
BNL-106312-2014-CP

Virtual Data Center Allocation with Dynamic
Clustering in Clouds

Li Shi

33rd IEEE International Performance Computing and Communications
Conference (IPCCC 2014)

Austin, TX
December 5-7, 2014

Dec 2014

Computational Science Center

Brookhaven National Laboratory

U.S. Department of Energy
Office of Advanced Scientific Computing Reserach

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under
Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the
manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others
to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before
publication, it may not be cited or reproduced without the author’s permission.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor any
agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or any
third party’s use or the results of such use of any information, apparatus, product,
or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof or its contractors or subcontractors.
The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof.

2.0/3913e041.doc 3 (08/2010)

Virtual Data Center Allocation with Dynamic
Clustering in Clouds

Li Shi
Department of Electrical and

Computer Engineering,
Stony Brook University,
Stony Brook, NY 11794.

li.shi@stonybrook.edu

Dimitrios Katramatos
Computational Science Center,

Brookhaven National Laboratory,
Upton, NY 11973.

dkat@bnl.gov

Dantong Yu
Computational Science Center,

Brookhaven National Laboratory,
Upton, NY 11973.

dtyu@bnl.gov

Abstract—Clouds are being widely used for leasing resources
to users in the form of on-demand virtual data centers, which
comprise sets of virtual machines interconnected by sets of virtual
links. Given a user request for a virtual data center with specific
resource requirements, a critical problem is to select a set of
servers and links in the physical data center of a cloud to
satisfy the request in a manner that minimizes the amount of
reserved resources. In this paper, we study the main aspects of this
Virtual Data Center Allocation (VDCA) problem, and decompose
it into three subproblems: virtual data center clustering, virtual
machine allocation, and virtual link allocation. We prove the
NP-hardness of VDCA and propose an algorithm that solves the
problem by dynamically clustering the requested virtual data
center and jointly optimizing virtual machine and virtual link
allocation. We further compare the performance and scalability
of the proposed algorithm with two existing algorithms, called
LoCo and SecondNet, through simulations. We demonstrate that
our algorithm generates 30%–200% more revenue than LoCo and
55%–300% than SecondNet, while being up to 12 times faster.

I. INTRODUCTION

Clouds are being widely used to provide the service of
leasing resources to users. In clouds, such as Amazon EC2 [1]
and Microsoft Azure [2], Service Providers (SPs) own a num-
ber of data centers and through cloud technologies lease both
computing and network resources to users in the form of on-
demand Virtual Data Centers (VDCs) [3]. A VDC is composed
by a set of virtual machines (VMs) interconnected by a set
of virtual links. Through modern virtualization techniques, a
SP is able to simultaneously provision VDCs for multiple
users while keeping the provisioned VDCs isolated – and
interference-free – from each other. Many Quality of Service
(QoS) mechanisms [3]–[6] have been proposed to provide
bandwidth guarantees to provisioned VDCs. Thanks to such
QoS mechanisms, users are able to execute applications in their
own VDC with guaranteed and predictable performance. Given
a user request for a VDC with certain resource requirements for
both VMs and virtual links, an important problem is to find a
set of servers and links in the data center to satisfy the request.
We call this problem the Virtual Data Center Allocation
(VDCA) problem. At first glance, the VDCA problem seems
similar to the Virtual Network Embedding (VNE) problem,
which refers to the ways of mapping a virtual network that
connects a set of VMs onto a substrate network that connects a
set of geographically distributed servers. However, the VDCA
problem is significantly different than the VNE problem.

(a) (b)

Fig. 1. An example of two different clustering schedules.

First, in contrast to allocating (mapping) virtual nodes on
physical nodes in a one-on-one fashion in the VNE prob-
lem [7]–[11], SPs of clouds usually try to collocate multiple
VMs requested by the same user on the same host(s). By
doing so, SPs do not need to reserve bandwidth on physical
network links for the virtual links that connect the collocated
VMs. Therefore, such VM collocation essentially reduces the
amount of available resources reserved for each user request1.
As a result, a cloud can potentially service more users and
thereby generate more revenue. For example, Fig. 1(a) shows
a small data center with five servers and Fig. 1(b) shows a
VDC request. Assuming that each server can host three VMs,
if we allocate VMs with one-on-one mapping, we then need
to find paths and reserve bandwidth for all virtual links with
a total bandwidth requirement of 2600 Mbps. However, if
we allocate VMs v1, v2 and v3 together on server s1 and
allocate VMs v4 and v5 on server s2. we then only need to
reserve bandwidth for virtual links (v2, v5) and (v3, v4) with
a total bandwidth requirement of 300 Mbps. To fully exploit
VM collocation, one faces the novel and critical problem of
how to collocate VMs in a manner that minimizes the total
requirement of bandwidth to be reserved on the physical links,
while considering the availability of resources of both servers
and links. If we consider the VMs allocated on the same host as
a cluster of the VDC, this problem then becomes a problem
of clustering the VDC. As a result, we can decompose the
VDCA problem into three subproblems: VDC clustering, VM
allocation, and virtual link allocation.

Additionally, in the VNE problem, the substrate network
usually comprises tens to hundreds of servers and a virtual
network request usually includes tens of VMs [7]–[11]. In
contrast, in the VDCA problem, the data centers can comprise

1We assume that the internal bandwidth of a server is always enough to
satisfy the bandwidth requirement of all virtual links that interconnect VMs
on that server [4], [12].

thousands of servers and a VDC request can include hundreds
of VMs. For example, traces of workloads running on an
12000-machine Google compute cell [13] has shown that the
number of machines required by user jobs can be as large
as 2000, while the average number of jobs submitted every
day is larger than 4000. These aspects of the VDCA problem
impose significant scalability requirements on the scheduling
algorithm.

In this paper, we study the VDCA problem. We formally
formulate the problem and prove it is NP-hard, then pro-
pose an algorithm, called the Virtual Data Center Allocation
(ViDCAlloc) algorithm, to solve it. The ViDCAlloc algorithm
dynamically clusters a VDC and jointly optimizes VM and vir-
tual link allocation. ViDCAlloc incorporates several problem-
specific techniques, such as Virtual Cluster Expansion and
New Virtual Cluster Establishment. We study the performance
and scalability of the ViDCAlloc algorithm through a set of
simulations.

In section II we describe related work, while in section III
we formally define the problem. In section IV we present the
proposed algorithm and analyze its runtime complexity, then in
section V we study the performance of our algorithm through
simulations. Finally, in section VI we present our conclusions.

II. RELATED WORK

A significant amount of research has focused on cloud
computing and virtual network embedding. In this section, we
discuss some of the research works that we consider most
relevant to our problem.

The virtual network embedding (VNE) problem has been
well studied [7]–[11]. Fischer et al. [7] give a comprehensive
survey of the VNE problem. Chowdhury et al. [8] formulate
VNE as a Mixed Integer Programming (MIP) problem, solve
its linear programming relaxation and then use a heuristic
to determine a final solution. Yu et al. [9] proposes a VNE
approach that maximizes long-term revenue. Lischka et al. [10]
reduce the VNE problem to the well known Subgraph Isomor-
phism Detection (SID) problem, and propose a modification
of the existing heuristic to solve it. Gong et al. [11] propose
a novel metric, called global resource capacity (GRC), to
quantify the embedding potential of each substrate node. Gong
et al. further develop an algorithm, called GRC-VNE, to solve
the VNE problem by utilizing the GRC metric. However, all of
these proposed approaches allocate virtual nodes on physical
nodes in a one-on-one mapping manner. Without benefiting
from collocating VMs, the efficiency of these approaches in
solving the VDCA problem may be diminished. In addition,
most of these approaches have high complexity, which limits
their scalability in solving large scale problems.

In the context of cloud computing, Fuerst et al. [12]
proposes an approach that solves the VDCA problem in two
steps. In the first step, a pre-clustering approach is used
to cluster the requested VDC and generate a new clustered
VDC request. Next, a collocation algorithm, called LoCo, is
developed to service the clustered VDC request. The pre-
clustering approach requires an accurate estimation of the
available data center resources and its complexity is high. In
contrast to [12], our proposed algorithm performs clustering
and allocation jointly. We compare our algorithm with [12]

(a) Topology of graph GD . (b) RD of GD .

Fig. 2. An example of input GD .

through simulations. Papagianni et al. [14] consideres the
problem of allocating resources in a networked cloud and
formulates it as a MIP problem, then proposes a heuristic
approach to solve it. However, the formulated MIP problem
also enforces one-on-one mapping between VMs and servers.
Guo et al. [3] develops an algorithm to map the VDC request
onto the physical data center. However, the proposed algorithm
again allocates VMs in a one-one-one mapping manner. We
also compare our algorithm with the algorithm proposed in [3].

III. PROBLEM DESCRIPTION

We consider the physical data center of a cloud that
incorporates a set of servers and switches. Assume that the
SP of this cloud receives a VDC request which includes a set
of VMs and virtual links. Given the topology and resource
availability of the data center, our goal is to find a feasible
allocation schedule for the request while minimizing a desired
objective function. We can formally describe the input, output,
and objective function of the algorithm as follows:

Input: The input has three components. The first component
is the topology and resource availability of the physical data
center. We model it as a graph GD = (ND, ED, RD), where
ND is the set of all nodes, in which each server or switch
corresponds to one node; ED is the set of all physical links,
in which each eDij represents the physical link that connects
nodes nDi and nDj ; and RD is the set containing the resource
availability of each server and each link. In this paper, we
consider as schedulable resources the computing capacity of
a server and the bandwidth of a link, following the model
used in [8], [9], [11], [12]. Because in VM hypervisors, like
Xen [15] and KVM [16], the computing capacity of a VM
is usually defined by the number of CPU cores reserved for
that VM, we model the available computing capacity of a
server as the number of its available CPU cores. Specifically,
r(nDi) ∈ RD represents the available CPU cores of node nDi ,
and r(eDij) ∈ RD represents the available bandwidth of link
eDij . If node nDi is a switch, we then set r(nDi) to zero. Fig. 2
shows an example of graph GD, which includes eight nodes
(four servers and four switches) and eight links. Observe that
some CPU cores of nodes nD3 and nD4 have already been
reserved for previously allocated VMs (red rectangles).

The second component is the submitted VDC request. We
model such a request as a graph GV = (NV , EV , RV), where
NV is the set of VMs; EV is the set of virtual edges2 that

2In this paper, we interchangeably use the terms virtual link and virtual
edge.

(a) Topology of graph GV . (b) RV of GV .

Fig. 3. An example of input GV .

interconnect the VMs, and each eVij represents the virtual edge
(VE) that connects nVi and nVj ; and RV is the set of resource
requirements of each VM and VE. r(nVi) ∈ RV represents the
number of CPU cores required by the VM nVi , and r(eVij) ∈
RV represents the amount of bandwidth required by the VE
eVij . Fig. 3(a) shows an example of GV containing five VMs
and four VEs.

Output: The output of the algorithm contains two components.
The first component is the VM allocation schedule, which is
denoted by:

MN : NV → ND (1)

in which MN (nVi) is the node that accommodates VM nVi .
The mapping MN is subject to the constraint that the total
number of CPU cores required by the VMs allocated on a
physical node cannot exceed the number of available CPU
cores of that node. This constraint can be expressed as:∑

∀nV
i ,where

MN (nV
i)=nD

j

r(nVi) ≤ r(nDj), ∀nDj ∈ ND (2)

The second component is the virtual edge allocation schedule,
which is denoted by:

ME : EV
C → PD (3)

where EV
C : {eVij |MN (nVi) 6=MN (nVj)}

in which ME(eVij), also denoted as pDVij
, is the physical path

allocated for eVij . Each pDVij
contains a set of physical links that

form a path from MN (nVi) to MN (nVj). The mapping ME is
subject to the constraint that the total bandwidth reserved on
a physical link cannot exceed the available bandwidth of that
link. We can express this constraint as:

r(eDpq) ≥
∑

eVij ,where

eDpq∈ME(eVij)

r(eVij), ∀eDpq ∈ ED (4)

Objective: Our goal is to generate a feasible allocation sched-
ule for the input request while minimizing the total amount of
bandwidth reserved in the physical network. We can express
the objective function as:

Minimize
∑

eVij∈EV
C

∑
eDpq∈ME(eVij)

r(eVij) (5)

We claim that an SP can accommodate more user requests
and generate more revenue by minimizing the above objective
function for each request. Additionally, we seek to develop an
algorithm that has low runtime complexity, and therefore good
runtime performance when addressing large scale problems.

(a) (b)

Fig. 4. (a) The DCC-Tree of the data center shown in Fig. 2(a), (b) the
resource availability of each node in the DCC-Tree shown in Fig. 4(a).

Problem Complexity: We first prove that a special instance of
our problem, called simple-VDCA, is an NP-hard problem. In
simple-VDCA, the user request only contains a set of VMs and
their corresponding resource requirements. Given such a user
request, our goal is to find a feasible VM allocation schedule
MN , subject to the constraint of Eq. 2. We now consider the
bin packing problem that is known to be NP-hard [17]. In the
bin packing problem, given n bins with their corresponding
capacity and m items with their corresponding size, the goal
is to determine a feasible assignment of items to bins such that
the sum of the size of items in each bin does not exceed the
bin’s capacity. We can easily convert the bin packing problem
to the simple-VDCA problem by considering the bins as the
physical nodes and the items as the VMs. As a result, the
simple-VDCA problem is NP-hard. Since the VDCA problem
is a generalized version of the simple-VDCA problem, the
VDCA problem is also NP-hard.

IV. THE VIRTUAL DATA CENTER ALLOCATION
(VIDCALLOC) ALGORITHM

We develop the ViDCAlloc algorithm to solve the VDCA
problem. In this section, we first introduce a pre-processing
technique, called Data Center Clustering Tree, that facilitates
the VDC allocation. We then describe the ViDCAlloc algo-
rithm and analyze its runtime complexity.

A. Pre-processing: Data Center Clustering Tree

A Data Center Clustering Tree (DCC-Tree) is a hierarchical
clustering tree of the data center. Each node ci in the DCC-Tree
represents a cluster that contains a set of servers. The cluster
represented by a node is composed by the clusters represented
by the child nodes of that node. We can build the DCC-Tree
in two steps, as follows: First, for each physical server, we
create a cluster node that only contains that server. These
created nodes are the nodes at the lowest level (level 0) of the
DCC-Tree. Second, we recursively build the upper levels of the
DCC-Tree. Specifically, for any level k that is already built, we
group the cluster nodes of that level in a manner that any two
servers belonging to two different cluster nodes have the same
distance (number of hops). For each group, we then create a
new node and set all nodes in that group as child nodes of this
new node. Essentially, the new node represents a larger cluster
that contains all servers in each of its children nodes. Together,
all created parent nodes form the k+1 level of the DCC-Tree.
If we create only one node at some level, that node is then the
root node of the DCC-Tree and the procedure of building the
DCC-Tree finishes. We further define the resource availability
of a cluster node as the sum of the resource availabilities of

ViDCAlloc-Phase I (GD , GV)
1. NV

alloc = {}, NV
wait = NV

2. nV
init ← the VM with the largest distance to all other VMs.

3. vcinit ← {nV
init}, E

vcinit
pend ← {eVij | nV

i = nV
init}

4. Start from root node of the DCC-Tree, recursively select the child
node with the largest resource availability at each level.
Select the server in the selected leaf node as nD

init.
5. Sort all nD

i ∈ ND in increasing order of distance between nD
i

and nD
init.

6. for each nD
i ∈ ND do

7. perform HC-Test and OLC-Test for allocation vcinit → nD
i .

8. if pass all tests then
9. MV C(V Cinit)← nD

i , MN (nV
init)← nD

i
10. Move nV

init from NV
wait to NV

alloc, break
11. if cannot allocate vcinit then
12. Allocation fails, return rejection.
13. else start the phase II of ViDCAlloc.

Fig. 5. Pseudocode of phase I of the ViDCAlloc algorithm.

all servers in that cluster node. We express this as:

r(ci) =
∑

nD
j ∈ci

r(nDj) (6)

where r(ci) is the resource availability of cluster node ci. As
an example, Fig. 4(a) shows the DCC-Tree of the data center
shown in Fig. 2 and Fig. 4(b) shows the resource availability
of each node in this DCC-Tree.

B. Algorithm Overview

The ViDCAlloc algorithm allocates the requested VDC by
grouping the VMs of the VDC into multiple clusters and then
allocating each cluster. Because each node of such a cluster
represents a VM, we call these clusters Virtual Clusters (VCs).
A VC vci is a set of VMs and is allocated on some server,
denoted by MV C(vci). ViDCAlloc also allocates paths for the
cross-VC VEs that connect VMs belonging to two different
VCs. For example, Fig. 1(a) shows two VCs and two cross-VC
VEs: (v2, v5) and (v3, v4). Given the objective function shown
in Eq. 5, the ViDCAlloc algorithm pursues two goals: (a) to
minimize the overall bandwidth requirements of all cross-VC
VEs, (b) to minimize the length (number of hops) of paths
allocated for cross-VC VEs.

The ViDCAlloc algorithm consists of two phases. In the
first phase, the algorithm creates the initial VC and utilizes
the DCC-Tree to allocate the initial VC on some server. In the
second phase, the algorithm runs in iterations. In each iteration,
ViDCAlloc either expands an existing VC by adding an
unallocated VM to it, or creates a new VC for an unallocated
VM. The pseudocode for these two phases is shown in Fig. 5
and Fig. 7 respectively.

C. Algorithm Details

1) Phase I: Set up the initial VC: In this phase, ViDCAlloc
creates the first VC vcinit which only contains one VM and
utilizes the DCC-Tree to allocate vcinit on some server. Before
introducing more details for this phase, we need to define
several items. First, we define set NV

alloc as the set of VMs
that have been already allocated and set NV

wait as the set of
VMs that have not been allocated yet. We then define set Evci

pend
of vci as the set of VEs that connect a VM node in vci with an
unallocated VM node in NV

wait. Finally, we define as the length

Fig. 6. An example of the inital VC vcinit.

of a VE eVij the bandwidth requirement of eVij , i.e., r(eVij), and
define the distance between two VMs as the total length of
the shortest path between them. For example, given input GV

shown in Fig. 3, the distance between nV1 and nV4 is 500.

The ViDCAlloc algorithm begins by putting all nodes in
set NV into NV

wait and leaving set NV
alloc empty. It then selects

the VM that has the largest overall distance to all other VMs,
denoted by nVinit. Next, ViDCAlloc creates vcinit that only
contains VM nVinit and constructs set Evcinit

pend . Subsequently,
the algorithm allocates vcinit on a physical server using the
following procedure: First, it selects a server nDinit by walking
down the DCC-Tree; specifically, it starts from the root node of
the DCC-Tree and recursively selects the child node with the
largest resource availability at each level; the algorithm stops
when it reaches a leaf node and selects the physical server in
that node as ninit. Next, ViDCAlloc sorts all physical nodes
in increasing order of distance (number of hops) between the
nodes and nDinit. If some nodes have the same distance to nDinit,
the algorithm sorts them in decreasing order of their resource
availability. Then, for each node nDi , ViDCAlloc examines the
feasibility of allocating vcinit on that node by performing two
tests, called Host Capacity Test and Outgoing Link Capacity
Test.

Host Capacity Test (HC-Test): In this test, for an allocation
vct → nDi , the ViDCAlloc algorithm checks whether the
number of available CPU cores on nDi is larger than or equal
to the overall number of CPU cores required by all VMs in
vct. Note that the initial VC vcinit is vct in the current step.

Outgoing Link Capacity Test (OLC-Test): In this test, for
an allocation vct → nDi , the ViDCAlloc algorithm checks
whether the outgoing links of nDi have enough available
bandwidth to accommodate the VEs in Evct

pend. Assume that
node nDi has M outgoing links with available bandwidth bwi

and Evct
pend contains N VEs with bandwidth requirement rj .

The test then becomes a bin packing problem by considering
each outgoing link as a bin and each VE in Evct

pend as an
item. The ViDCAlloc algorithm uses the best fit decreasing
strategy [18] to solve this problem. If the ViDCAlloc algorithm
finds a feasible assignment, the allocation (vct, n

D
i) passes this

test. Similarly, in the current step, the inital VC vcinit is vct.

If an allocation vcinit → nDi passes both tests, ViDCAlloc
allocates vcinit on nDi , i.e., set MV C(vcinit) and MN (nVinit)
as nDi , and moves nVinit from NV

wait to NV
alloc. ViDCAlloc then

finishes phase I and starts its next phase. If any of these two
test fails, ViDCAlloc tries to allocate vcinit on the next node
in ND. If ViDCAlloc cannot allocate vcinit on any node in
ND, it stops and rejects the input request.

As an example, given the input shown in Fig. 2 and Fig. 3,
the ViDCAlloc algorithm begins by selecting nV1 as nVinit. It
then sets up vcinit as shown in Fig. 6 and constructs Evcinit

pend

ViDCAlloc-Phase II (GD , GV)
1. vcact ← vcinit

2. while NV
wait 6= ∅ do

/* Step 1: VC Expansion */
3. Nvcact

neigh ← {n
V
i | ∃ eVij that nV

i ∈ NV
wait and nV

j ∈ vcact}
4. Sort all nodes in Nvcact

neigh in increasing order of distance
between those nodes and vcact.

5. for each nV
t ∈ Nvcact

neighbor do
6. vcact ← vcact ∪ {nV

t }, and construct Evcact
pend and Ealloc.

7. Perform VEA-Test for allocation nV
t → vcact:

for each eVtj ∈ Ealloc, in decreasing order of r(eVtj) do
Find path pDVtj

and update bandwidth availability.
8. Perform HC-Test and OLC-Test for nV

t → vcact
9. if any test fails then
10. Expansion failed, backtrack vcact, continue
11. else
12. ∀eVtj ∈ Ealloc, ME(eVtj)← pDtj .
13. MN (nV

t)←MV C(vcact),
14. Move nV

t from NV
wait to NV

alloc, break.
15. end for /* line 5 */
16. if vcact has been expanded then continue

/* Step 2: New VC Establishment */
17. (nV

t , vcp)← argmaxnV
i ∈NV

wait,vcj
{d(nV

i , vcj)}
18. Sort ND in increasing order of distance between nD

i and
MV C(vcp), and in decreasing order of r(nD

i) for the same
distance.

19. for each nD
i ∈ ND\MV C(vcp) do

20. if ∃ vce, that MV C(vce) = nD
i then

21. Add nV
t to vce by repeating line 6–14.

22. if succeed then vcact ← vce, break
23. else
24. vcnew ← {nV

t }, identify Evcnew
pend and Ealloc.

25. Perform VEA-Test, HC-Test and OLC-Test for
allocation vcnew → nD

i .
26. if all tests succeed then
27. allocate vcnew by repeating line 12–14.
28. vcact ← vcnew , break
29. if nD

i is an empty host then break
30. end for /* line 19 */
31. if no V C has been expanded or established then
32. Allocating VDC request failed, return fail.
33. end while /* line 2 */
34. return MN and ME

Fig. 7. Pseudocode of phase II of the ViDCAlloc algorithm.

as {eV12, eV13} (dashed red lines). Next, it chooses nD1 as nDinit
by walking down the DCC-Tree shown in Fig. 4(a) and tries
to allocate vcinit on each server node nDi in the sequence
(nD1 , n

D
2 , n

D
4 , n

D
3). The algorithm then performs HC-Test and

OLC-Test for each possible allocation. Finally, because the
first allocation vcinit → nD1 passes both tests, the ViDCAlloc
algorithm allocates vcinit on node nD1 and starts phase II.

2) Phase II: Allocate VDC in iterations: In this phase, the
ViDCAlloc algorithm runs in iterations. In each iteration, it
allocates one VM in two steps: the VC Expansion (VCE) step
and the New VC Establishment (NVCE) step.

Step 1: VC Expansion (VCE) step. In this step, our goal is
to expand an existing VC by adding an unallocated VM to it.
Before introducing the VCE step, we first define the neighbor
nodes of a VC vci as the VM nodes that are in set NV

wait and
connected to vci by one or more VEs. We denote the set of
the neighbor nodes of vci by Nvci

neigh. We further define the
distance between vci and its neighbor node nVj as the sum of
the bandwidth requirement of each VE connecting nVj and vci,
denoting this by d(nVj , vci). For example, given the VC vcinit
shown in Fig. 6, set Nvcinit

neigh is {nV2 , nV3 }, while d(nV2 , vcinit)

Fig. 8. After the 1st iteration of Phase II of the ViDCAlloc algorithm.

and d(nV3 , vcinit) are 500 and 400 respectively.

In the VCE step, the ViDCAlloc algorithm begins by
selecting an existing VC as the active VC, denoted by vcact.
Then, it constructs set Nvcact

neigh and tries to expand vcact by
allocating one of the nodes in Nvcact

neigh to vcact. Specifically,
ViDCAlloc sorts the nodes in Nvcact

neigh in decreasing order of
distance between those nodes and VC vcact, then sequentially
checks the feasibility of each allocation nVt → vcact using
the following procedure: First, the algorithm adds node nVt
to vcact and constructs a new Evcact

pend . Next, it identifies all
VEs that connect nVt to another VM node that is already
allocated in an existing VC, and adds them into a set denoted
by Ealloc. If nVt is actually allocated to vcact, these VEs are
the cross-VC VEs that require reservation of bandwidth on
a physical path which comprises a set of physical network
links interconnecting servers. After constructing Ealloc, the
ViDCAlloc algorithm performs a Virtual Edge Allocation Test,
an HC-Test and an OLC-Test for allocation nVt → vcact.

Virtual Edge Allocation Test (VEA-Test): In this test,
ViDCAlloc sorts the VEs in Ealloc in decreasing order of
bandwidth requirements. Then, for each VE eVtj ∈ Ealloc,
ViDCAlloc finds a physical path between server MV C(vcact)
and server MN (nVj). We define the available bandwidth of
a physical path p as the smallest available bandwidth of the
physical links in the path and denote it by BWp. Clearly, a
valid path for a VE nVtj must satisfy the condition BWp ≥
r(nVtj). For each VE eVtj , ViDCAlloc then finds a valid shortest
path pDVtj

with the lowest BWp between MV C(vcact) and
MN (nVj), by using a slightly modified version of Dijkstra’s
Algorithm [19]. Specifically, the modified Dijkstra’s algorithm
updates the shortest path from source node s to a node v to the
shortest path from s to a node u plus the link connecting u and
v, if the following constraints are satisfied: (a) The available
bandwidth of the link connecting u and v is larger than or
equal to r(nVtj). (b) The length (number of hops) of the new
path is shorter than that of the original path; if the length of
the two paths is the same, the available bandwidth of the new
path is smaller than that of the original path. If ViDCAlloc
successfully finds a physical path for each VE in Ealloc, the
test succeeds; the test otherwise fails.

If an allocation nVt → vcact passes all tests, the ViDCAlloc
algorithm actually allocates nVt to vcact, i.e., allocates nVt
on server MV C(vcact). Additionally, for each eVtj ∈ Ealloc,
the algorithm reserves the required amount of bandwidth (i.e.,
r(eVtj)) on each physical link in the physical path pDVtj

found in
the VEA-Test step. If any of these three tests fails, ViDCAlloc
tries to allocate the next node in Nvcact

neigh to vcact.

When the algorithm successfully allocates a VM node to
vcact, it stops the VCE step and starts a new iteration of

Fig. 9. After the 2nd iteration of Phase II of the ViDCAlloc algorithm.

phase II while maintaining the current selection of vcact. By
following this procedure, ViDCAlloc essentially allocates as
many VM nodes to a VC as possible in order to minimize
the overall bandwidth requirements of the cross-VC VEs. If in
some iteration none of the nodes in Nvcact

neigh can be allocated
to vcact, the algorithm starts the next step of phase II.

As an example, consider the vcinit shown in Fig. 6. In the
first iteration of phase II, the ViDCAlloc algorithm starts the
VCE step by selecting vcinit as vcact. Then, the algorithm
constructs Nvcact

neigh as {nV2 , nV3 } and tries to allocate nV2 to
vcact first. Because there is only one existing VC, Ealloc is
empty. Next, ViDCAlloc only performs the HC-Test and the
OLC-Test for allocation nV2 → vcact. Because this allocation
passes both tests, the algorithm actually allocates nV2 to vcact,
i.e., allocates nV2 on server nD1 . Fig. 8 shows the new vcact
and Evcact

pend (dashed red lines). In the second iteration, the
ViDCAlloc algorithm selects nV3 with d(nV3 , vcact) = 700 and
allocates nV3 to vcact. Fig. 9 shows the new vcact and Evcact

pend
(dashed red lines). In the third iteration, none of the nodes in
Nvcact

neigh can be allocated to vcact due to lack of available CPU
cores on the server nD1 . As a result, the ViDCAlloc algorithm
starts the next step in this iteration.

Step 2: New VC Establishment (NVCE) step. In this step,
our goal is still to allocate one VM node and the related
VEs. Since we have expanded each existing VC in previous
iterations, we now consider allocating a VM node by estab-
lishing a new VC for it. The ViDCAlloc algorithm begins the
NVCE step by identifying all pairs of an existing VC and its
neighbor nodes. It then selects a pair (nVt , vcp) with the largest
d(nVt , vcp). Since node nVt cannot be added to vcp no matter
which server we allocate nVt to, we always need to allocate
all VEs that connect nVt and vcp. We then try to allocate nVt
on a server that is close to MV C(vcp) in order to minimize
the length of the paths allocated for the VEs that connect nVt
and vcp. To achieve this goal, the ViDCAlloc algorithm sorts
each nDi in ND (except MV C(vcp)) in increasing order of
the distance (number of hops) between nDi and MV C(vcp).
If some nodes have the same distance to MV C(vcp), the
algorithm sorts them in decreasing order of their resource
availability. Then, for each node nDi , the ViDCAlloc algorithm
examines the feasibility of allocating nVt on that node.

For an allocation nVt → nDi , there are two cases. The first
case is that some existing VC vce is already allocated on server
nDi . In such a case, ViDCAlloc tries to allocate nVt to vce. To
do so, it repeats the procedure introduced in the VCE step
for the allocation nVt → vce. The second case is that there is
no existing VC allocated on nDi . In such a case, ViDCAlloc
creates a new VC vcnew which only contains nVt and tries
to allocate vcnew on nDi . The algorithm constructs Ealloc

Fig. 10. After the 3rd iteration of Phase II of the ViDCAlloc algorithm.

Fig. 11. After the 4th iteration of Phase II of the ViDCAlloc algorithm.

and Evcnew

pend . Then, it performs the tests VEA-Test, HC-Test,
and OLC-Test for allocation vcnew → nDi . If the allocation
passes all tests, ViDCAlloc actually allocates vcnew on server
nDi and reserves bandwidth for each VE in Ealloc along the
corresponding physical path found in the VEA-Test.

If the ViDCAlloc algorithm successfully allocates the se-
lected node nVt , it then stops the NVCE step and starts a
new iteration by selecting vce or vcnew as vcact. Furthermore,
ViDCAlloc has an early termination criterion: If the algorithm
tries to allocate nVt on an empty server, i.e., a server that
is not hosting any VMs of any user, it stops the NVCE
step. The intuition here is that if an empty server cannot
accommodate nVt , it is highly likely that none of the servers
can accommodate nVt . This criterion effectively reduces the
runtime of the ViDCAlloc algorithm, which we demonstrate
through simulations in section V. If ViDCAlloc cannot allocate
nVt on any server at the end of the NVCE step, it stops
and rejects the input request. However, if ViDCAlloc has
successfully allocated all VM nodes at the end of an iteration,
it then accepts the user request and returns MN and ME .

For the previous example, in the third iteration, the
ViDCAlloc algorithm starts the NVCE step with selecting the
pair (nV5 , vcact). Next, it tries to allocate nV5 on each node
nDi following sequence (nD2 , n

D
4 , n

D
3). For the first allocation

nV5 → nD2 , because there is no existing VC on nD2 , the
algorithm creates a new VC vcnew and examines the feasibility
of allocating vcnew on nD2 . Fig. 10 shows the new VC vcnew.
After constructing Ealloc as {eV25} (bold blue line in Fig. 10),
the algorithm performs the tests VEA-Test, HC-Test, and OLC-
Test. In the VEA-Test, the algorithm finds the path (eD15, e

D
25)

for VE eV25. Because vcnew passes all tests, the algorithm
actually allocates vcnew and reserves bandwidth for eV25 along
the path (eD15, e

D
25). Then, ViDCAlloc selects vcnew as vcact

and starts a new iteration. In the fourth iteration, since Nvcact

neigh
is empty, the algorithm skips the VCE step and starts the
NVCE step by selecting pair (nV4 , vc1). Then, it first tries
to allocate nV4 on server nD2 . Because vcact is on nD2 , the
algorithm allocates nV5 to vcact and path (eD15, e

D
25) for eV34.

Fig. 12. The output of ViDCAlloc for the input shown in Figs. 2(a) and 3(a).

Fig. 11 shows the new vcact. After the fourth iteration, all VMs
have been allocated. As a result, ViDCAlloc finishes with an
objective value of 600 Mbps. The returned mapping MN and
ME is shown in Fig. 12.

D. Runtime Complexity

Assume that the number of VM nodes in GV is |NV |; the
number of VEs is |EV |; the number of nodes in GD is |ND|;
and the number of physical links in GD is |ED|. The worst
case runtime complexity of the ViDCAlloc algorithm can be
written as:

O
(
|NV | · |EV | · |ND|2 · log(|ND|) + |NV |3

)
(7)

We omit the procedure of arriving at Eq. 7 due to space
limitations. Note that, in practice, the value of |ND| and |ED|
is usually much larger than |NV | and |EV |. For example,
traces of workloads running on a Google compute cell [13]
have shown that while the Google computing cell consists
of 12000 servers, most of user jobs request less than 50
machines. As a result, |ND|2 · log(|ND|) usually dominates
the complexity of the ViDCAlloc algorithm.

V. PERFORMANCE EVALUATION

A. Simulation Setup

We evaluate the ViDCAlloc algorithm through a set of on-
line simulations. In each simulation, we generate a set of VDC
requests, denoted by R. Each request ri ∈ R has its own start
time sti and lifetime lti. At the start time of each request, we
run the ViDCAlloc algorithm to service the request. Whenever
a request is serviced/finished, we reduce/restore the reserved
resources from/to the data center.

We generate the VDC requests based on statistics of traces
of workloads running on an 12000-server Google compute cell
over a period approximately a month long, in May 2011 [13].
We exclude jobs that require only one server, since servicing
them is trivial. Fig. 13 shows the histogram of job start times
in a 24-hour scale. In our simulations, we use this statistical
data as the probability distribution to generate the start time of
each request. We also observe that while 90% of jobs require
less than 50 VMs, a few jobs require as many as 2000 VMs.
Based on this observation, we chose to use in our simulations
the Weibull distribution with shape parameter k = 0.8 and
scale parameter λ = 0.2 to approximate the real distribution
of the number of VMs requested by each user. Fig. 14 shows
the probability density function (PDF) of the used Weibull
distribution. The lifetime of each request is determined by an
exponential distribution with mean µ = 90 minutes, following
similar setups found in existing works [8], [12]. The number
of CPU cores required by each VM is randomly selected
between 1 and 3. Furthermore, we use the random graph model

Fig. 13. Start time of jobs submitted to the Google computing cell in May’11.

Fig. 14. PDF of the Weibull distribution used to generate the input.

proposed by Waxman [20] to generate the virtual topology. In
this model, N nodes are distributed in the x-y coordinate plane,
and the probability of an edge existing between node u and v
is given by:

P (u, v) = βexp
(−d(u, v)

Lα

)
(8)

where d(u, v) is the distance between u and v, L is the
maximum distance between two nodes, and α and β are
parameters in the range (0, 1]. A small value of α results in
higher density of short edges relative to longer ones, while
a large β value increases edge density. In our simulations,
we set α = 0.1 and β = 0.05. Furthermore, the bandwidth
requirement of each VE is randomly selected between 0 and
100 Mbps.

For the physical data center, we use a FatTree [21] archi-
tecture. A k-array FatTree network has k pods, where each
pod has k/2 Top-of-Rack (ToR) switches and k/2 aggregation
switches. While in each pod the ToR and aggregation switches
are connected to each other as a complete bipartite graph, each
ToR switch also connects a rack of k/2 hosts. In addition, there
are (k/2)2 core switches that connect the aggregation switches
of all pods. In general, a k-array fat-tree network is able to
support k3/4 hosts. In our simulations, the number of available
CPU cores of each host is 10, and the bandwidth capacity of
intra-rack links and inter-rack links is 1 Gbps and 10 Gbps
respectively.

We compare the ViDCAlloc algorithm with LoCo [12]
and SecondNet [3]. The LoCo algorithm [12] collocates VMs
on the same host and runs in iterations. In each iteration,
LoCo identifies the VE that connects an unmapped node u
to a mapped node v with the largest bandwidth requirement.
Subsequently, it tries to map u on the host of v. If the
mapping succeeds, LoCo maps all VEs that connects u to any
mapped node. Note that the pre-clustering approach proposed
in [12] solves a MIP problem, which has a high complexity.
For example, to address a VDC request with just 100 VM
nodes, the pre-clustering approach takes approximately 700
seconds to cluster the VDC request, while the LoCo algorithm
only takes approximately 10 seconds to address the clustered
VDC request. For 200 VM nodes the pre-clustering approach
takes roughly 4.5 hours while LoCo only takes approximately

50 seconds.3 Due to the complexity of such a solution, we
consider it impractical for large scale problems and we chose
not to use it in our simulations. The SecondNet algorithm [3]
allocates VMs on physical servers in a one-on-one mapping
manner. It groups servers into multiple clusters and tries to
allocate resources for the requested VDC in each such cluster
in increasing order of cluster size. SecondNet formulates and
solves the node allocation problem as a max-min cost flow
problem. After allocating the VM nodes, it finds a physical
path for each VE and reserves bandwidth along the corre-
sponding path. In case of allocation failure, SecondNet tries
to allocate the VDC on the next cluster.

B. Evaluation Metrics

We use four metrics to evaluate the performance of the
ViDCAlloc algorithm:

(a) The number of accepted requests. The number of
requests accepted by an algorithm is an important metric to
evaluate the performance of that algorithm. However, this
number cannot completely represent the performance of an
algorithm when the ultimate goal of a cloud is to generate more
revenue. An algorithm can increase the number of accepted
requests by accepting many smaller requests, which are usually
less profitable.

(b) Total generated revenue. We also measure the total
revenue generated by an algorithm. We adopt the typical “pay-
as-you-go” revenue model used in clouds to define the revenue
of a request. We can express it as:(

α ·
∑

nV
i ∈rk

r(nVi) + β ·
∑

eVij∈rk

r(eVij)
)
· ltr (9)

where ltr is lifetime of the request, and α and β are the unit
price charged for computing and bandwidth resources. The
total revenue is then defined as the sum of the revenue of each
accepted request. In our simulations, we set α = β = 1.

(c) Total generated cost. We measure the total cost gener-
ated by an algorithm to service the submitted requests. First,
we define the cost of an accepted request as:(∑

nV
i ∈rk

r(nVi) +
∑

eVij∈EV
C

∑
eDpq∈ME(eVij)

r(eVij)
)
· ltr (10)

Then, the total cost is the sum of cost of each accepted request.
Given the objective function of the ViDCAlloc algorithm, as
shown in Eq. 5, the total generated cost also gives an idea of
how well the ViDCAlloc algorithm performs in achieving its
objective.

(d) Average running time. Finally, we measure the average
running time of an algorithm to address a request in the set
R. As mentioned previously, a cloud may comprise a large
number of servers and the SP of this cloud may need to service
a vast amount of requests in a short period. As a result, the
running time of the scheduling algorithm is a critical factor
that affects the number of users serviced by a cloud.

3The result is an average of ten simulation runs performed on an Intel Xeon
E5-2650 2.00 GHz processor.

Fig. 15. Results of the first simulation: Accepted requests.

Fig. 16. Results of the first simulation: Total revenue.

Fig. 17. Results of the first simulation: Total cost.

C. Performance with Increasing Number of Requests

In this simulation, we study how the ViDCAlloc algorithm
performs as the number of requests in setR increases from 100
to 1500. Each request is generated by using the way introduced
in Section V-A. For the physical data center, we use a 32-array
FatTree architecture that has 9472 nodes composed by 8192
servers and 1280 switches. Each data point in our simulation
results is an average of ten simulations performed on an Intel
Xeon E5-2650 2.00 GHz processor.

Fig. 15 shows the number of accepted requests. While all
three algorithms accept similar number of requests when the
number of input requests is small, the ViDCAlloc algorithm
accepts more requests than other algorithms as the number
of requests increases. When the number of input requests is
1500, ViDCAlloc accepts 12% more requests than LoCo and
nearly 40% more than SecondNet. Fig. 16 shows the total
revenue generated by each algorithm. We can see that the
ViDCAlloc algorithm generates the most revenue, followed by
LoCo and SecondNet. When the number of input requests is
1500, ViDCAlloc generates nearly 30% more revenue than
LoCo and nearly 220% more revenue than SecondNet. This is
because ViDCAlloc accepts a larger number of large requests,
which generate more revenue. As an example, Fig. 19 shows
the acceptance rate of requests with different sizes, when the
set R contains 1000 requests and the data center has 9472
nodes. We observe that when the number of VM nodes in the
requests is larger than 1000, the acceptance rate of ViDCAlloc
is 15%-135% higher than that of LoCo and 15–30 times higher

Fig. 18. Results of the first simulation: Average running time.

Fig. 19. Acceptance rate of requests with different sizes in the simulations
in which R contains 1000 requests and the data center comprises 9472 nodes.

Fig. 20. Average running time to address requests with different sizes in the
simulations in which R contains 1000 requests and the data center comprises
9472 nodes.

than that of SecondNet. When the number of VM nodes in
the requests is in the range 1800–2000, the acceptance rate
of ViDCAlloc is 80%, while that of LoCo and SecondNet
is 0. Furthermore, Fig. 17 shows the total cost generated by
each algorithm. When the number of requests is smaller than
1000, the three algorithms generate similar total cost; when the
number of requests is 1500, ViDCAlloc generates 10% more
cost than LoCo and 55% more cost than SecondNet, because
the ViDCAlloc algorithm accepts more requests than LoCo and
SecondNet. From Fig. 15, 16, 17 and 19, we can observe that
ViDCAlloc achieves higher acceptance rate and larger revenue
by accepting more large size requests. We attribute this to
ViDCAlloc having better strategies on collocating VMs and
allocating VCs, which reduce the bandwidth requirements to
be reserved and shorten the length of allocated paths. Such
strategies reduce the cost of allocating an individual request,
and thereby retain more available resources to accommodate
more of the requests that follow.

Finally, Fig. 18 shows the average running time each
algorithm takes to address a request. We can see that the
ViDCAlloc algorithm is generally 10 times faster than LoCo
and SecondNet, i.e., ViDCAlloc takes approximately 4 seconds
vs. 35–40 seconds taken by LoCo and SecondNet. This is
because ViDCAlloc is faster in addressing large size requests.
As an example, Fig. 20 shows the average running time of
each algorithm in addressing requests of different size, when
the set R has 1000 requests and the data center comprises
8192 servers. While ViDCAlloc takes 100–200 seconds to

Fig. 21. Results of the second simulation: Accepted requests.

Fig. 22. Results of the second simulation: Total revenue.

address requests that have more than 1000 VM nodes, LoCo
and SecondNet take 300–900 seconds to address such requests.
We attribute this to ViDCAlloc having a better strategy for
estimating the feasibility of servicing a request, and thereby re-
jecting requests with low possibility of accommodation earlier
(line 29 in Fig. 7). On the other hand, the better performance of
ViDCAlloc proves that the technique of early termination does
not have an adverse impact on the efficiency of the algorithm.

D. Performance with Increasing Size of Data Center

We now demonstrate the performance of the ViDCAlloc
algorithm as the size of the data center increases. We increase
the number of pods in the FatTree architecture from 8 to 40
with an increment value of 8 pods. As a result, the number
of nodes in the data center increases from 208 to 18000. The
number of requests in set R is 1000. Each data point in our
simulation results is an average of ten simulations performed
on an Intel Xeon E5-2650 2.00 GHz processor.

Fig. 21 shows the number of accepted requests. We can
see that the ViDCAlloc algorithm accepts approximately 5%–
115% more requests than LoCo and 10%–75% more requests
than SecondNet. We also observe that the number of requests
accepted by ViDCAlloc almost remains the same when the
size of data center exceeds 4000 nodes. A possible reason is
that during certain time periods the total resource requirements
of all submitted requests may be much larger than the total
available resources in the data center; therefore, although the
size of data center increases, we still cannot accept more
requests during those time periods. In other words, ViDCAlloc
has accepted almost all requests that can be possibly accepted.
Fig. 22 shows the total revenue generated by each algorithm.
ViDCAlloc generates 10%–200% more revenue than LoCo and
65%–350% more than SecondNet. Fig. 23 shows the total cost
generated by each algorithm. ViDCAlloc generates more cost
in the beginning, due to its much higher acceptance rate; as the
size of data center increases, the cost generated by ViDCAlloc
is actually decreasing. When data center has 18000 nodes, the
total cost generated by ViDCAlloc is around 10% less than
that of LoCo and around 25% less than that of SecondNet.
We attribute this to ViDCAlloc having better strategies for
allocating paths for VEs. As the size of data center increases,

Fig. 23. Results of the second simulation: Total cost.

Fig. 24. Results of the second simulation: Average running time.

the number of servers in each rack and pod also increases.
The ViDCAlloc algorithm then utilizes more intra-rack and
intra-pod links to allocate VEs. Consequently, such strategies
reduce the length of allocated paths and decrease the total cost.
Finally, Fig. 24 shows the average running time each algorithm
takes to address a single request. Again, we observe that the
ViDCAlloc algorithm is up to 12 times faster than LoCo and
SecondNet. As discussed previously, the reason is that the
ViDCAlloc algorithm is much faster when addressing large-
size requests. An example has already been given in Fig. 20.
Note that when the data center comprises 18000 nodes, given
the average running time shown in Fig. 24, the SecondNet
algorithm takes more than 24 hours to address 1000 requests
submitted in a 24-hour period.

VI. CONCLUSION

In this paper, we studied the problem of allocating virtual
data centers in the physical data centers of clouds called
the VDCA problem. We captured the important differences
between the VDCA and the VNE problem, and decomposed
VDCA into three sub-problems: VDC clustering, VM alloca-
tion, and virtual link allocation. We proved the NP-hardness
of VDCA and proposed an algorithm called ViDCAlloc to
solve it. The ViDCAlloc algorithm jointly solves the three
sub-problems and minimizes the total amount of bandwidth
reserved for the virtual data center.

We studied the performance and scalability of the
ViDCAlloc algorithm through a set of online simulations.
In the simulations, we generated the input based on the
traces of workload running on a Google compute cell and
compare ViDCAlloc with two existing algorithm, called LoCo
and SecondNet. Simulation results show that the ViDCAlloc
algorithm accepts 5%–115% more requests than LoCo and
10%–75% more requests than SecondNet. The ViDCAlloc
algorithm also generates 30%–200% more revenue than LoCo
and 55%–300% more revenue than SecondNet. Simulation
results also show excellent scalability of the ViDCAlloc algo-
rithm. Generally, the ViDCAlloc algorithm can be up to 10–12
times faster than LoCo and SecondNet. In a data center having
18000 machines, while the average running time of LoCo and
SecondNet to address a request is approximately 80 seconds,

the average running time of the ViDCAlloc algorithm is only 6
seconds. In addition to that, for large-size requests with more
than 1000 VMs, the ViDCAlloc algorithm takes an average of
100-200 seconds vs. an average of 300–900 seconds taken by
LoCo and/or SecondNet.

REFERENCES

[1] “Amazon EC2,” http://aws.amazon.com/ec2
[2] “Microsoft Azure,” https://azure.microsoft.com
[3] C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y. Zhang,

“Secondnet: a data center network virtualization architecture with band-
width guarantees,” in Proc. of ACM CoNEXT 2010, Philadelphia, PA,
November 30–December 3, 2010.

[4] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “Towards pre-
dictable datacenter networks,” ACM SIGCOMM Computer Communica-
tion Review, vol. 41, no. 4, pp. 242–253, 2011.

[5] S. Radhakrishnan, R. Pan, A. Vahdat, and G. Varghese, “Netshare and
stochastic netshare: predictable bandwidth allocation for data centers,”
ACM SIGCOMM Computer Communication Review, vol. 42, no. 3, pp. 5–
11, 2012.

[6] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.
Santos, “Elasticswitch: practical work-conserving bandwidth guarantees
for cloud computing,” in Proc. of the ACM SIGCOMM 2013, Hong Kong,
China, August 12–16, 2013.

[7] A. Fischer, J. Botero, M. Beck, H. De Meer, and X. Hesselbach, “Virtual
network embedding: A survey,” Communications Surveys & Tutorials,
no. 4, pp. 1888–1906, 2013.

[8] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual
network embedding algorithms with coordinated node and link map-
ping,” IEEE/ACM Transactions on Networking (TON), vol. 20, no. 1,
pp. 206–219, 2012.

[9] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: substrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17–29,
2008.

[10] J. Lischka and H. Karl, “A virtual network mapping algorithm based on
subgraph isomorphism detection,” in Proc. of the 1st ACM workshop on
Virtualized infrastructure systems and architectures, Barcelona, Spain,
August 17, 2009.

[11] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc. of
IEEE INFOCOM 2014, Toronto, Canada, April 27–May 2, 2014.

[12] C. Fuerst, S. Schmid, and A. Feldmann, “Virtual network embedding
with collocation: Benefits and limitations of pre-clustering,” in Proc. of
IEEE Cloud Networking (CloudNet) 2013, San Francisco, CA, November
11–13, 2013.

[13] J. L. Hellerstein, W. Cirne, and J. Wilkes, “Google cluster data,” Google
research blog, Jan, 2010.

[14] C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. Cervello-
Pastor, and A. Monje, “On the optimal allocation of virtual resources in
cloud computing networks,” IEEE Transactions on Computers, vol. 62,
no. 6, pp. 1060–1071, 2013.

[15] “The Xen project,” http://www.xenproject.org/
[16] “The KVM project,” http://www.linux-kvm.org/
[17] E. G. Coffman Jr, M. R. Garey, and D. S. Johnson, “Approximation

algorithms for bin packing: A survey,” in Approximation algorithms for
NP-hard problems, pp. 46–93, 1996.

[18] D. Johnson, A. Demers, J. Ullman, M. Garey, and R. Graham, “Worst-
case performance bounds for simple one-dimensional packing algo-
rithms,” SIAM Journal on Computing 3, no. 4, pp. 299–325, 1974.

[19] E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik 1, no. 1, pp. 269–271, 1959.

[20] B. M. Waxman, “Routing of multipoint connections,” Selected Areas in
Communications, IEEE Journal on, vol. 6, no. 9, pp. 1617–1622, 1988.

[21] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” ACM SIGCOMM Computer Commu-
nication Review, vol. 38, no. 4, pp. 63–74, 2008.

	ADP318F.tmp
	BNL-106312-2014-CP
	Virtual Data Center Allocation with Dynamic Clustering in Clouds
	Li Shi
	Computatinal Science Center
	Brookhaven National Laboratory

