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Abstract 

Initial modulation in Coherent electron cooling (CeC) scheme relies on ion charge 
screening by electrons. In a CeC system with bunched electron beam, the long-range 
longitudinal space charge force is inevitably induced. For a relatively dense electron 
beam, it can be comparable or even greater than the attractive force from the ion. Hence, 
space-charge field influence to the modulation process could be important. If the 
longitudinal Debye length is much smaller than the electron bunch length, the modulation 
induced by the ion happens locally.  In this case, the long-range longitudinal space charge 
field can be approximated as a uniform electric field across the region. In this paper we 
developed an analytical model to study the dynamics of ion shielding in the presence of a 
uniform electric field.  We are solving the coupled Vlasov-Poisson equation system for 
infinite anisotropic electron plasma and estimate the influences of the longitudinal space 
charge field to the modulation process. We present numerical estimates for a case of the 
proof of CeC principle experiment at RHIC.  

 

I. Introduction 

Idea of Coherent electron Cooling (CeC) was first introduced by Y. Derbenev in 1980s 
[1]. In 2007, V. N. Litvinenko and Y. Derbenev have developed detailed theory of Free 
Electron Laser (FEL) based CeC scheme [2, 3]. It utilizes FEL as an amplifier and time-
of-flight dependence on hadron’s energy to cool hadrons. Estimations show that it has the 
potential to cool high-energy high-intensity ion beam in modern hadron accelerators such 
as RHIC, LHC and the proposed eRHIC. More recently, a similar CeC concept based on 
amplification via a micro-bunch instability, called by the author Micro-bunched Electron 
Cooling (MBEC), has been proposed [4]. The later technique has potential of much larger 
bandwidth compared with other CeC schemes [4]. A CeC system comprises of three 
sections: modulator, amplifier and kicker. In the modulator, the ion beam and the electron 
beam are merged together. Each ion creates an electron density modulation around itself 
through the process shielding, or screening. The electron density modulation is then 
amplified in the CeC amplifier and acts back on the ion in the kicker section. As the 
result, the energy error of the ion is reduced. By coupling transverse and longitudinal 
motions [2-3], the oscillations in all three degrees of freedom can be cooled. 

The modulation process of CeC relies on the Coulomb interaction between electrons 
and ions. The dynamics of the process in uniform anisotropic electron plasma has been 
previously investigated, which, at the cold electron beam limit, reduces to the results 
obtained from the hydro-dynamical model [3, 5]. In these calculations, it is assumed that 
electrons have uniform spatial distribution and hence there is no net space charge field in 
the un-perturbed electron plasma. The assumption is valid if the spatial extension of the 



electron bunch is much larger than the Debye lengths in all three dimensions and the ion 
is located close to the center of the electron bunch. However, for an electron bunch with 
high density and an ion interacting with electrons away from the bunch centers, the 
electrons surrounding the ion may see a net longitudinal space charge force comparable 
to or even greater than the attractive force from the ion. This makes it necessary to 
account for the long-range space charge field while analyzing the modulation process.  

In this work, we withdraw the assumption that the net long-range space charge field is 
negligible while still assuming that the spatial distribution of electrons is smooth and its 
spatial extension is much larger than the Debye lengths in all three dimensions. With 
these assumptions, it is still possible to make the approximation that electrons 
participating in shielding a specific ion have uniform spatial distribution. Also, the long-
range space charge field perceived by these electrons can be considered as uniform.  

Consequently, the modulation process can be described by the self-consistent Vlasov-
Poisson equation system for uniform electron plasma in the presence of a moving ion and 
an external electric field. By linearizing the Vlasov equation, we are able to solve the 
equation system for the κ-2 velocity distribution analytically and obtain the density 
modulation in a simple form of 1-D integral.  

The paper is organized as follows. In section II, we write the linearized Vlasov-Poisson 
equation for the system and solve the equations for the background electrons. The 
linearized Vlasov-Poisson equation system is solved in section III, and the electron 
density modulation induced by the moving ion is obtained. In section IV we gives a few 
numerical examples for the influence of longitudinal long-range space charge field on the 
modulation process in the proof of principle experiment of CeC and the proposed CeC 
systems for eRHIC and LHC. The reduction of the longitudinal space charge field due to 
beam pipe screening is calculated in section V. Section VI presents the summary. 

 

II. Linearized Vlasov-Poisson Equations 

  It is convenient to choose the reference frame as the rest frame of the ion, where the 
velocities of electrons are non-relativistic. Non-relativistic nature of the particles’ motion 
in this frame allows us to use electrostatic Poisson equation as a good approximation for 
the evolution of electric fields. 

 Let  be the electron phase space density distribution at time t  with the initial 

distribution at t = 0  of:  

                                                    .                                              (1) 

For t > 0 , the phase space distribution function is determined by the coupled Vlasov-
Poisson equation system: 

         ,      (2) 

 and 



                             ,                         (3) 

where  is the uniform space charge field at the location of the ion and Zie  is the 

electric charge of the ion. The electric potential, , is induced both by the ion and 

the electrons’ response to the ion’s field.  To linearize eq. (2), we write the phase space 
density as 
                                        ,                                (4) 

 
where the distribution function of background electrons, , describes the 

evolution of the electron phase space density in the absence of the ion and satisfies 
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Since the acceleration does not depend either on the coordinate or on initial velocity, the 
evolution of the distribution is simply a shift of the initial distribution by Δv = at : 
                                              fBG

x,
v,t( ) = f0

v − at( ) .                                 (7) 

Solution in eq. (7) explicitly satisfies eq. (5). Inserting eq. (4) into eq. (2) and making use 
of eq. (5) lead to the linearized Vlasov equation  

.   (8) 

As the distribution of background electrons is uniform and hence does not contribute to 
the electric field, the electric potential, , is solely determined by the electron 

density modulation: 

                            .                      (9) 

Eqs. (8) and (9) constitute the linearized Vlasov-Poisson system, which determines the 
electron phase space density modulation induced by the ion. 
 
III. Solving Linearized Vlasov-Poisson System for κ-2 Velocity Distribution 

  In order to proceed, it is convenient to change the independent variables,  and t , to a 
set of new variables: 
                                                                    ,                                                     (10) 
and   
                                                                    τ ≡ t .  
We denote the induced phase space density variation in terms of the new variables as 

                               .                                      (11) 

With the new variables, the partial derivatives in eq. (8) with respect to  and t  can be 
rewritten as 



                                ,                    (12) 

and 

                                                  .                           (13) 

Inserting eqs. (12) and (13) into eq. (8) yields the linearized Vlasov equation in new 
variables: 
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The Poisson equation, eq. (9), can be simply rewritten as 

                                  .                           (15) 

Multiplying both sides of eqs. (14) and (15) by , and integrating over  gives their 
Fourier transformation: 
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and 

                                               .                                        (17) 

The Fourier components of the phase space density and electric potential are defined as: 

                                              ,                                      (18) 

                                                ,                                       (19) 

and the Fourier components of the spatial density modulation is given by  
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Multiplying both sides of eq. (16) by exp i

k ⋅ uτ + i
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 we can transform it into 
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which, after integration over τ , produces 

                         .        (22) 

Inserting eq. (17) into (22) and then taking integration over  lead to the following 
integral equation 
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To move further, let’s assume that the initial velocity distribution of electrons at t = 0  
is anisotropic κ-2 distribution, which in terms of the new variables reads: 

                                   , (24) 

where  is the velocity of the ion and n0  is the spatial density of the background 
electrons. Parameters βx , βy  and βz  describe velocity spreads of electrons in the 

corresponding directions. Inserting eq. (24) into (23) and applying the relation 

                                             ,                     (25) 

the integral equation reduces to   
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where 

                          ,         (27) 

                                         ,                                     (28) 

and 
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Eq. (26) can be written into a more compact form: 
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and the new function, , is defined as 
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Taking the second time derivative of eq. (30) generates an inhomogeneous second-order 
ordinary differential equation (ODE) 
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which, for arbitrary initial conditions,  has the solution[6]  

            ,     (33) 

with c1  and c2  being constants to be determined by the initial conditions at t = 0 . As we 
assume that there is no modulation at t = 0 , the initial conditions read 

                                                         ,                                            (34) 

and  

                                   .                     (35) 

Applying the initial conditions of eq. (34) to eq. (33) for τ = 0  yields 

                                                                  c1 = 0 .                                                             (36) 

Inserting eq. (36) into (33) and then taking the first time derivative produces 
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Eqs. (35) and (37) require 

                                                                  c2 = 0 ,                                                             (38) 

and hence we obtain from eqs. (33), (36) and (38) 



                                           .                (39) 

Substituting the definition of , eq. (31), back into eq. (39), we obtain the electron 

density modulation in the wave-vector domain 

                                     .               (40) 

The electron density modulation in the configuration space is given by the inverse 

Fourier transformation of , i.e. 

                                           .                                          (41) 

Inserting eq. (40) into (41), we finally obtain the following expression for the electron 
density modulation induced by an ion 
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where we have used the normalized variables defined as x j ≡ xj rj , aj ≡ aj rjω p
2 , 

v0, j = v0, j β j and rj ≡ β j ω p  for j = x, y,z . Eq. (42) has the form of a 1-D integral with 

finite integration range and as expected, it reduces to the previously derived results at the 
limit of . Fig. 1 and Fig. 2 show the 1-D and 2-D plots of the electron density 
modulation obtained by numerical integration of eq. (42). In Fig. 1, the electron density 
modulations at a specific transverse location are plotted for various longitudinal space 
charge fields. For an ion at rest, as seen in Fig. 1(a) and Fig. 2(a), the space charge field 
reduces the peak modulation amplitude and shifts its longitudinal location. For a moving 
ion, however, Fig. 1(b) and Fig. 2(b) show that the acceleration of electrons due to space 
charge field can compensate the effects due to ion motion if the space charge force is in 
the same direction of the ion velocity. Qualitatively this can be understood as matching 
between the hadron velocity and average velocity of the electrons during the interaction 
process. Hence, matching average electron’s velocity with that of the ion should increase 
the amplitude of modulation. Direct numerical evaluation of eq. (42) shown that the 
effect is nearly compensated (within a few percent deviation) when normalized velocity 
and the acceleration is matched. Fig. 3 illustrates such compensation for three phase 
advances of the plasma oscillations. The matching naturally depends on the phase 
advance. At phase advance ω pt = π / 4 , the matching occurs at about vz ≈ 0.63az . For 

phase advances of ω pt = π / 2  and ω pt = π  the matching ratios are  vz ≈ 1.35az



 

                                       (a)                                                                    (b)     
Figure 1. Profiles of the density modulation induced by an ion in the presence of an 
external electric field (as calculated in eq. (42)). The external electric field is along z 
direction and the following values are used for the normalized acceleration, az : 0 (red), 

0.5 (blue), 1 (green), 2 (magenta), and -0.5 (light blue). The abscissa is the longitudinal 
location in units of longitudinal Debye length, rz , and the ordinate is the electron density 

at transverse location x = 0.1rx  and y = 0.1ry  in units of Zi / rxryrz( ) . The snapshot is 

taken at ω pt = π / 2 . (a) the ion is at rest; (b) the ion is moving with velocity v0,z = βz .  

 

          
                                     (a)                                                                      (b)    
Figure 2. Electron density modulation induced by an ion in the presence of an external 
electric field in the z direction with az = 1. The abscissa is the location along z direction 

in units of the longitudinal Debye length, rz , and the ordinate is the location along x in 

units of Horizontal Debye length, rx . (a) the ion is at rest; (b) the ion is moving at 

v0,z = βz . The snapshot is taken at ω pt = π / 2  and y = 0.1ry.   



   

                        (a)                                            (b)                                           (c)      

Figure 3. Plots of the normalized density at z = 0, x = 0.1rx  and y = 0.1ry as functions of 

vz  (horizontal axis) and az (vertical axis) for three phase advances of plasma oscillations: 

(a) ω pt = π / 4 ; (b) ω pt = π / 2 , and (c) ω pt = π . The distributions are normalized to 

their maximum values and the contour lines are spaced by 0.2. 

 

and vz ≈ 2.9az , correspondingly. 

  As FEL only amplifies electron current modulation with frequencies close to its 
resonant frequency, the following quantity is closely related to the modulation efficiency: 

                                        η kz ,t( ) ≡ dze− ikzz n1 x, y, z,t( )dx dy
−∞

∞


−∞

∞

 .                                     (43) 

Inserting eq. (41) into (43) leads to 

                                                                 (44) 

Making use of eq. (40), eq. (44) becomes                                          

         η kz ,t( ) = Zi exp −ikzazψ ω pt − ψ
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Fig. 4 plot the amplitude and phase of η kz ,t( ) for various acceleration parameters as a 

function of kzrz . As shown in Fig. 4(a), for az ≤ rzω p
2  and the FEL resonant wavelength 

λFEL ≥ 2πrx , the amplitude change due to longitudinal space charge is negligible. 
However, Fig. 4(b) shows that considerable phase shift can occur even for modest 
acceleration due to space charge field. To qualitatively understand the impact of 
longitudinal space charge field to CeC modulation process, as examples, we shall 
continue with numerical calculations for a few proposed CeC schemes.     

 



     

                                       (a)                                                                    (b) 

Figure 4: Fourier components of the longitudinal density modulation as calculated from 
eq. (45) for various normalized acceleration parameters. The abscissa is the normalized 
longitudinal wave number, kzrz and the plots are taken at ω pt = π / 2 . (a) the ordinate is 

η kz ,t( ) / Zi ; (b) the ordinate is the phase shift of η kz ,t( ) with respect to that of zero 

acceleration parameter. 

 

IV. Numerical Examples 

  The CeC proof of principle (CeC PoP) experiment is under construction at BNL [7]  and 
a few possible CeC designs has been proposed [8]. The designed electron beam 
parameters for three CeCs are listed in Table 1 [7, 8]. In this section we estimate the 
effects of the longitudinal long-range space charge field on the modulation process for 
these parameters. 

Table 1: Electron beam parameters for the Proof of Principle Experiment of CeC 

Parameter/CeC CeC PoP eRHIC CEC LHC CeC

Bunch charge, nC 1 10 30

Bunch length, rms, beam frame,σ z  , m 0.126 6.3 893 

Beam radius R, mm 1.3 0.35 0.15

R/σ z  1.03.10-2 5.56.10-5 1.68.10-7 

Energy (MeV)/ γ 21.5 / 42 136.2 / 266 3,812 / 7,460

Longitudinal Debye length at the bunch 
center, beam frame, μm 

42  19.1 21.7 

Plasma phase advance in modulator, rad /2 /2 0.062
 



It is well known, that space charge effects fall very fast with the energy of the 
particles. Hence, we shall first consider the space charge effects for the CeC PoP 
experiment and later make relevant estimates for two other cases. 

We shall, first, calculate the longitudinal space charge field inside the electron bunch. 
For simplicity, we only calculate the longitudinal space charge field at the bunch axis, i.e. 
for x = y = 0 . In addition, we also assume the electron bunch has beer-can transverse 
distribution, i.e. the electron density is uniform for r ≤ R  and zero for r > R . The system 
has cylindrical symmetry and hence it is more convenient to use cylindrical coordinates. 
As illustrated in Fig. 5, the longitudinal space charge field at location 0,0,l( )  contributed 

by electrons in an infinitesimal volume at location r,ϕ,ζ( ) is given by1 

                       ΔEz l;r,θ ,ζ( ) =
r l −ζ( )ρ ζ( )θ R − r( )ΔζΔrΔϕ
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where θ x( )  is the Heaviside step function with the definition  
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0,    x < 0









 ,                                            (47)  

and ρ ζ( )  is the electron charge density in the beam frame for r ≤ R . Integrating eq. (46) 

over the transverse beam area yields the space charge field at location 0,0,l( )  due to a 

longitudinal slice of electrons at longitudinal location ζ  with width Δζ    

                                   ΔEz l;ζ( ) =
ρ ζ( )Δζ

2ε0
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l −ζ

− l −ζ
l −ζ( )2 + R2














 .                           (48) 

 

 

Figure 5. Illustration of the longitudinal space charge field calculation. 

                                                 
1 In this section, we use notation l  to represent the global longitudinal location along the bunch where 
space charge varies substantially, while leaving z  for the local longitudinal coordinate where the 
characteristic scale is the longitudinal Debye length and the variation of space charge field is negligible. 



To proceed, we assume the electron charge distribution at r ≤ R  has the following form 

                                                       ρ ζ( ) = Qe

π R2
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e
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 ,                                        (49) 

where Qe  is the total charge of the electron bunch and σ z  is the R.M.S. electron bunch 

length. Inserting eq. (49) into (48) and then integrating over z  yields the longitudinal 
space charge field at the location 0,0, z0( )
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It is worth nothing that, as shown in Fig. 6, even though the values of R /σ z varies by 

five orders of magnitudes for the three cases listed in table 1, the peak values of 
F l /σ z , R /σ z( ) only changes by a factor of four. Eq. (50) is numerically evaluated for 

the CeC PoP parameters and the results are plotted in Fig. 10 (blue), which shows the 
maximal longitudinal space charge field reaches about 1.5 KV/m.    

  As shown in the previous section, the effects of the space charge relate to the 
normalized acceleration parameter, az , which can be calculated as follows: 

 

 

Figure 6. Plot of the F function for three R σ z parameters in Table 1 vs l σ z . Blue is for 

the CeC PoP case, magenta is for eRHIC CeC and grey-green is for LHC CeC. 
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and 
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are the plasma frequency and the longitudinal Debye length at the electron bunch center. 
The plasma frequency at location l  is 

ω p l( ) = e
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2
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Making use of eqs. (50) and (48), we obtain the expression for the normalized 
acceleration parameter as follows        
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,             (56) 

Fig. 7 plots the normalized acceleration parameter along the electron bunch for the CeC 
PoP parameters, suggesting that the normalized acceleration parameter stays below one 
within ±4σ z  of the bunch.  

 

Figure 7: Normalized acceleration parameter due to space charge field (for the CeC PoP 
parameters listed in Table 1) as function of the longitudinal coordinate within a bunch. 



  The apparent growth of az l( )  at l /σ z > 3 in Fig. 7 does not mean that the effects of 

space charge field on the modulation are stronger for electrons far away from the bunch 
center. Since in practice, the time of interaction t = ϕ p 0( ) /ω p 0( )is fixed, not the local 

phase advances of plasma oscillations ϕ p l( ) = ω p l( )t  with l  being the distance from the 

bunch center. Hence, for the proper evaluation of the space charge effect at l ≠ 0 , one 
should evaluate eq. (42) at  

                                                    ω p l( )t = ϕ p 0( )exp(−l2 / 4σ l
2 ) .                                  (57) 

Fig. 8 illustrates the dependence the density modulation on az  as function of the phase of 

plasma oscillation, e.g. eq.(57). It can be easily seen that at small phase advances, the 
dependence is very weak. One can see from Fig. 7 that az  reaches a local extreme of 

az ~ 0.7at z /σ z ≈ 1.75 . At this location plasma frequency is twice smaller that in the 

beam center, and with ϕ p 0( ) = π / 2 → ϕ p 1.75( ) ∝ π / 4 . Hence, the effect on the peak 

density does not exceed 10 percent for az ~ 0.7. In addition, at z /σ z ≈ 1.75  the e-beam 

peak current is about 1/5th of that in the center. Therefore, the FEL-based CeC, the FEL 
gain is turned off at this location and this part of the beam, naturally, does not effectively 
participate in the cooling process. 

  To account for the variation of ω p l( )  along the bunch while estimating the influences 

of longitudinal space charge field on modulation efficiency, we rewrite eq. (45) into the 
un-normalized variables: 

 

 

Figure 8. Plots of the normalized density at z = 0, x = 0.1rx  and y = 0.1ry as functions of 

az  (horizontal axis) and ϕ p = ω pt  (vertical axis) ω pt = π . The distributions are 

normalized to their values at az = 0.  The contour lines are spaced by 0.2.  
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and the space charge influences along the electron bunch can be represented by the 
following quantities: 

                                      Δηamp kz ,t,l( ) ≡
η kz ,t,l( ) − η0 kz ,t,l( )

η0 kz ,t,l( )  ,                                    (59)    

and 

                                    Δηph kz ,t,l( ) ≡ arg η kz ,t,l( )  − arg η0 kz ,t,l( )  ,                         (60)  

where 

                          η0 kz ,t,l( ) = Ziω p l( ) exp ikz ⋅v0,z − kz βz( )τ sin ω p l( )t( )dτ
0

t

               (61) 

is Fourier components in the absence of the space charge effects, i.e. az = 0. Fig. 9 plots 

the relative changes of η kz ,t,l( )  as calculated from eqs. (59) and (60) for the proof of 

CeC principle experiment.  

 

  

                                        (a)                                                                  (b)     

Figure 9: influences of the longitudinal space charge field on the Fourier components of 
the longitudinal density modulation at the FEL resonant wavelength as a function of 
longitudinal location along the electron bunch. The ion is at rest and parameters from the 
proof of CeC principle experiment are applied in generating these plots. The abscissa is 
the longitudinal location in unit of R.M.S. bunch length. (a) the relative change of Fourier 
component amplitude in percentage as calculated from eq. (59); (b) the phase change of 
Fourier component in degree as calculated from eq. (60).  



  As shown in Fig. 9(a), the amplitude reduction of the wave-packets due to longitudinal 
space charge effects at the modulator is below 0.2%. However, Fig. 9(b) shows that the 
phase change of the initial modulation will result in the maximal wave-packet phase shift 
of ±13 degrees. Since the reduction of the CeC efficiency is proportional to the cosine of 
phase shift, this effect would reduce CeC efficiency by less than 3%. 

  Compared with the CeC proof of principle experiment, the longitudinal space charge 
fields for the other two cases listed in the Table 1 are dramatically lower. In eRHIC CeC 
scheme, the space charge field strength peaks at 6.15 V/m, while for LHC CeC scheme, 
the space charge field is about 0.001 V/m. Consequently, the peak value of az  reduces to ±	0.003 and ±	3.7 × 10  respectively for the proposed eRHIC and LHC CeC schemes.  

 

V. Screening effects from beam pipe 

  In reality, the electron bunch is usually enclosed by metallic vacuum chamber and the 
walls of vacuum chamber can reduce the strength of the longitudinal field induced by the 
space charge. For σ z / b >> 1, the longitudinal space charge field in terms of the beam 

frame variables is given by [9] 

                                         Escr ,z z( ) = − e
4πε0

2 ln
b
R







+1






dλ
dz

,                                       (62) 

where b  is the beam pipe radius and 

                                                              λ z( ) = − π R2

e
ρ z( ) ,                                            (63) 

is the electron line number density. Inserting eq. (49) into eq. (62) yields 

                                         Eapp,z z( ) = Qe

4 2π
3

2ε0σ z
2

2 ln
b
R







+1






z

σ z

e
− z2

2σ z
2

.                       (64) 

More generally, in the presence of a circular perfect conducting beam pipe, the on-axis 
longitudinal space charge field of an electron bunch with the distribution of eq. (49) and 
arbitrary bunch length is given by the following 1-D integral (Appendix A):      
 

              Eexa,z 0,z( ) = − Qe

ε0π
2R

e
−

kz
2σ z

2

2
I1 kzR( )K0 kzb( )

I0 kzb( ) + K1 kzR( ) − 1

kzR








sin kzz( )dkz

0

∞

 ,  (65) 

 
where In x( )  and Kn x( )  are the modified Bessel functions. The space charge field 

calculated from eqs. (64) and (65) for the parameters of the proof of CeC principle 
experiment are plotted in Fig. 10, showing that the formulae agrees well for the 
considered parameters. More importantly, Fig. 10 suggests that the shielding effects from 
a perfectly conducting beam pipe wall reduce the peak longitudinal space charge field by 
20%.  
 



  

Figure 10. The longitudinal space charge field of an electron bunch in the free space (blue) 
and inside a beam pipe (red and green). The blue curve is generated using eq. (50) for an 
electron bunch in the free space, the red curve is produced by the approximate formula, 
eq. (64), for a long electron bunch inside a beam pipe, and the green curve is created from 
the exact formula,  eq. (65), for an electron bunch with arbitrary bunch length inside a 
beam pipe. The proof of CeC principle experiment parameters are applied for all plots. 

  

 

VI. Summary 

In this work, we have developed an analytical model to study the ion shielding in the 
presence of a uniform electric field. The model assumes uniform electron spatial 
distribution and anisotropic 3-D velocity distribution. We shown that the electron density 
modulation induced by a moving ion can be expressed as a 1-D integral, which depends 
both on the ion velocity and the acceleration of electrons caused by the external field. 
Higher electron peak density modulation occurs when the acceleration of electrons is 
along the same direction of the ion velocity.  

  The model was applied to the process in the CeC modulator in the presence of space 
charge field. Its use is valid if the spatial extension of the electron bunch is much larger 
than the corresponding Debye length. As a numerical example, we estimated influence of 
the longitudinal space charge field on the modulation process in CeC used for the proof 
of principle experiment at BNL as well as for the proposed eRHIC and LHC CeC.  

  For the CeC PoP experiment, our estimations show that effect is relatively mild and 
can cause reduction of the CeC efficiency only by a few percent. More importantly, this 
analysis confirmed our early estimations and conclusions, that longitudinal space charge 
effects do not play significant role in the CeC schemes proposed for eRHIC and LHC.  
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 Equation Chapter (Next) Section 1  
Appendix A: Longitudinal space charge field of a charged bunch inside 
a conducting circular pipe: 
 
For a charged particle bunch enclosed by an infinitely long conducting beam pipe with 
radius b , the electric potential, ϕ , at the beam pipe is equal to its value at infinity, which 
makes it possible to set the boundary condition as 
                                                       ϕ b,θ ,z( ) = ϕ r,θ,∞( ) = 0 .                                         (A1)   

We assume the charged particle bunch is transversely uniform with radius Rand its total 
charge is Qe . In the co-moving frame of the bunch, Poisson equation inside the beam 
pipe reads 

                                          ∇ 2ϕ = − Qe

ε0π R2

1

2πσ z

e
− z2

2σ z
2

θ R − r( ),                                (A2) 

where θ x( )  is the Heaviside step function with the definition  

                                                           θ x( ) ≡
1,   x ≥ 0

0,    x < 0









 .                                           (A3)  

In cylindrical coordinates, eq. (A2) becomes 
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∂z2 ϕ = − Qe

ε0π R2
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2πσ z

e
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2σ z
2

θ R − r( ) .              (A4) 

Since the system has cylindrical symmetry, the derivative with respect to the azimuthal 
angle, θ , vanishes and hence eq. (A4) reduces to 
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r
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∂r
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ϕ + ∂2

∂z2 ϕ = − Qe

ε0π R2

1

2πσ z

e
− z2

2σ z
2

θ R − r( )  .                  (A5) 

Taking Fourier transformation of eq. (A5) along z  axis yields: 

                    ,                      (A6) 

where 

                                                  .                                             (A7) 

The boundary condition for  at r = b  is obtained from eq. (A1) and (A7) as 

                                                               .                                                      (A8)  

Expanding the first term of eq. (A6) yields 

                     .        (A9) 

For r ≤ R , eq. (A9) can be rewritten into 

                             ,          (A10) 

with 
                                                                   .                                                       (A11) 

Eq. (A10) is the inhomogeneous modified Bessel differential equation and its solution 
can be expressed as 
                                              ,                                 (A12) 

where  
                                                                         (A13) 

is the solution of the homogeneous modified Bessel differential equation, i.e. 

                                         ,                 (A14) 

and  is the particular solution satisfying eq. (A10). Since the driving term in eq. 

(A10) is independent of , the particular solution reads  

                                                     .                                     (A15) 

Inserting eqs. (A13) and (A15) into eq. (A12) yields 

                              .                 (A16) 



Requiring  being finite leads to 

                                               .                      (A17) 

For r > R , eq. (A9) becomes the homogeneous modified Bessel differential equation 

                                    ,                       (A18) 

which has solutions of the form: 
                                            .                            (A19) 

Applying the boundary condition, eq. (A8), leads to  

                                                        d2 kz( ) = −d1 kz( ) I0 kzb( )
K0 kzb( ) ,                                     (A20) 

and hence eq. (A19) becomes 

                                        .                         (A21) 

The two remaining coefficients, c1 kz( )  and d1 kz( ) , are determined by the conditions at 

the beam boundary, r = R , which read 
                                                    ,                                       (A22) 

and 

                                      .                  (A23) 

Eqs. (A22) and (A23) produce 

                                           d1 kz( ) = − Qe

ε0πkzR
2

RI1 kzR( )K0 kzb( )
I0 kzb( ) e

− kz
2σ z

2

2  ,                      (A24)     

and 

                                     c1 kz( ) = − Qe

ε0πkzR
e

−
kz

2σ z
2

2 I1 kzR( ) K0 kzb( )
I0 kzb( ) + K1 kzR( )







  ,           (A25)  

where we used relations 

                                                          
d
dz

K0 z( ) = −K1 z( ) ,                                             (A26) 

and 

                                                            
d
dz

I0 z( ) = I1 z( ) ,                                                (A27) 

and 

                                               Iν z( )Kν+1 z( ) + Iν +1 z( )Kν z( ) = 1

z
 .                                  (A28) 

Inserting eqs. (A24) and (A25) into eqs. (A21) and (A17) generates 

    ,  (A29) 



for r ≤ R  and 

          ,         (A30) 

for R < r ≤ b .  
  The electric potential inside the bunch is given by the inverse Fourier transformation of 
eq. (A29), i.e. 

                                              ,                                    (A31) 

which leads to the longitudinal electric field: 

                                .                  (A32) 

On the bunch axis, r = 0 and the longitudinal electric field is  

      

 ,           (A33) 

with 

                    f kz( ) = e
−

kz
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2
I1 kzR( )K0 kzb( ) + I0 kzb( )K1 kzR( )

I0 kzb( ) − 1

kzR











 .                      (A34) 

The function, f kz( ) , is an odd function of kz . To prove it, it is sufficient to show that the 

function,  
                                     h kz( ) = I1 kzR( )K0 kzb( ) + I0 kzb( )K1 kzR( )                                (A35) 

is odd, or more explicitly, 

     h kz( ) + h −kz( ) = I1 kzR( ) K0 kzb( ) − K0 −kzb( ) + I0 kzb( ) K1 kzR( ) + K1 −kzR( )  ,  (A36)

vanishes for any real value of kz . The integral representations of the modified Bessel 

function of the 0th order read  

                                     K0 z( ) = − 1

π
e± zcosθ γ + ln 2zsin2 θ( ) dθ

0

π

 ,                              (A37) 

and 

                                                         I0 z( ) = 1

π
e± z cosθ dθ

0

π

  ,                                           (A38) 

where  

                                      γ ≡ lim
n→∞

1+ 1

2
+ 1

3
+ ⋅⋅⋅+ 1

n
− lnn





≈ 0.5772156649...               (A39) 

is the Euler’s constant. It follows from eq. (A37) that 
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0
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=
ln −1( )

π
e± z cosθ dθ

0

π


= iπ 2n +1( ) I0 z( )

 ,   (A40) 

with n  being an arbitrary integer. Taking the first derivative of eq. (A40) gives 
                                            K1 z( ) + K1 −z( ) = −iπ 2n +1( ) I1 z( ) .                                 (A41)  

Making use of eqs. (A40) and (A41), eq. (A36) becomes 
     h kz( ) + h −kz( ) = iπ 2n +1( ) I1 kzR( ) I0 kzb( ) − iπ 2n +1( ) I1 kzR( ) I0 kzb( ) = 0,         (A42)    

and consequently we proved that f kz( )  is an odd function, i.e. 

                                                           f −kz( ) = − f kz( ) .                                             (A43) 

Inserting eq. (A43) into eq. (A33), we obtain                                   
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.  (A44) 

It is often convenient to express eq. (A44) in terms of the normalized variables 
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 ,   (A45)  

with R = R /σ z , z = z /σ z  and b = b /σ z .  Applying the asymptotic behavior of the 

modified Bessel function at kz → 0  yields 

           lim
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= 0.             (A46)  

At kz → ∞ , the asymptotic behaviors of the modified Bessel functions are 

                                                              I0,1 x( )∼ ex

2π x
, 

                                                              K0,1 x( )∼ π
2x

e− x  , 

and hence it follows 

lim
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= 0 .  (A47)

  

Eqs. (A46) and (A47) suggest that the integrand of integral in eq. (A44), is a finite real 
function. Fig. A1 compares the results in eq. (A44) with the previously derived 
longitudinal space charge field in the absence of the beam pipe and with the longitudinal  



 
                         (a)                                        (b)                                                (c)   
Figure A1: the exact longitudinal space charge field in the presence of the beam pipe with 
5 cm radius. The abscissas are the longitudinal location in unit of R.M.S. bunch length 
and the ordinates are the longitudinal space charge field in unit of V/m. The green dash 
curve shows the field calculated from the exact solution, i.e. eq. (A44), the blue solid 
curve shows the field from the electron bunch, without beam pipe being considered, and 
the red solid curve shows the field calculated from an approximate formula where 
shielding from the beam pipe is considered but the electron bunch is assumed to be much 
longer than the beam pipe radius. (a) calculated for PoP parameters but with 1.26 cm lab 
frame rms bunch length; (b) calculated with 1.26 m beam frame rms bunch length; (c) 
calculated with 5 cm beam frame rms bunch length.   
 
 
space charge field in the presence of the beam pipe but with long beam approximation. 
As shown in Fig. A1(a), when the beam frame bunch length, 1.26 cm is much smaller 
than the 5cm beam pipe radius, the exact solution (green) in eq. (28) overlaps with that 
for an open beam (blue), i.e. without beam pipe. Fig. A1(b) shows that as the beam frame 
bunch length increases to 1.26 m, the exact solution overlaps with that of the long bunch 
approximation (red). With the R.M.S. bunch length of 5cm, Fig. A1(c) shows that the 
exact solution deviates from both of the other solutions.  
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