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Differential two-body compound nuclear cross sections, including the
width-fluctuation corrections

David Brown1, ∗ and Michael Herman1

1National Nuclear Data Center, Brookhaven National Laboratory, Upton, NY
(Dated: September 2, 2014)

We figure out the compound angular differential cross sections, following mainly Fröbrich and
Lipperheide, but with the angular momentum couplings that make sense for optical model work.
We include the width-fluctuation correction.

I. INTRODUCTION

Consider the reaction x+A→ y+B. Want to compute
the differential cross section for outgoing b’s (whatever
they are):

dσa→b
dΩb

=

(
2π

~

)4

µaµb
kb
ka
|Ta→b|2 (1)

Here the reduced mass and relative momentum of the
incoming system a are µa and ~ka while the reduced mass
and relative momentum of the outgoing system b are µb
and ~kb. We wrote this cross section in terms of the T-
matrix, Ta→b = 〈b|T (Ea)|a〉, so that the in and out states
are the asymptotically free two-body states:

|a〉 = |Ix,Mx〉 |IA,MA〉
∣∣∣~ka〉 (2)

and

|b〉 = |Iy,My〉 |IB ,MB〉
∣∣∣~kb〉 (3)

Here, ~Ix is the spin operator for the projectile x, ~IA is the
spin operator for target A and the two particle state a is
composed of the projectile x and the target A. Similarly,
~Iy is the spin operator for the ejectile y, ~IB is the spin
operator for residual nucleus B and the two particle state
b is composed of the ejectile y and the residual nucleus
B.

Note, the linear momentum eigenstate
∣∣∣~ka〉 can be

written in terms of angular momentum eigenstates as fol-
lows: ∣∣∣~ka〉 =

∑
`ama

i`aY ∗`ama
(k̂a) |Ea`ama〉 (4)

∗ dbrown@bnl.gov

where Ea is the energy of the incoming channel.
We assume that the beam and target are unpolarized

and that we don’t measure the outgoing spins, so really
we want the following spin-averaged cross section:

dσa→b
dΩb

=

(
2π

~

)4

µaµb
kb
ka

1

2Ix + 1

1

2IA + 1

×
∑

MxMA

∑
MyMB

|Ta→b|2 (5)

In the fast region, we only concern ourselves with the
energy averaged cross section as resonances are no longer
resolvable. Therefore, we split the T-matrix into an
energy-smooth part T a→b and a part that fluctuates with

energy T
(fl)
a→b:

Ta→b = T a→b + T
(fl)
a→b (6)

where

T
(fl)

a→b = 0. (7)

So

|Ta→b|2 = |Ta→b|2 + |T (fl)
a→b|2 (8)

Inserting this into eq. (5), we find that the energy average
cross section is a sum of two parts:

dσa→b
dΩb

=
dσdira→b
dΩb

+
dσCNa→b
dΩb

(9)

where the direct reaction part is associated with the en-
ergy averaged T-matrix:

dσdira→b
dΩb

=

(
2π

~

)4

µaµb
kb
ka

1

2Ix + 1

1

2IA + 1

×
∑

MxMA

∑
MyMB

|Ta→b|2 (10)
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and the compound nuclear reaction part is associated
with the energy averaged fluctuating part:

dσCNa→b
dΩb

=

(
2π

~

)4

µaµb
kb
ka

1

2Ix + 1

1

2IA + 1

×
∑

MxMA

∑
MyMB

|T (fl)
a→b|2 (11)

Although we formulate these the following results in
terms of the T-matrix, the transition to the on-shell S-
matrix is relatively straightforward. The S-matrix is

Sba = δbaδ(Ωb − Ωa)− i
√
µαµβkakb

2π

~2
Tba (12)

In the remainder of this note, we will derive the ex-
pression for eq. (11) in a coupling scheme that is natural
for implementation in EMPIRE.

II. FORMULATION USING CHANNEL SPIN COUPLING

Several sources ([1–5]) couple to the channel spin ~Sa = ~Ix + ~IA:∣∣∣a; IxMx; IAMA;~k
〉

=
∑
SaMa

∑
`ama

∑
JM

i`aY ∗`ama
(k̂a) (IxMxIAMA|SaMa) (`amaSaMa|JM) |a; `ama;SaMa; JM〉

(13)

a = {α,Ea, Ix, IA, Tx, T zx, TA, T zA} captures all the other quantum numbers that are unimportant for the angu-
lar momentum coupling work. Here (`amaSaMa|JM) are the Clebsch-Gordan coefficients (a.k.a. vector coupling
coefficients) [6] and are defined in terms of 3-j symbols as (Edmonds eq. (3.7.3))

(`amaSaMa|JM) = (−1)`a−Sa+M
√

2J + 1

(
`a Sa J
ma Ma −M

)
. (14)

Note, ma +Ma = M .
Following Blatt and Biedenharn [5] and Lane and Thomas [2], Fröbrich and Lipperheide [1] show (note our notation

is slightly different)

dσa→b
dΩb

=

(
2π

~

)4

µaµb
kb
ka

1

2Ix + 1

1

2IA + 1

∞∑
L=0

BL(b, a;Ea)PL(µ) (15)

and

BL(b, a;Ea) =
∑
Sa,Sb

(−)Sb−Sa

4

∑
J`a`b

∑
J′`′a`

′
b

Z̄(`aJ`
′
aJ
′;SaL)Z̄(`bJ`

′
bJ
′;SbL)<

[
T J∗{a;`aSa}→{b;`bSb}T

J′

{a;`′aSa}→{b;`′bSb}

]
.

(16)

Here they used the fact that ~ka||ẑ so Y`ama(Ωa ≡ 0) = δma0

√
(2`a + 1)/4π which eliminates sums over ma,m

′
a,Ma

and M ′a. We have written the T-matrix in the channel spin coupling scheme as

T J{a;`aSa}→{b;`bSb} = 〈b; `bmb;SbMb; JM |T (Ea) |a; `ama ≡ 0;SaMa ≡M ; JM〉 (17)

It is independent of mb, Mb and M because the Hamiltonian is rotationally invariant. The Blatt-Beidenharn coefficient
Z is

Z̄(`aJ`
′
aJ
′;SaL) =

√
(2`a + 1)(2`′a + 1)(2J + 1)(2J ′ + 1) (`a0`′a0|L0)W (`aJ`

′
aJ
′;SaL) (18)

The Racah coefficient W (`aJ`
′
aJ
′;SaL) is defined in therms of 6-j symbols as (eq. (6.2.13) [6])

W (`aJ`
′
aJ
′;SaL) = (−1)−(`a+`

′
a+J+J

′)

{
`a J Sa
J ′ `′a L

}
(19)

Note, that we write our Z in the notation of Fröhner which incorporates the time-reversal phase convention correction
of Lane and Thomas (and others) [2] from Blatt and Biedenharn’s original definition in [5].
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III. A COUPLING SCHEME MORE CONVENIENT FOR HAUSER-FESHBACH WORK

Because the optical model does not care about the spin of the target or residual nuclei, the resulting transmission

coefficients (and by extension the S- and T-matrices) do not depend on ~IA or ~IB . Therefore, for Hauser-Feshbach and

optical model work, it is more convenient to couple using ~ja = ~Ix + ~̀
a:∣∣∣a; IxMx; IAMA;~k

〉
=
∑
jaMa

∑
`ama

∑
JM

i`aY ∗`ama
(k̂a) (IxMx`ama|jaMa) (IAMAjaMa|JM) |a; `ama; jaMa; JM〉

(20)

Again, a = {α,Ea, Ix, IA, Tx, T zx, TA, T zA} captures all the other quantum numbers that are unimportant for the
angular momentum coupling work.

To use the results in eq. (15) and (16) for this alternate coupling scheme, we must switch bases from that in (13)
to that in (20). Start by equating equations (13) and (20) and applying the spherical harmonic addition theorem:∑

SaMa

∑
JM

(IxMxIAMA|SaMa) (`amaSaMa|JM) |a; `ama;SaMa; JM〉 = (21)

∑
jaM ′

a

∑
JM

(IxMx`ama|jaM ′a) (IAMAjaM
′
a|JM) |a; `ama; jaM

′
a; JM〉

Summing over the z-axis projection of the target and projectile spin, Mx,MA, and applying the Clebsch-Gordan
coefficient unitarity condition (Edmonds eq. (3.5.4) [6]), we find∑

JM

(`amaSaMa|JM) |a; `ama;SaMa; JM〉 = (22)∑
MxMA

∑
jaM ′

a

∑
JM

(IxMxIAMA|SaMa) (IxMx`ama|jaM ′a) (IAMAjaM
′
a|JM) |a; `ama; jaM

′
a; JM〉

The fact that Mx +MA +ma = M coupled with eq. (2.5.6) of Edmonds gives us

|a; `ama;SaMa; JM〉 = (23)∑
MxMA

∑
jaM ′

a

(`amaSaMa|JM) (IxMxIAMA|SaMa) (IxMx`ama|jaM ′a) (IAMAjaM
′
a|JM) |a; `ama; jaM

′
a; JM〉

The coefficient decoupling that we are doing here is not new (however painful it is). In 1961, Wigner discussed this
recoupling and defined the 6-j symbol to handle it. Edmonds restates Wigner’s definition in his eq. (6.1.5). Using
this definition, we can rewrite (23) as

|a; `ama;SaMa; JM〉

=
∑
jaM ′

a

[(2Sa + 1)(2ja + 1)]
1/2

(−1)−(IA+Ix+`a+J)

{
IA Ix Sa
`a J ja

}
|a; `ama; jaM

′
a; JM〉 (24)

=
∑
jaM ′

a

[(2Sa + 1)(2ja + 1)]
1/2W (IAIxJ`a;Saja) |a; `ama; jaM

′
a; JM〉 (25)

Note, all we have done here is an unitary transformation of our basis states as [(2Sa + 1)(2ja + 1)]
1/2W (IAIxJ`a;Saja)

is an orthogonal matrix (see Edmonds eq. (6.2.10)) [6].
Now that we can switch bases from a spin channel coupled basis to a more convenient one, let us rewrite eq. (17):

T J{a;`aSa}→{b;`bSb} = 〈b; `bmb;SbMb; JM |T (Ea) |a; `ama ≡ 0;SaMa ≡M ; JM〉

=
∑
jaM ′

a

∑
jbM ′

b

√
(2Sa + 1)(2ja + 1)(2Sb + 1)(2jb + 1)(−1)−(IA+Ix+`a+IB+Iy+`b+2J) (26)

×
{
IA Ix Sa
`a J ja

}{
IB Iy Sb
`b J jb

}
〈b; `bmb; jbM

′
b; JM |T (Ea) |a; `ama ≡ 0; jaM

′
a; JM〉
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Again, the Hamiltonian is rotationally invariant so the matrix elements in eq. (27) are independent M , so we arrive
at the relation between the T-matrices in the different coupling schemes:

T J{a;`aSa}→{b;`bSb} =
∑
jajb

√
(2Sa + 1)(2ja + 1)(2Sb + 1)(2jb + 1)(−1)−(IA+Ix+`a+IB+Iy+`b+2J) (27)

×
{
IA Ix Sa
`a J ja

}{
IB Iy Sb
`b J jb

}
T J{a;`aja}→{b;`bjb}

There is no extra factor of (2jb + 1) from the sum over Mb because M = Mb +mb and mb is fixed (but irrelevant) in
the spin-coupled matrix element on the left side of the equation. Similarly, the sum over M ′b is trivial and results in
no extra factors.

Now we put eq. (27) into eq. (16):

BL(b, a;Ea) =
∑
Sa,Sb

(−)Sb−Sa

4

∑
J`a`bjajb

∑
J′`′a`

′
bj

′
aj

′
b

Z̄(`aJ`
′
aJ
′;SaL)Z̄(`bJ`

′
bJ
′;SbL)

× (−1)−(`a+`b+`
′
a+`

′
b)(2Sa + 1)(2Sb + 1)

√
(2ja + 1)(2j′a + 1)(2jb + 1)(2j′b + 1)

×
{
IA Ix Sa
`a J ja

}{
IB Iy Sb
`b J jb

}{
IA Ix Sa
`′a J ′ j′a

}{
IB Iy Sb
`′b J ′ j′b

}
(28)

×<
[
T J∗{a;`aja}→{b;`bjb}T

J′

{a;`′aj′a}→{b;`′bj
′
b}

]
.

We can simplify this by performing the sums over Sa and Sb. To see this, consider the parts of this expression
containing only Sa:∑

Sa

(−1)−Sa(2Sa + 1)Z̄(`aJ`
′
aJ
′;SaL)

{
IA Ix Sa
`a J ja

}{
IA Ix Sa
`′a J ′ j′a

}
=
∑
Sa

(−1)−(Sa+`a+`
′
a+J+J

′)(2Sa + 1)
√

(2`a + 1)(2`′a + 1)(2J + 1)(2J ′ + 1) (`a0`′a0|L0) (29)

×
{
`a J Sa
J ′ `′a L

}{
IA Ix Sa
`a J ja

}{
IA Ix Sa
`′a J ′ j′a

}
To simplify this, we would like to take advantage of Edmonds eq. (6.2.12) [6]. We can simplify the sum over Sb as we
will see, but to simplify the sum over Sa, we need to change the sign in the phase factor in front. We now show that
the following result is true:

IA+Ix∑
Sa=|IA−Ix|

(−1)−Saf(Sa) = (−1)−2(IA+Ix)
IA+Ix∑

Sa=|IA−Ix|

(−1)Saf(Sa) (30)

When IA and Ix sum to an integer, then Sa is also an integer, so the expression is clearly true. So we need only
consider the case when IA and Ix sum to a half integer. Write Sa = (IA + Ix) − n where n ∈ {0, 1, 2, ..., nmax} and
nmax = (IA + Ix)− |IA − Ix|. Then

IA+Ix∑
Sa=|IA−Ix|

(−1)−Saf(Sa) =

0∑
n=nmax

(−1)n−(IA+Ix)f(Sa)

=

0∑
n=nmax

(−1)−n−(IA+Ix)f(Sa)

=

IA+Ix∑
Sa=|IA−Ix|

(−1)Sa−2(IA+Ix)f(Sa).

So eq. (30) is proved.
With this change, both the sums over Sa and Sb may be handled the same way. Judicious a) permutation of columns

and b) flipping the upper and lower components in pairs of columns in the 6-j symbols allows us to use Edmonds
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eq. (6.2.12) [6]. Furthermore, using the fact that `a and `b are integers means we can ignore factors of (−1)2`a and
(−1)2`b so we arrive at∑

Sa

(−1)Sa(2Sa + 1)Z̄(`aJ`
′
aJ
′;SaL)

{
IA Ix Sa
`a J ja

}{
IA Ix Sa
`′a J ′ j′a

}
= (−1)−(2J+2J′+L+Ix+IA+ja+j

′
a)
√

(2`a + 1)(2`′a + 1)(2J + 1)(2J ′ + 1) (`a0`′a0|L0)

{
j′a `′a Ix
`a ja L

}{
L j′a ja
IA J J ′

}
(31)

=

√
(2J + 1)(2J ′ + 1)

(2ja + 1)(2j′a + 1)
(−1)−(2J+2J′+L+Ix+IA−`a−`′a)

{
ja J IA
J ′ j′a L

}
Z(`aja`

′
aj
′
a; IxL) (32)

Inserting eq. (32) into eq. (28) (including the additional (−1)−2(IA+Ix) phase factor), we arrive at our main result

BL(b, a;Ea) =
1

4

∑
J`a`bjajb

∑
J′`′a`

′
bj

′
aj

′
b

Z̄(`aja`
′
aj
′
a; IxL)Z̄(`bjb`

′
bj
′
b; IyL)<

[
T J∗{a;`aja}→{b;`bjb}T

J′

{a;`′aj′a}→{b;`′bj
′
b}

]
× (−1)−IA−Ix+IB+Iy (2J + 1)(2J ′ + 1)

{
ja J IA
J ′ j′a L

}{
jb J IB
J ′ j′b L

}
(33)

The lower line in the previous equation is really two orthogonal matrices (see Edmonds eq. (6.2.10) [6]) and are a pair
of unitary transforms that recouple the angular momenta in the first line up to the total angular momenta J and J ′.

IV. ANGULAR DISTRIBUTIONS FOR COMPOUND NUCLEAR REACTIONS IN `j COUPLING
SCHEME

It is straightforward to repeat the algebraic steps from eqs. (6–8) on the quantity

<
(
T J∗{a;`aja}→{b;`bjb}T

J′

{a;`′aja}→{b;`′bjb}

)
, arriving at

<
(
T J∗{a;`aja}→{b;`bjb}T

J′

{a;`′aj′a}→{b;`′bj
′
b}

)
= <

(
T J∗{a;`aja}→{b;`bjb} T

J′
{a;`′aj′a}→{b;`′bj

′
b} + T

J∗(fl)
{a;`aja}→{b;`bjb}T

J′(fl)
{a;`′aj′a}→{b;`′bj

′
b}

)
(34)

The first term on the right hand side of the previous equation is the direct part in our alternative coupling scheme.
The righthand term is the compound nuclear part. We make the usual compound nuclear reaction approximation
and assume that the components with different angular quantum numbers are uncorrelated giving

T
J∗(fl)
{a;`aja}→{b;`bjb}T

J′(fl)
{a;`′aj′a}→{b;`′bj

′
b}

=
∣∣∣T J(fl){a;`aja}→{b;`bjb}

∣∣∣2δJJ ′δ`a`′aδ`b`′b (35)

So the BL coefficient for compound reactions is

BL(b, a;Ea) =
1

4

∑
J`a`bjajb

Z̄(`aja`aja; IxL)Z̄(`bjb`bjb; IyL)
∣∣∣T J(fl){a;`aja}→{b;`bjb}

∣∣∣2
× (−1)−IA−Ix+IB+Iy (2J + 1)2

{
ja J IA
J ja L

}{
jb J IB
J jb L

}
(36)

=
1

4

∑
J`a`bjajb

Z̄(`aja`aja; IxL)Z̄(`bjb`bjb; IyL)
∣∣∣T J(fl){a;`aja}→{b;`bjb}

∣∣∣2
× (−1)−IA−Ix+IB+Iy+2(ja+jb)(2J + 1)2W (jaJjaJ ; IAL)W (jbJjbJ ; IBL) (37)

In the Moldauer approach to the width fluctuation cor-
rection [7], the average square T-matrix in terms of trans-

mission coefficients T Jc`cjc is

∣∣∣T J(fl){a;`aja}→{b;`bjb}

∣∣∣2 = (const)
T Ja`ajaT

J
b`bjb∑

c T
J
c`cjc

W J
ab
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FIG. 1. Sample plots of of the outgoing neutron angular
distribution from the 56Fe(n,el) reaction. Each panel is a
different beam energy and the beam energy increases from
top to bottom. The two theoretical curves are that calculated
directly in EMPIRE using the formulation in this note (green)
and that calculated by ECIS (red).

(38)

where the matrix W J
ab

encodes the width fluctuation cor-

rection ([7, 9]). Here the unimaginatively named con-
stant (const) is

(const) =
(
(µaµb)(kakb)(2π/~)4

)−1
(39)

In the HRTW approach, the average square T-matrix is

∣∣∣T J(fl){a;`aja}→{b;`bjb}

∣∣∣2
= (const)

V Ja`ajaV
J
b`bjb∑

c V
J
c`cjc

[
1 + δa`aja,b`bjb(Wa`aja − 1)

]
(40)

where Va`aja and Wa`aja must be computed from T Ja`aja
using the procedures outline in [8–10]. The comparison
to the full triple integral result, such as carried out in Ref.
[9] is not done here since the triple integral approach to
the width fluctuation correction is not used in practical
evaluations.

In Fig. 1, we compare results for the compound angu-
lar distribution computed with ECIS and EMPIRE, with
width fluctuations turned off. Many of these energies are
in the 56Fe resonance region so the comparison to exper-
iment is difficult. Nevertheless, agreement between our
approach and the results from ECIS are quite good, with
only minor differences likely attributable to the difference
in level density prescriptions in the two codes.

As an additional check, I will try to (re)compute the
compound nuclear cross section by taking the L = 0 mo-
ment of BL, using the Moldauer approach to the width
fluctuation correction. Note,

{
j J I
J j 0

}
= (−1)j+J+I [(2j + 1)(2J + 1)]

−1/2

(41)

so

Z̄(`j`j; I0) =(2`+ 1)(2j + 1)

× (−1)2`+2j(−1)`+j+I

× [(2`+ 1)(2j + 1)]
−1/2

× (−1)`(2`+ 1)−1/2

=
√

(2j + 1)(−1)I−j (42)

and

BL=0(b, a;Ea)

=
1

4

∑
J`a`bjajb

(2J + 1)
∣∣∣T J(fl){a;`aja}→{b;`bjb}

∣∣∣2 (43)

× (−1)2(J+IB+Iy)

=
1

4

∑
J`a`bjajb

(2J + 1)
∣∣∣T J(fl){a;`aja}→{b;`bjb}

∣∣∣2 (44)
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Now

σa→b =

∫
dΩb

dσa→b
dΩb

=4π
(const)−1

k2a

1

2Ix + 1

1

2IA + 1

×BL=0(b, a;Ea)

=π
(const)−1

k2a

1

2Ix + 1

1

2IA + 1

×
∑

J`a`bjajb

(2J + 1)
∣∣∣T J(fl){a;`aja}→{b;`bjb}

∣∣∣2
=
π

k2a

1

2Ix + 1

1

2IA + 1

×
∑

J`a`bjajb

(2J + 1)
T Ja`ajaT

J
b`bjb∑

c T
J
c`cjc

W J
ab

≡
∑
J

σabs,Ja

∑
`bjb

T J
b`bjb∑

c T
J
c`cjc

W J
ab

(45)

Here we have identified the absorption cross section

σabs,Ja as

σabs,Ja =
π

k2a

(2J + 1)

(2Ix + 1)(2IA + 1)
T Ja`aja (46)

V. COMMENTS ON CHARGED PARTICLE IN–
AND OUT– CHANNELS

In the presence of incoming or outgoing charged par-
ticle states, the above work is changed in a few ways.
First, all of the above must strictly speaking be redone
using the S-matrix rather than the T-matrix because the
asymptotic states in the presence of Coulomb interac-
tions must be Coulomb wave functions. This does not
affect the details of the angular momentum couplings, so
the compound nuclear cross sections for charged parti-
cles as given above are correct once formulated in terms
of transmission coefficients (provided that the Coulomb
force is used in the calculation of the transmission co-
efficients). Second, for incoming charged particles, one
must account for the pure Coulomb scattering amplitude.
Schematically, we have

Atot = Acoul +Anucl (47)

so

dσ

dΩ
∝ |Atot|2 = |Acoul|2+2< (AcoulAnucl)+|Anucl|2

(48)

The individual terms in this expression have different
spin and parity combinations and the first (Coulomb)
term is purely analytic. The details are worked out in
Lane and Thomas [2].

VI. CONCLUSION

We got it working for the most part.
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