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In a linear non-scaling FFAG the large natural chromaticity of the machine results in 

a betatron tune that varies by several integers over the momentum range. Orbit 

correction is complicated by the consequent variation of the phase advance between 

lattice elements. Here we investigate how the correction of multiple closed orbit 

harmonics allows correction of both the COD and the accelerated orbit distortion over 

the momentum range. 
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I. INTRODUCTION 

The linear non-scaling fixed field alternating gradient accelerator (linear NS-FFAG) 

is proposed as a candidate for muon acceleration in facilities such as a neutrino 

factory [1] or muon collider [2], as a compact device for hadron therapy [3] and as an 

electron driver for an electron-ion collider [4]. Very rapid acceleration, a requirement 

in the case of short-lived muons, is enabled both by the fact that the fields of the 

magnets are fixed and by the use of the serpentine channel for acceleration [5]. The 

absence of non-linearity in the magnet field profile results in the large dynamic 

aperture required to accommodate a muon beam. The linear NS-FFAG has in recent 

years been under investigation using EMMA (Electron Model for Many 

Applications), a prototype built and commissioned at Daresbury Laboratory, UK. 

Acceleration in the serpentine channel [6] and a large dynamic aperture [7] has been 

demonstrated in this machine. Here we develop methods to correct the closed and 

accelerated orbit in this novel type of accelerator and report on EMMA experimental 

results.  

 

Since EMMA consists of linear elements only, the betatron tune declines with 

momentum according to the natural chromaticity of the machine.  Over the 10-20 

MeV/c momentum range of the machine the ring tune passes through several integers 

in the horizontal and vertical planes. In general, correction of the closed orbit 

distortion (COD) at a single momentum does not ensure that the orbit is corrected at 

other momenta where the tune is significantly different. Instead, to correct both the 

COD and the accelerated orbit, the magnet-lattice-error harmonics associated with 

each integer tune over the momentum range should be corrected.  
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The paper begins by describing the experimental setup in EMMA (Sec II).  The 

theory of harmonic correction of the COD and as an alternative, a modified least 

squares correction, is described in section III. Harmonic correction of the accelerated 

orbit distortion is investigated by simulation in section IV. The methodology used to 

measure the closed orbit and orbit response matrix is described (section V) before the 

experimental results are presented (section VI). Some limitations of the correction 

method and the implications of the findings of this paper are discussed in section VII.  

   

FIG. 1. Schematic of an EMMA cell showing a D (blue) and F (red) quadrupole 

doublet, RF cavity and BPMs (dark grey). The blue and red arrows indicate the paths 

taken by the low and high momentum electrons, respectively. 

II.  EXPERIMENTAL SETUP 

EMMA is a ring consisting of 42 quadrupole doublet pairs each separated by a 21cm 

long drift. The quadrupoles are displaced horizontally to supply the bend angle 

required. As can be seen in figure 1, the elements in each cell are co-linear with a 

2π/42 rotation between neighbouring cells at the entrance of the D quadrupole 
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magnet.  Diagnostics include two turn-by-turn four-button Beam Position Monitors 

(BPMs) in most cells; there is a BPM in the short drift between each quadrupole 

doublet and two at either end of alternate long drifts (apart from in the injection and 

extraction regions). Each quadrupole is mounted on a slider that allows the magnet’s 

horizontal position to be changed remotely. This feature was included in the first 

instance to allow various lattice configurations to be selected but also to facilitate 

orbit correction in the horizontal plane. There are 16 vertical correctors distributed 

around the ring. Apart from in the injection and extraction region, these vertical 

correctors are located in every other cell. More details about the experimental setup 

can be found in ref. 8.  

 

Since there is, by design, a horizontal excursion (~20 mm) with momentum in 

EMMA, the BPMs must be able to cope with a bunch that moves across a significant 

fraction of its 48 mm aperture. A 3D electrostatic model of the BPM allows voltage 

ratios to be mapped to coordinates across the aperture range [9].  

 

For ease of operation, the so-called “equivalent momentum” approach was adopted 

when scanning the fixed momentum range. This entailed scaling the quadrupole 

gradient (while keeping the same D/F gradient ratio) rather than changing the 

momentum of the injected beam [6]. The lattice parameters will be the same whether 

the real or equivalent momentum is varied, so long as the magnets are far from 

saturation. However, the time of flight must be scaled by the ratio of beam velocity 

difference between the real and equivalent momenta. 
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FIG. 2. Simulated harmonic 6 content of the horizontal COD showing the Fourier 

phase (top) and amplitude (middle) in the case where the closed orbit measurements 

are ideal (black circles) and where errors are included (red stars). Imperfect 

measurements are introduced by including BPM offsets (σ = 0.7 mm) and an 

additional statistical error (σ = 0.2 mm). The former is fixed for a given BPM while 

the latter varies with every data point taken. The phase and amplitude for each Fourier 

component z is given by tan-1(Im(z)/Re(z)) and |z|, respectively. Note, the Fourier 

amplitude is proportional to . The lower figure shows the simulated 
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horizontal (black) and vertical (blue) tunes with the triangles indicating the integers. 

The example assumes magnet misalignments with standard deviation 0.1 mm. These 

parameters were chosen to approximate those in the real machine.  

III.  CORRECTION OF COD ACROSS MULTIPLE MOMENTA 

Expressed in terms of Fourier harmonics, the closed orbit distortion yco resulting from 

all error harmonics may be written 

  (0) 

where q is the tune, k is the harmonic number, β is the betatron function and the 

phase advance. The Fourier excitation strength fk, is driven by the dipole errors ΔB 

distributed around the ring and is given by 

  (0) 

where Bρ is the magnetic rigidity. Note, since the Fourier function is Hermitian it 

follows . From Eqns. 1 and 2, and neglecting the variation in β, it can be seen 

that the amplitude of any harmonic component k of the COD decreases with |q2/(q2-

k2)|. It follows that the COD at any particular momentum is dominated by the 

harmonics associated with the nearby integer tunes. Furthermore, it is clear that 

correcting for a single harmonic should in principle allow us to eliminate that 

component of the COD while having no effect on the other harmonics – provided that 

the character of the normalised lattice errors ΔB/B are independent of radius across 

the relatively large aperture. A set of harmonic corrections may be added allowing the 

COD across the momentum range to be corrected.  
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Note in a FFAG, the synchrotron concept of a “reference” or “golden” orbit which 

serves as the goal for orbit correction is not so practical; it is difficult to establish the 

ideal closed orbit at any momentum by simulation with any confidence, given the 

complexities of modeling off-axis trajectories in quadrupole doublet magnets with 

overlapping fringe fields. Instead, the goal is to minimise the variation in closed orbit 

measured at BPMs distributed around the ring about the mean at each momentum.  

Since we make use of BPMs located at the same position in each of the 42 identical 

cells, they should all record the same position at each momentum if there is no orbit 

distortion. 

 

In the harmonic correction scheme the set of corrections follows the pattern of the 

harmonics closest to the betatron tune. To correct the k-th harmonic, a set of NC 

dipole correctors are powered to achieve angular kicks: 

   (0) 

where  are the betatron amplitude and phase at the corrector locations [10] and 

the coefficients ak, bk are chosen to match the phase and amplitude of the harmonic in 

question. Since a linear NS-FFAG has a high degree of symmetry, it is reasonable to 

assume, in the first instance, a uniform phase advance per cell and a constant value of 

βj at the corrector locations. 
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FIG. 3. Example of correction of multiple harmonics of the COD in the horizontal 

plane. From left to right, the eight peaks are associated with integer resonances 13-6. 

At each momentum, the closed orbit is found at simulated BPMs located in between 

each quadrupole doublet in the presence of magnet misalignments with standard 

deviation 0.1 mm. Since the 42 BPMs are symmetrically located in each cell, the 

closed orbit is identical in the case of an ideal lattice. Imperfect measurements are 

introduced by including BPM offsets (σ = 0.7 mm) and an additional statistical error 

(σ = 0.2 mm). The former is fixed for a given BPM while the latter varies with every 

data point taken.  These parameters were chosen to approximate those in the real 

machine.  The RMS of the resulting COD is then calculated at each momentum. The 

black circles and red triangles show this quantity before and after correction, 

respectively. Harmonics 6-13 are corrected, following the method described in the 

algorithm, since they are within the tune range of EMMA. The correction is applied 

by moving the D quadrupoles horizontally with finite error (10 microns). The 

momenta at which the horizontal tune is integer and half-integer is shown by the 

vertical dashed and dotted lines, respectively. 

 

In that case Eqn. 3 may be rewritten as follows 
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   (0) 

The orbit response matrix A, calculated by measuring the change in the closed orbit 

when each corrector in turn is excited, can be used to choose ak and bk coefficients in 

Eqn. 4 to cancel the phase and amplitude of the COD harmonic in question.  

 

In the case where the closed orbit measurements are ideal, it is possible to obtain the 

harmonic content of any integer k from the FFT of measurements made at any 

momentum1 no matter how different it is in term of tune q. However, as the amplitude 

of any harmonic component k decreases with an increasing difference in tune, the 

effect of closed orbit measurement errors increasingly reduce the accuracy of the 

harmonic content calculation. In particular, BPM offsets may introduce spurious 

harmonics that mask the phase and amplitude of the underlying error sources. For that 

reason, the harmonic content should determined by measuring the closed orbit where 

the tune q as is close to k possible. Figure 2 shows how the accuracy of the harmonic 

content calculation is affected by the magnitude of the BPM offsets.  

 

The correction may be applied for a few iterations to make further improvements in 

the COD. At each step, as the COD is reduced, the effect of the BPM errors, which 

remain fixed in magnitude, on the harmonic content calculation at a particular 

momentum increases. Contrarily, a lower COD allows injection at momenta closer to 

the integer tune and so a more accurate determination of harmonic content.  

 

1 Provided the character of errors ΔB/B does not vary across the aperture 
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For clarity, the correction scheme described above may be encapsulated in the 

following statements 

1) Any and call closed orbits (CO) at any and all momenta are equally good 

reference orbits. 

2) If ΔB/B does not vary substantially across the aperture, then the entire 

harmonic content of errors (i.e. the set fk) may be extracted from the COD 

measured at any momentum – if measurements are ideal (i.e. error free). 

3) However, measurements are not ideal; and the inferred harmonic content may 

be corrupted. 

4) The relative impact of measurement errors is least when the COD is large. 

5) The COD is large when the ring tune is close to a particular harmonic. 

6) The complement to 5 is that the COD at a particular momentum is dominated 

by the field error harmonic(s) close to the tune for that momentum. 

7) The COD at any and all momenta is reduced by implementing a correction of 

any and each harmonic excitation component fk (provided 2 above is true). 

8) Therefore the recipe for orbit correction is to extract and correct harmonic 

excitations fk according to the procedure 

a. Set the momentum such that the ring tune q is close to harmonic k, but 

COD is still well within the aperture. 

b. Measure COD, extract fk. 

c. Correct fk. 

d. Iterate steps a. through c. with q closer to k. 

e. Repeat steps a. through d. for each integer k within the range of q. 
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The COD is simulated using the Zgoubi tracking code [11]. The model of EMMA in 

the code is set up to approximately reproduce the measured tunes. In the example 

shown in Fig. 3, the COD is corrected following the above algorithm. To replicate 

experimental uncertainties the simulation includes fixed BPM offsets and statistical 

errors. The harmonic content associated with measurements near integer tunes 6 – 13 

is used to correct the COD in that interval.  As is done experimentally in the 

horizontal plane, the correction involved moving all 42 D quadrupoles horizontally 

(each with a finite error). The figure shows that the COD is reduced over the 

momentum range of EMMA.  

 

A weighted least-squares approach may also be considered to correct the COD at 

multiple momenta. In the standard single momentum case, m COD measurements are 

corrected using n correctors making use of the mxn response matrix A. In this case we 

extend the correction to cover np momenta by solving for np*m COD measurements, 

yext, using an extended np*mxn response matrix Aext. The least squares correction 

seeks to minimize the norm of the extended dataset |yext - Aextθ|. The amplitude of the 

correction can be adjusted by adding a nxn diagonal matrix to A and padding the 

measurement vector yco with n zeroes. The diagonal elements can be adjusted to 

weight the amplitude of the resulting correction.  

 

By selecting momenta in between different integer tunes, the correction settings will 

be dominated by the associated harmonics. However, in this case the correction 

settings will also contain harmonics beyond the EMMA tune range caused by the 

finite accuracy of the closed orbit measurements. These spurious harmonics have a 
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minimal impact on the COD but may increase the amplitude of the applied correction 

unnecessarily.  

 

IV. HARMONIC CORRECTION OF ACCELERATED ORBIT 

DISTORTION 

The accelerated bunch receives a series of one or more transverse kicks that add 

coherently when a bunch passes through integer tunes excited by the corresponding 

harmonic of the error sources. In the case of a bunch with small amplitude initially 

(small in comparison with the effect of the kick), the magnitude of distortion after 

crossing is independent of phase. On the other hand, for a bunch with finite 

amplitude, the distortion may increase or decrease depending on its phase relative to 

the harmonic. Thus, the amplitude of an accelerated bunch will increase or decrease 

as it passes through multiple integer tunes.  

 

  

FIG. 4: Simulated distortion of the horizontal accelerated orbit versus tune in the case 

of where the magnets are misaligned randomly (black points) and in the case where 

just the ninth harmonic of the same random misalignment is retained (red line).  The 

random misalignments have 50 micron standard deviation. A single particle is 
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tracked, starting on the closed orbit at the initial momentum, and its coordinate found 

throughout acceleration at simulated BPMs located in between each quadrupole 

doublet. The distortion is then calculated by subtracting from the coordinate the 

moving window average <x>, with the width of the window determined by the 

betatron oscillation wavelength. In this case the simulated BPM readings are assumed 

to be ideal. Acceleration is from 10.5-20.5 MeV/c in the serpentine channel with 1.1 

MV RF per turn. 

 

When acceleration is sufficiently fast, the effect of the individual coherent kicks 

might not be apparent in the measurements. In Fig. 4 a single particle is injected with 

zero amplitude at 10.5 MeV/c and accelerated in the serpentine channel to 20.5 

MeV/c. In the figure it is clear that when the error pattern is excited with a single 

harmonic, the accelerated distortion increases when the momentum, and hence 

betatron tune, of the particle crosses the associated integer. When all harmonics of the 

error sources are included, the resulting distortion is made up of a series of such 

coherent excitations as the particle passes through each integer tune in turn. However 

the effect of each individual coherent excitation is not apparent in the distortion 

pattern. 
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FIG. 5: Simulated accelerated orbit distortion versus tune before (black dots) and after 

(red line) COD correction of harmonics 6 – 13. The error sources and correction are 

as described for Fig. 3.  

 

The harmonic correction settings used to correct the closed orbit distortion will also, 

in principle, reduce the coherent excitations of the accelerated orbit. To illustrate this, 

we apply the same error sources and correction settings used to correct the closed 

orbit in Fig. 3. As before, acceleration is from 10.5-20.5 MeV/c in the serpentine 

channel with 1.1 MV RF per turn. In figure 5 it is evident that the COD correction 

reduces the distortion over the momentum range.  

 

It should be noted that correcting some subset of the harmonics does not always result 

in a reduction of the amplitude of the coherent excitation over the corresponding 

momentum range. As described above, the effect of an integer tune crossing may be 

to reduce the distortion; correcting the corresponding harmonic will remove this 

reduction. 
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V. MEASUREMENT OF CLOSED ORBIT AND RESPONSE 

MATRIX 

 

FIG. 6: Example turn-by-turn horizontal coordinate measured by a single BPM. The 

closed orbit is calculated by doing a linear fit to the coordinates (dashed line).  

Coordinates more than 3σ from the mean are ignored by the fit (open circles). 

 

The turn-by-turn coordinates obtained from the BPMs measure, for each turn, the 

centre of mass of the bunch. Owing to the momentum spread of the beam and the 

lattice chromaticity, the betatron oscillations decohere, typically in a few tens of turns. 

Once the signal has fully decohered, the signal from the BPM in subsequent turns 

measures the closed orbit rather than the betatron oscillation.  

 

In order to obtain a mean closed orbit at each BPM, a linear fit is made to the turn-by-

turn coordinates. The fit excludes data from the first turn, which tends to be an outlier 

because of kicker jitter [8]. For turns after decoherence, coordinates whose difference 

from the fitted line is greater than 3 standard deviations are removed. The linear fit is 

then repeated and any outliers again removed. This procedure proceeds iteratively 

until no outliers remain. The non-zero slope of the linear fit, as seen in figure 6, may 
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be the result of energy loss caused by beam loading [12]. The closed orbit is assumed 

to be the value of the linear fit at the first turn.  

 

FIG. 7: Measurement of the response matrix generated by moving the D quadrupole 

horizontally in cell 8. The response is the difference of two closed orbits, measured 

with the quadrupole at +/- 0.5 mm, divided by the magnet shift. The error bars are 

obtained by adding in quadrature the standard deviation of the shot-by-shot variation 

of the two closed orbits. The dashed line shows the fit after optimising the parameters 

in Eqn. 5. In this case the momentum is 18 MeV/c and the optimisation finds the tune 

is 6.52, the product of the betatron functions is 0.08 m2 and the phase difference 

between a D quadrupole and its neighbouring BPM is 0.16 rad.  

 

The response matrix is measured by applying a positive and negative transverse kick 

at each corrector in turn. The difference between the two closed orbit measurements 

yields the response. The magnitude of the kick should be large enough that the 

resulting closed orbit response is not dominated by measurement error, yet not so 

large as to lead to increased beam loss.  It was determined experimentally that a 

reasonable response was obtained by horizontally moving the quadrupoles by ±0.5 

mm and applying ±0.2 A to the vertical correctors, resulting in a ~3mrad and ~1mrad 

kick in the horizontal and vertical planes, respectively.  
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To reduce the effect of errors and missing data in the response matrix measurement it 

is desirable to fit an idealised response function to the data. The closed orbit at the i-th 

BPM yi owing to a kick θj  at the j-th corrector is given by 

   (0) 

where  

   (0) 

where q is the total betatron tune, βi, βj is the betatron function and ψi, ψj the phase 

advance at the BPM and corrector, respectively.  Given the high degree of symmetry 

in EMMA it is reasonable to assume the betatron functions and the phase advance 

between corrector and BPM does not vary from cell to cell.  

 

We best fit the yi at all BPMs to 3 parameters: the product , the phase 

difference  and the tune q. In order to make the optimisation robust, a two-

step procedure is employed. In the first step, the total tune is varied in small steps 

(0.01) over the expected integer range while the other parameters are fixed; the tune 

that results in the best fit to the data is found. In the second step, using the tune found 

in the first step as a starting point, all parameters in equation 6 are optimised using a 

downhill simplex algorithm. In both steps, the data to be fitted is weighted according 

to the standard deviation of closed orbit measurements. Note from equation 6 that this 

method finds the product of the betatron functions at BPM and corrector rather than 

the individual values. An example measured response to a single corrector and the fit 

found by the algorithm is shown in Fig. 7. By repeating this calculation at several 
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momenta and fitting the parameters by interpolating functions, the response matrix 

can be evaluated at all intervening momenta. 

 

FIG. 8: Horizontal closed orbit correction at 14.3 (top), 16.1 (middle) and 18.0 MeV/c 

(bottom) where the horizontal tunes are approximately 8.4, 7.5 and 6.5, respectively.  

The closed orbit distortion measured before (black triangles) and after correction (red 
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filled circles) is shown along with the predicted correction based on the response 

matrix (blue open circles). Error bars include the standard deviation of the shot-by-

shot variation of the closed orbit as well as the BPM offset based on survey 

measurements.  

VI. EXPERIMENTAL RESULTS 

A set of closed orbit measurements was made across the momentum range in EMMA. 

A substantial closed orbit distortion was found (~10mm peak-to-trough) in both 

transverse planes. This is much greater than what would be expected from the 

surveyed magnet misalignments (~0.1 mm peak-to-trough). The septum stray field 

has been identified as the major source in the horizontal plane, while in the vertical 

plane it has not yet been found.  

 

The response matrix was measured at various momenta as described in Sec. V. A 

single least squares correction (as described in section III) involving three equivalent 

momenta (14.3 MeV/c, 16.1 MeV/c, 18 MeV/c), between consecutive pairs of integer 

tunes, was then applied in both transverse planes and the resulting closed orbits 

measured. The result of the correction at these three momenta is shown in Fig. 8. The 

correction achieved is broadly in agreement with the response matrix predictions. 

Maintaining the same correction settings, the COD was then measured over the entire 

momentum range. This enables to confirm the prediction (section III) that COD 

correction at several particular momenta leads to compensation across a broad 

momentum range. In Fig. 9, the effect of the correction over the momentum range is 

presented – the COD is reduced and measurements can be made at momenta closer to 

integer tunes than before (for example in the vicinity of 17 MeV/c where the 
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horizontal tune is close to 7). It can also be seen in both Figures 8 and 9 that the 

predicted COD after correction is in broad agreement with the measurements. 

 

Although harmonic correction as discussed in the previous section was not directly 

applied in the experiment, the correction found by least squares has the effect of 

reducing the dominant harmonics.  In Fig. 10 the reduction in harmonics measured at 

a single momentum is shown. In Fig. 11 it can be seen that the amplitude of the 

harmonic 7 component of the COD is reduced across the momentum range. As in the 

simulation result (Fig. 2) the π step change in phase on either side of the integer tune 

is apparent. The increased scatter in the harmonic phase data is consistent with the 

relatively increased effect of fixed measurement errors (e.g. BPM offsets) when the 

underlying COD is reduced.  
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FIG. 9: RMS of COD. over the momentum range in EMMA measured before (black 

triangles) and after (red filled circles) correction in the horizontal (top panel) and 

vertical (bottom panel) planes. At each momentum, the closed orbit is found at BPMs 

symmetrically located in between each quadrupole doublet and the RMS of the 

resulting COD calculated. The predicted COD is also shown (blue open circles). The 

momenta at which the tune is integer and half-integer, in the corresponding transverse 

plane, is shown by the vertical dashed and dotted lines, respectively. These values are 

obtained by fitting the tunes measured at various points over the momentum range by 

an interpolating function. 

 

 

 22 



  

 

Figure 10: Harmonics of the horizontal COD measured at 14.3 MeV/c before (black 

triangles) and after (red dots) correction in the both transverse planes.
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FIG. 11: Harmonic 7 phase (top panel) and amplitude (bottom panel) before (black 

triangles) and after (red dots) correction obtained from horizontal COD 

measurements.  The vertical line shows the approximate location of integer tune 7. 

 

VII. DISCUSSION 

In practice, deviations from an ideal linear NS-FFAG may mean that individual 

harmonics cannot be corrected in isolation. Random errors in the quadrupole gradient, 

non-linearity in the magnet field profile (e.g. sextupole) and the finite accuracy of the 

magnet displacement will result in the excitation of undesired harmonics. The 

measured response of the closed orbit to the corrector excitation should, in principle, 

allow errors in the quadrupole gradient to be ascertained (as in the LOCO technique 

[13]). This information could then be used to reduce the COD further. 

 

The number of installed corrector NC limits the highest harmonic that can be corrected 

to NC/2. In EMMA, this is an issue in the vertical plane where Nc/2 is lower than the 

highest integer tune in the momentum range.  During 10-20 MeV/c acceleration the 

beam is coherently excited as it passes through the uncorrectable high integer tunes. 

However, we propose that by setting the appropriate amplitude and phase at harmonic 
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NC/2 to cancel the distortion, while at the same time correcting lower harmonics as 

before, the uncorrected distortion can be restricted to the high tune/low momentum 

region. This will be a topic of future study. 

 

Synchro-betatron effects caused by non-adiabatic acceleration also contribute to the 

distortion. In EMMA, there is a cavity in every other cell in the ring, apart from in the 

injection and extraction cells. These “missing cavities” enhance synchro-beta 

distortion compared to the case where the arrangement is symmetric. Simulations 

indicate that in EMMA the distortion due to this source is relatively small. 

 

Despite these limitations, the experimental results demonstrate that correcting the 

principle harmonics, by way of a least squares correction at multiple momenta, 

succeeds in reducing the COD over the momentum range. It is of interest to test 

whether the correction also reduces the accelerated orbit distortion as suggested by 

simulation. For the case of a particle performing synchrotron oscillations, 

measurement of the orbit distortion is complicated by the decoherence of betatron 

oscillations  (made more rapid by coupling from the longitudinal motion). However, it 

can be seen that, apart from in the region of integer tunes, the equilibrium orbit 

distortion is similar to the COD and is also reduced by the correction [14].  For the 

case of the serpentine channel, acceleration may be completed before the beam 

decoheres; hence it may be possible to observe a reduction in distortion as in Fig 5. 

Experimental verification of correction in this regime has not been carried out to date. 

 

The lessons learned from correcting the orbit distortion in EMMA should inform 

future designs of linear non-scaling FFAGs. One major source of orbit distortion, the 
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septum stray field, should be addressed when considering how to carry out injection 

and extraction. A method to determine the BPM offsets (for example using beam-

based methods) would reduce the uncertainty in the closed orbit measurements.  

 

More fundamentally, knowing how well orbit distortion can be controlled allows an 

assessment of the feasibility of other proposed non-scaling lattices. As described in 

section III, the crossing of integer tunes largely drives the accelerated orbit distortion 

in linear non-scaling FFAGs.  Theoretical predictions [15, 16] and experiment [17] 

show that the distortion due to resonance crossing grows with the square root of the 

crossing speed.  It follows that in situations where slow acceleration is inevitable, for 

example in the acceleration of protons (for example in hadron therapy [3]), the 

amplification factor is large. Previous studies suggested that the orbit distortion could 

be reduced by at most 50% [18]. However, by using harmonic correction, there is 

nothing in principle that limits the correction that can be achieved. In practice, the 

correction will be limited by the accuracy of measurements of the harmonic 

components of the COD and the finite accuracy with which the correction can be 

applied.  These practical limits are specific to the technology employed in each 

accelerator and should be studied for each case individually. 
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