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We investigate the properties of charmonia in strong magnetic fields by using QCD sum rules.
We show how to implement the mixing effects between ηc and J/ψ on the basis of field-theoretical
approaches, and then show that the sum rules are saturated by the mixing effects with phenomeno-
logically determined parameters. Consequently, we find that the mixing effects are the dominant
contribution to the mass shifts of the static charmonia in strong magnetic fields.

Ever since the suppression of J/ψ yields due to the
color screening effect was proposed as a signature of the
formation of the quark-gluon plasma in ultrarelativistic
heavy-ion collisions [1, 2], much attention has been paid
to the properties of heavy quarkonia under extreme en-
vironments. Meanwhile, extremely strong electric and
magnetic fields induced by injection of heavy-ions have
been discussed recently [3–5], because they could be new
ingredients affecting experimental observables at the Rel-
ativistic Heavy Ion Collider and the Large Hadron Col-
lider. A renewed interest arises in the study of the heavy-
quark (HQ) systems and their spectral densities in the
strong fields [6, 7] as some of these states will likely form
in an earlier time after the impact [8] where the fields
still persist with large strengths.

The QCD sum rule (QCDSR) has been extensively
used for investigating the spectral density of the hadrons
on the basis of the fundamental quark and gluon degrees
of freedom [9–11]. Remarkably, the QCD sum rules for
the HQ systems predicted the small mass splitting be-
tween ηc and J/ψ of the order of 100 MeV prior to the ex-
perimental confirmation of the ηc mass [9, 12, 13]. While
the properties of charmonium systems in the vacuum are
well described by the Cornell potential model [14], the
advantage of using the QCDSR is that effects of external
environments on the correlation functions can be easily
taken into account from the modifications in the operator
product expansion (OPE) through moderate changes in
values of quark and gluon condensates. Moreover, for HQ
systems, the modification involves only the dimension-4
operators that are related to the energy momentum ten-
sor whose matrix elements are well estimated both at fi-
nite temperature from lattice QCD [15–19] and at normal
nuclear matter density from measurements in deep in-
elastic scatterings [20]. Recently, it has been shown that
even the temperature dependence of the gauge invariant
strength of the charmonium wave function at the origin

obtained from the QCDSR supports that from solving
the Schrödinger equation with a finite temperature free
energy potential from lattice QCD [21].
In this Letter, we apply the QCDSR to investigate the

mass spectra of the lowest-lying bound states coupled
to pseudoscalar (PS) and vector HQ currents in exter-
nal magnetic fields (B-fields); that is, the ηc and J/ψ
at rest. We put a special emphasis on how to take into
account mixing effects in the spectral density, the so-
called phenomenological side, and show how to distin-
guish nonperturbative mass modifications from hadronic
mixing effects between ηc and J/ψ. Since mixing effects
naturally arise in external environments, as have been
known for a long time in various systems such as hydro-
gen atoms and positronium in external electromagnetic
fields, our results can be generalized to various systems
accompanied by mixing effects. We note that our treat-
ment of the mixing effects should be applied to the very
recent QCDSR analysis on B mesons in strong B-fields
[22], since the B mesons are mixed with B∗ mesons. Our
work demonstrates how to implement mixing effects in
the QCDSR method, in particular for the HQ systems
where both the OPE and the phenomenological side are
well under control, and thus provides a general guideline
to include mixing effects in approaches based on correla-
tion functions.
We first begin by looking at the general results of

the mixing effect using effective Lagrangians. A three-
point vertex which can describe a radiative decay mode,
J/ψ → ηc + γ, induces mass shifts caused by the mixing
effects. The effective vertex can be constructed from the
Lorentz invariance and the parity and charge-conjugation
symmetries as

LγPV
=
g
PV

m0

eF̃ ext
µν (∂µP )V ν , (1)

where e > 0 is the unit electric charge, g
PV

the dimen-
sionless phenomenological coupling constant and m0 =

BNL-107167-2014-JA
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1
2
(mP +mV) with mP and mV being the vacuum masses

of the ηc and J/ψ, respectively. We find that effective
couplings with F ext

µν , such as F ext
µν (∂µS)V ν with a scalar

field S, vanish for charmonia at rest in B-fields due to
vanishing components, ∂i = 0 and F ext

0i = −F ext
i0 =

0, and also that the static ηc is mixed only with the
longitudinalJ/ψ that is polarized in parallel to the exter-
nal B-fields, as F̃ ext

03 (∂0P )V 3. The coupling constant g
PV

can be fitted to the measured radiative decay width as

g
PV

=
√

12πe−2p−3
f m2

0 Γexp[J/ψ → γηc] = 2.095 with

pf = (m2
V
− m2

P
)/(2mV) being the magnitude of the

center-of-mass momentum in the final state.
Introducing a constant B-field in Eq. (1), we solve the

two-state problem for the ηc and the longitudinal J/ψ
using the classical Euler-Lagrange equation of Leff =
Lkin + LγPV

. We obtain the physical mass eigenstates
in the presence of the mixing effects

m2
J/ψ,ηc

=
1

2

(

M2
++

γ2

m2
0

±

√

M4
− +

2γ2M2
+

m2
0

+
γ4

m4
0

)

, (2)

where M2
+ = m2

P
+m2

V
,M2

− = m2
V
−m2

P
and γ = g

PV
eB.

Expanding Eq. (2) up to the second order in γ and the
leading order in 1

2
(mV −mP)/m0 , we find

m2
J/ψ,ηc

= m2
V,P ±

γ2

M2
−

, (3)

with eigenvectors given by

|ηc)B =

(

1−
1

2

γ2

M4
−

)

|P )− i
γ

M2
−

|V ),

|J/ψ)B = −i
γ

M2
−

|P ) +

(

1−
1

2

γ2

M4
−

)

|V ). (4)

These results show a decrease and an increase in the
masses of the ηc and the longitudinal J/ψ, respectively.
Such a level repulsion has also been found on the ba-
sis of a potential-model approach [7]. However, further
mass shifts could be caused by B-fields acting on the
charmed meson loops such as a DD̄ loop and/or inter-
actions among charmonia and two photons (B-fields) as
higher-order corrections to the effective Lagrangian (1).
To examine the effects of external B-fields on the char-

monia using a nonperturbative QCD formalism, we turn
to the QCDSR. We consider the current correlators in
external B-fields for the PS current JP = ic̄γ5c and the
vector current JV

µ = c̄γµc defined by

ΠJ (q) = i

∫

d4x eiq·x〈0|T [J(x)J(0)]|0〉 , (5)

where superscripts J = P and V denote the PS and
the vector currents, respectively. We investigate a spin-
projected scalar correlator for the longitudinal J/ψ,
Π̃V = (ǫµΠV

µνǫ
ν)/q2, specified by a polarization vec-

tor ǫµ = (0, 0, 0, 1) in a B-field oriented in the third

spatial direction. The PS correlator is normalized as
Π̃P = ΠP/q2. We will construct the sum rules for Π̃J(q2).
The first step involves calculating the OPE in the pres-

ence of an external B-field. The OPE for the HQ sys-
tems is based on the expansion in the deep Euclidean
region Q2 = −q2 ≫ 0, where |〈Op〉| ≪ 4m2 + Q2, with
the left-hand side being the typical scale of the vacuum
and/or the external field. Thus, as long as the B-field
satisfies the similar condition |eB| ≪ 4m2 + Q2, which
is valid for a region |eB| . 10m2

π expected up to Large
Hadron Collider energies [4], we can include the effect as
an additional OPE term to the conventional terms in the
ordinary vacuum [10, 13]

Π̃OPE(Q
2) = Π̃vac

OPE(Q
2) + Π̃ext

OPE(Q
2). (6)

The correlator Π̃ext
OPE can be precisely evaluated to the

second order of eB by utilizing the corresponding coeffi-
cients for the dimension-4 gluon condensates [10, 13, 20]
with an appropriate correction of the color matrix fac-
tor ta, i.e., Tr[tata]〈GaµνG

a
αβ〉 → Tr[1lcolor]〈FµνFαβ〉. We

show the Borel-transformed Wilson coefficients for static
charmonia with qi = 0 in Eqs. (15) and (16), and full
accounts of the calculation in a subsequent paper [23].
In the extremely strong field limit |eB| ≫ 4m2 + Q2,
one has to go beyond the ordinary perturbation theory
and perform resummation over the all-order dimension
operators as recently investigated by one of the present
authors in the vector channel [24].
Another possible effect of external B-fields on the

correlator is a modification of the gluon condensate
〈GaµνGaµν〉. Recently, both a lattice QCD simulation [25]
and an analytic study [26] pointed out that the gluon
condensate increases with an increasing B-field at zero
temperature in analogy to the growth of the quark con-
densate in magnetic fields known as magnetic catalysis

[27, 28]. However, we do not take this into account in the
present work, because this effect should be small without
direct couplings between gluons and external B-fields, as
estimated to be a change less than 10 % [25].
The current correlator (5) is connected to the physical

spectral density ρ(s) = ImΠ̃(s)/π in the deep Euclidean
region Q2 through the dispersion relation

Π̃J (Q2) =

∫

ds
ρ(s)

s+Q2
+ (subtraction). (7)

In the QCDSR, the phenomenological side for ρ(s) is of-
ten modeled by the ground-state pole and the continuum.
The sum rule is known to be insensitive to the structure
of ρ(s) in the high-energy perturbative regime after the
Borel transformation of the dispersion relation. However,
if there is a mixing with a state close to the ground state,
it should be carefully included in the phenomenological
side. Below, we show how to accomplish this in the case
of the ηc; the same calculation can be straightforwardly
applied to the longitudinal J/ψ.
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We start by considering the low energy states that in-
terpolate the currents in the correlation function (5) with
the PS current. Since the J/ψ mixes into the PS corre-
lator in the second order of eB, we have

Π̃P

ph(q
2) =

|〈0|J5|ηc〉|
2

q2 −m2
ηc

+
|〈0|J5|J/ψ〉|2

q2 −m2
J/ψ

, (8)

where the matrix element is calculated in the presence of
the external B-field as follows. Let us first look at the
residue of the second term. The current can either couple
directly to the J/ψ or first couple to the ηc which will be
subsequently converted to the J/ψ through the hadronic
coupling given in Eq. (1). These can be written as

|〈0|J5|J/ψ〉|2 = fdir +
f0|〈P |J/ψ〉|

2

(q2 −m2
P
)2

. (9)

with fdir = |〈V |J5(q)|0〉|2 and f0 = |〈P |J5(q)|0〉|2. The
effective vertex (1) leads to |〈P |J/ψ〉|2 = γ2. Using
the Bethe-Salpeter amplitudes [29] with the Coulombic
wave function of the S-wave quarkonia, we compute the
direct-coupling through a triangle diagram [23] as fdir =
a40Q

2
c/64(eB)2f0 with the electromagnetic charge of a

charm quark Qc = 2/3 and the Bohr radius a0 = 0.811
GeV−1, chosen to fit the root-mean-square radius of the
J/ψ obtained from the Cornell potential model. After
inserting Eq. (9) to Eq. (8), we find that the second term
in Eq. (8) can now be decomposed as

f0γ
2

(q2 −m2
P
)2(q2 −m2

V
)

=
f0γ

2

M4
−

[

1

q2 −m2
V

−
1

q2 −m2
P

−
M2

−

(q2 −m2
P
)2

]

, (10)

where the J/ψ mass was replaced by the vacuum mass
mV within the second-order correction in eB to the corre-
lator (8). The strength of the vector single pole is found
to be much larger than the direct-coupling strength,
fdir/(f0γ

2/M4
−) ∼ 0.0003, so that one can safely neglect

the contributions of the direct couplings, including cross
diagrams in which a J/ψ converted from a ηc is directly
coupled to the PS current.
One should note that the phenomenological side dis-

cussed above can be obtained by first converting the cur-
rent to the psedoscalar meson with the strength f0 and
then using the second-order perturbation theory shown
in Eqs. (3) and (4), in which the correlator is given by

Π2nd(q
2) = f0

[

|(P |ηc)B |
2

q2 −m2
ηc

+
|(P |J/ψ)B|

2

q2 −m2
J/ψ

]

. (11)

All three of the terms in Eq. (10) are reproduced by ex-
panding the rhs in Eq. (11) up to the second order in eB.
Interpretation of the terms in Eq. (10) are as follows. The
first term corresponds to production of an on-shell J/ψ
from the PS current via an off-shell ηc. The second term

with a negative sign is needed to preserve the normal-
ization, because the coupling of ηc to the current must
be reduced to balance the occurrence of the coupling to
J/ψ. This is confirmed in Eq. (11), where these two
terms come from overlaps between the properly normal-
ized unperturbated and perturbated states obtained as
|(P |ηc)B|

2 ∼ 1 − (γ/M2
−)

2 and |(P |J/ψ)B|
2 ∼ (γ/M2

−)
2.

The third term has a double pole on the ηc mass with a
factor M2

−, corresponding to a virtual transition to J/ψ
state between on-shell ηc states, which is nothing but
the origin of the mass shift due to the mixing effect. In
Eq. (11), this term comes from an expansion with re-
spect to the mass correction shown in Eq. (3). Clearly,
if one includes this mixing term in the phenomenolog-
ical spectral function, its effect is subtracted out from
the total mass shift obtained from the QCDSR, and thus
can be separated from the residual effects of B-fields, not
described in the hadronic level.
Now we evaluate the mass spectra of ηc and J/ψ us-

ing the standard Borel transformation method. With a
transformation parameter M2 called the Borel mass, the
dispersion relation (7) is transformed to

MJ(M2) =

∫ ∞

0

ds e−s/M
2

ImΠ̃J(s), (12)

so that the sum rule can be expressed as (ν = 4m2
c/M

2)

MOPE(ν) = Mpole
ph (ν) +Mcont(ν) +Mext

ph (ν). (13)

A transform of the OPE side (6) is then obtained as

MOPE(ν) =πe
−νA(ν)[1 + αs(ν)a(ν)

+ b(ν)(φb + φextb ) + cext(ν)φextc ]. (14)

While explicit forms of the coefficients A(ν), a(ν) and
b(ν) are given in Refs. [17, 30], the Lorentz-breaking part
cext(ν) is obtained for static charmonia (qi = 0) to be

cP,ext(ν) =
4

3
b(ν)−

16

3
ν
G
(

− 1
2
, 1
2
, ν
)

G
(

1
2
, 3
2
, ν
) , (15)

cV,ext(ν) =
2ν

3G
(

1
2
, 5
2
, ν
)

[

6G

(

1

2
,
5

2
, ν

)

+6G

(

−
1

2
,
5

2
, ν

)

−G

(

−
3

2
,
5

2
, ν

)]

, (16)

with G(a, b, ν) being the Whittaker function. Opera-
tor expectation values φextb and φextc account for mag-
nitudes of the external B-fields, and are defined by

φextb = 4
3

Q2

c

16m4
c
(eB)2 and φextc = −

Q2

c

16m4
c
(eB)2.

As for the phenomenological side on the rhs of Eq. (13),

Mpole
ph and Mcont have the same form as in the con-

ventional QCDSR analyses. While Mpole
ph corresponds

to the transform of the first term in Eq. (8) given by

Mpole
ph = f0e

−m2

ηc
/M2

, Mcont stands for a perturbative
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FIG. 1. Mass of the charmonium states from the QCD sum
rules (closed symbols with solid lines) and the effective Lan-
grangian (3) (dashed lines) as functions of eB.

continuum contribution θ(s − s0)ImΠ̃(s) up to O(αs)
with s0 being the effective threshold parameter. The B-
dependent part Mext

ph considered above is, by inserting
the correlator (8) into Eq. (12), obtained as

Mext,ηc
ph (M2) = f0(eB)2

[

Q2
c

a40
64
e−

m2
V

M2 (17)

+
g2
PV

M4
−

(

e−
m2

V

M2 − e−
m2

P

M2 +
M2

−

M2
e−

m2
P

M2

) ]

.

The corresponding formula for J/ψ can be obtained
by interchanging mP and mV. Following from a sign
flip in M2

−, we find that the double-pole contribution in
the vector channel has the opposite sign to that of the
last term in Eq. (17). Inserting these results into the
Borel-transformed dispersion relation (13), the mass of
the lowest-lying pole can be evaluated from an equation,

m2
ηc(M

2) = −
∂

∂(1/M2)
ln[MOPE−Mcont

ph −Mext
ph ]. (18)

We examine a stability of m2 with respect to the M2-
dependence, called the Borel curve, within a range of
M2 which satisfies two competing conditions, that is, less
than 30% contribution from the dimension-4 opeators to
the OPE and more than 70% lowest-pole dominance in
the dispersion integral (12), specifying the Borel window.
The effective threshold parameter s0 is so tuned to make
the Borel curve the least sensitive to M2. Finally, we
average the value of the mass over the Borel window and
calculate the variance to estimate a systematic error. See
Ref. [31] for the details of the systematic framework.
With αs(8m

2
c) = 0.24, mc(p

2 = −2m2
c) = 1.26 GeV

and 〈αs

π G
2〉 = (0.35 GeV)4, the vacuum mass of J/ψ

and ηc are found to be 3.092 GeV and 3.025 GeV, respec-
tively. To compare results from the QCDSR with those
from the effective Lagrangian (1), we insert these vac-
uum masses into mP,V in Eq. (3). The effective coupling
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FIG. 2. Mass of ηc from the QCD sum rule with different
implementations of the phenomenological side.

g
PV

obtained above is used in both approaches. Figure
1 displays the results from the QCDSR with the phe-
nomenological side shown on the rhs in Eq. (13), but
without including the double-pole term responsible for
the mixing effect in Mext

ph [see Eq. (17)]. Remarkably,
one finds perfect agreement between the two approaches
in eB < 0.1GeV2, followed by a slight deviation as eB is
further increased. The agreement indicates that the B-
dependent terms in Eq. (17) are essential ingredients to
obtain physically meaningful results in QCDSR, where
the level repulsion is understood as a consequence of
the different signs of the single-pole terms in Eq. (17),

e−m
2

V
/M2

< e−m
2

P
/M2

, owing to the vacuum mass differ-
ence.

In order to understand the role of each term in Mext
ph ,

we perform the QCDSR analyses in two cases employing
the phenomenological sides without Mext

ph and with all

the terms of Mext
ph including the double-pole term. In

Fig. 2, we show results for the ηc in these two cases with
open symbols. Without any B-induced poles, one obtains
the open squares (“OPE only”), which show somewhat
heavier mass than the final results obtained by including
the single poles (filled squares in Figs. 1 and 2). Since the
conventional one-peak spectral ansatz cannot account for
the occurrence of the J/ψ pole induced by B-fields, the
resultant ηc mass is an average of ηc and J/ψ, giving
the artificially heavier ηc mass. On the other hand, if
one includes all the terms of Mext

ph , the ηc mass becomes
almost constant, despite the fact that the magnetic field
contribution is included in the OPE. This means that the
double-pole term on the phenomenological side in Eq.
(17) almost exclusively accounts for the B-dependence
on the OPE side. The residual mass shift, albeit tiny
for the ηc, is an effect that cannot be explained by the
mixing effect.

In conclusion, we have discussed effects of strong mag-
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netic fields on the mass spectra of ηc and J/ψ with an
elaborate treatment of the mixing effects on the phe-
nomenological side in the QCDSR. We found that the
mass shifts are dominated by the level repulsion coming
from the mixing effect in precise agreement with those
from the effective Lagrangian approach. While the resid-
ual mass shift is found to be small for the charmonia,
our analysis indicates that, to obtain the correct results,
one has to take into account effects of the magnetic fields
on the phenomenological side as well as the OPE side.
Therefore, a similar approach should be adopted when
investigating light mesons by QCDSR or even any other
systems involving the spectral density by means of the
correlation functions in constant magnetic fields.
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