k=1 in SU(3), n is excitation
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FIG. 3: String exchange between two sources
(crosses) separated by the impact parameter b: the
cold string case � < �H (a); the near-critical string
case � ! �H (b).

lision energies (not reached at colliders) it may
approach the Hagedorn temperature T ! TH .
At current energies (LHC) it can also happen,
as fluctuations. We will argue that in this new
regime the string will develop large excitations
in the form of a “string ball” depicted in Fig.3b.

The SZ model [? ? ] is based on bosonic
string exchanges between the colliding high en-
ergy objects. It is essential that the QCD string
with a nonzero tension related to QCD confine-
ment is used, and not the conformal superstring
which has a massless spin-2 graviton excita-
tion. There is no supersymmetry and gravi-
tons transmutes to a massive spin-2 glueball
with an exponentially small contribution in the
Pomeron di↵usive limit [? ? ]. However there is
still a large Nc parameter, related with a small
string coupling gs and a large ’t Hooft coupling
� = gsNc so that 1/� e↵ects of the curved ge-
ometry will be considered as subleading.

At very high energies the rapidity interval pa-
rameter can be used as a large parameter

� = ln(s/s
0

)� 1 (12)

It will play the role of the e↵ective time in what
follows. Transverse momentum transfer is held
fixed t = �q2 and soft. The main phenomenon
to be studied is the string di↵usion. Two lon-
gitudinal directions – time and the beam di-
rection, also often used as light cone variables
x± – are complemented by two transverse co-
ordinates plus a “scale coordinate” z. Its ini-
tial value corresponds to a physical size of the
colliding dipoles and di↵usion means the pro-
duction of small size closed strings. The z-
coordinate is not flat. We will model its metric
by an AdS

5

with a wall. The number of trans-
verse coordinates, which will play an important

FIG. 4: Dipole-dipole scattering with separation b:
Pomeron exchange (a); Reggeon exchange (b).

role in the following, is thus

D? = 3 (13)

We will now review the Pomeron results and
its associated entropy in this setting. The am-
plitude of the elastic dipole-dipole scattering in
Fig. 4a reads [? ? ? ]
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s

Z
d2

b eiq·b
KT (�,b; k)(14)

where KT is the Pomeron propagator for dipole
sources of color Nc-ality k describing the string
flux. k runs over all integers till Nc/2 for even
Nc and Nc/2 + 1/2 for odd ones. In the real
world with the SU(3) color group, k = 1 is
the usual string between fundamental charges
(quarks) and the largest tension k = 2 is the one
between two baryon junctions. The first argu-
ment of the propagator is � = 2⇡b/�, where
b is the impact parameter. gs ⇡ 1/Nc is the
string coupling.

The explicit form of KT for the standard long
strings regime

b > � > �H (15)

follows from the Polyakov string action,

KT (�,b; 1) =
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(16)

⇥
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d(n) e���b (1��2
H/2�2

+8⇡n/��2)
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� is our large parameter (14). The last inte-
ger argument k describes the color string flux,
known also as Nc-ality and related to Young
tableaux of the color representations. In partic-
ular, for the antisymmetric ones k runs over all
integers till Nc/2 for even Nc, and Nc/2 � 1/2
for odd ones. While we will show k in some
formulae below, we will only use the usual
string between fundamental charges (quarks)
and k = 1, for the real world of SU(3) color.
Only when we will need the large-Nc counting
we will recall more general groups. Note that
the first factor in the amplitude or the string
coupling is gs ⇡ 1/Nc in the standard large-Nc

counting.
The previous literature focuses on what we

call the “cold” regime of the string

b � � � �̃H (17)

where the former inequality follows from large
collision energy (14) and the latter implies that
the string is nearly straight, with small e↵ective
excitations (small e↵ective T ). The meaning of
the tilde on the Hagedorn temperature (or the
corresponding Matsubara time � = 1/T ) will
be explained below in (36). The explicit form
of KT was calculated in [4] using the Polyakov
string action. For reasons to become clear as
we proceed to the main part of this paper, we
rewrite it in somewhat di↵erent notations

KT (�,b; 1) =

✓
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���b (1�(
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2/2) (18)
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H/2�2

+8⇡n/��2)

The first combination of parameters in the
exponents 2(��/2b) is the classical action.
Here we emphasize the length �/2 or the semi-

circle, which first appeared in the semi-classical
approach to pair production in an electric field
process back in 1931’s [32]. Note that we calcu-
late the elastic amplitutude, in which a pair of
virtually produced open strings makes a com-
plete circle. This amplitude is the same as the
cross section, or the modulus square of the in-
elastic amplitudes, with each corresponding to
a tube cut in half, or two semicircles .

The first correction in the second line is due
to the “thermal” excited states of the string:
it corresponds to the so called Luscher term in
the string-induced potential. We wrote it using
the (tilde) Hagedorn temperature of the double
string (11) . While physically in inelastic am-
plitude one produces an ordinary fundamental
string, the conjugated amplitude has another
anti-string, making it into a double string. (
The e↵ective temperature is defined di↵erently,
as the Unruh temperature related to a fixed ac-
celeration/tension of the string: in this case it
depends on k as �U = �/k = 2⇡b

�k )
The last term in the exponent, contains a

summation over the integer n. It is due to
“tachyon string modes. The asymptotic den-
sity of states calculated long ago in [33] is

d(n � 1) ⇡ e

2⇡
p

D? n/6

/n

D?/4 (19)

with d(0) = 1 and d(1) = D?.
As we mentioned, the expression (18) has

been derived in [4] from the semiclassical ap-
proach to a Polyakov string, but ( to leading
order in 1/�) it can alternatively be derived
from a di↵usion equation

�
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KT = 0 (20)

where the rapidity � interval is the time and
the di↵usion happens in the (curved) transverse
space with the di↵usion constant Dk = ↵

0
/2k =

l

2

s/k. This di↵usion (20) is nothing else but the
Gribov di↵usion of the Pomeron, leading on av-
erage to an impact parameter

⌦
b

2

↵
= Dk� for

close Pomeron strings. If the “mother dipoles”
are small in size, the di↵usion is close to the UV
end of the holographic coordinates and pertur-
bative results are expected. For large times or
dipole sizes, b is large and the string di↵uses
to the confining holographic region near the IR
end of space, with a “confining wall”.

The tachyon mass is related to the string
modes as

M

2

0

=
4D?
↵

0

 1X

n=1

n

e

2�n/k � 1
� 1

24

!
(21)

with D? = 3 in AdS
5

with a wall. The extra
z coordinate is di↵erent from others. A finite
size dipole sitting at a height z a finite distance
from the confining wall, experiences corrections
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cross section, or the modulus square of the in-
elastic amplitudes, with each corresponding to
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order in 1/�) it can alternatively be derived
from a di↵usion equation
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space with the di↵usion constant Dk = ↵
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s/k. This di↵usion (20) is nothing else but the
Gribov di↵usion of the Pomeron, leading on av-
erage to an impact parameter

⌦
b

2

↵
= Dk� for

close Pomeron strings. If the “mother dipoles”
are small in size, the di↵usion is close to the UV
end of the holographic coordinates and pertur-
bative results are expected. For large times or
dipole sizes, b is large and the string di↵uses
to the confining holographic region near the IR
end of space, with a “confining wall”.

The tachyon mass is related to the string
modes as
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with D? = 3 in AdS
5

with a wall. The extra
z coordinate is di↵erent from others. A finite
size dipole sitting at a height z a finite distance
from the confining wall, experiences corrections
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FIG. 3: (Color on-line) Schematic temperature de-
pendence of the entropy density. The dashed line
represents equilibrium gluodynamics with a first or-
der transition at T = Tc. The solid line between
points A and B represents the expected behavior of
a single string approaching its Hagedorn tempera-
ture TH .

nomenon not discussed previously. Another
new element of our discussion (which is based
on some recent ideas and technical progress
in string theory) is the strong similarities we
demonstrate between this “string ball” and the
black hole, in terms of an e↵ective temperature-
entropy relations and even an e↵ective viscosity
we will evaluate.

II. HOLOGRAPHIC POMERON

A. The SZ model

The SZ model [2, 3] is based on the QCD
string with a nonzero tension related to QCD
confinement, not the conformal superstring
with its famed massless excitations including
the spin-2 graviton. There is no supersymmetry
and gravitons transmutes into a massive spin-2
glueball with an exponentially small contribu-
tion in the Pomeron di↵usive limit [4, 8].

The holographic approach used in the SZ
model is inherently bottom-up with the holo-
graphic direction playing the role of the renor-
malization group as noted in the introduction.

However there is still a large Nc parameter for
book-keeping, with a small string coupling gs

and a large ’t Hooft coupling � = gsNc so
that 1/� e↵ects of the curved geometry will be
considered as subleading. The setting includes
AdS

5

-like space with a confining wall where the
important number of transverse directions is
physically identified with

D? = 3 (13)

containing the transverse plane and the holo-
graphic direction. We refer to it as the SZ
model: noting however that its technical core
– the calculation of the Euclidean amplitude of
the twisted tube exchange – was done in [4].

At very high energies the standard large pa-
rameter

� = ln(s/s

0

) � 1 (14)

will play the role of an e↵ective time. The
transverse momentum transfer is held fixed t =
�q

2 ⇠ 1 GeV ⌧ s. The main phenomenon
to be studied is the string di↵usion. The two
longitudinal directions – time and the beam di-
rection, are often substituted by the light cone
variables x± – are complemented by two trans-
verse coordinates plus one more holographic or
“scale coordinate” z. The initial value of z cor-
responds to the physical size of the colliding
dipoles. The di↵usion describes the appear-
ance of smaller or larger size dipoles. The z-
coordinate is not flat: one models its metric by
an AdS

5

with a wall.
We will now review the Pomeron results

in this setting. The amplitude of the elastic
dipole-dipole scattering reads [2–4]

1

�2is

T (s, t; k) ⇡ g

2

s

Z
d

2

b e

iq·b
KT (�,b; k)(15)

where KT is the Pomeron propagator. One
of its arguments, b, is the impact parameter,
which is the length of a “twisted tube”, pro-
viding a semiclassical solution to the problem.
The other � is the circumference (not radius) of
the tube. Its analogy with the Matsubara time
leads to introduction of an e↵ective temperature

T . Its value depends on the rapidity interval �

and is proportional to the impact parameter

� =
1

T

=
2⇡b

�

(16)

� = log(s)

7

S

T

3

Tc TH T

A

B

FIG. 3: (Color on-line) Schematic temperature de-
pendence of the entropy density. The dashed line
represents equilibrium gluodynamics with a first or-
der transition at T = Tc. The solid line between
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a single string approaching its Hagedorn tempera-
ture TH .
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where KT is the Pomeron propagator. One
of its arguments, b, is the impact parameter,
which is the length of a “twisted tube”, pro-
viding a semiclassical solution to the problem.
The other � is the circumference (not radius) of
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leads to introduction of an e↵ective temperature
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and is proportional to the impact parameter

� =
1

T

=
2⇡b

�

(16)

8

� is our large parameter (14). The last inte-
ger argument k describes the color string flux,
known also as Nc-ality and related to Young
tableaux of the color representations. In partic-
ular, for the antisymmetric ones k runs over all
integers till Nc/2 for even Nc, and Nc/2 � 1/2
for odd ones. While we will show k in some
formulae below, we will only use the usual
string between fundamental charges (quarks)
and k = 1, for the real world of SU(3) color.
Only when we will need the large-Nc counting
we will recall more general groups. Note that
the first factor in the amplitude or the string
coupling is gs ⇡ 1/Nc in the standard large-Nc

counting.
The previous literature focuses on what we

call the “cold” regime of the string

b � � � �̃H (17)

where the former inequality follows from large
collision energy (14) and the latter implies that
the string is nearly straight, with small e↵ective
excitations (small e↵ective T ). The meaning of
the tilde on the Hagedorn temperature (or the
corresponding Matsubara time � = 1/T ) will
be explained below in (36). The explicit form
of KT was calculated in [4] using the Polyakov
string action. For reasons to become clear as
we proceed to the main part of this paper, we
rewrite it in somewhat di↵erent notations
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The first combination of parameters in the
exponents 2(��/2b) is the classical action.
Here we emphasize the length �/2 or the semi-

circle, which first appeared in the semi-classical
approach to pair production in an electric field
process back in 1931’s [32]. Note that we calcu-
late the elastic amplitutude, in which a pair of
virtually produced open strings makes a com-
plete circle. This amplitude is the same as the
cross section, or the modulus square of the in-
elastic amplitudes, with each corresponding to
a tube cut in half, or two semicircles .

The first correction in the second line is due
to the “thermal” excited states of the string:
it corresponds to the so called Luscher term in
the string-induced potential. We wrote it using
the (tilde) Hagedorn temperature of the double
string (11) . While physically in inelastic am-
plitude one produces an ordinary fundamental
string, the conjugated amplitude has another
anti-string, making it into a double string. (
The e↵ective temperature is defined di↵erently,
as the Unruh temperature related to a fixed ac-
celeration/tension of the string: in this case it
depends on k as �U = �/k = 2⇡b

�k )
The last term in the exponent, contains a

summation over the integer n. It is due to
“tachyon string modes. The asymptotic den-
sity of states calculated long ago in [33] is
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with d(0) = 1 and d(1) = D?.
As we mentioned, the expression (18) has

been derived in [4] from the semiclassical ap-
proach to a Polyakov string, but ( to leading
order in 1/�) it can alternatively be derived
from a di↵usion equation
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where the rapidity � interval is the time and
the di↵usion happens in the (curved) transverse
space with the di↵usion constant Dk = ↵
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close Pomeron strings. If the “mother dipoles”
are small in size, the di↵usion is close to the UV
end of the holographic coordinates and pertur-
bative results are expected. For large times or
dipole sizes, b is large and the string di↵uses
to the confining holographic region near the IR
end of space, with a “confining wall”.

The tachyon mass is related to the string
modes as
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with D? = 3 in AdS
5

with a wall. The extra
z coordinate is di↵erent from others. A finite
size dipole sitting at a height z a finite distance
from the confining wall, experiences corrections

Linear Regge trajectories, 
daughters shifted by 2 down

classical action b^2 
vibrations b-independent
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we will recall more general groups. Note that
the first factor in the amplitude or the string
coupling is gs ⇡ 1/Nc in the standard large-Nc

counting.
The previous literature focuses on what we

call the “cold” regime of the string

b � � � �̃H (17)

where the former inequality follows from large
collision energy (14) and the latter implies that
the string is nearly straight, with small e↵ective
excitations (small e↵ective T ). The meaning of
the tilde on the Hagedorn temperature (or the
corresponding Matsubara time � = 1/T ) will
be explained below in (36). The explicit form
of KT was calculated in [4] using the Polyakov
string action. For reasons to become clear as
we proceed to the main part of this paper, we
rewrite it in somewhat di↵erent notations

KT (�,b; 1) =

✓
�

4⇡

2

b

◆D?/2

⇥e

���b (1�(

˜�H/�)

2/2) (18)

⇥
1X

n=0

d(n) e

���b (1��2
H/2�2

+8⇡n/��2)

The first combination of parameters in the
exponents 2(��/2b) is the classical action.
Here we emphasize the length �/2 or the semi-

circle, which first appeared in the semi-classical
approach to pair production in an electric field
process back in 1931’s [32]. Note that we calcu-
late the elastic amplitutude, in which a pair of
virtually produced open strings makes a com-
plete circle. This amplitude is the same as the
cross section, or the modulus square of the in-
elastic amplitudes, with each corresponding to
a tube cut in half, or two semicircles .

The first correction in the second line is due
to the “thermal” excited states of the string:
it corresponds to the so called Luscher term in
the string-induced potential. We wrote it using
the (tilde) Hagedorn temperature of the double
string (11) . While physically in inelastic am-
plitude one produces an ordinary fundamental
string, the conjugated amplitude has another
anti-string, making it into a double string. (
The e↵ective temperature is defined di↵erently,
as the Unruh temperature related to a fixed ac-
celeration/tension of the string: in this case it
depends on k as �U = �/k = 2⇡b

�k )
The last term in the exponent, contains a

summation over the integer n. It is due to
“tachyon string modes. The asymptotic den-
sity of states calculated long ago in [33] is

d(n � 1) ⇡ e

2⇡
p

D? n/6

/n

D?/4 (19)

with d(0) = 1 and d(1) = D?.
As we mentioned, the expression (18) has

been derived in [4] from the semiclassical ap-
proach to a Polyakov string, but ( to leading
order in 1/�) it can alternatively be derived
from a di↵usion equation

�
@� + Dk

�
M

2

0

� r2

b

��
KT = 0 (20)

where the rapidity � interval is the time and
the di↵usion happens in the (curved) transverse
space with the di↵usion constant Dk = ↵

0
/2k =

l

2

s/k. This di↵usion (20) is nothing else but the
Gribov di↵usion of the Pomeron, leading on av-
erage to an impact parameter

⌦
b

2

↵
= Dk� for

close Pomeron strings. If the “mother dipoles”
are small in size, the di↵usion is close to the UV
end of the holographic coordinates and pertur-
bative results are expected. For large times or
dipole sizes, b is large and the string di↵uses
to the confining holographic region near the IR
end of space, with a “confining wall”.

The tachyon mass is related to the string
modes as

M

2

0

=
4D?
↵

0

 1X

n=1

n

e

2�n/k � 1
� 1

24

!
(21)

with D? = 3 in AdS
5

with a wall. The extra
z coordinate is di↵erent from others. A finite
size dipole sitting at a height z a finite distance
from the confining wall, experiences corrections

⇥
X

n=0..1
d(n)exp(�2�n)

connection to 	

Gribov diffusion
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has allowed to trigger on very high multiplic-
ity (and low probability) events [14–18]. This
has opened the issues of strong fluctuations in
the collision system, which current perturba-
tive, non-perturbative and holographic models
try to describe.

Before we delve into the specifics of our anal-
ysis, let us identify the main ideas of the pa-
per. A key idea is that perturbative gluons and
non-perturbative strings behave di↵erently un-
der excitations. Perturbatively, one finds that
gluon ladders can smoothly lead to a denser
out-of-equilibrium gluonic matter and eventu-
ally to thermally equilibrated glue, or QGP.
However, non-perturbatively we know that the
process is not at all smooth, and is associ-
ated with dramatic phase transitions. Using
the glue-only sector one finds a first order de-
confinement transition. In the stringy descrip-
tion it has an explanation in terms of the so
called Hagedorn-Polyakov-Susskind (HPS) phe-
nomenon [19–21], related to the exponentially
rising spectrum of string states.

Based on the analogy to thermodynamics
of the glue (its technical reasons are to be
explained in detail in section III) we will argue
that in high energy collisions the excitations of
the exchanged non-perturbative objects (two
open strings or a closed string) should also pro-
ceed subsequently through three distinct stages:

1. A “cold” regime, with low string ex-
citations;

2. A “near-critical” or “HPS regime”, in
which strings indefinitely increase their energy
and entropy, but not their free energy /
pressure;

3. An “explosive regime”, in which the string
occupies large portion of space and generates
su�cient pressure for hydrodynamical explo-
sion.

Returning to recent events, we note that the
current LHC experiments provide high lumi-
nosity and high-rate detectors, capable to study
very low probability fluctuations of the system.
In the first LHC pp run the CMS collabora-
tion [14] has used this opportunity and trig-
gered on events with high multiplicity. This was
followed in similar (but much less expensive)
triggered studies in pPb [15] . Multiple stud-
ies to follow – including experimental [16–18]

and theoretical papers associated those obser-
vations with the production of a small-size hot
fireball made of a Quark-Gluon Plasma (QGP)
, that explodes hydro-dynamically. Those re-
cent papers include ours [5], which predicted
that the radial flow in high multiplicity pp and
pA events should be even stronger than in AA

in collisions. Radial flow has been recently ob-
served.

The paper is structured as follows: Two more
subsections of the Introduction contain a brief
introduction to the Pomeron phenomenology
and its stringy description I B, as well as of
the thermodynamics of the glue ID. The main
body of the paper starts in Section II from a
review of glueball Regge trajectories I C and
their relation to particle correlations VIB. We
emphasize the role of correlation measurements
for finding “clustering” of hadrons, related in
the Regge language with the exchange of the
excited (”daughter”) Pomerons. In section II A
we introduce the physical setting and the main
results of the SZ Pomeron model, including its
weak coupling limit II B and daughter trajecto-
ries II C.

The core of the paper is section III devoted to
quantum fluctuations of the exchanged strings.
In spite of the fact that we are dealing with
zero temperature scattering amplitude, in sub-
section III A we explain that string excitations
naturally have a thermodynamical description
including temperature and entropy. Those take
the central stage as we discuss in subsection IV
the transition to the near-critical regime. We
then argue that a string-ball in this regime can
be thermodynamically viewed as a black hole
in section V B, which leads to discussion of vis-
cosity and Hawking radiation V C. In our final
discussion section we provide a summary of the
results VIA, a comparison to predictions of the
perturbative models VIB, and future outlooks
.

B. Pomerons, Reggeons and QCD strings

The Pomeron is an e↵ective object corre-
sponding to the the highest Regge trajectory
↵(t) and dominating the high energy cross sec-

New Regimes of Stringy (Holographic) Pomeron
and High Multiplicity pp and pA Collisions

Edward Shuryak and Ismail Zahed

Department of Physics and Astronomy,

Stony Brook University,

Stony Brook, NY 11794, USA

(Dated: November 5, 2013)

Holographic AdS/QCD models of the Pomeron unite a string-based description of hadronic re-
actions of the pre-QCD era with the perturbative BFKL approach. The specific version we will
use due to Sto↵ers and Zahed [1–4], is based on a semiclassical quantization of a “tube” (closed
string exchange or open string virtual pair production) in its Euclidean formulation using the scalar
Polyakov action. This model has a number of phenomenologically successful results. In this work we
point out that the periodicity of a coordinate around the tube allows the introduction of a Matsubara
time and therefore an e↵ective temperature on the string. We observe that in the LHC setting this
temperature is approaching the Hagedorn temperature of the QCD strings. We therefore conclude,
based on studies of the stringy thermodynamics of pure gauge theories, that there should exist two
new regimes of the Pomeron: the “near-critical” and the “post-critical” ones. In the former one,
string excitations should create a high entropy “string ball” at mid-rapidity, with high energy and
entropy but small pressure/free energy. Amusingly, we find that this ball is dual to a certain black
hole. Furthermore, as the intrinsic temperature of the string narrows on the Hagedorn temperature
or T/TH � 1 = O(1/Nc), or even higher ones, the stringy ball develops repulsive interactions, a
pressure, and becomes a post-critical explosive “QGP ball”. We speculate that the high multiplicity
trigger in pp and pA selects events with such a “string ball” cluster. The hydrodynamical flow
resulting from this scenario is discussed elsewhere [5].

I. INTRODUCTION

A. The main ideas

Historically, the description of strong inter-
actions has been shifting between an emphasis
on perturbative and non-perturbative physics.
This can be seen in the theory of hadronic col-
lisions as well. The phenomenology of the 1960
and 1970’s has revealed Regge trajectories and
Pomeron and Reggeon exchanges, which later
– due to Veneziano and others – were shown to
be related with QCD strings. The discovery of
QCD gave rise to weak coupling or pQCD, in-
strumental in the field of hard processes. When
theorists returned to hadronic collisions in the
Regge kinematic s � t in such an approach,
they found the so called BFKL Pomeron [6],
through the re-summation of gluonic ladders.
After the discovery of the AdS/CFT corre-
spondence, the last decade saw the rapid de-
velopments of holographic models, collectively
called AdS/QCD, which unify weak and strong
coupling regimes within the same framework.
Holography adds an extra dimension of space,

identified with the “scale” in the sense of the
renormalization group. The ultraviolet (UV)
end of this space is at weak coupling and large
momentum transfer |t| � ⇤2

QCD, while the in-
frared (IR) part is at strong coupling appro-
priate to small |t| < 1 GeV2 in the typical
hadronic collisions. In this work we will use
a particular version of such a model developed
by Sto↵ers, Zahed and others [1–4] and based
on scalar Polyakov strings propagating in the
5-dimensional holographic space. A historical
evolution of the pomeron in holography can be
found in a number of references within the past
decade [7–13] .

The understanding of the dynamics of
Pomerons and Reggeons still remains a chal-
lenging task. Traditionally the quality of the
models have been judged by their predictions
on a rather limited number of observables, such
as the dependence of the total and elastic cross
sections on s. Fluctuations in the system are
in principle reflected in di↵raction phenomena,
as well as two- (many) particle correlations. A
radically new turn of events has taken place
at the beginning of the LHC operation which

ar
X

iv
:1

31
1.

08
36

v1
  [

he
p-

ph
]  

4 
N

ov
 2

01
3

Hagedorn-Polyakov-Susskind regime

5

been emphasized in the 19700s by Polyakov
and Susskind [20, 21]. In fact the number of
stringy excitations grows with an excitation en-
ergy exponentially. To see this, imagine a d-
dimensional lattice with spacing a and draw all
possible strings of length L/a making all possi-
ble turns (except going backward) at each site,
that is

N(E) ⇡ (2d � 1)L/a = e

E(L)/TH (5)

where in the last term we changed length into
energy using the string tension E(L) = �T L

and defined

TH =
�T a

ln(2d � 1)
(6)

Thus, on one hand the states are on near-
straight and approximately equidistant Regge
trajectories. On the other hand, the number of
states must grow exponentially. The resolution
of these seemingly contradicting statements lies
in the fact that the daughter Regge trajecto-
ries must be multiply degenerate (which is not
shown on the figure, of course, as only special
quantum number is selected). The high de-
generacy d(n) of the daughter trajectories with
n > 0 will play an important role in what fol-
lows.

D. QCD strings and thermodynamics of
the glue

As emphasized by Hagedorn [19] systems
with exponentially growing density of states
have very peculiar thermodynamics, e.g. the
thermal partition sum

Z(T ) =

Z
dE e

E/TH
e

�E/T (7)

diverges as T ! TH , known as the Hagedorn
temperature[49]. Hagedorn argued [19] that
hadronic systems cannot be heated above this
temperature. It is important to note that both
the energy and entropy S = lnN(L) diverge,
but in the free energy F = E � TS the two
terms cancel out causing F to e↵ectively van-
ishes. Since F = �pV , the string in the HPS
regime carries zero pressure.

Hagedorn originally concluded that there ex-
ists a fundamental upper bound on tempera-
tures, as such systems can reach infinite en-
ergy density with T ! TH . The emergence of
QCD in the seventies and the development of
the theory of the Quark Gluon Plasma, show
that at some energy density the strings melt
and T > TH follows color deconfinement. In the
eighties with the development of lattice gauge
theories, the Hagedorn phenomenon was ana-
lyzed in great details through the thermody-
namics of glueballs (pure gauge theories) and
hadrons.

The Hagedorn phenomenon happens a bit
di↵erently in gluodynamics and QCD with light
quarks. The di↵erence is due to di↵erent quan-
tum numbers and tensions of string involved,
so it is important to have clarity on that. The
string tension of a fundamental string we call

�T ⇡ (0.42 GeV)2 (8)

where we also give its value in QCD with light
quarks, also in the real world units. This value
also provides the basic QCD string scales

2⇡�T =
1

↵

0 =
1

l

2

s

(9)

and the QCD Hagedorn temperature, to be
used in the form

T

2

H =
3

D?

�T

2⇡

⇡ (0.176 GeV)2 (10)

close to the critical temperature of the QCD
deconfinement and chiral restoration.

By a convention widely used by lattice prac-
titioners, the expression for the fundamental
string tension (8) is held to be the same nu-
merical value in all other theories considered,
which is basically a definition of what ”GeV”
means. The same convention is used not only
for QCD-like theories with modified number
and masses of quarks, but also for gluodynam-
ics without quarks. In this case, however, there
are no mesons and baryons containing funda-
mental strings: the hadrons are glueballs and
their thermodynamics that of closed or double
strings.

This di↵erence is important for the discus-
sion to follow: so we introduce the correspond-
ing notations. The double string tension 2�T

7

S

T

3

Tc TH T

A

B

FIG. 3: (Color on-line) Schematic temperature de-
pendence of the entropy density. The dashed line
represents equilibrium gluodynamics with a first or-
der transition at T = Tc. The solid line between
points A and B represents the expected behavior of
a single string approaching its Hagedorn tempera-
ture TH .

nomenon not discussed previously. Another
new element of our discussion (which is based
on some recent ideas and technical progress
in string theory) is the strong similarities we
demonstrate between this “string ball” and the
black hole, in terms of an e↵ective temperature-
entropy relations and even an e↵ective viscosity
we will evaluate.

II. HOLOGRAPHIC POMERON

A. The SZ model

The SZ model [2, 3] is based on the QCD
string with a nonzero tension related to QCD
confinement, not the conformal superstring
with its famed massless excitations including
the spin-2 graviton. There is no supersymmetry
and gravitons transmutes into a massive spin-2
glueball with an exponentially small contribu-
tion in the Pomeron di↵usive limit [4, 8].

The holographic approach used in the SZ
model is inherently bottom-up with the holo-
graphic direction playing the role of the renor-
malization group as noted in the introduction.

However there is still a large Nc parameter for
book-keeping, with a small string coupling gs

and a large ’t Hooft coupling � = gsNc so
that 1/� e↵ects of the curved geometry will be
considered as subleading. The setting includes
AdS

5

-like space with a confining wall where the
important number of transverse directions is
physically identified with

D? = 3 (13)

containing the transverse plane and the holo-
graphic direction. We refer to it as the SZ
model: noting however that its technical core
– the calculation of the Euclidean amplitude of
the twisted tube exchange – was done in [4].

At very high energies the standard large pa-
rameter

� = ln(s/s

0

) � 1 (14)

will play the role of an e↵ective time. The
transverse momentum transfer is held fixed t =
�q

2 ⇠ 1 GeV ⌧ s. The main phenomenon
to be studied is the string di↵usion. The two
longitudinal directions – time and the beam di-
rection, are often substituted by the light cone
variables x± – are complemented by two trans-
verse coordinates plus one more holographic or
“scale coordinate” z. The initial value of z cor-
responds to the physical size of the colliding
dipoles. The di↵usion describes the appear-
ance of smaller or larger size dipoles. The z-
coordinate is not flat: one models its metric by
an AdS

5

with a wall.
We will now review the Pomeron results

in this setting. The amplitude of the elastic
dipole-dipole scattering reads [2–4]

1

�2is

T (s, t; k) ⇡ g

2

s

Z
d

2

b e

iq·b
KT (�,b; k)(15)

where KT is the Pomeron propagator. One
of its arguments, b, is the impact parameter,
which is the length of a “twisted tube”, pro-
viding a semiclassical solution to the problem.
The other � is the circumference (not radius) of
the tube. Its analogy with the Matsubara time
leads to introduction of an e↵ective temperature

T . Its value depends on the rapidity interval �

and is proportional to the impact parameter

� =
1

T

=
2⇡b

�

(16)

As T=>TH   the entropy 
and energy grow, but not free energy 

(pressure) as F=E-TS and two terms cancel
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pl1d plot seq p ll$5 , ll = 10 ..100 , style = point, symbol = circle, symbolsize = 15, color
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pl1 := PLOT ...
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FIG. 12: (Color on-line) The profile function F (b)
versus the impact parameter b is shown in the up-
per plot for LHC

p
s = 7TeV energy. The solid

line is the same curve as in Fig.4 corresponding to
the BSW data parametrization. The dashed line is
the shape corresponding to the approximation (59)
for fixed sizes of the dipoles u1 = u2, while the cir-
cles correspond to the profile with the fluctuating
dipoles. The lower plot shows the corresponding
absolute value squared of its Bessel transform as a
function of momentum transfer.

B. The final state of inelastic collisions

Stricktly speaking, this subject goes beyond
the content of the present paper, as we have
only analyzed the Euclidean part of the system
path. Still we would like to make some general
comments.

The perturbative approach to the Pomeron,
based on re-summing gluon ladders, was stud-

ied both at the level of the elastic and inelastic
amplitudes. Feynman diagrams can be “cut”
by the well known unitarity rules, predicting
single-gluon and two-gluon distributions in the
inelastic collisions. However, at small |t| we
cannot justify perturbative methods. While the
use of strong coupling � and large Nc yield
“fishnet diagrams” resembling a string world-
sheet, the correspondence was never made suf-
ficiently precise.

Our approach uses from the start a string
description (strong-coupling). The elastic am-
plitude, in particular, was calculated using
an under-the-barrier “tube”, virtual string ex-
change, resulting in the “holographic Pomeron”
described above. In principle, we could have
followed the system, from its Euclidean birth
to its Minkowski evolution, and calculated the
string configurations, all the way to their final
breaking and hadronization. We plan do to so
elsewhere.

Nevertheless, we would like to speculate on
this issue, arguing that some properties of the
virtual string should find their way to observ-
able final states. As it is well known from exper-
iment, final hadrons – mostly pions – come from
certain clusters, hadronic resonances. Those
are well described by the Lund-type model, in-
cluding string breaking into certain segments,
before final decays into pions. Our conjecture
is that in the high multiplicity events associated
with “string balls” as we detailed above, these
clusters are perhaps larger.

In standard Regge phenomenology one uses
the so called Kancheli-Muller diagrams [58],
see Fig. 13, to calculate the single and many-
hadron spectra. We focus now on the two-
particle correlations. From the t-channel point
of view, (nearly) unclustered two-particle spec-
trum corresponds to the Pomeron exchange,
and further clustering corresponds to “daugh-
ters” of the Pomeron with n > 0 excitations.
The lines in Fig. 13 are the corresponding prop-
agators, which we do know. They naturally
satisfy the usual relations, in which a propa-
gator can be written as a convolution of two
propagators, integrated over the intermediate
points. So we attempt now to use those, in
the spirit of Kancheli-Mueller rules, in an at-
tempt to describe clustering. Including the
leading Pomeron and its first daughters to the
2-particle correlations, one expects the follow-

5

The derivation of the elastic and inelastic am-
plitudes generated by surface exchanges were
addressed using bosonic variational surfaces [8–
10], see also a black-disk model [15].

(It has been realized that in pure AdS with
N=4 supersymmetry and conformal symmetry
the dominant scattering mechanism should be
associated with a spin-2 graviton exchange [14].
This is not the case in the setting we have. In
particular, the main contribution is to the real
part of the scattering amplitude, not related
with inelastic events we discuss.)

To put things in perspective it is worth re-
viewing the phenomenology of the elastic pp

cross section d�/dt. Its behavior is studied ex-
perimentally all the way to LHC energies, see
especially the results of the TOTEM collabo-
ration at

p
s = 7 TeV in [11]. In short there

is a very accurate exponential e

↵0t behavior at
small |t|, for several decades, followed by a dip
at |t| = 0.53 GeV and then a power-like tail
|t|p with p ⇡ 7.8. A single dip means that the
imaginary part of the amplitude changes sign
once.

It is standard to use the impact parame-
ter representation of the scattering amplitude,
connected with the momentum transfer via a
Bessel transform

T (s, q) = s

Z 1

0
dbbJ0(bq)F (s,b) (2)

where t = �q

2 and F (s,b) is the so called scat-
tering profile. Since each set of data is taken
only at some interval of t, their direct Bessel-
transform to coordinate space always include
extrapolations. Instead of doing it numerically
with data, one can do it instead analytically,
with available parameterizations. Being a func-
tion of two variables – s, t – it can be parame-
terized in multiple ways, and there is no short-
age of models which can fit it. An example
is the Bourrely-So↵er-Wu (BSW) model [17],
see their expressions (13-15). These profiles are
plotted in Fig. 4 for pp collisions, at LHC and
ISR energies.

While the lower ISR energies have near-
Gaussian shape, the LHC ones display three re-
gions: (i) a nearly horizontal plateau, (ii) a rel-
atively rapid turn downward, and (iii) an expo-
nential tail [61]. In order to see the boundaries
of such three region more clearly, we also plot-
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FIG. 4: (Color online) The upper figure shows
the imaginary (upper) and real (down) parts of
the profile function F (s, b) versus b(GeV�1) forp

s = 7 TeV (solid) and
p

s = 63 GeV (dashed).
The lower plot shows the second derivative over b

for
p

s = 7 TeV . Two maxima correspond to the
same points A, B as in the sketch in Fig. 1.

ted in the lower plot of Fig. 4 the second deriva-
tive of the profile function F (s,b), at LHC en-
ergy. One can clearly see a positive and nega-
tive peak, indicating the “turning points” of the
profile. We will argue below that these three
regimes – as a function of b– correspond to the
three dynamical regimes of a stringy Pomeron
discussed in this work.

C. Glueball Regge trajectories

Nowhere in this paper the presence of quarks
– as fundamental color charges – in QCD would



summary
• in ``central” pA and partly in peripheral AA “spaghetti” state 

implodes before exploding!

• in the mixed phase (near Tc) entropy-rich self-bound 
string balls can exist: QCD analog of holographic string balls  

• (QGP and deconfinement => black holes) 

• stringy Pomeron has Euclidean tube derivation => thus 
thermal description => thus analogy to phase transition and 3 
regimes, 

• seen in elastic scattering profile
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particular, in the BFKL 1-Pomeron approxima-
tion it is given by [36]

N

BFKL(�, z, c, r) ⇡ 2
e

(↵BFKL�1)�

(4⇡D

BFKL
�)3/2

⇥ z

cr

2
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✓
16r

2

zc

◆
e

�ln

2
⇣

16r2

zc

⌘
/(4DBFKL �)

,

with the BFKL intercept ↵

BFKL and di↵usion
constant D

BFKL

↵

BFKL = 1 +
�

⇡

2

ln 2

D

BFKL = 7�⇣(3)/(8⇡

2) (28)

Modulo the Pomeron intercept and the di↵u-
sion constant which are di↵erent (weak cou-
pling or BFKL versus strong coupling or holog-
raphy) , the holographic result in the conformal
limit is identical to the BFKL 1-Pomeron ap-
proximation.

The occurence of the 3/2 exponent reflects
on di↵usion in D? = 3. This point is rather
important as it shows that the conformal na-
ture of the QCD string is recovered if the QCD
string evolves in curved AdS

5

instead of flat 4-
Minkowski dimensions. The curved and extra
dimension captures the dipole scale evolution
or equivalently the size of the closed string ex-
change during the collision.

C. Regge trajectories in SZ model

A dual description of the scattering ampli-
tude (15) is in terms of Pomerons and Reggeons
in the holographic limit. Specifically,

T (s, t) ⇡ ig

2

s(⇡a)2
[Nc/2]X

k=1

1X

n=0

(�1)k

k

✓
k⇡

ln s

◆D?/2�1

d(n) s

1+

D?
12k � 2n

k +

↵0t
2k

(29)

with all k N-alities included. The closed string
or glueball trajectories following from (29) are

J ⌘ 1+
D?
12k

� (D? � 1)2

8
p

�

� 2n

k

+
↵

0

2k

M

2

n,k (30)

where the leading AdS
5

curvature correction is
shown. We note that a proper P and C parity
assignment for the glueball states follows from
a Mellin transform of (29) and its parity conju-
gate. It will not be necessary for our discussion.
For source dipoles in the fundamental represen-
tation or k = 1, the Pomeron trajectory corre-
sponds to M

2

0,1, while its daughters to M

2

n>0,1.
Their intercepts ↵P,D(0) are tied by

↵P (0) � ↵Dn(0) = 2n (31)

while their common slopes are set by ↵

0
/2.

We note that the stringy glueball mass spec-
trum in (30) or

M

2

n,k = 4k⇡�T

⇥
✓

J � 1 � D?
12k

+
(D? � 1)2

8
p

�

+
2n

k

◆

(32)

yields M

2

n,k ⇡ �T ⇡ � for all J � 1 in the holo-
graphic limit. In contrast, the original dilaton
and graviton approaches to the glueball spec-
trum for only J  2 yield M

2

n,k ⇡ �

0 [37].

III. QUANTUM FLUCTUATIONS OF
QCD STRINGS

A. The temperature and the entropy

Although the scattering amplitudes involve
string dynamics at zero temperature, the en-
suing formula resemble those of a thermody-
namical string. The reason stems from the
string membrane exchanged as shown in Fig. 1
which is quantized on a circle making it for-
mally identical to the thermal Matsubara for-
malism. Furthermore, the e↵ective string tem-
perature depends on the world-sheet coordinate
0  �W  1 [4]

T (�W ) =
�

2⇡b

1

cosh(�(�W � 1/2))
(33)

7

�b
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FIG. 3: String exchange between two sources
(crosses) separated by the impact parameter b: the
cold string case � < �H (a); the near-critical string
case � ! �H (b).

lision energies (not reached at colliders) it may
approach the Hagedorn temperature T ! TH .
At current energies (LHC) it can also happen,
as fluctuations. We will argue that in this new
regime the string will develop large excitations
in the form of a “string ball” depicted in Fig.3b.

The SZ model [? ? ] is based on bosonic
string exchanges between the colliding high en-
ergy objects. It is essential that the QCD string
with a nonzero tension related to QCD confine-
ment is used, and not the conformal superstring
which has a massless spin-2 graviton excita-
tion. There is no supersymmetry and gravi-
tons transmutes to a massive spin-2 glueball
with an exponentially small contribution in the
Pomeron di↵usive limit [? ? ]. However there is
still a large Nc parameter, related with a small
string coupling gs and a large ’t Hooft coupling
� = gsNc so that 1/� e↵ects of the curved ge-
ometry will be considered as subleading.

At very high energies the rapidity interval pa-
rameter can be used as a large parameter

� = ln(s/s
0

)� 1 (12)

It will play the role of the e↵ective time in what
follows. Transverse momentum transfer is held
fixed t = �q2 and soft. The main phenomenon
to be studied is the string di↵usion. Two lon-
gitudinal directions – time and the beam di-
rection, also often used as light cone variables
x± – are complemented by two transverse co-
ordinates plus a “scale coordinate” z. Its ini-
tial value corresponds to a physical size of the
colliding dipoles and di↵usion means the pro-
duction of small size closed strings. The z-
coordinate is not flat. We will model its metric
by an AdS

5

with a wall. The number of trans-
verse coordinates, which will play an important

FIG. 4: Dipole-dipole scattering with separation b:
Pomeron exchange (a); Reggeon exchange (b).

role in the following, is thus

D? = 3 (13)

We will now review the Pomeron results and
its associated entropy in this setting. The am-
plitude of the elastic dipole-dipole scattering in
Fig. 4a reads [? ? ? ]

1
�2is

T (s, t; k) ⇡ g2

s

Z
d2

b eiq·b
KT (�,b; k)(14)

where KT is the Pomeron propagator for dipole
sources of color Nc-ality k describing the string
flux. k runs over all integers till Nc/2 for even
Nc and Nc/2 + 1/2 for odd ones. In the real
world with the SU(3) color group, k = 1 is
the usual string between fundamental charges
(quarks) and the largest tension k = 2 is the one
between two baryon junctions. The first argu-
ment of the propagator is � = 2⇡b/�, where
b is the impact parameter. gs ⇡ 1/Nc is the
string coupling.

The explicit form of KT for the standard long
strings regime

b > � > �H (15)

follows from the Polyakov string action,

KT (�,b; 1) =
✓

�

4⇡2

b

◆D?/2

(16)

⇥
1X

n=0

d(n) e���b (1��2
H/2�2

+8⇡n/��2)
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curvature correction is
shown. We note that a proper P and C parity
assignment for the glueball states follows from
a Mellin transform of (29) and its parity conju-
gate. It will not be necessary for our discussion.
For source dipoles in the fundamental represen-
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Although the scattering amplitudes involve
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suing formula resemble those of a thermody-
namical string. The reason stems from the
string membrane exchanged as shown in Fig. 1
which is quantized on a circle making it for-
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FIG. 4: (Color on-line) The e↵ective string tem-
perature Te↵ (GeV) versus the c.m. beam gamma
factor �, solid for black disc estimate Fgray = 1 and
dashed for gray factor Fgray = 0.7. As argued in
the text, its value is to be compared to the e↵ective
Hagedorn temperature T̃H .

with its highest value at the center or T (1/2) ⌘
T = �/2⇡b. It is instructive to focus on the ac-
tual e↵ective temperature values, correspond-
ing to LHC collisions. For that we define a typ-
ical impact parameter b

e↵

for pp collisions at
energy s as

b

e↵

(s) =

s
�P (s)

⇡F

gray

(34)

where �P (s) is the Pomeron’s part of the total
pp and p̄p cross section [50], and F

gray

< 1 is
the factor which shows how “gray” is the nu-
cleon. Inserting (34) into the e↵ective temper-
ature (16) yields Fig. 4. The e↵ective tempera-
ture slowly rises with the collision energy. For
gray or non-black-disc nucleons with F

gray

< 1,
the e↵ective impact parameter is larger result-
ing into a downward shift in the e↵ective tem-
perature.

As we noted earlier in (24) the e↵ects of the
AdS

5

curvature causes e↵ectively the string to
move in e↵ectively D̃? < D? with

D? ! D̃? = D?

✓
1 � 3(D? � 1)2

2kD?
p

�

◆
(35)

This translates to a higher e↵ective Hagedorn
temperature T̃H > TH through (10) with

T

2

H ! T̃

2

H =
3

D̃?

�T

2⇡

⇡ 1.8 T

2

H (36)

where in the last equality we used a typical
value � = 20, which gives T̃H ⇡ 0.224 GeV.

The curvature-related corrections of shift the
e↵ective Hagedorn temperature upward. The
shift is close to the factor

p
2 one expects from

the double-tension gluonic strings (as discussed
in the thermodynamical introduction above).
We may argue that higher order curvature cor-
rections perhaps shift it a bit more, to the
critical temperature of the Yang-Mills theory
Tc ⇡ 0.27 GeV.

Comparing those expectations with the ef-
fective temperature values calculated from the
impact parameter in Fig.4 we find that the ex-
changed string is expected to reach the near-
critical regime only at collision energies � >p

s/2M ⇠ 104 exceeding the current LHC do-
main of � = 2 � 7 ⇤ 103.

This justifies that so far the Pomeron was
still described by a cold (far from critical)
string. The near-critical strings will be de-
scribed further below. The thermal anal-
ogy allows us to define the free energy F =
�lnKT /�U and the entropy corresponding to
small string vibrations [2, 3]
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1X
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ln
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+
�kn
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�kn � 1
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12
� 1
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1 + ln

✓
�k

2⇡

◆◆◆
(37)

At large collision energy � � 1 the entropy is
dominated by the last term due to the tachyon,
so

S ⇡ D?�k

12
(38)

Since �k = 2�/k the entropy scales with the
rapidity interval �. In contrast, the energy
E ⇡ �b with on average

⌦
b

2

↵ ⇡ Dk�, scales
with the root of �, and therefore is sublead-
ing for asymptotically large �. This is a major
di↵erence between the “cold” regime and the
others that we will discuss below.
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where in the last equality we used a typical
value � = 20, which gives T̃H ⇡ 0.224 GeV.

The curvature-related corrections of shift the
e↵ective Hagedorn temperature upward. The
shift is close to the factor
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2 one expects from

the double-tension gluonic strings (as discussed
in the thermodynamical introduction above).
We may argue that higher order curvature cor-
rections perhaps shift it a bit more, to the
critical temperature of the Yang-Mills theory
Tc ⇡ 0.27 GeV.

Comparing those expectations with the ef-
fective temperature values calculated from the
impact parameter in Fig.4 we find that the ex-
changed string is expected to reach the near-
critical regime only at collision energies � >p

s/2M ⇠ 104 exceeding the current LHC do-
main of � = 2 � 7 ⇤ 103.

This justifies that so far the Pomeron was
still described by a cold (far from critical)
string. The near-critical strings will be de-
scribed further below. The thermal anal-
ogy allows us to define the free energy F =
�lnKT /�U and the entropy corresponding to
small string vibrations [2, 3]
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dominated by the last term due to the tachyon,
so
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Since �k = 2�/k the entropy scales with the
rapidity interval �. In contrast, the energy
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with the root of �, and therefore is sublead-
ing for asymptotically large �. This is a major
di↵erence between the “cold” regime and the
others that we will discuss below.
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FIG. 3: String exchange between two sources
(crosses) separated by the impact parameter b: the
cold string case � < �H (a); the near-critical string
case � ! �H (b).

lision energies (not reached at colliders) it may
approach the Hagedorn temperature T ! TH .
At current energies (LHC) it can also happen,
as fluctuations. We will argue that in this new
regime the string will develop large excitations
in the form of a “string ball” depicted in Fig.3b.

The SZ model [? ? ] is based on bosonic
string exchanges between the colliding high en-
ergy objects. It is essential that the QCD string
with a nonzero tension related to QCD confine-
ment is used, and not the conformal superstring
which has a massless spin-2 graviton excita-
tion. There is no supersymmetry and gravi-
tons transmutes to a massive spin-2 glueball
with an exponentially small contribution in the
Pomeron di↵usive limit [? ? ]. However there is
still a large Nc parameter, related with a small
string coupling gs and a large ’t Hooft coupling
� = gsNc so that 1/� e↵ects of the curved ge-
ometry will be considered as subleading.

At very high energies the rapidity interval pa-
rameter can be used as a large parameter

� = ln(s/s

0

) � 1 (12)

It will play the role of the e↵ective time in what
follows. Transverse momentum transfer is held
fixed t = �q

2 and soft. The main phenomenon
to be studied is the string di↵usion. Two lon-
gitudinal directions – time and the beam di-
rection, also often used as light cone variables
x± – are complemented by two transverse co-
ordinates plus a “scale coordinate” z. Its ini-
tial value corresponds to a physical size of the
colliding dipoles and di↵usion means the pro-
duction of small size closed strings. The z-
coordinate is not flat. We will model its metric
by an AdS

5

with a wall. The number of trans-
verse coordinates, which will play an important
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Pomeron exchange (a); Reggeon exchange (b).

role in the following, is thus

D? = 3 (13)

We will now review the Pomeron results and
its associated entropy in this setting. The am-
plitude of the elastic dipole-dipole scattering in
Fig. 4a reads [? ? ? ]
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Nc and Nc/2 + 1/2 for odd ones. In the real
world with the SU(3) color group, k = 1 is
the usual string between fundamental charges
(quarks) and the largest tension k = 2 is the one
between two baryon junctions. The first argu-
ment of the propagator is � = 2⇡b/�, where
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ordinates plus a “scale coordinate” z. Its ini-
tial value corresponds to a physical size of the
colliding dipoles and di↵usion means the pro-
duction of small size closed strings. The z-
coordinate is not flat. We will model its metric
by an AdS
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Pomeron exchange (a); Reggeon exchange (b).

role in the following, is thus

D? = 3 (13)

We will now review the Pomeron results and
its associated entropy in this setting. The am-
plitude of the elastic dipole-dipole scattering in
Fig. 4a reads [? ? ? ]
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where KT is the Pomeron propagator for dipole
sources of color Nc-ality k describing the string
flux. k runs over all integers till Nc/2 for even
Nc and Nc/2 + 1/2 for odd ones. In the real
world with the SU(3) color group, k = 1 is
the usual string between fundamental charges
(quarks) and the largest tension k = 2 is the one
between two baryon junctions. The first argu-
ment of the propagator is � = 2⇡b/�, where
b is the impact parameter. gs ⇡ 1/Nc is the
string coupling.

The explicit form of KT for the standard long
strings regime

b > � > �H (15)

follows from the Polyakov string action,
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FIG. 3: String exchange between two sources
(crosses) separated by the impact parameter b: the
cold string case � < �H (a); the near-critical string
case � ! �H (b).

lision energies (not reached at colliders) it may
approach the Hagedorn temperature T ! TH .
At current energies (LHC) it can also happen,
as fluctuations. We will argue that in this new
regime the string will develop large excitations
in the form of a “string ball” depicted in Fig.3b.

The SZ model [? ? ] is based on bosonic
string exchanges between the colliding high en-
ergy objects. It is essential that the QCD string
with a nonzero tension related to QCD confine-
ment is used, and not the conformal superstring
which has a massless spin-2 graviton excita-
tion. There is no supersymmetry and gravi-
tons transmutes to a massive spin-2 glueball
with an exponentially small contribution in the
Pomeron di↵usive limit [? ? ]. However there is
still a large Nc parameter, related with a small
string coupling gs and a large ’t Hooft coupling
� = gsNc so that 1/� e↵ects of the curved ge-
ometry will be considered as subleading.
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rameter can be used as a large parameter
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x± – are complemented by two transverse co-
ordinates plus a “scale coordinate” z. Its ini-
tial value corresponds to a physical size of the
colliding dipoles and di↵usion means the pro-
duction of small size closed strings. The z-
coordinate is not flat. We will model its metric
by an AdS
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role in the following, is thus

D? = 3 (13)

We will now review the Pomeron results and
its associated entropy in this setting. The am-
plitude of the elastic dipole-dipole scattering in
Fig. 4a reads [? ? ? ]
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where KT is the Pomeron propagator for dipole
sources of color Nc-ality k describing the string
flux. k runs over all integers till Nc/2 for even
Nc and Nc/2 + 1/2 for odd ones. In the real
world with the SU(3) color group, k = 1 is
the usual string between fundamental charges
(quarks) and the largest tension k = 2 is the one
between two baryon junctions. The first argu-
ment of the propagator is � = 2⇡b/�, where
b is the impact parameter. gs ⇡ 1/Nc is the
string coupling.

The explicit form of KT for the standard long
strings regime

b > � > �H (15)

follows from the Polyakov string action,

KT (�,b; 1) =
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FIG. 5: (Color on-line) String exchange between
two sources (crosses) separated by the impact pa-
rameter b: the cold string case � < �H (a); the
near-critical string case � ! �H (b).

The re-summed result follows the paper of
Arvis [38], which obtained the potential in-
duced by the Nambu-Goto string. The result
obtains the square root (which will play an im-
portant role in what follows)

KT (�,b; 1) ⇡
✓

�

4⇡

2

b

◆D?/2

e

���b (1�˜�2
H/�2)1/2

(40)
In the NG realization of the Pomeron the tachy-
onic contribution to the transverse propagator
KT is still dominated by the tachyon provided
that the impact parameter is larger than the
critical bC = ⇡ls. Clearly (40) reduces to (39)
for �̃H/� ⌧ 1.

The resummed expression (40) shows that
the exponent – the e↵ective string tension —
vanishes at the Hagedorn point

�

⇣
1 � �̃

2

H/�

2

⌘
1/2

! 0 (41)

in agreement with the universal behavior ob-
served for strings in a heat bath [39]. As we
noted above, this occurs when the impact pa-
rameter b ⇡ �ls.

The scattering amplitude associated to such
regime can be obtained by inserting (40) in
(15). The result in the saddle point approxi-

mation reads

T (s, t; 1) ⇡ ig

2

s (42)
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In this expression t is in string units, so ac-
tually it is ↵

0
t, and k = 1. This expression

(43) reduces to the Pomeron amplitude (23) for
s � �t > 1/↵

0. One may in principle observe
the corresponding modifications in the elastic
scattering. However, we think this to be only
possible at energies well above the LHC, so we
will not elaborate further on this point.

Instead we estimate the small cross section
�NC for the production of near-critical (NC)
strings, which we interpret as high multiplicity
events. From (15) with q = 0, b ⇡ �ls and
N-ality k = 1, we have by the optical theorem
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where �� = � � �̃H is the distance to the crit-
ical value. The probability is obtained after
normalization to the minimum bias (MB) cross
section �MB estimated in [4] – after an eikonal
resummation of the subcritical strings – to be

�MB ⇡ ⇡D?↵

0

3
�

2 (44)

The ratio of the high multiplicity events to the
minimum bias events can be estimated as

�NC

�MB
⇡ g
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e
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where we have dropped an overall number of
order 1 and set D? = 3.

B. Very high multiplicity events:
transition to post-critical (explosive) regime

As we emphasized above, the near-critical
string ball has very small free energy or pres-
sure. One can view this as a consequence of the

12

For clarity, let us emphasize that this en-
tropy characterizes the number of states of the
“tube”, or strings produced at the initial vir-
tual stage of the collision. It is obviously not

the number or states or entropy physically pro-
duced in the collision and observed in the detec-
tor, although we will argue below that there is
a positive correlation between the two, at least
in some regimes.

IV. HIGH MULTIPLICITY EVENTS

A. Near-critical strings

So far we have discussed the average colli-
sion event: its impact parameter was extracted
from the total (Pomeron-induced) cross section.
Now we switch to another subject, of selected
– by a special trigger –fluctuations in a system,
producing unusually high multiplicity, typically
in some range of rapidities (around zero in the
CM collider frame).

Those events are certain fluctuations in the
system. A possible origin of these events could
be multiple Pomeron exchanges [2, 3].The mul-
tiple exchanges start to interact as they di↵use
transversely. Their number density in trans-
verse space is set by the squared stringy satu-
ration scale [2, 3]. Although each exchange is
penalized by a small string coupling g

2

s ⇡ 1/N

2

c ,
it still leads to a shadowing of the dipole-dipole
cross section and saturation after an eikonalized
re-summation. In this scenario, the exchanged
strings are sub-critical with T < TH . This sce-
nario is favored at not-too-high collision ener-
gies.

Another existing source of fluctuations sim-
ply comes from more central collisions with
smaller impact parameters, which kinemati-
cally corresponds to thinner tubes with higher
e↵ective temperatures. The central idea of
this paper is that the change is expected to
come when the e↵ective string temperature ap-
proaches the Hagedorn temperature T ! T̃H

(the tilde is a reminder of the curvature cor-
rections). The string fluctuations change from
small as shown in Fig.5a, to large as shown in
Fig.5b. The reduction of the e↵ective string
tension leads to a proliferation of string fluctu-
ations. The energy of the string and its entropy

grow, as the e↵ective temperature T approaches
T̃H . We will argue that in this case a string gen-
erates a massive cluster, to be called a “string

ball” below. The physical analogy to what hap-
pens in the thermal (heat bath) setting is at the
origin of this idea.

Now, is there any connection between the
e↵ective thermodynamics of the virtual ex-
changed string we discussed above, and the
multiplicity of the produced hadrons? The
initial string configuration we discuss in con-
nection with the elastic amplitude does not of
course directly correspond to the physical final
states. Two open strings make a virtual (un-
der the barrier) semi-circle and are then born
into the physical Minkowski world, as particles
in the Schwinger pair production. Their virtual
Euclidean evolution ends there, the subsequent
evolution in Minkowski signature happens with
the probability one and thus is irrelevant for
the scattering amplitude, and is not described
by the formalism we use.

Yet, at least in the near-critical regime, one
may argue that the large energy and entropy of
the string ball cluster is simply proportional to
the physical length of the string. These strings
are to be stretched longitudinally, and then
broken into pieces, corresponding to physical
mesons whose multiplicity we trigger. While
those phenomena are complicated (and de-
scribed by phenomenological models, e.g. those
originated from the Lund model), we may still
argue that the final multiplicity should grow
with the length of the initial but virtual string.
Furthermore, we think that the final multiplic-
ity should simply be proportional to the initial
length of the string, to its energy or entropy.

Let us now see how the scattering amplitude
and other properties of the string change as one
enters this new “near-critical” regime. Recall
first the expressions discussed above, such as
(18), which were derived using the Polyakov ac-
tion in the regime �̃H < � < b. They were
dominated by the ground state mode n = 0, so

KT (�,b; 1) ⇡
✓

�

4⇡

2

b

◆D?/2

e

���b (1�˜�2
H/2�2)

(39)
However, as the e↵ective temperature becomes
closer to the Hagedorn temperature � ! �̃H ,
the string excitations are no longer small and
the �̃H/� corrections need to be re-summed.

Compare to “cold” one, 
in which it is a small 

correction

Can one figure out 
what to do when T>TH 

and argument of the sqrt <0?   
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in the potential

 but the results get clearly	
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“supernova” 
(implosion before explosion)

string mass and force are both “per length”, 
so one can think of just 2d gas of points with 

the 2d interaction: potential   K0(mr) 
(log(r) in the massless limit) 

!
Molecular dynamics shows collapse 

appears, very quick if the string number is large 
!

in AdS/QCD strings are in 5d  
their interaction is due to dilation and gravity 

the result is a bulk black hole 



Anisotropic	  Hydrodynamics:	  
Recent	  Progress	  

Michael	  Strickland	  
Kent	  State	  University	  

	  
	  

The	  Approach	  to	  Equilibrium	  in	  Strongly	  Interac?ng	  Ma@er	  
Brookhaven	  Na?onal	  Laboratory	  	  -‐	  April	  5,	  2014	  

	  
	  

Collaborators:	  	  D.	  Bazow,	  U.	  Heinz,	  W.	  Florkowski,	  R.	  Maj,	  M.	  Mar?nez,	  R.	  Ryblewski,	  E.	  Maksymiuk,	  L.	  Tin?	  	  

1	  M.	  Strickland	  



Mo6va6on	  
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•  Rela?vis?c	  viscous	  hydrodynamical	  modeling	  for	  heavy	  ion	  collisions	  at	  
RHIC	  and	  LHC	  is	  ubiquitous	  

•  Applica?on	  is	  jus?fied	  a	  priori	  by	  the	  (rela?ve)	  smallness	  of	  the	  shear	  
viscosity	  of	  the	  plasma	  	  

•  The	  canonical	  way	  to	  derive	  viscous	  hydrodynamics	  relies	  on	  a	  
lineariza?on	  around	  an	  isotropic	  equilibrium	  state	  (local	  rest	  frame	  =	  LRF)	  	  

•  However,	  the	  QGP	  is	  not	  isotropic	  in	  LRF	  à	  there	  are	  large	  correc?ons	  to	  
ideal	  hydrodynamics	  primarily	  due	  to	  strong	  longitudinal	  expansion	  

•  Alterna?ve	  approach:	  Anisotropic	  hydrodynamics	  builds	  in	  momentum-‐
space	  anisotropies	  in	  the	  local	  rest	  frame	  from	  the	  beginning	  

•  The	  goal	  is	  to	  create	  a	  quan?ta?vely	  reliable	  viscous-‐hydro-‐like	  code	  that	  
more	  accurately	  describes: 

o  Early	  ?me	  dynamics	  
o  Dynamics	  near	  the	  transverse	  edges	  of	  the	  overlap	  region	  
o  Temperature-‐dependent	  (and	  poten?ally	  large)	  η/S 



Es6ma6ng	  Early-‐6me	  Pressure	  Anisotropy	  

3	  M.	  Strickland	  

•  CGC	  @	  leading	  order	  predicts	  
nega?ve	  à	  approximately	  zero	  
longitudinal	  pressure	  	  

•  QGP	  sca@ering	  +	  plasma	  
instabili?es	  work	  to	  drive	  the	  
system	  towards	  isotropy	  on	  the	  
fm/c	  ?mescale,	  but	  don’t	  seem	  to	  
fully	  restore	  it	  	  

•  Viscous	  hydrodynamics	  predicts	  
early-‐?me	  anisotropies	  	  
PL/PT	  ≤	  0.35	  à	  0.5	  (see	  next	  slide)	  

•  AdS-‐CFT	  dynamical	  calcula?ons	  in	  
the	  strong	  coupling	  limit	  predict	  
anisotropies	  of	  PL/PT	  ≤	  0.3	  	  
(see	  talks	  by	  Heller	  and	  Romatschke)	  

Red	  –	  1st	  Order	  Hydro	  
Blue	  –	  2nd	  Order	  Hydro	  
Green	  –	  3rd	  Order	  Hydro	  
Grey	  –	  GR	  solu?on	  

= 0.31 

= 
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•  To	  get	  a	  feel	  for	  the	  magnitude	  of	  pressure	  anisotropies	  to	  expect	  let’s	  
consider	  the	  Navier-‐Stokes	  limit	  

•  PL/PT	  decreases	  with	  increasing	  η/S.	  	  	  
•  Assume	  η/S	  =	  1/4π	  in	  order	  to	  get	  an	  upper	  bound	  on	  the	  anisotropy	  
•  Using	  RHIC	  ini?al	  condi?ons	  (T0	  =	  400	  MeV	  @	  τ0	  =	  0.5	  fm/c)	  we	  obtain	  

PL/PT	  	  ≤	  0.5	  
•  Using	  LHC	  ini?al	  condi?ons	  (T0	  =	  600	  MeV	  @	  τ0	  =	  0.25	  fm/c)	  we	  obtain	  

PL/PT	  	  ≤	  0.35	  
•  Nega?ve	  PL	  at	  large	  η/S	  or	  low	  temperatures!	  
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•  Navier-‐Stokes	  solu?on	  is	  an	  “a@ractor”	  for	  the	  2nd	  order	  solu?on	  
•  τπ	  sets	  ?mescale	  to	  approach	  Navier-‐Stokes	  evolu?on	  
•  τπ	  ~	  5η/(TS)	  ~	  0.1	  fm/c	  at	  LHC	  temperatures	  
•  Assume	  isotropic	  LHC	  ini?al	  condi?ons	  T0=	  600	  MeV	  @	  τ0	  =	  0.25	  fm/c	  

and	  solve	  for	  the	  0+1d	  viscous	  hydrodynamics	  

2nd Order Viscous Hydro

1st Order Viscous Hydro
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1st Order Viscous Hydro
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⌘
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Es6ma6ng	  Anisotropy	  –	  Viscous	  hydro	  
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f(⌧,x,p) = f
aniso

(p,⇤(⌧,x)| {z }
T?

, ⇠(⌧,x)| {z }
anisotropy

) + �f̃

f(⌧,x,p) = feq(p, T (⌧,x)) + �f

fLRF
aniso

= f
iso

 p
p

2 + ⇠(x, ⌧)p2z
⇤(x, ⌧)

!

Viscous	  Hydrodynamics	  Expansion	  

Anisotropic	  Hydrodynamics	  Expansion	  

à	  Assume	  spheroidal	  form	  in	  LRF	  



•  What	  is	  special	  about	  this	  form	  at	  leading	  order?	  	  Can	  I	  choose	  any	  
background	  distribu?on	  I	  like	  as	  the	  expansion	  point?	  

	  
	  
•  Obviously	  can	  describe	  the	  ideal	  hydro	  limit	  when	  ξ=0  (Λ à	  T)	

•  For	  longitudinal	  (0+1d)	  free	  streaming,	  the	  Boltzmann	  equa?on	  can	  be	  

solved	  analy?cally	  à	  LRF	  distribu?on	  func?on	  is	  of	  spheroidal	  form	  with	  

	  
•  Could	  also	  use	  ellipsoidal	  form	  etc	  (more	  discussion	  on	  this	  point	  later),	  

but	  the	  spheroidal	  form	  is	  the	  simplest	  form	  that	  captures	  the	  largest	  
components	  (see	  next	  slide)	  of	  the	  energy-‐momentum	  tensor	  	  

•  Since	  fiso	  ≥	  0,	  the	  one-‐par?cle	  distribu?on	  func?on	  and	  bulk	  pressures	  
are	  guaranteed	  to	  be	  ≥	  0	  (not	  true	  in	  viscous	  hydro)	


M.	  Strickland	   7	  

Why	  spheroidal	  form	  at	  LO?	  

fLRF
aniso

= f
iso

 p
p

2 + ⇠(x, ⌧)p2z
⇤(x, ⌧)

!

⇠FS(⌧) = (1 + ⇠0)

✓
⌧

⌧0

◆2

� 1



Hints	  from	  Viscous	  Hydro	  

8	  M.	  Strickland	  
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!

First,	  let’s	  
consider	  what	  
happens	  when	  
we	  ignore	  this	  
term	  à	  	  
“LO	  aHydro”	  

Viscous	  Hydrodynamics	  Expansion	  

Anisotropic	  Hydrodynamics	  Expansion	  

à	  Assume	  spheroidal	  form	  in	  LRF	  



Spheroidal	  Distribu6on	  Func6on	  
•  Consider	  conformal	  system	  

to	  start	  with	  
•  In	  the	  conformal	  (massless)	  

limit	  all	  bulk	  observables	  
factorize	  into	  a	  product	  of	  
two	  func?ons	  

•  Note	  that,	  in	  the	  general	  
case,	  it	  is	  also	  possible	  to	  
define	  an	  anisotropic	  EOS	  
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n(⇤, ⇠) =

Z
d3p

(2⇡)3
f
aniso

=
n
iso

(⇤)p
1 + ⇠
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0th	  Moment	  of	  Boltzmann	  EQ	  	  

0+1d	  case	  –	  new	  Bjorken	  eqs	  	  

1st	  Moment	  of	  Boltzmann	  EQ	  	  

Where	  

11 M.	  Strickland	  

M.	  Mar?nez	  and	  MS,	  1007.0889	  



Linearized	  Equa6ons	  	  
If	  we	  expand	  the	  energy-‐momentum	  tensor	  to	  linear	  order	  in	  the	  
anisotropy	  parameter	  and	  match	  to	  2nd-‐order	  viscous	  hydro,	  we	  find	  

If	  we	  similarly	  expand	  the	  coupled	  nonlinear	  differen?al	  equa?ons	  to	  
lowest	  order	  in	  the	  anisotropy	  parameter	  and	  rewrite	  in	  terms	  of	  the	  
shear	  using	  the	  rela?on	  above,	  we	  obtain	  

-‐	  Reproduces	  2nd-‐order	  viscous	  hydro	  in	  the	  small	  anisotropy	  limit!	  	  	  
-‐	  Also	  correctly	  describes	  the	  free	  streaming	  limit!	  

12 
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13 M.	  Strickland	  



Viscous	  Hydro	  vs	  LO	  AHYDRO	  

⌧0 = 0.2 fm/c

T0 = 350 MeV

⇠0 = 0

14 

⌘

S =
10

4⇡

M.	  Mar?nez	  and	  MS,	  1007.0889	  

M.	  Strickland	  

Nega?ve	  Longitudinal	  Pressure	  

LO AHYDRO 

Israel-Stewart Theory 



Transverse	  Dynamics	  	  
Pb-‐Pb	  @	  2.76	  TeV	  
T0	  =	  600	  MeV	  
τ0	  =	  0.25	  fm/c	  
b	  =	  7	  fm	  M.	  Mar?nez,	  R.	  Ryblewski,	  and	  MS,	  1204.1473.	  

15 M.	  Strickland	  
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prolate	   oblate	  

Isotropic	  in	  momentum	  space	  

⇠ =
hp2T i
2hp2Li

� 1

M.	  Mar?nez	  and	  MS,	  1007.0889	  
Anisotropic	  Hydrodynamics	  Basics	  

f(⌧,x,p) = f
aniso

(p,⇤(⌧,x)| {z }
T?

, ⇠(⌧,x)| {z }
anisotropy

) + �f̃

f(⌧,x,p) = feq(p, T (⌧,x)) + �f

fLRF
aniso

= f
iso

 p
p

2 + ⇠(x, ⌧)p2z
⇤(x, ⌧)

!

Viscous	  Hydrodynamics	  Expansion	  

Anisotropic	  Hydrodynamics	  Expansion	  

à	  Assume	  spheroidal	  form	  in	  LRF	  

Now	  try	  to	  
treat	  this	  term	  
“perturba?vely”	  
	  
See	  the	  next	  talk	  
by	  U.	  Heinz	  
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•  Simple	  model:	  	  Boost-‐invariant	  transversally	  homogeneous	  
Boltzmann	  equa?on	  in	  relaxa?on	  ?me	  approxima?on	  (RTA)	  

•  Many	  results	  in	  this	  model,	  so	  we	  can	  compare	  with	  the	  literature	  
•  Can	  use	  this	  simple	  case	  to	  test	  the	  efficacy	  of	  different	  
approxima?on	  schemes	  

p

µ
@µf(x, p) = C[f(x, p)]

D(⌧2, ⌧1) = exp


�
Z ⌧2

⌧1

d⌧ ⌧�1
eq (⌧)

�
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Boltzmann	  EQ	  

RTA	   C[f ] =
pµu

µ

⌧eq


feq

⇣
pµu

µ
, T (x)

⌘
� f(x, p)

�

Solu?on	  for	  the	  energy	  density	  (massless	  par?cle	  case)	  

	  
	  Massless	  Par6cles	  
	  W.	  Florkowski,	  R.	  Ryblewski,	  and	  MS,	  
	  arXiv:1304.0665	  and	  arXiv:1305.7234	  
	  
	  Massive	  Par6cles	  
	  W.	  Florkowski,	  E.	  Maksymiuk,	  	  
	  R.	  Ryblewski,	  and	  MS,	  arXiv:1402.7348	  	  
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relax?on	  ?me	  

Damping	  	  
Func?on	  

Exact	  Solu6ons	  
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DNMR	  =	  Denicol	  et	  al,	  Phys.	  Rev.	  D	  85,	  114047	  (2012)	  BE	  =	  Exact	  Solu?on	   IS	  =	  Israel	  Stewart	  AH	  =	  aHydro	  

W.	  Florkowski,	  R.	  Ryblewski,	  and	  MS,	  
	  arXiv:1304.0665	  and	  arXiv:1305.7234	  

Exact	  Solu6ons	  
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•  Par?cle	  (entropy)	  
produc?on	  vanishes	  
in	  two	  limits:	  	  ideal	  
hydro	  and	  free	  
streaming	  limits	  
	  

•  For	  conformal	  
(massless)	  systems,	  
the	  number	  density	  	  
is	  propor?onal	  to	  
entropy	  density	  
	  	  

•  NLO	  spheroidal	  
aHydro	  does	  even	  
be[er!	  	  
(see	  the	  next	  talk)	  

W.	  Florkowski,	  R.	  Ryblewski,	  and	  MS,	  arXiv:1304.0665	  and	  arXiv:1305.7234	  

Exact	  Solu6ons	  



•  Generaliza?on	  of	  LO	  aHydro	  from	  spheroidal	  to	  ellipsoidal	  form	  +	  use	  of	  
second	  moment	  of	  Boltzmann	  equa?on	  [Florkowski	  and	  Tin?,	  arXiv:1312.6614]	  

	  
•  Massive	  LO	  spheroidal	  and	  ellipsoidal	  formalisms	  

[W.	  Florkowski,	  R.	  Ryblewski,	  MS,	  L.	  Tin?,	  arXiv:1403.1223]	  	  
	  

•  Finite	  mass	  only	  very	  weakly	  affects	  the	  pressure	  anisotropy	  
	  

•  Dynamical	  equa?ons	  obtained	  from	  the	  second	  moment	  of	  the	  Boltzmann	  
equa?on	  be@er	  reproduce	  the	  exact	  massive	  solu?on	  

•  Work	  under	  way	  to	  include	  the	  off-‐diagonal	  anisotropies	  at	  LO	  and	  bulk	  
pressure	  

	  

M.	  Strickland	   20	  

Other	  recent	  developments	  



Conclusions	  and	  Outlook	  

21	  M.	  Strickland	  

•  Anisotropic	  hydrodynamics	  builds	  upon	  prior	  advances	  in	  
rela?vis?c	  hydrodynamics	  in	  an	  a@empt	  to	  create	  an	  even	  more	  
quan?ta?vely	  reliable	  tool	  
	  

•  It	  incorporates	  some	  “facts	  of	  life”	  specific	  to	  the	  condi?ons	  
generated	  in	  rela?vis?c	  heavy	  ion	  collisions	  and,	  in	  doing	  so,	  
op?mizes	  the	  non-‐ideal	  hydrodynamics	  approach	  
	  

•  Having	  second-‐order	  anisotropic	  hydrodynamics	  (VAHYDRO)	  allows	  
us	  to	  proceed	  to	  numerical	  modeling	  of	  heavy	  ion	  collisions	  
	  

•  The	  evolu?on	  of	  the	  ma@er	  (par?cularly	  at	  early	  ?mes,	  near	  the	  
transverse	  edges,	  or	  with	  large	  temperature-‐dependent	  	  
η/S)	  should	  now	  be	  more	  reliably	  described	  
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Introduction

The time-evolution of Glasma toward isotropization and thermalization

large occupation number            classical dynamics

How about quark production?

Glasma

Classical statistical simulations of gluodynamics

Epelbaum,Gelis (2013) Berges et. al. (2013)

http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}
1/Q_s
/end{align*}
http://maru.bonyari.jp/texclip/texclip.php?s=/begin{align*}
1/Q_s
/end{align*}


Quark production 

How does the system reaches chemical equilibrium 
between light quarks and gluons?

Earlier works by F. Gelis, K. Kajantie and T. Lappi

• Limitation from numerical costs
• Treatment of the boost-invariance

PRC71, 024904(2005)
PRL96, 032304(2006) 

CGC and glasma are almost purely gluonic matter.

There have been theoretical and technical advances on

 classical statistical method for over-occupied bosonic fields
 real-time lattice simulations of fermionic fields
 treatment of a boost-invariant system



Derivation of the classical statistical method

Compute the Schwinger-Keldysh (CTP) formalism

 Generating functional

 SK Lagrangian

 gauge part

S. Jeon, PRC72, 014907 (2005); arXiv:1308.0263.
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/end{align*}
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Derivation of the classical statistical method

Compute the Schwinger-Keldysh (CTP) formalism

 Generating functional

 SK Lagrangian

 gauge part

Change of variables
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Derivation of the classical statistical method

Compute the Schwinger-Keldysh (CTP) formalism

 Generating functional

 SK Lagrangian

 gauge part

Change of variables

classical field equation

S. Jeon, PRC72, 014907 (2005); arXiv:1308.0263.
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Derivation of the classical statistical method

 Classical approximation

Neglect higher order terms in 

classical field equation

Strong field
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Derivation of the classical statistical method

 Classical approximation

Neglect higher order terms in 

classical field equation

 The path integration over       gives

which constraints the field trajectory to the classical path.

 The integrations over initial fields contain some quantum effects 
(vacuum fluctuations)

Strong field
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Fermions and the classical statistical method

Fermion’s occupation number Fermions are always quantum.

 quark part
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Fermions and the classical statistical method

Fermion’s occupation number Fermions are always quantum.

Quadratic fields can be integrated out.

 quark part

: time-ordered propagator dressed by the gauge field 

: anti-time-ordered propagator dressed by the gauge field 
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 Expand the Dirac determinants w.r.t. 

Propagator dressed by the averaged gauge field
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 Expand the Dirac determinants w.r.t. 

 Integrate over 

Propagator dressed by the averaged gauge field

Classical Yang-Mills equation which couples to the quark current
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 Expand the Dirac determinants w.r.t. 

 Integrate over 

Propagator dressed by the averaged gauge field

Classical Yang-Mills equation which couples to the quark current

is a field operator satisfying the Dirac equation under the gauge field:
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1. Generate an ensemble of the initial gauge fields according to 
the Wigner function

2. For each gauge configuration, solve the CYM equation and 
the Dirac equation as associated equations

3.    Take the ensemble average and the expectation values

Gaussian random number
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1. Generate an ensemble of the initial gauge fields according to 
the Wigner function

2. For each gauge configuration, solve the CYM equation and 
the Dirac equation as associated equations

3.    Take the ensemble average and the expectation values

pure classical approximation for gauge fields
as a first step

Neglecting 
the back-reaction
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Setup 

gauge fields

• SU(2)
• boost-invariant classical fields without fluctuations
• generated by colliding CGCs with the McLerran-Venugopalan model 
• in the forward light cone, solve the classical YM eq. numerically
• no back reaction

Analytic expressions are 
known up to 
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Setup 

quark fields

• obey the Dirac equation

solvable analytically
up to 

• free fields in the region (I)
• in the forward light cone, solve the Dirac eq. numerically
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Computing fermion contributions

linear in the Dirac field

Mode functions approach Aarts, Smit 1998

: mode functions, c-number solutions of the Dirac eq.

With the c-number mode functions, expectation values can be computed.
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Benchmark --- QED uniform and constant electric field

Schwinger mechanism particle pair production

The MC method well reproduces the analytic results.

Comparison between the analytic and MC results
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McLerran-Venugopalan initial condition

Initial electric field configuration The time-evolution of energy density

Random color sources

All dimensionful quantities are scaled by           . 
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Transverse spectra of produced quarks

mass dependence of the transverse spectra
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Transverse spectra of produced quarks

mass dependence of the transverse spectra
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Energy density

time evolution of 
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Energy density

time evolution of 

Free streaming

Suppression by heavy 
mass is not so drastic

Promptly produced 
after a collision

in contrast to
purely nonperturbative
Schwinger mechanism
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Summary

 Fermion dynamics can be embedded  in classical statistical  
simulations for gluons.

 The MC method enables us to simulate fermion dynamics in   
inhomogeneous classical gauge fields.

 The quark production in expanding gauge fields with the MV
initial condition is computed.

 Quarks are promptly produced after a collision of color glass 
condensates. 
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Fluctuation-dissipation: problem setup



Non-equilibrium setup in 4D: (Chesler-Yaffe)

1. Chesler and Yaffe turn on a strong gravitational pulse in “our” world

ds2 = −dt2 + eBo(t)dx2
⊥ + e−2Bo(t)dx2

‖

where

Bo(t) ∝ e−t
2/∆t2

Vacuum 
or 

Low T plasma

Gravitational
Pulse

Equilibrated
Plasma

Beginning Middle End

Non 
Equilbrium

plasma

time



The boundary stress tensor

• The energy density increases by 50 times for a gaussian pulse with ∆t = 1/πTf
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= Longitudinal pressure

Tµν = diag(E ,PT ,PT ,PL) (Effect. temperature)−1 = βeff(v) ∝ E−1/4



My Goal and Motivation:

Vacuum 
or 

Low T plasma

Gravitational
Pulse

Equilibrated
Plasma

Beginning Middle End

Non 
Equilbrium

plasma

time

I want to compute the "photon" emission rate in the 
non-equilibrium plasma.

1. Study the equilibration of different modes in the plasma.

2. Study the non-equilibrium emission of quanta from the black brane

• Emission is dual to emission



Emission of dilatons weakly interacting with equilibrium strongly coupled SYM plasma

Equilibrated Plasma
+ 4D Dilaton Field iSint = i

∫
d4xφ(x)J(x)

• Emission:

(2π)32k
dΓ<

d3k
= G<(K) G<(K) =

〈
Ĵ(0)Ĵ(K)

〉
• Absorption: The absorption rate of Dilatons is

(2π)32k
dΓ>

d3k
= G>(K) G>(K) =

〈
Ĵ(K)Ĵ(0)

〉
• FDT: The Fluctuation Dissipation Relation reads[

G<(K)︸ ︷︷ ︸
emission

]
/
[
G>(K)︸ ︷︷ ︸

absorption

]
= e−ω/T

We will compute the emission and absorption rates and check for detailed balance



What the classical AdS/CFT usually computes

Equilibrated Plasma
+ 4D Dilaton Field nk = Dilaton occupation number

∂tnk = −nk Γ>︸︷︷︸
absorb

+ (1 + nk) Γ<︸︷︷︸
emit

• For a classical dilaton field nk � 1 the damping is

∂tnk = −nk × (Γ> − Γ<)︸ ︷︷ ︸
classical absorption rate

• The classical absorption rate

G>(K)−G<(K) = −2 ImGR(K)

Without assuming FDT, only the classical absorption rate is computable

with the classical black brane response.



Nonequilibrium definitions – spectral density and statistical fluctuations

• Spectral Density records classical dissipation (commutator or G> −G<)

ρra−ar(t1|t2) = 〈[φ(t1), φ(t2)]〉︸ ︷︷ ︸
classical dissipation

• Statistical fluctuations (anti-commutator or 1
2(G> +G<))

Grr(t1|t2) = 1
2 〈{φ(t1), φ(t2)}〉︸ ︷︷ ︸

fluctuations

– Invariably suppressed at large N and only due to Hawking radiation.

What do you want to know about these things?





A non-equilibrium definition of the Emission and Absorption Rates

Want to know the rate to emit and absorb in a frequency band ω at time t

1. Wigner Transforms – perfect frequency resolution, but no time resolution

G<(t̄, ω) =

∫ ∞
−∞

d∆te+iω∆t 〈J(t̄−∆t)J(t̄+ ∆t)〉

2. Gabor Transform – Wigner smeared with a minimum uncertainty wave packet

Ḡ<(t̄o, ω̄o)︸ ︷︷ ︸
Gabor

=

∫
dtdω

2π
2e−(ω−ωo)2σ2

e−(t̄−t̄o)2/σ2︸ ︷︷ ︸
minimum wave packet

G<(t̄, ω)︸ ︷︷ ︸
Wigner Trans

3. The total number of dilatons emitted (in the band)

n(t, ωo, σω) =

∫ t

dt̄o Ḡ
<(t̄o, ωo)

This is a good estimate for the local emission rate for a given temporal resolution
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Equilibration and the coarse-grained FDT

1. If the FDT is satisfied

G<(K) = e−ω/TG>(K)

then, the coarse-grained quantities satisfy

Ḡ<(t̄o, ω̄o, q)︸ ︷︷ ︸
emission

= e−ωoβeff

[
eβ

2
eff/4σ

2
Ḡ>(t̄o, ω̄o − βeff/2σ

2, q)
]

︸ ︷︷ ︸
absorption

We will monitor the FDT as a function of time to quantify equilibrium



Results



Emission&Absorption rates and the FDT:
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Pattern of equilibration:
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Thermalization of Timelike Modes (units πTfinal): q = 0 and ω = finite
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τthermalize ∼ const ω →∞



Thermalization of Lightlike Modes Chesler et al, Arnold&Vaman
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Summary:
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2. The harder the lightlike mode, the longer it takes to equilibrate. . . will intuit that

τthermalize ∼ (ωσv)
1/4 for ω →∞



Non-Equilibrium AdS/CFT and Hawking Radiation



Non-equilibrium: (Chesler-Yaffe)

• Paul and Larry Play God:

ds2 = −dt2 + eBo(t)dx2
⊥ + e−2Bo(t)dx2

‖



Non-equilibrium setup in 5D Chesler-Yaffe

1. Corresponds to non-equilibrium geometry with BH formation in AdS5

Geodesics falling into hole

Time

Bndry Pulse

E
ve

n
t 
H

o
ri
zo

n

Diverging Geodesics

ds2 = −Adv2 + Σ2
[
eBdx2

⊥ + e−2Bdx2
||
]

+ 2dr dv ,



What we want to compute in the gravitational theory:

1. We want to compute the five dimensional spectral weight

ρra−ar(v1r1|v2r2) = 〈[φ(1), φ(2)]〉︸ ︷︷ ︸
computable with classical BH dissipation

2. And the five dimensional fluctuations (anti-commutator)

Grr(v1r1|v2r2) = 1
2 〈{φ(1), φ(2)}〉︸ ︷︷ ︸

Fluctuations due to Hawking

These correlators can be lifted to the boundary determining the

boundary quantities



Hawking radiation in non-equilibrium geometries

Event Horizon

Becomes a statistical
fluctuation  here

A UV quantum
fluctuation here

• Surface Properties – characterizes diverging geodesics near event horizon

κ(v)︸︷︷︸
Lyapunov exponent

≡

Metric−coeff︷ ︸︸ ︷
1

2

∂A(r, v)

∂r

∣∣∣∣∣∣∣∣∣
r=rh(v)



Then propagate the horizon fluctuations up to the boundary

• General form of near horizon fluctuations in non-equilibrium

Ghrr(v1|v2) = −
4
√
g(v1)g(v2)

π
∂v1∂v2 log |e

∫ v1 κ(v′)dv′ − e
∫ v2 κ(v′)dv′ |

• Can map the near horizon fluctuations up to boundary

Grr(1|2) =

∫
dv1hdv2h GR(1|1h) GR(2|2h)︸ ︷︷ ︸

outgoing Green Fcns

Ghrr(1h|2h)︸ ︷︷ ︸
horizon flucts

.

Event Horizon

Gh
rr

GR

GR



Qualitative explanation of our numerical results

• At large frequencies use a geometric approximation for Green fcns

Grr(1|2) =

∫
dv1hdv2h GR(1|1h) GR(2|2h)︸ ︷︷ ︸

outgoing Green Fcns

Ghrr(1h|2h)︸ ︷︷ ︸
horizon flucts

.
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Qualitative Picture
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1. Time delay (fly-time)∼ 2/πTf between the equilibration of 1-pnt and 2-pnt fcns.

- Timelike geodesics, ω →∞, fly directly to the bndry and equilibrate (fall in)



Qualitative Picture (see also Chesler et al, Arnold&Vaman)
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2. For large light like modes it takes a long time to reach the boundary.

- For us, the virtuality is of order Q2 = ω2 − q2 ∼ ωσ−1
v

- For a lightlike geodesic with small virtuality Q2

τfly ∼
(
ω2

Q2

)1/4

∼ (ωσv)
1/4



Conclusions

1. Thermalization of emission rates in non-equilibrium plasmas corresponds to

Hawking emission from non-equilibrium black holes.

2. General pattern of thermalization:

(a) First the one point functions 〈J(t)〉 equilibrate

(b) Then the two pnt functions 〈J(t) J(0)〉 equilibrate

(c) Modes with large invariant mass (large Q2) thermalize first

(d) Hard onshell modes (small Q2) take a long time to equilibrate

τ ∼ (ωσv)
1/4

This picture of thermalization is not too different from weak-coupling
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Introduction

Motivations: Thermalization

In the relativistic heavy ion collisions

A. H. Mueller, Nucl. Phys. B 572, 227 (2000) [hep-ph/9906322].

Cosmology: reheating, baryogenesis · · ·
For example, A. Tranberg and B. Wu, JHEP 1301, 046 (2013) [arXiv:1210.1779 [hep-ph]].

1/ 25 Quark production, BEC and thermalization



Introduction

Theoretical tools: Schwinger-Keldysh formalism

Take λφ4 for example below!

〈Ô(t)〉 = Tr
[
Ô(t)ρ(0)

]
=

∫
dφtdφ+0dφ−0Ô[φt ]〈φ+0|ρ̂(0)|φ−0〉〈φ|U(t)|φ+0〉〈φ−0|U(t)†|φt〉

=

∫
Dφ+Dφ−〈φ+0|ρ̂(0)|φ−0〉Ô[φ(t)]e

i
~{S[φ+]−S[φ−]}

=

∫
dφtdσ0dφ0e

− i
~σ0π0〈φ0 +

σ0

2
|ρ̂(t0)|φ0 −

σ0

2
〉Ô[φt ]

×
∫

σ(0) = σ0, σ(t) = 0
φ(0) = φ0, φ(t) = φt

DφDσe
− i

~
∫ t

0

[
σ

(
�φ+ g2

6
φ3−j

)
+ g2

24
σ3φ

]

with φ2 = φ ≡ 1
2
(φ+ + φ−) and φ1 = σ ≡ φ+ − φ−.

Too complicated, approximations are needed!
For a review: K. -c. Chou, Z. -b. Su, B. -l. Hao and L. Yu, Phys. Rept. 118, 1 (1985).
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Introduction

The quantum vacuum

ρW [φ0, π0] ≡
∫

dφ0e
− i

~σ0π0〈φ0 +
σ0

2
|ρ̂(t0)|φ0 −

σ0

2
〉

= N e
−
∫ d3p

(2π)3

(
p|φ0(p)|2+ 1

p
|π0(p)|2

)

Any coherent state

ρW [φ0, π0] = N e
−
∫ d3p

(2π)3

(
p|φ0(p)−φcl0(p)|2+ 1

p
|π0(p)−πcl0(p)|2

)
,

where φcl0 and πcl0 are any field configuration.

All the high momentum modes are included!!
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Introduction

The classical statistical approximation

The formalism: drop g2

24
σ3φ

〈Ô(t)〉 =

∫
dφtdσ0dφ0e

− i
~σ0π0〈φ0 +

σ0

2
|ρ̂(t0)|φ0 −

σ0

2
〉Ô[φt ]

×
∫

σ(0) = σ0, σ(t∞) = 0
φ(0) = φ0, φ(t∞) = φt

DφDσe
− i

~
∫ t∞

t0

[
σ

(
�φ+ g2

6
φ3−j

)]
︸ ︷︷ ︸

δ

[
�φ+ g2

6
φ3−j

]

=

∫
dφ0dπ0ρW [φ0, π0]Ô[φcl (t)],

where

�φcl +
g 2

6
φ3

cl = j with φcl (0) = φ0, φ̇cl (0) = π0.

A. H. Mueller and D. T. Son, Phys. Lett. B 582, 279 (2004) [hep-ph/0212198].
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Introduction

The classical statistical approximation

Purely classical limit: neglect all the quanta with p > Qs

Thermal equilibrium distribution: fp =
T

ωp − µ︸ ︷︷ ︸
O(~0)

Ultraviolet catastrophe
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Introduction

The classical statistical approximation

Including all the quanta in the vacuum

Thermal equilibrium distribution: fp =
T

ωp − µ︸ ︷︷ ︸
O(~0)

−
1

2︸︷︷︸
O(~)

Non-renormalizablity

For example,

−i
[
Σ11(P)

]2 loop

CSA
= 1 1

2 2
2 2

2 2

= −
g4

1024π3

(
Λ2

UV
−

2

3
p2

)
,

Im
[
Σ12(P)

]2 loop

CSA
= 1 2

2 1
2 2

2 2

= −
g4

1024π3

(
Λ2

UV
−

2

3
p2

)
with ”1” = σ, ”2” = φ.

T. Epelbaum, F. Gelis and B. Wu, arXiv:1402.0115 [hep-ph].

Invalid for the late-time behavior!
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Introduction

The Boltzmann equation

The quasiparticle approximation:

With the assumption Xµ ≡ xµ + yµ/2 is a slowly varying variable in
Gab(x , y)

G22(X , p) =

fp (X ) +
1

2︸︷︷︸
vacuum quanta

 2πδ(p2 −m2), G11(X , p) = 0,

G12(X , p) =
i

p2 −m2 + ip0ε
, G21(X , p) =

i

p2 −m2 − ip0ε
.

The Dyson-Schwinger equation

Dt fp ≡
(
∂

∂t
+ v · ∇x

)
fp = −

i

2ωp

[
(Σ12 − Σ21)

(
fp +

1

2

)
− Σ11

]
.

A. H. Mueller and D. T. Son, Phys. Lett. B 582, 279 (2004) [hep-ph/0212198].
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Introduction

The Boltzmann equation

Valid for all f < O(α−1
s ) ∼ g−2

−iΣ11(P) = 1 1 + O(g8),

−iΣ12(P) = 1 2

︸ ︷︷ ︸
2↔2

+O(g8)

Phase transition: may not be accurate since the coherent length ∼ ∞

E. Calzetta and B. L. Hu, Phys. Rev. D 37, 2878 (1988).

But the Boltzmann equation does KNOW something about it!

Go back to pQCD from next page!
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Introduction

The Bose-Einstein condensate (BEC)

May exist before it disappears due to number changing processes!

J. -P. Blaizot, F. Gelis, J. -F. Liao, L. McLerran and R. Venugopalan, Nucl. Phys. A 873, 68 (2012) [arXiv:1107.5296

[hep-ph]].

Classical statistical approximation (scalar field)

T. Epelbaum and F. Gelis, Nucl. Phys. A 872, 210 (2011) [arXiv:1107.0668 [hep-ph]].

J. Berges and D. Sexty, Phys. Rev. Lett. 108, 161601 (2012) [arXiv:1201.0687 [hep-ph]].

Kinetic theory (in pQCD)

In thermal equilibrium,

f =
1

e
ωp
T − 1

+ (2π)3ncδ(p)

J. -P. Blaizot, J. Liao and L. McLerran, Nucl. Phys. A 920, 58 (2013) [arXiv:1305.2119 [hep-ph]].

X. -G. Huang and J. Liao, arXiv:1303.7214 [nucl-th].
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Introduction

Quark production

In a thermal bath of weakly couple QGP

ε = 3P =

[
16 +

21

2
Nf

]
π2

30
T 4

Quarks (and antiquark) carry 66% of ε for Nf = 3.

The quark production process: gg ↔ qq̄
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The transport equation

Assumptions

1 Baryon number density = 0 anywhere

2 No external fields (forces)

3 Partons are massless

2Nc × 2Nf quarks (and antiquarks) and 2(N2
c − 1) gluons!

Symmetries

1©+ 2© ⇒ Charge conjugation symmetry + Spin and color to be averaged

3© ⇒ SU(Nf ) flavor symmetry

Consequences

Two coupled transport equations for

The quark distribution F and the gluon distribution f
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The transport equation

Diffusion approximation

′

Q

P

P' K

K'

P K'≈P

P K≈P

⇒

⇒Q

Ic

Ia,Ib

P

P' K'

K

P

P' K'

K
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The transport equation

Diffusion approximation

ab ↔ cd |Mab
cd |2/g 4 In diffusion approximation

q1q2 ↔ q1q2

4NcCF

(
s2+u2

t2

)
8NcCF

s2

t2

q1q̄2 ↔ q1q̄2

q̄1q2 ↔ q̄1q2

q̄1q̄2 ↔ q̄1q̄2

q1q1 ↔ q1q1 4NcCF

(
s2+u2

t2 + s2+t2

u2

)
− 8CF

s2

tu
8NcCF

(
s2

t2 + s2

u2

)
q̄1q̄1 ↔ q̄1q̄1

q1q̄1 ↔ q1q̄1 4NcCF

(
s2+u2

t2 + t2+u2

s2

)
− 8CF

u2

st
8NcCF

s2

t2

q1q̄1 ↔ q2q̄2 4NcCF

(
t2+u2

s2

)
0

q1q̄1 ↔ gg 8NcC
2
F

(
u
t

+ t
u

)
− 8N2

c CF
t2+u2

s2 −8NcC
2
F

(
s
t

+ s
u

)
q1g ↔ q1g −8NcC

2
F

(
u
s

+ s
u

)
+ 8N2

c CF
u2+s2

t2 −8NcC
2
F

s
u

+ 16N2
c CF

s2

t2q̄1g ↔ q̄1g

gg ↔ gg 16N2
c (N2

c − 1)
(
3− su

t2 − st
u2 − tu

s2

)
16N2

c (N2
c − 1)

(
s2

t2 + s2

u2

)
Table : Squares of the 2↔ 2 scattering amplitudes in QCD, with spins and
colors of all four partons summed over.
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The transport equation

The Fokker-Planck equation

Dt f = −∇p · Jg + Sg , DtF = −∇p · Jq + Sq,

where the currents and sources are given by

Jg = −4πα2
sNcL

[
Ia∇pf + Ib

p

p
f (1 + f )

]
,

Jq = −4πα2
sCFL

Ia∇pF︸ ︷︷ ︸
diffusion

+ Ib
p

p
F (1− F )︸ ︷︷ ︸

drag

 ,
Sg = −Nf

CF
Sq =

4πα2
sCFNfLIc

p
[F (1 + f )− f (1− F )] ,

with

Ia =

∫
d3p

(2π)3
[Nc f (1 + f ) + Nf F (1− F )]∝ q̂,

Ib = 2

∫
d3p

(2π)3

1

p
(Nc f + Nf F ) , Ic =

∫
d3p

(2π)3

1

p
(f + F ).
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The transport equation

For a spatially homogeneous system

ḟ = − 1

p2

(
p2Jg

)′
+

CFNf

Nc
Sg = − 1

4πp2
F ′g −

CFNf

Nc
Sq,

Ḟ = −CF

Nc

1

p2

(
p2Jq

)′
+

C 2
F

Nc
Sq = −CF

Nc

1

4πp2
F ′q +

C 2
F

Nc
Sq,

where

Sg = −Sq =
Ic
p

[F (1 + f )− f (1− F )] ,

Fg

4πp2
≡ Jg ≡ −Iaf ′ − Ibf (1 + f ),

Fq

4πp2
≡ Jq ≡ −IaF ′ − IbF (1− F ),

with

Ia = 2π2Ia, Ib = 2π2Ib, Ic = 2π2Ic .
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The transport equation

Redefined time

τ =
2α2

sNcL
π

t

with

L '
∫ qmax

qmin

dq

q

being taken as a constant.
J. -P. Blaizot, J. Liao and L. McLerran, Nucl. Phys. A 920, 58 (2013) [arXiv:1305.2119 [hep-ph]].

(Naive) scaling symmetry

Qs → cQs , τ → τ

c
, p→ cp

with c > 0. As a result, one can express all momenta in units of Qs and
times in units of 1/Qs .
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Quark production, BEC and thermalization

Thermodynamics
Underlying assumptions for 2↔ 2 process:

The total parton number is conserved ⇒ the same µ for all the partons.

The fixed points of collision terms

feq =
1

e(p−µ)/T − 1
, Feq =

1

e(p−µ)/T + 1
.

where T and µ may be fixed by

εeq = ε0, neq = n0.

Under- and over-populated systems

Under-polpulation: µ ≤ 0 exists.

Over-polpulation: µ = 0 with BEC and

T =

√
2

π

(15ε0)1/4

(8Nc CF + 7Nc Nf )1/4
.

J. -P. Blaizot, J. Liao and L. McLerran, Nucl. Phys. A 920, 58 (2013) [arXiv:1305.2119 [hep-ph]].
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Quark production, BEC and thermalization

Thermodynamics

Initial distributions

f(0, p) = f0 θ

(
1−

p

Qs

)
, F(0, p) = 0.

with

ε0 =
f0

2π2
Nc CF Q4

s , n0 =
f0

3π2
2Nc CF Q3

s .

The transition from under- to over-population happens at

f0c =
273375(4CF + 3Nf )4ζ(3)4

2CF (8CF + 7Nf )3π12
'

0.309(4CF + 3Nf )4

CF (8CF + 7Nf )3
,

Tc =
45ζ(3) (4CF + 3Nf )

π4 (8CF + 7Nf )
Qs '

0.555 (4CF + 3Nf )

(8CF + 7Nf )
Qs .

Examples

Nf = 0: f0c = 0.154, Nf = 3: f0c = 0.308
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Quark production, BEC and thermalization

Only two types of solutions to the transport equation

f is analytic at p = 0

f = f (τ, 0) + O(p), F = F (τ, 0) + O(p).

with the flux

Fg |p=0 = 0, Fq |p=0 = 0.

f is singular at p = 0

f =
c−1

p
−

1

2
+ O(p), F =

1

2
+ O(p),

with

Fg |p=0 = 4πc−1 (Ia − Ibc−1) , Fq |p=0 = 0.

Indicates the formation of BEC!

Boundary conditions for the formation of condensates

Fg |p=∞ = 0, Fg |p=0 = 4πc−1 (Ia − Ibc−1) , Fq |p=∞ = 0, Fq |p=0 = 0.
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Quark production, BEC and thermalization

Thermalization with BEC: f0 > f0c = 0.308
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Quark production, BEC and thermalization

τc : time for the onset of BEC

Definition: time for f to build up the 1/p tail at small p

J. -P. Blaizot, J. Liao and L. McLerran, Nucl. Phys. A 920, 58 (2013) [arXiv:1305.2119 [hep-ph]].

Parametric estimate

At early time for f0 > 1

f ∼
2

p

Ia(0)f ′(0, p)︸ ︷︷ ︸
diffusion

+ Ib(0)f (0, p)2︸ ︷︷ ︸
drag

− Ic (0)Nf
f 2
0

p

 τ ∼ f 3
0

Q2
s

p
τ .

τc given by
pf (p)|p→0 ∼ Qs f (Qs ) ∼ Qs f0.

That is

τc ∼ 1
f 2
0

1
Qs
, or tc ∼ 1

(αs f0)2
1

Qs
.
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Quark production, BEC and thermalization

τc : time for the onset of BEC
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Quark production, BEC and thermalization

Thermalization with transient BEC: 0.308 = f0c > f0 > f0t = 0.25
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with f0 = 0.26 and Nf = 3.
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Quark production, BEC and thermalization

Quark production: produced mostly at low p
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 0.06

 0  0.5  1  1.5  2

p
2
 S

q
/Q

s

3

p/Qs

τ  = τc

τ Qs = 0.25

τ Qs = 1.0

τ Qs = 10.0

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.5 1 1.5 2

F
q
/Q

s
4

p/Qs

τ = τc
τ Qs = 0.25

τ Qs = 1.0

τ Qs = 10.0

with f0 = 0.4 and Nf = 3. Quarks pick up a large momentum mainly by
multiple scattering.
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Quark production, BEC and thermalization

Quark production slows down thermalization

For the same Qs and f0

teq for Nf = 3 ∼ 5 to 6 times longer than Nf = 0

with the equilibration time teq

∣∣∣∣T ∗(τeq)

T
− 1

∣∣∣∣ ≤ 0.05,

∣∣∣∣ng (τeq)

ngeq
− 1

∣∣∣∣ ≤ 0.05,

∣∣∣∣nq(τeq)

nqeq
− 1

∣∣∣∣ ≤ 0.05,

and ∣∣∣∣ sg (τeq)

sgeq
− 1

∣∣∣∣ ≤ 0.05,

∣∣∣∣ sq(τeq)

sqeq
− 1

∣∣∣∣ ≤ 0.05.

with T ∗ ≡ Ia/Ib.
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Discussions

1 What is BEC, quasi-particles or classical fields?

In kinetic theory

BEC is obviously quasi-particles with

ftot (t, p) = fp + (2π)3nc (t)δ(p)

For example, D. V. Semikoz and I. I. Tkachev, Phys. Rev. D 55, 489 (1997) [hep-ph/9507306].

In classical statistical approximation

It does not look like condensate in the sense of the Higgs mechanism since

〈φ〉 = 0,

but described by

φ̄2(t) ≡
∫

d3xdy3〈φ(x)φ(y)〉
∣∣∣∣
x0=y0=t

= 2

∫
d3xdy3G22(x , y)

∣∣∣∣
x0=y0=X 0

which also has a nice quasi-particle interpretation

φ̄2 = 2

∫
d4p

(2π)4
e−ip·(x−y)(2π)δ(p2 −m2)(fp +

1

2
)

= V

∫
d3p

1

ωp

(
fp +

1

2

)
δ(p) ' V 2nc/m.

Dénes Sexty’s talk!

T. Epelbaum, F. Gelis, N. Tanji, B. Wu, In preparation.
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2	  

Introduction to Parton Cascade 

•  The Boltzmann equation 

22 23 32( , , ) ( , , )f t S t C C C
t E
∂ ∂⎛ ⎞+ = + + + +⎜ ⎟∂ ∂⎝ ⎠

Lp x p x p
x

Cmn are collision terms (each is an integral of (m+n-1)x3-4 
dimensions with m phase space distributions) 

Interactions with color field        Color degrees of freedom 

•  Test particle method 

(3) (3)( , , ) ( ( ( ))) ( )i
i i i i

i i

f t w t t
E

δ δ= − − − −∑
px p x x p p

( , , )i i itx p formation and collisions (geometric, stochastic) 
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Introduction: radiative transport 

2
S

22 2

9
2
πα

σ
µ

=

2 S3 1
i iV p

πα
µ = ∑

23 220.5σ σ=

2
32 2312I π σ=

•  The reaction rates 



4	  

Longitudinal to transverse pressure ratio 

Lines (points): exponential 
(condensate) initial conditions 

•  competition between 
expansion and equilibration 

•  common asymptotic evolution 

•  more isotropization with 
inelastic processes 

•  not sensitive to initial 
momentum distribution with 
inelastic processes 



5	  

Longitudinal to transverse pressure ratio 

αsε0 scaling for elastic only. Approximate αs scaling with inelastic. 
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Longitudinal to transverse pressure ratio 

Inelastic included Elastic only 
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Fugacity evolution 

Lines (points): isotropic 
(transverse) initial conditions 

•  interplay between chemical 
and kinetic equilibrations 

•  inelastic more effective for 
kinetic equilibration at (or 
above) λ=1 

•  elastic deviates from 
chemical equilibrium 

•  isotropic initial more effective 
in chemical equilibration 

 



Exact	  matrix	  element	  for	  gg↔ggg	  
46 32

2

( ) ( )
2( 1) ( )

c
gg ggg

c

ij ijklmg NM
N ij→ =

−
∑ ∑

∏
( ) i jij p p= ⋅

( ) ( )( )( )( )( )ijklm ij jk kl lm mi=

Propagators	  regulated	  by	  μ2	  

When	  αs=0.47,	  μ2=10	  fm-‐2,	  s=4	  GeV2,	  
σ22=0.312	  fm2,	  and	  σ23=0.0523	  fm2.	  

σ23/σ22	  ~	  0.168	  <	  0.5	  

8	  

When	  αs=0.4,	  T=0.524	  GeV,	  
(preliminary)	  <σ23>23/<σ22>22~57%,	  
<σ23>/<σ22>~17%,	  w23/w22~12%.	  
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Summary	  and	  discussions	  
• 	  Elas>c	  collisions	  may	  be	  more	  important	  in	  thermaliza>on	  
than	  expected.	  

• 	  Specific	  shear	  viscosity	  may	  be	  larger	  than	  the	  quantum	  limit.	  

• 	  Forma>on	  >me	  regulariza>on	  can	  be	  approximated	  by	  
screening	  mass	  regulariza>on	  (replacement	  of	  the	  theta	  
func>on	  by	  a	  Lorentzian).	  

• 	  Exact	  and	  Gunion-‐Bertsch	  can	  have	  big	  differences.	  

• 	  Bethe-‐Heitler	  limit	  may	  be	  important	  for	  bulk	  ma@er	  
thermaliza>on	  (forma>on	  >me	  vs.	  mean	  free	  path).	  

• 	  Elas>c	  collisions	  can	  also	  be	  important	  for	  heavy	  quark	  
equilibra>on	  (meson	  dissocia>on).	  
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Energy density evolution 

•  early time power law 
behavior reflects initial 
isotropy 

•  asymptotic power law 
behavior reflects 
interactions 

•  behavior not sensitive to 
initial energy density 

Viscous corrections can not 
be neglected 

1.25

1
ε

τ
:

upper (lower):  
transverse (isotropic) initial  

Blue: free streaming 
Red (green): αs=0.3 (0.6) 



Exact	  matrix	  element	  for	  gg↔ggg	  
46 32

2

( ) ( )
2( 1) ( )

c
gg ggg

c

ij ijklmg NM
N ij→ =

−
∑ ∑

∏
( ) i jij p p= ⋅

( ) ( )( )( )( )( )ijklm ij jk kl lm mi=

Propagators	  regulated	  by	  μ2	  

When	  αs=0.47,	  μ2=10	  fm-‐2,	  s=4	  GeV2,	  
σ22=0.312	  fm2,	  and	  σ23=0.0523	  fm2.	  

σ23/σ22	  ~	  0.168	  <	  0.5	  

11	  

(When	  αs=0.3,	  μ2=6.38	  fm-‐2,	  s=4	  GeV2,	  
σ22=0.199	  fm2,	  and	  σ23=0.0504	  fm2.)	  
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Exact	  matrix	  element	  vs.	  Gunion-‐Bertsch	  
2 24 22

2 2 2 2 2 2

129
2( ) (( ) )

GB
gg ggg

g qg sM
q k k qµ µ

⊥
→

⊥⊥ ⊥ ⊥

=
+ − +

r r
singularity	  regulated	  by	  μ2	  
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Exact	  matrix	  element	  vs.	  Gunion-‐Bertsch	  
2 24 22

2 2 2 2 2 2

129
2( ) (( ) )

GB
gg ggg

g qg sM
q k k qµ µ

⊥
→

⊥⊥ ⊥ ⊥

=
+ − +

r r
singularity	  regulated	  by	  μ2	  



When	  αs=0.47,	  μ2=10	  fm-‐2,	  I32=6.84	  fm2.	  Es>mate	  with	  isotropic	  matrix	  
element	  gives	  I32=6.19	  fm2.	  

14	  

Exact	  matrix	  element	  for	  gg↔ggg	  



When	  αs=0.47,	  μ2=10	  fm-‐2,	  I32=4.85	  fm2.	  Es>mate	  with	  isotropic	  matrix	  
element	  gives	  I32=6.19	  fm2.	  

15	  

Exact	  matrix	  element	  for	  gg↔ggg	  
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Equilibrium	  in	  a	  box	  with	  gg↔ggg	  

When	  αs=0.4,	  T=0.524	  GeV,	  <σ23>23/<σ22>22~57%,	  <σ23>/<σ22>~17%,	  w23/
w22~12%	  (preliminary).	  
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