
Nearly Perfect Fluidity in a High Temperature Superconductor

J.D. Rameau, T.J. Reber, H.-B. Yang, S. Akhanjee, G.D. Gu and P.D. Johnson

Condensed Matter Physics and Materials Science Department,

Brookhaven National Lab, Upton, NY, 11973, USA∗

S. Campbell

Department of Physics and Astronomy,

Iowa State University, Ames, IA, 50011, USA

(Dated: October 7, 2014)

Abstract

Perfect fluids are characterized as having the smallest ratio of shear viscosity to entropy density, η/s,

consistent with quantum uncertainty and causality. So far, nearly perfect fluids have only been observed in

the Quark-Gluon Plasma (QGP) and in unitary atomic Fermi gases (UFG), exotic systems that are amongst

the hottest and coldest objects in the known universe, respectively. We use Angle Resolve Photoemission

Spectroscopy (ARPES) to measure the temperature dependence of an electronic analogue of η/s in an

optimally doped cuprate high temperature superconductor, finding it too is a nearly perfect fluid around,

and above, its superconducting transition temperature Tc.

PACS numbers: 71.27.+a, 74.40.Kb, 74.81.Bd, 74.72.Gh
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I. INTRODUCTION

Quantum fluids are well understood in two opposing limits: the “collisionless” regime and

the “hydrodynamic”, collision-dominated regime. They are characterized by the time between

particles’ collisions with each other being much longer or shorter, respectively, than the charac-

teristic time for collisions with their surroundings1. Generally, the cuprates have been treated

pertubatively, adding the effects of interactions to a coherent collisionless system in which elec-

tronic excitations are treated as free carriers with basic properties renormalized by interactions,

the quasiparticle approach. But this method has failed to completely account for the interesting

behavior of electrical transport in the cuprates’ high temperature strange metal phase. Alterna-

tively, it has been recognized that strange metal transport originating from proximity to a quantum

critical point (QCP) is inherently hydrodynamic2,3, the result of electronic degrees of freedom

appearing to behave quasi-classically because their dynamics scale only with the thermodynamic

temperature T and are dominated by electron-electron (ee) scattering4. Recent experiments have

also suggested hydrodynamics may be responsible for certain universal aspects of transport in the

cuprates5. Here, we consider the cuprates from this alternative limit and treat their low energy

electron matter as a hydrodynamic fluid. Specifically, we perform a rudimentary estimate of η/s

for optimally doped Bi2Sr2CaCu2O8+δ from a kinematic perspective. While not a true measure of

the viscosity, this viscosity-like parameter indicates the strongly interacting cuprate electron fluid

is essentially a perfect liquid along with the QGP and the UFG, approaching the holographic bound

originally proposed by Kovtun, Son and Starinets (KSS) using the Anti-de Sitter Space/Conformal

Field Theory (AdS/CFT) correspondence6

η

s
≥ ~

4πkB
. (1)

Characterizing the total electrical conduction by viscosity represents a departure from our usual

conception of transport in solids. Hydrodynamics in the presence of an ionic lattice requires

momentum and energy to be locally conserved by the electron fluid interacting primarily with

itself and dissipating disturbances collectively only at much later times1. Mathematically this

requirement is expressed as ~/τee ≫ ~/τe−lat, where e − lat denotes electron-lattice interactions

and τ is a scattering time; its defeat is a near-universal feature of transport in solids leading, for

instance, to high-T resistivity saturation at the Ioffe-Regal limit. The dominance of phonon and

other Umklapp processes over pure ee processes usually short-circuits true hydrodynamic flow
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even at high temperatures. However ~/τee ≫ ~/τe−lat has been verified directly in Bi2212 by,

for example, time resolved ARPES7,8. Further, the transport scattering rate ~/τtr is known to be

dominated by electronic interactions rather than phonons or impurities. This behavior is a natural

outgrowth of Bi2212’s doping from a parent Mott insulator in which the ee interactions rule a

priori. Further, hydrodynamic transport provides a plausible mechanism for the violation of Ioffe-

Regal limit9. While the precise mechanism by which long time scale viscous dissipation leads to a

finite electrical resistivity is not known, several possibilities (beyond the scope of this work) have

been suggested1–3,10.

Lacking a true “electrical viscometer” we appeal to the semiclassical nature of the strange metal

to obtain a phenomenological estimate of η/s. Though Bi2212 does not host true quasiparticles,

quasiparticle-like excitations are well-enough defined at the Fermi level EF and Fermi momentum

kF that τ remains meaningful and a Boltzmann description of the fluid is still possible2,11,12. His-

torically, analysis of ARPES data from the cuprates has proceeded accordingly. Treating nodal ex-

citations imbued with sharp Lorentzian spectral peaks characteristic of quantum lifetime processes

has, for instance, enabled the observation of quantum criticality in single particle lifetimes13, the

explanation of bulk transport properties in terms of microscopic origins14 and indeed underlies

the entire many-body Greens function approach to understanding the electronic structure of the

cuprates15.

One approach to estimating the viscosity of a fluid is to generalize the classical result that

η(T ) = ε(T )τp(T ) where ε(T ) is the kinetic energy density and τp = τtr is the momentum

(or transport) relaxation rate appropriate to hydrodynamics6,16. For example, the viscosity of the

classical ideal gas is exactly ε(T )τp = nkBTτp where n is particle density17. The kinetic approach

to Fermi liquid theory similarly yields ηFL ∼ ε(T )τtr(T ) up to a constant close to unity18,19. In

practice ηFL turns out to be rather large because it scales with the large Fermi energy intrinsic to

true metals. Graphene has been predicted to host a nearly perfect fluid20 in the sense of Eq. 1 in

part because it can be easily be brought into a semiclassical regime, in which case ε(T ) ∼ T . In

the case of graphene, as well as topological insulators (TI’s), the relevant energy scale is taken

to be the Dirac point energy, ED, rather than EF . So long as ED − µ . kBT (where µ is the

chemical potential) and kF ℓ ≪ 1 these materials remain in the classical hydrodynamic limit,

where ℓ ∝ τ−1 is the electronic mean free path. Optimally doped Bi2212 on the other hand

achieves the same T -scaling in the normal state by virtue of its proximity to a QCP4,12,13 so that

ε(T ) is given by the thermal kinetic energy per particle and not EF . Below Tc, as well as above it
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while a fluctuating superconductivity persists, the d-wave nature of the superconducting gap ∆SC

ensures the existence of a nodal point playing the same role as ED in graphene and TI’s. That,

as well as the linearity of the band in the vicinity of µ, also preserves an approximate Lorentz

invariance20. Because the nodal point is pinned to µ, the system remains in the classical limit.

Further, below Tc viscosity only has meaning for the normal, nodal component of the system

because the superfluid component has neither entropy nor viscosity. A similar situation holds for

superfluid Helium in the two fluid picture.

We proceed to approximate Eq. 1 by replacing classical expressions for ε(T ) and s(T ) in

η/s = ε(T )τp(T )/s(T ) with those respecting Fermi-Dirac (FD) statistics and separate the ther-

modynamic and dynamical quantities, respectively: Tη(T ) ≡ ε(T )/s(T ) and τp(T ). Formally this

approach only requires knowledge of T , τp(T ) and the renormalized single particle densities of

states (DOS) gT (ω) with binding energy ω = E − EF . Taking gT (ω) from experiment captures

effects due to the pseudogap, strong coupling, etc. not easily reproduced by theory. It is by this

means that the ARPES spectrum readily gives access to collective properties of electrons such as

order parameters and thermal distribution functions. This procedure explicitly ignores collective

excitations that do not renormalize the single particle spectrum, as appropriate to η, and in con-

sidering only the kinetic energy density no further assumptions of this sort are needed anyway9.

Below Tc, superconductivity itself is entirely reflected in the renormalization of gT (ω).

Combining the above considerations produces our quantum critical approximation to η/s:

η

s
∼= Tητp (2)

where ~/τp is determined from ARPES lineshape analysis and

Tη =

∫∞
−∞ ω[g̃T (ω)− g̃0(ω)]dω

−kB
∫∞
−∞[ln(fT ) + (f−1

T − 1) ln(1− fT )]g̃T (ω)dω
(3)

where fT = (1 + e
−ω
kBT )−1 is the FD distribution, g̃T (ω) = fTgT (ω) is proportional to the ARPES

spectrum integrated over the full Brillouin zone (BZ) and g̃0(ω) = f0[g̃T (ω) + g̃T (−ω)]21. Note

that only spectral weight within ∼ 4kBT of EF contributes significantly to the integrals of Eq.

3, numerical prefactors and proportionality constants cancel and gapped portions of the Fermi

surface contribute far less to Eq. 3 than do gapless excitations about the nodes.

Realistic absolute values of τp(T ) are notoriously difficult to calculate from first principals

for even the simplest systems, let alone for the cuprates, for which the origin of the linear-in-

T scattering rate for T > Tc remains a mystery. However because Tη(T ) relies only upon the
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DOS, it is readily calculable from a model of the low energy band structure. Tη(T ) can also be

estimated by purely analytical means assuming only a general form for the energy dependence of

the low energy DOS. Analytical and numerical evaluation of Tη first from first principles and then

using a simple tight binding model and the phenomenological model due to Yang, Rice and Zhang

(YRZ)22 can be found in the Appendix.

II. COMPUTATION OF Tη

The single particle spectral function A(k⃗, ω), at a given temperature T , is related to the retarded

single particle Green’s function by

A(k⃗, ω) = − 1

π
|ImGR(k⃗, ω)|. (4)

where ω = E − EF is the binding energy referenced to the Fermi energy EF . In ARPES we

measure a photoelectron intensity I(k⃗, ω) (after kinematic conversion from emission angles θ and

ϕ to momentum k⃗) proportional to A(k⃗, ω) such that

I(k⃗′, ω′) = ς(|Mfi(k⃗, ω)|2f(ω, T )A(k⃗, ω))⊗R(k⃗ − k⃗′, ω − ω′) (5)

where ς is a constant of proportionality, |Mfi(k⃗, ω)|2 is a dipole transition matrix element that in

general depends on photon energy, polarization and angle of incidence as well as possible final

state effects and ⊗R(k⃗ − k⃗′, ω − ω′) denotes convolution by a (usually Gaussian) instrumental

resolution function. Resolution broadening is removed prior to other analysis by Lucy-Richardson

deconvolution, as has been described extensively elsewhere23, so primes are dropped from here

on. Since all measurements on a given sample are performed at a single photon energy we will

also take its contribution to the intensity to be constant and absorb it into the overall constant of

proportionality ς . ς contains additional proportionalities such as photon flux, electron detector

efficiency and a host of other contributions internal and external to the sample that render the mea-

sured ARPES spectrum proportional to the absolute value of the spectral function which encodes

the probability for electron removal (or addition) per k⃗ and ω. In the small energy range (on the

order of ±100 meV at the most) about EF we are interested in for evaluation of U(T )/S(T ) we

shall take |Mfi(k⃗, ω)|2 to be constant in ω and remove the k⃗ dependence, which is slow in the

nodal region for this photon energy and the band of interest, and normalize it to the incoherent

background then absorbing it into ς . This approximation works here because the integrals of Eq.
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FIG. 1. (color online) Scaled intensity maps for the Bi2212 Fermi surface at 95 K. From left to right:

ω = −33 meV, ω = 0, ω = +33 meV. The integration window is ±3 meV. The experimental details are

described in the methods section of the main text. The red line shows the antiferromagnetic zone boundary

and the black line shows the visible portion of the Fermi surface for x = 0.16 calculated using the YRZ

model as described above.

3 are heavily dominated by states at and near EF ; antinodal states in the pseudogap regime do not

contribute appreciably to Tη either above or below Tc. Constant energy intensity maps shown in

Fig. 1 for T = 95 K at EF and ±4kBT , respectively, illustrate this point. The effect of a rapidly

changing DOS is somewhat more dramatic below Tc as illustrated for the T = 60 K intensity

maps, Fig. 2.

Rearranging the remaining terms we find

A(k⃗, ω) ≃ I(k⃗, ω)

ςfT
(6)

where

gT (ω) =

∫
BZ

A(k⃗, ω)dk⃗ =
1

ςfT

∫
BZ

I(k⃗, ω)dk⃗. (7)

Here BZ (Brillouin Zone) denotes integration over all k⃗ in the first BZ or, by symmetry, just the

irreducible eighth of the BZ symmetrized into the first quadrant. fT comes out of the integral

because it depends only upon ω. Here ς absorbs the actual fraction of the BZ measured, factors of

π, degeneracy factors, etc.

Our goal is to use ARPES data to evaluate

Tη =
ε(T )

s(T )
(8)
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FIG. 2. (color online) Scaled intensity maps for the Bi2212 Fermi surface at 60 K. From left to right:

ω = −20 meV, ω = 0, ω = +20 meV. The integration window is ±3 meV. The experimental details are

described in the methods section of the main text. The red line shows the antiferromagnetic zone boundary

and the black line shows the visible portion of the Fermi surface for x = 0.16 calculated using the YRZ

model as described above.

where ε(T ) = (U(T )−U(0))/V is the free energy density, s(T ) = S(T )/V is the entropy density

and, after canceling volume factors V , S(T ) is the entropy and U(T ) is the total thermodynamic

energy. U(0) is the ground state energy to which U(T ) is referenced. s(T ) and u(T ) = U(T )/V

are in general given by the equations21,24

s(T ) = −kB

∫ ∞

−∞
[fT ln(fT ) + (1− fT ) ln(1− fT )]gT (ω)dω (9)

and

u(T ) =

∫
BZ

∫ ∞

−∞
(ω + ϵk⃗)fTAT (k⃗, ω)dωdk⃗ (10)

respectively. In Eq. 10 εk⃗ is the bare electron dispersion. Separating the ω and εk⃗ terms yields

u(T ) =

∫ ∞

−∞
ωfTgT (ω)dω +

∫
BZ

ϵk⃗[

∫ ∞

−∞
fTAT (k⃗, ω)dω]dk⃗. (11)

While gT (ω) ∝ A(k⃗, ω) ARPES measures only occupied states I(k⃗, ω) ∝ fT (ω)A(k⃗, ω). It is

therefor useful to redefine Eqs. 9 and 10 in terms of occupied DOS g̃T (ω):

g̃T (ω) = fTgT (ω) =

∫
BZ

I(k⃗, ω)dk⃗. (12)

To calculate U(T = 0) we require g̃0(ω) here defined by extrapolating the state at any given T to

T = 0 by “lowering the temperature” of the Fermi function

g̃0(ω) = f0[g̃T (ω) + g̃T (−ω)]. (13)

7



This procedure shifts (physical) spectral weight from above to below EF using symmetrization

(which removes the effect of the Fermi function from the spectrum) and then cuts off the spectrum

at EF with the step function f0. This procedure mimics the effect of going to T = 0, effectively

implementing a “band structure” approximation. Note also that because all weight above EF is set

to zero at the end by f0 no unphysical weight is produced above EF on the unoccupied side of the

spectrum and no assumption of particle-hole symmetry or asymmetry is required. Then

u(T )− u(0) =

∫ ∞

−∞
ω[g̃T (ω)− g̃0(ω)]dω +

∫
BZ

ϵk⃗[

∫ ∞

−∞
[fTAT (k⃗, ω)− f0A0(k⃗, ω)]dω]dk⃗ (14)

where, first performing the ω integral in Eq. 14, the ϵk⃗ term can be seen to go to zero by in-

spection because the total spectral weight in fTA(k⃗, ω) is conserved between temperatures. This

is different from the case of evaluating, for example, the energy difference between normal and

superconducting spectral functions. After performing the integrals in Eq. 14 and dividing by Eq.

9 all constants absorbed into ς cancel between numerator and denominator and we are left with

Eq. 3.

III. EXPERIMENTAL METHODS AND RESULTS

A. Measurement of Tη

Optimally doped single crystals of Bi2212 were grown using the floating zone method. Tc was

checked using SQUID magnetometery. The ARPES experiments were carried out at beamline

U13UB of the National Synchrotron Light Source. Samples were mounted with the entrance slit

of the hemispherical electron spectrometer along the Bi2212 Γ−Y direction and cleaved in situ at

the lowest measured T for each sample at the chamber base pressure of 8×10−11 Torr. The chem-

ical potential was referenced for each sample to a gold wire in electrical contact with the Bi2212

samples. T was measured using a silicon diode mounted close to the samples. The temperature

was ramped at a rate of 0.5 K/minute to prevent outgassing and minimize mechanical stress on the

samples between sweeps of the Brillouin zone. The photon energy was set to 16.5 eV for all mea-

surements and was polarized along the M − M plane. The matrix elements associated with this

photon energy and relative polarization allow the observation of only the Bi2212 bonding band.

Spectra were recorded using a Scienta SES-2002 hemispherical electron spectrometer. The total

instrumental resolution (beamline + spectrometer) was set to 12.5 meV (Gaussian full width at
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half maximum) and angular resolution of 0.1◦. These parameters were used as input for the Lucy-

Richardson (LR) algorithm used to deconvolve instrumental broadening from the raw data23. The

LR algorithm was set to run for three iterations on all 2D spectra. DOS were produced by trape-

zoidal integration across the kx and ky directions of the 3D data sets produced at each T . Sample

surface quality and orientation was checked after the end of each run using low energy electron

diffraction (LEED). For the sample on which many Tη were recorded in a single run (marked by

circles in Fig. 3) T was first raised and then lowered. The chronological order temperatures were

recorded was 75 K, 91.5 K, 120 K, 140 K, 170 K, 130 K, 110 K, 45 K acquired over three days

of continuous collection; both the ARPES and subsequent LEED showed minimal sample aging

over this period.

In Fig. 3a) we show T -dependent DOS acquired on several samples by integrating ARPES

spectra over the regions of the BZ delineated by the intensity maps at EF shown in Fig. 3b).

The result of applying Eq. 3 to experimental DOS is shown in Fig. 3c along with theoretical

Tη(T )/T for a simple tight binding model of Bi2212. These results for Tη/T are well understood

analytically using appropriate energy dependent DOS gT (ω) ∝ ωα with α > −1. The analytical

approximation to Eq. 3,

Tη ≃
(
α + 1

α + 2

)
T (15)

is derived explicitly from the thermodynamic grand potential in the Appendix. An ω-linear dis-

persion through EF , as often occurs in real 2D systems, has an ω-independent DOS near EF with

α = 0 giving Tη/T = (1/2).21 A Dirac cone-like dispersion, such as occurs in the nodal region of

Bi2212 for T . Tc, as well as for heavily underdoped samples about the nodes for Tc < T < T ∗

(T ∗ the pseudogap temperature) gives gT (ω) ∝ ω, with α = 1, yielding Tη/T = (2/3). Devia-

tions of gT (ω) from a simple power law result in more complicated behavior. Nevertheless, Fig.

3c indicates that despite the presence of strong interactions and a relatively small pseudogap, Eq.

15 is reasonably accurate.

In practice, extraction of these results from the data as T is lowered is not trivial. Any inten-

sity noise in the measured gT (ω) appearing at high energies in the ARPES spectrum can cause

unphysical or misleading results when evaluating Eq. 3. The reason for this can be deduced from

examination of the factors in Eq.’s 9, 10 and 3 that weight the measured (occupied states) DOS

g̃T (ω) and the “full” DOS gT (ω), respectively. The Fermi factors weighting the full and occupied

DOS in Eq. 9 are plotted for several temperatures in Fig. 4. The entropy weighting factor used

when considering a full DOS, as in a band structure calculation, is essentially a Gaussian distribu-
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FIG. 3. (color online) Panel a) Experimental DOS for Bi2212. Raw DOS (solid black lines) are generated

by integrating data over regions of the BZ demarcated by the Fermi surface maps in panel b). Raw DOS

are fit above EF by a FD distributions (solid red lines) ensuring a smooth approach to zero intensity at high

energies. g̃0(ω) (solid blue lines) and symmetrized DOS (black lines) are also shown. All DOS in the figure

are normalized to unity at high (−ω) and offset as indicated by the horizontal dashed black lines. Vertical

dashed black lines indicate ±4kBT for each T . b) Fermi surface maps corresponding to regions of the

BZ measured in ARPES used to generate the DOS in panel a). Red dashed lines show the zone boundary

of the underlying antiferromagnetic spin lattice. The 95 K and 60 K maps are shown in Figures 1 and 2,

respectively. The upper-left panel shows a schematic of the underlying tight binding Bi2212 FS (black line)

as described in the Appendix. c) T dependence of Tη/T (Eq.3). (solid blue line) Theoretical Tη/T for

the tight binding model. (Black circles, a diamond and a square point) Tη/T derived by applying Eq. 3

to the experimental DOS in panel a). Different symbols apply to different samples. Error bars reflect the

uncertainty of the chemical potential, which was 0.5 meV. Dotted red and blue lines demarcate Tη/T equal

to (2/3) and (1/2), respectively. (Black dashed line) phenomenological fit to the data used to scale ARPES

scattering rates for Fig. 8

tion centered at EF and extending to ∼ ±4kBT above and below EF . On the other hand, removal

of a factor of fT (ω) into the measured, occupied DOS in the denominator Eq. 3 has the effect of

causing the spectral weight below EF to be weighted somewhat less relative to the full Gaussian,

and spectral weight above EF to contribute increasingly. In fact, the weight above EF , which
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FIG. 4. (color online) Panel a) shows the Gaussian distribution that weights the full DOS when calculating

s(T ). Panel b) shows the factor multiplying the experimental “occupied states” DOS actually measured

directly in ARPES. In both panels the vertical dotted lines denote ±4kBT .

decreases exponentially due to the Fermi cutoff, has a linear in ω increase in weighting. Since in

practice ARPES does not detect anything much more than ∼ 4kBT above EF
25 contributions to

the integrals Eq. 9 or 3 increase exponentially with ω.

A similar effect occurs for the weighting factor ωfT (ω) in Eq. 10. This factor is plotted for

several temperatures in panel a) of Fig. 5. In panel b) we plot ω(fT (ω) − f0(ω)) for the same

temperatures. While this is not strictly physical because fT (ω) and f0 weight gT (ω) and g0(ω),

respectively, it demonstrates the relative importance of excitations above EF . In fact, it is because

u(T ) goes to 0 at EF while s(T ) is maximal at EF for a given T that Tη is so sensitive to the

opening of a gap around the Fermi surface.

The experimental problem faced here amounts to dividing out the FD distribution from the data

without allowing the exponential blow-up of noise far above EF that commonly occurs during this

procedure to effect the extraction of u(T ) and s(T ). What’s more, such noise can make it difficult

to locate the true “zero” level of k⃗ integrated data; the removal of such background and smooth

zeroing of data above EF are vital to the successful evaluation of Eq. 3. Some possibilities for

handling this are to impose a cutoff in positive ω that varies from spectrum to spectrum with e.g.

statistical quality of the data, imposing a uniform and possibly arbitrary cutoff in ω across all data

and working with purely symmetrized data, which imposes a possibly false particle-hole symmetry
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FIG. 5. (color online) Panel a) shows the weighting factor for u(T ), ωfT (ω) including at T = 0. Panel b)

shows ω(fT (ω)− f0(ω)). Vertical lines in both panels denote ±4kBT .

on the full DOS. As a compromise we have employed a method of fitting a FD distribution function

to the high energy tails of the DOS integrated in kx and ky and then replacing the measured DOS

at those ω with the fit. The advantage of this method is that the fits invariably smoothly approach

zero intensity in a noise-free fashion far above EF so that the overall background of the spectrum

can be extracted with certainty before applying Eq. 3 to the data. The fits to the data are shown in

Fig. 3a of the main text as red lines overlaying the data. The maximum difference between the fits

and the data they replace is on the order of 2%. Another measure of the efficacy of this procedure

is to divide out the FD distribution from the raw gT,raw(ω) with the background subtraction at high

ω performed using just the minimum intensity value (to avoid negative intensities) and compare

this to gT,fit(ω) where we have performed the fitting procedure described above. The comparison

is shown in Fig. 6a for the 45K data point. The agreement is very good up to 4kBT but without

the ambiguity of noise.

B. Measurement of ~/τp

Considering dynamics, the momentum transport rate τp entering η is a two-particle time

whereas τk measured in ARPES is single particle. While in general one cannot extract τp from τk,

it is in fact possible for many 2D materials, Bi2212 included. This is because the remnant T - and
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FIG. 6. (color online) a) (black) raw DOS, gT (ω), divided by f(T, ω) after subtracting just the minimum

intensity value, (red) DOS fit and replaced at high ω by a FD function, background subtracted to fit zero, then

divided by the FD function and (blue) raw DOS with an average background subtraction of 6×10−5 before

FD division. b) DOS before FD division (red) with fit and subtracted, (blue) minimum value subtracted and

(black) minimum value + 6× 10−5 subtracted.

ω-independent impurity contribution to the ARPES spectral width, isolated by going to T ≈ 0, is

typically more than two orders of magnitude greater than the equivalent, small contribution seen

in transport26,27. This occurs in Bi2212 because ~/τk is dominated by forward scattering induced

by strong out-of-plane disorder and ~/τtr ∼= ~/τp probes only the much smaller in-plane, back

scattering contribution15,27. Once the impurity contribution is effectively removed by going to low

T , ~/τk ∼= ~/τtr for T > 0 because they are observed to have the same T -linear change in scatter-

ing rate per Kelvin. This trend is widespread5,13,28,29 and has been long appreciated in connection

with the Marginal Fermi Liquid phenomenology of the cuprates12. In Eq. 2 we therefor apply

~
τp(T )

∼=
~

τk(T )
− ~

τ0
, (16)

where ~/τ0 = ~/τk(T = 0) and ~/τk is the full width at half maximum of the Lorentzian spectral

line shape at EF and kF and the forward scattering most apparent in ARPES does not dissi-

pate electron momentum. Eq. 16 allows us to exploit the additional advantage of ARPES, over

transport, of access to τp(T < Tc) for the gapless nodal states of Bi2212 which were previously

13
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FIG. 7. (color online) Temperature dependence of ~/τp derived from nodal ARPES data30 for Bi2212 (Tc =

91 K) (red circles). Original data30, in which inverse mean free paths ∆k = ℓ−1 are measured directly, has

been rescaled into scattering rates using the temperature-dependent Fermi velocities vF (in units of [eVÅ])

of Ref. [32] such that ~/τ
k⃗
= vF∆k. The final scattering rate (red circles) is ~/τp = ~/τ

k⃗
−~/τ0 where for

simplicity we take ~/τ0 = min[~/τ
k⃗
(T → 0)] = 17.7 meV. 4πkBTη lines are also plotted as a reference;

the closer ~/τp approaches Tη(T ) from below, the closer η/s is to the holographic bound after scaling by Eq.

2. Relevant ideal bounds consistent with Eq. 1 include Tη = (1/2)T (dotted blue line) and Tη = (2/3)T

(dotted red line) from Eq. 15, yielding ~/τp = 2πkBT and ~/τp = (8/3)πkBT , respectively, as well as

the Tη including d-wave superconductivity in the simple tight binding model (solid blue line) and Tη from

the present experiment on Bi2212 (black circles). The phenomenological fit to the experimental Tη values

is shown as the dashed black line. The navy line is a linear fit to ~/τp(T > Tc).

measured30. In Fig. 7 we plot ~/τp(T ) above and below Tc. As a reference, limits on the scat-

tering rate derived from Eq. 1 , ~/τp ≤ 4πkBTη, are plotted. Comparison of ~/τp(T ) derived

from ARPES data using the above procedure to that acquired using optical conductivity (in the

DC limit) on similar samples by Hwang et al.31 indicates good agreement at Tc with deviations on

the order of ten percent as T is increased towards room temperature.
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IV. DISCUSSION

In Fig. 8 we present our main findings, a plot of η/s, evaluated using Eq. 2, for Bi2212

versus a reduced temperature T ′ = (T − Tc)/Tc. While calculations of η for the Fermi liquid18,33

suggest our own analysis is correct up to a factor of order one. In fact, since in 2D equipartition

guarantees a prefactor not greater than unity, our results represent an upper bound to η/s even

allowing for a fully quantum calculation. We therefor find that, as defined, Bi2212 nearly saturates

the holographic bound, Eq. 1, around Tc, showing the electronic subsystem hosted in its CuO2

planes is a nearly perfect fluid. Immediately below Tc the combination of a decreasing ~/τp and

increasing Tη(T ) conspire to rapidly raise η/s as T is lowered. The minimum in η/s resembles

what is expected for a gas-liquid phase transition as T is lowered through Tc and is consistent

with expectations of a “check mark” shape for η(T )/s(T ) found in other strongly interacting

quantum fluids16,34. Above Tc we fit ~/τp(T ) = AT + B, where A and B are constants. At

asymptotically high T , AT ≫ B and η/s approaches a constant value, (η/s)HT ≈ ~/2A, where

A is the scattering rate per Kelvin and Tη = T/2 is assumed. The linear fit of ~/τp(T > Tc),

Fig. 7, yields a high-T estimate of (η/s)HT = 2.42 ± 0.20[~/4πkB]. This is quantitatively

similar to the value of ~/A extracted from transport measurements on many strongly correlated

materials, including Bi2212, in Ref. [5], supporting the hypothesis that this quantity is related to

hydrodynamic transport for some materials. Further, noting s(Tc) ∼ nkB with n = x holes/CuO2

plane, η(Tc) ≈ x~/(4π), conforming to the expectation η ∼ n~.35,36 While it might at first appear

odd that a single particle measurement could yield a result so close to predictions for what is

properly a many-body property, we note the equivalence of momentum and energy transport in the

cuprates has long been known phenomenologically12.

While our method of evaluating η/s is necessarily approximate it is able to fully exploit the

ability to accurately measure and control the equilibrium system temperature of a system inher-

ent to experiments in condensed matter. The striking similarity between the magnitude and T -

dependence of η/s surmised for the QGP16,34,37 and the related quantity for Bi2212, which is an

upper bound on η/s, deduced in the present work not only raises a number of questions funda-

mental to strongly correlated matter but also offers to illuminate our understanding of these more

exotic creations. While the derivation of the viscosity bound from AdS/CFT proceeded specifi-

cally to account for the small η/s of the QGP its application to problems in strongly interacting

condensed matter is still in its infancy so far as experiment is concerned. The very existence of a
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FIG. 8. (color online) Tητp in units of the KSS bound, ~/(4πkB), versus T ′ = (T − Tc)/Tc evaluated

using Eq. 2 (right axis) and η/s for the QGP and UFG (left axis). (filled red circles) ARPES for Bi2212

scaled by the phenomenological fit to Tη (black dashed line in Fig. 3. Tητp’s at lower T ′ are too small to

provide a reliable result. (blue bar) The range of η/s consistent with RHIC data on the QGP at Tc from

Au+Au collisions is encompassed by the blue vertical band39. (gray points) data from the UFG35. (open red

circle) The point at T ≫ Tc is the extrapolated high T value for η/s ∼ ~/2A of Bi2212. The KSS bound

is marked by the solid green line and Tc for Bi2212 by the vertical black dotted line.

holographic bound on η/s was justified by its compatibility with the uncertainty principle, invok-

ing energy density arguments similar to those made above6, with similar justifications made in the

case of graphene20. In condensed matter, such considerations are encoded in the supposition that

quantum critical materials like optimally doped Bi2212 obey an expression dimensionally equiv-

alent to Eq. 1, and indeed nearly identical to Eq. 2, Tτϕ ≥ C~/kB, where C is an unspecified

universal constant of order one and τϕ is a relaxation time - single or many-particle - intrinsic to

the system4. The implication of our present work is therefore that C itself obtains a universal lower

limit approximately the same as that of the KSS bound, and for the same reasons38.
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Appendix A: Analytical Evaluation of Tη(T )

The thermodynamic grand potential Φ, for an ensemble of non-interacting fermions with dis-

persion ϵk⃗ and DOS gT (ω), is given by the expression40,

Φ = −2V

β

∫
ddk

(2π)d
ln
(
1 + e−β(ϵ

k⃗
−µ)

)
= −2V

β

∫ ∞

0

dωgT (ω)) ln
(
1 + e−β(ω−µ)

) (A1)

where β = (kBT )
−1, µ is the chemical potential and d is the spatial dimensionality of the system.

It follows that the entropy S can be computed as,

S = −
(
∂Φ

∂T

)
V,µ

(A2)

and the internal energy U can be determined from the integral

U = 2V

∫ ∞

0

dϵ
ωN(ω)

eβ(ω−µ) + 1
. (A3)

Let us assume that the DOS takes on a power-law form

gT (ω) = g0Tω
α (A4)

where g0T is a constant. The grand potential can be further reduced by integrating by parts,

Φ = −2V

β

[(∫
dω′gT (ω

′)

)
ω′=ω

ln
(
e−β(ω−µ) + 1

)∣∣∣∣∞
0

+ β

∫ ∞

0

dω

(∫
dω′gT (ω

′)
)
ω′=ω

e−β(ω−µ)

e−β(ω−µ) + 1

]

= −2V

∫ ∞

0

dω

(∫
dω′gT (ω

′)
)
ω′=ω

eβ(ω−µ) + 1
(A5)

which is simplified by the first term vanishing only if α > −1. Then Φ becomes,

Φ = −
(

1

α + 1

)
(2V N0)

∫ ∞

0

dε
ϵα+1

1 + eβ(ϵ−µ)

= −
(

1

α + 1

)
(2V N0)T

α+2ζα+2(z)

(A6)

where z is the fugacity defined as z = eµ/kBT and ζν(z) is the Fermi-Dirac integral defined as

ζν(z) =
1

Γ(ν)

∫ ∞

0

dx
xν−1

ex/z + 1
=

∞∑
k=1

(−1)k+1zk

kν
(A7)
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with Gamma function Γ(x). For a homogenous system, the internal energy U is proportional to Φ,

namely

Φ = −PV = − 1

α + 1
U (A8)

Subsequently, the entropy can be determined from the derivative,

S =

(
1

α+ 1

)(
2V g0T

) [
(α + 2)Tα+1ζα+2(z) + Tα+2∂ζα+2(z)

∂T

]
(A9)

and the exact expression for U/S becomes,

U

S
=

(α + 1)Tα+2ζα+2(z)

(α + 2)Tα+1ζα+2(z) + Tα+2 ∂ζα+2(z)
∂T

(A10)

It should be noted that ζν(z) is constant for small and large z, which is not exactly the same

as large or small temperatures since the chemical potential does depend on temperature. However
dζν(z)
dT

is small and can be neglected in the temperature dependence of ζν(z). Therefor, the leading

order contribution to U/S = Tη is

Tη ≃
(
α+ 1

α+ 2

)
T. (A11)

Appendix B: Numerical Evaluation of Tη

For a numerical evaluation of Tη we consider two forms for A(k⃗, ω): a tight binding dispersion

and the YRZ model. In both cases we introduce a d-wave superconducting gap with amplitude

∆SC(T ) = ∆SC [1− (T/Tc)
2] below Tc. In both cases µ is fixed by the required particle number at

T = 0 and approximated as constant over the temperature interval of interest. For the comparisons

in this work we neglect lifetime broadening and take A(k⃗, ω) as a delta function. Lifetime effects

may be incorporated in a simple manner by replacing the delta function with a suitable Lorentzian:

generally this broadening leads to a more slowly varying (closer to constant) g(ω).

For the tight binding case we use

A(k⃗, ω) = δ(ω − ϵk⃗),

ϵk⃗ = −2t0(cos kx + cos ky)− 4t′0(cos kx cos ky)− 2t′′0(cos 2kx + cos 2ky)− µ. (B1)

with hopping parameters

t0 = 360meV, t′0 = −0.3t0, t′′ = 0.2t0, ∆SC = 0.07t0. (B2)

Integrals over ω are then trivial, and we perform the remaining k-space integrals numerically.
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FIG. 9. (color online) Tη/T = U/ST for the tight binding (orange line) and YRZ model at x = 0.16 (purple

line), respectively. The red and blue dashed lines correspond to Tη/T = (2/3) and (1/2), respectively. The

vertical dashed black line marks Tc = 91K.

For the YRZ model we use the same bare parameters as in the original formulation of the YRZ

model22, the only difference being that we set the pseudogap as closing at hole doping fraction

x = 0.2, higher than the critical doping xc = 0.16. Following Ref. [41], we introduce the super-

conducting gap in the lower YRZ band only and again use ∆SC = 0.07t0. U/ST = Tη/T for the

YRZ and tight binding models is shown in Fig. 9.
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16 A. Adams, L. D. Carr, T. Schäfer, P. Steinberg, and J. E. Thomas, New Journal of Physics 14, 115009

(2012).

17 K. Huang, Statistical Mechanics, 2nd ed. (John Wiley and Sons, New York, 1987).

18 M. S. Steinberg, Phys. Rev. 109, 1486 (1958).

19 H. Guo, D. Wulin, C.-C. Chien, and K. Levin, New Journal of Physics 13, 075011 (2011).

20 M. Müller, J. Schmalian, and L. Fritz, Phys. Rev. Lett. 103, 025301 (2009).

21 N. Ashcroft and N. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).

22 K.-Y. Yang, T. M. Rice, and F.-C. Zhang, Phys. Rev. B 73, 174501 (2006).

20



23 J. Rameau, H.-B. Yang, and P. Johnson, Journal of Electron Spectroscopy and Related Phenomena 181,

35 (2010).
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