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We introduce an integrability-based method enabling the study of semiconductor quantum dot
models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-
dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo
simulations we characterize the combined effect of both types of interactions on the decoherence
of the electron spin, for external fields ranging from low to high values. We show that for spin
echo simulations the hyperfine interaction is the dominant source of decoherence at short times for
low fields, and competes with the dipole-dipole interactions at longer times. On the contrary, at
high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime
an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed
for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is
destroyed for longer times by the mean-field treatment of the dipolar interactions.

PACS numbers: 03.65.Yz, 72.25.Rb, 02.30.Ik

I. INTRODUCTION

One of the great challenges in quantum dot experi-
ments is to gain control over decoherence effects due to
the presence of nuclear spins in the underlying substrate.
Motivated by these experimental difficulties, numerous
theoretical studies have been dedicated to explaining the
influence of different aspects of the nuclear environment
of a quantum dot [1–27]. Among many decoherence
sources, spin-orbit coupling, the hyperfine contact inter-
action and dipolar interactions between the bath nuclear
spins have been widely studied. The simultaneous treat-
ment of all these sources of decoherence is presently be-
yond reach. In this paper, we focus on the competition
between the two latter interactions, neglecting any deco-
herence due to spin-orbit coupling due to its suppressed
influence at low temperatures for localized electrons.

The hyperfine interaction between the electron spin
and nuclear spins is an unavoidable source of decoher-
ence in for instance GaAs semiconductor quantum dots.
It is considered to be the dominant source of dephasing
at low external fields due to the dynamics of the nuclear
spins through the non-secular coupling with the electron
spin [7]. However, at high fields the direct flip-flop pro-
cesses between electron and nuclear spins are energeti-
cally unfavorable due to the energy mismatch between
the large Zeeman splitting of the electron spin and the
negligible Zeeman splitting of the nuclear spins [28] (the
g-factor differs by 3 orders of magnitude). Only higher
order processes of the hyperfine interaction such as elec-
tron spin mediated flip flopping will give rise to bath dy-
namics, which cannot be reversed with for instance spin
echo techniques. Thus, at high fields it is not the hyper-
fine interaction but the dipolar interactions between the
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nuclear spins that is considered to be the relevant physi-
cal process for dephasing [5]. Our primary goal is to take
these interactions into account simultaneously and study
their mutual competition.

FIG. 1. A schematic picture of a semiconductor quantum dot
with an electron central spin confined in a harmonic trap. The
interactions between the closest nuclear spins and the central
spin are described by the full hyperfine interaction including
flip-flop terms. For the nuclear spins with hyperfine couplings
smaller than or equal to 1/e, the dipolar interactions among
themselves is the dominant contribution to the dynamics. The
dynamics of these spins is treated with a mean-field approxi-
mation with an effective time-dependent magnetic field in the
z-direction.

The interaction between the nuclear spins and the elec-
tron spin, which from now on we will call the central
spin, is modeled with the full hyperfine contact interac-
tion for those nuclear spins with the strongest coupling.
For the more weakly coupled nuclear spins, we consider
the dipolar interactions to be the dominant source of dy-
namics. Following Dobrovitski et. al [29], we model the
effect of these interactions on the central spin with a
time-correlated Markovian Gaussian stochastic field in
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the z-direction, also known as an Ornstein-Uhlenbeck
(OU) process. Although it is merely a phenomological
mean-field approximation, it has been shown that it is
in quantitative agreement with simulations incorporat-
ing the actual dipolar couplings for the nuclear spins
[29]. More sophisticated methods incorporating micro-
scopic derivations have been used in [5, 9, 10].

Our secondary goal is to introduce a new integrability-
based method applicable to systems which are close to
an integrable model, but whose integrability is broken
due to the presence of a perturbation. Possible exam-
ples are transverse magnetic fields, or additional inter-
action terms between two particles. The restrictions on
the form of these integrability breaking terms will be-
come clearer in the methods section. The perturbation
may furthermore be time-dependent so that driven sys-
tems can be studied without additional difficulties. In
this paper, as a proof of principle, we consider perturbing
the integrable Central spin model with a time-dependent
stochastic field on the central spin, representing the effect
of dipolar interactions in a mean-field spin bath. How-
ever, it is important to note that the method described
hereafter can be used for any model close to a spin-1/2
integrable model.

The idea is based on the fact that integrable mod-
els in general describe strongly correlated systems and
are exactly solvable through the (Algebraic) Bethe
Ansatz. The corresponding eigenstates, so-called Bethe
states, contain all the information about these correla-
tions, forming a natural starting point when studying
integrability-broken models. Integrability thus enables
us to treat these interactions more easily as part of a
bigger set of interactions. The usefulness of integrabil-
ity for non-integrable models was already demonstrated
in previous works by Delfino et al. [30], Konik et. al
[31, 32] and Caux et. al [33], and we here wish to extend
the settings in which such methods can be used.

The paper is organized as follows: in section II the de-
tails of the model describing the combination of the two
different types of interactions are clarified. In section
III, the theoretical approach used to perform the simu-
lations is explained. In the results section the effect of
the combination of the hyperfine and dipolar interaction
is studied with spin echo (SE) and free induction decay
(FID) simulations. Finally, in the last section we discuss
and summarize our results.

II. PERTURBING THE INTEGRABLE
CENTRAL SPIN MODEL

The hyperfine contact interaction between the central
spin and a finite number N of surrounding nuclear spins
is described by the integrable central spin model [34],
with the Hamiltonian given by

Hint = BzS
z
0 +

N∑

j=1

Aj ~S0 · ~Ij , (1)

where Sα0 and Iαj are the spin operators of the central spin
and the nuclear spins respectively. All spins are taken to
be spin-1/2 particles, and the coupling constants Aj can
be chosen freely without destroying the integrability. The
influence of the external magnetic field on the nuclear
spins is neglected due to the aforementioned 3 orders of
magnitude difference between the g-factor of the electron
spin and the nuclear spins.

We consider a coupling distribution corresponding to
a Gaussian envelope wave function of a localized electron
in 2D [6]

ψ(rk) = ψ(0) exp

(
−1

2

(
rk
l0

)2
)
, (2)

with Bohr radius l0, and the integer k labeling the num-
ber of nuclear spins within radius rk of the central spin.
The hyperfine coupling constants are related to the en-
velope of the wave function through [3]

Ak =
A

n0
|ψ(rk)|2, (3)

where n0 is the density of nuclei in the substrate. Given
that k ∝ r2

k in 2D, the hyperfine coupling constants yield

Ak =
A

N
exp

[
− (k − 1)

N0

]
, with k = 1, ..., N (4)

where N0 is the number of nuclear spins within the Bohr
radius l0, N is the number of nuclear spins we describe
with the hyperfine interaction, and A is the hyperfine
coupling strength. From here on we will use energy units
corresponding to A/N = 1 and set N0 equal to N , such
that all N nuclear spins are coupled to the central spin
with coupling constants between 1 and 1/e . These bath
spins are depicted in Fig. 1 as the spins closest to the
central spin. Because of the strong coupling with the
central spin, the dipole-dipole interactions among these
bath spins are considered to be of minor importance as
compared to the hyperfine interaction, and as such are
neglected.

The effect of the dynamics of the more weakly cou-
pled bath spins, indicated in Fig. 1 as the smallest nu-
clear spins, is described using a mean-field treatment. It
is modeled as an OU process [29], with time-dependent
correlations 〈B(t)B(0)〉 = b2 exp(−Rt), where the disper-
sion b is determined by the fluctuations of the Overhauser
field of the bath spins involved [35]

b =

√√√√
∞∑

k=N+1

A2
k = e−1

√
1

1− e−2/N
. (5)

Here, R denotes the correlation decay rate of the dy-
namics of the mean-field spin bath, and quantifies the
strength of the dipolar interactions within the bath. The
speed of the bath is determined by comparing R to the
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dispersion b. The mean value of the fluctuating field
B(t) is set to zero unless indicated otherwise, mimick-
ing a spin bath with on average zero polarization. We
furthermore only take into account the effect on the z-
component of the central spin and neglect the effects on
its transverse components. The mean-field treatment of
the dipole-dipole interactions thus yields an extra term
V (t) = B(t)Sz0 in addition to the Hamiltonian given in
eq. (1).

The effective fluctuating field causes the Zeeman split-
ting of the central spin to diffuse over time, an effect also
called spectral diffusion. Except for dipole-dipole inter-
actions within the nuclear spin bath, other processes can
also lie at the origin of spectral diffusion, such as small
fluctuations of the external magnetic field in experiments.
Nevertheless, we only focus on the dipole-dipole interac-
tion within the bath.

Let us now briefly comment on some of the approxi-
mations that the model is based on. First, we neglect
the effect of the back-action of the central spin on the
mean-field bath fluctuations. Although this is correct to
first order, it would be interesting to see how our results
are influenced by using a more sophisticated model for
dipolar interactions. However, this is beyond the scope
of this paper.

Second, we neglect the direct interaction between the
strongly coupled nuclear spins and the mean-field bath.
Nevertheless, the influence of the mean-field bath is indi-
rectly felt by the closer nuclear spins through the hyper-
fine interaction with the central spin. As will be discussed
in the methods section, we will use the eigenstates of the
hyperfine Hamiltonian as the computational basis. This
has the advantage of taking into account the interaction
with the central spin without any approximation, thus
also representing the indirect influence of the fluctuating
field on the nearby nuclear spins in a non-perturbative
way.

In the next section we will describe the method used
in order to study both the hyperfine interaction as well
as the effective fluctuating magnetic field.

III. METHODS

Let us consider a system consisting of an integrable
part and a perturbation which breaks integrability

H = Hint + V, (6)

thus preventing us from solving for the eigenstates us-
ing the Bethe Ansatz. For these types of situations the
method described below provides a way to profit from
the fact that the model is close to an integrable one. It
is based on the idea of using the eigenstates of the inte-
grable part of the model Hint as basis states for the time
evolution operator of the integrability-broken Hamilto-
nian. By splitting up the time evolution operator into
small time steps we can time evolve a non-integrable sys-
tem using the integrable eigenstates.

In this paper we consider the Gaudin central spin
model of eq. (1) to be our integrable model. Its eigen-
states are of the form

|{λ1, λ2, ..., λM}〉 =

M∏

k=1

S+(λk) |⇓; ↓↓ ... ↓〉 , (7)

with generalized raising operators

S+(λ) =
S+

0

λ− ε0
+

N∑

j=1

I+
j

λ− εj
. (8)

The rapidities {λi} that determine the eigenstates can
be obtained by solving the Richardson-Gaudin equations
[36, 37]

−2β −
N+1∑

j=1

1

λi − εj
+ 2

∑

k 6=i

1

λi − λk
= 0, (9)

with β = −Bz/2 and 1/(ε0 − εj) = Aj . The correspond-
ing eigenenergies are given by

E ({λi}) = β +
1

2

∑

j 6=0

1

ε0 − εj
+

M∑

l=1

1

λl − ε0
. (10)

As explained in section II we perturb the Gaudin central
spin model with a time-dependent field on the central
spin V (t) = B(t)Sz0 . The next step is to express the time
evolution operator in the integrable basis.

A. Approximating the time-evolution operator

In order to time evolve an initial state under the influ-
ence of the integrabilty-broken Hamiltonian, we split up
the time-evolution operator into small time steps, and
approximate it with a second-order Suzuki-Trotter de-
compostion [38]. For the case of a time-dependent per-
turbation this yields

U(t, t+ dt) ≈ U (2) = e−i
dt
2 Hinte−idtV (t+ dt

2 )e−i
dt
2 Hint ,

(11)

with an error of the order dt3. Using the eigenstates
|ψi〉 of the spin-1/2 integrable model with corresponding
eigenvalues Ei as the computational basis, eq. (11) yields

〈ψi|U (2)|ψj〉 = e−i
dt
2 (Ei+Ej) 〈ψi|e−idtV (t+ dt

2 )|ψj〉 , (12)

where U (2) depends on the time step dt and in the case
of a time-dependent perturbation also on time t.

The expression for the exponent of an operator such as
the one present in eq. (12) is in general not known from
the Algebraic Bethe Ansatz. However, in the following
subsection, we show how to obtain the required matrix
elements in the basis of Bethe states.
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B. Obtaining unknown local operators in the
Bethe basis

Suppose we have a spin-1/2 integrable model with N

particles, and consider a local operator Ôi acting on some
particle i. Just like any wave function of a spin-1/2
model, a Bethe wave function can be written as

|ψ〉M =

|ψ+〉M︷ ︸︸ ︷∑

k

c+k |↑〉i ⊗ |φk〉M−1 +

|ψ−〉M︷ ︸︸ ︷∑

k

c−k |↓〉i ⊗ |φk〉M ,

(13)

where {|φk〉} is a complete orthonormal set of states of

the spin-1/2 particles unaffected by Ôi. Furthermore, c+k
and c−k are coefficients such that

∑
k |c

+
k |2 + |c−k |2 = 1.

The index M labels the sector of spin flips contained
in |φk〉M , such that 〈φk|φl〉M M ′ = δk,lδM,M ′ . Using eq.

(13), the nonzero matrix elements of Ôi can then be writ-
ten as

〈ψ|Ôi|ψ̃〉M M = 〈ψ+|Ôi|ψ̃+〉M M + 〈ψ−|Ôi|ψ̃−〉M M

〈ψ|Ôi|ψ̃〉M M−1 = 〈ψ+|Ôi|ψ̃−〉M M−1

〈ψ|Ôi|ψ̃〉M−1 M = 〈ψ−|Ôi|ψ̃+〉M−1 M (14)

where the third case is trivially related to the second case
for a hermitian operator Ô. All other matrix elements are
zero due to a mismatch in excitation sectors M and M ′

of the states describing the unaffected spins.
Using the explicit form of eq. (13) for |ψ+〉 and |ψ−〉

we obtain

〈ψ+|Ôi|ψ̃+〉M M =
∑

m,l

(c+m)∗c̃+l 〈φm|φl〉M−1 M−1 〈↑ |Ôi| ↑〉

=Ô↑↑i
∑

l

(c+l )∗c̃+l

=Ô↑↑i 〈ψ|S+
i S
−
i |ψ̃〉M M (15)

〈ψ−|Ôi|ψ̃−〉M M =Ô↓↓i
∑

l

(c−l )∗c̃−l

=Ô↓↓i 〈ψ|S−i S
+
i |ψ̃〉M M (16)

〈ψ+|Ôi|ψ̃−〉M M−1 =Ô↑↓i
∑

l

(c+l )∗c̃−l

=Ô↑↓i 〈ψ|S+
i |ψ̃〉M M−1 , (17)

where, Ô↑↑i , Ô
↑↓
i , ... are the matrix elements of Ôi in the

basis of a single spin-1/2 particle. Furthermore, note that
the operators S+

i S
−
i and S−i S

+
i are equivalent to 1

2 + Szi
and 1

2 − S
z
i respectively in spin-1/2 models. the matrix

elements of these operators, as well as the S+
i operator,

can be obtained through the application of Slavnov’s for-
mula for the scalar product between on-shell and off-shell
Bethe states [39], and are represented by single determi-
nants [40]. Thus, every matrix element of a local operator

Ôi acting on one of the spin-1/2 particles of an integrable
model, can be computed in a numerically efficient way.

A straightforward generalization can be made for the
case of an operator that acts on two spin-1/2 particles,
such as an interaction term. The restrictions on the op-
erator Ô are such that it can only affect a few number of
particles, since the decomposition for Bethe states other-
wise becomes computationally too demanding.

The decompositions of eqs. (15,16,17) can be used to
express the exponent of the perturbation V in eq. (12)
in the Bethe basis, useful for cases where analytical ex-
pressions are not available. This gives us access to the
second-order Suzuki-Trotter approximation of the time-
evolution operator for a finite timestep dt. In this paper
we use timesteps of typical size dt = 0.005, leading to an
error of 6.25 × 10−4 for a time evolution up to t = 25
(5000 timesteps). Furthermore, the timestep is always
in the regime dt� 1/R, such it is smaller than the time
scale for the change in the time-dependent magnetic field.

We thus study the time evolution of a non-integrable
model, using an integrable set of states as the computa-
tional basis. The method just described is only based on
the general form of the wavefunction of a spin-1/2 model,
and the assumption that part of the Hamiltonian is inte-
grable. It can thus be applied to all spin-1/2 integrable
models with a local perturbation, such as Hamiltonians
close to the integrable XXZ chain.

C. Comparison to other numerical methods

Before proceeding to the main results of our paper, we
briefly want to shed light on the comparison of the pro-
posed method with other well-known related numerical
schemes for the time evolution of an initial state.

When comparing with exact diagonalization (ED),
the obvious difference is that our method can handle
time-dependent perturbations, something that is not
the case for ED. Other numerical schemes such as the
Lánczos procedure ([41]), which is an exact diagonal-
ization method based on the Krylov space expansion of
the time-evolution operator for short time steps dt, are
also capable of handling such perturbations. However,
two important differences should be highlighted. First,
the error introduced in our representation of the time-
evolution operator in the Bethe eigenstates resides solely
in the Suzuki-Trotter approximation we use to split up
the evolution under the action of the integrable part and
the perturbation. The use of the Bethe eigenbasis allows
us to represent the exponent of the integrable part of the
Hamiltonian in a trivial way, and we have shown that
we can compute the matrix elements of the exponent of
the perturbation in an exact manner. The estimate of the
order of magnitude of the error introduced by the Suzuki-
Trotter approximation is thus well controlled, and only
determined by the time step dt. On the contrary, for the
case of Krylov space based methods, the error not only
depends on the time step dt, but also on the spectrum of
the Hamiltonian [41].

Second, the number of matrix-vector multiplications
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required to perform the evolution of the wavefunction
over a time step dt is different for these two methods.
Where the Lánczos procedure requires multiple matrix-
vector multiplications in order to generate all the Krylov
vectors, our methods only requires one matrix-vector per
time step. It is important to note that this is precisely
due to the combination of the use of the Bethe eigenstates
as the computational basis, and the Suzuki-Trotter ap-
proximation of the time-evolution operator. If one would
perform a Suzuki-Trotter approximation using a local
product basis, multiple matrix-vectors operations would
still need to be performed in order to capture the time
evolution due to the integrable part of the Hamiltonian.

Compared to the Hamiltonian representation in the
local product basis, which is used in the matrix-vector
operations for the Krylov vectors, the operator in eq. (12)
is less sparse. However, it only couples states in the same
sector, or neighbouring sectors, thus maintaining a sparse
structure. We believe that the numerical performance
of the proposed method and Krylov vector methods is
similar for the case of central spin models.

Finally, let us compare our method to the well-known
density matrix renormalization group method (DMRG),
which was recently introduced for the central spin model
in [19]. When it comes to the number of particles acces-
sible through both methods, DMRG greatly exceeds the
capabilities of the proposed method in this paper. With
t-DMRG, time evolution can also be studied, albeit lim-
ited to short times due to the truncation in the Hilbert
space that is used in DMRG. However, we believe our
method is more flexible when it comes to the types of
interactions that can be taken into account. Adding an
interaction between two nuclear spins as a perturbation
to the central spin model would not pose any additional
difficulties for our method. To our knowledge, this would
complicate the numerical scheme for DMRG.

IV. RESULTS

Using the integrability-based method described above,
we consider the example of a semiconductor quantum dot
model including both hyperfine interactions and a mean-
field treatment of dipolar interactions. The combination
of these interactions gives us two dynamical sources of
decoherence. The first is given by the dynamics of the
closest nuclear spins through the hyperfine interaction,
either by direct flip-flopping with the central spin, or by
hyperfine mediated exchange processes through the cen-
tral spin [11, 12]. The latter process is dominant at high
fields for which it can be estimated to have an effective
interaction strength proportional to [7]

∝
∑
j,k AjAk

Bz
. (18)

The energy cost associated to this process is proportional
to Aj −Ak, such that two nuclear spins with comparable
hyperfine couplings can flip-flop even at high fields. The

second dynamical source of decoherence is given by the
spectral diffusion modeling the dynamics of the mean-
field bath with coupling constants lower than 1/e.

Moreover, static sources such as different nuclear en-
vironments for different quantum dots also contribute to
decoherence of the quantum dot, in particular to the en-
semble dephasing time T ∗2 . However, in 1950 Hahn [42]
proposed a spin echo pulse sequence which removes the
decoherence due to these static sources. The decay of the
spin echo sequence is then given by the intrinsic dephas-
ing time T2. The effect of hyperfine couplings in spin
echo simulations has been studied previously in [7, 11–
13, 18] and spin echo simulations focusing on the effect
of dipole-dipole interactions have been performed among
others by [4, 5, 9, 10, 17, 18, 43, 44]. In order to study the
competition between these two interactions we have per-
formed spin echo simulations for varying magnetic fields
Bz and bath correlation decay rates R, and compared
these for different initial states.

A. Spin echo simulations

Although a standard spin echo protocol consists of a
πy/2−τ−πx−τ−πy/2 pulse sequence, with free preces-
sion time τ , we assume all pulses to be ideal, and focus
on the τ − πx − τ part where decoherence through the
interaction with the nuclear spins during the free pre-
cession time will play an important role. The operator
representing the π-pulse around the x-axis acting on the
central spin is given by (S+

0 + S−0 ).
We consider two different types of initial bath config-

urations for the nuclear spins with hyperfine couplings
between 1 and 1/e. The first corresponds to a pure
state of Néel type: |ψ0〉 = 1√

2
(|⇑〉+ |⇓〉) ⊗ |↑↓↑↓↑↓ ...〉,

where the ordering of the bath spins is such that the
strongest coupled nuclear spin is the first. The second ini-
tial state is given by a more experimentally realistic state,
|ψ0〉 = 1√

2N+1
(|⇑〉+ |⇓〉) ⊗Nk=1

(
|↑〉+ eiφk |↓〉

)
, where φk

are random phases. It was shown by Schliemann et al.
[2] that these random states mimic a mixed initial bath
configuration, relevant for studying infinite temperature
baths. The overlap of these initial states with the Bethe
states, as well as the matrix elements required for the π-
pulse can be obtained from the aforementioned Slavnov
determinants [39, 40].

We first study the time evolution of the expectation
value 〈Sx0 〉 (the real part of 〈S+

0 〉) for various pulse times
τ of the echo sequence and the two initial states. For clar-
ity, the calculation proceeds in the following way: the
initial state is evolved in time with the Suzuki-Trotter
approximation given by eq. (12), yielding |ψ(t)〉 as a lin-
ear superposition of Bethe eigenstates. The expectation
value 〈S+

0 (t)〉 is then readily obtained from the matrix
elements of S+

0 in the Bethe basis.
We consider N = 14 bath spins treated with the inte-

grable hyperfine interaction with coupling constants be-
tween 1 and 1/e, and treat the effect of the remaining
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FIG. 2. The expectation value of Sx
0 is plotted for different pulse times τ for N = 14 nuclear spins with couplings between 1

and 1/e. In (a)-(c) the closest nuclear spins with hyperfine couplings in the range [1, 1/e) are initially in a Néel-like pure state.
The magnetic fields are given by Bz = 0.5Bfluct in (a), Bz = 1.5Bfluct in (b), and Bz = 2Bfluct in (c). On the contrary, in
(d)-(f) the closest nuclear spins are initially in a random initial state. The same magnetic fields as in (a)-(c) are considered.
All curves are offset from one another by 1/2 for clarity and are averaged over 100 OU processes to mimic the dynamics of the
mean-field bath. Furthermore, in each run in (d)-(f) a different random initial state was generated. The time step used for
the Suzuki-Trotter decomposition is dt = 0.005, the decay rate of the fluctuating field is fixed to R = 0.01 and the dispersion
b is given by eq. (5) and has an approximate value of b ≈ 1.008. The arrows indicate the expected arrival time of the echo at
t = 2τ . For magnetic fields Bz = 1.5Bfluct and Bz = 2Bfluct the echo signal is pushed down in an asymmetric fashion. This
leads to a shift in the echo for (b) and (c), but no visible shift for (e) and (f). For Bz = 0.5Bfluct there is no clear distinction
between the plots for the two initial states and no shift present.

bath spins with a time dependent stochastic field de-
scribed by slow bath dynamics such that R = 0.01.

In a previous study [7] it was shown that the decay
of the spin echo signal within a central spin model with
only hyperfine interaction is governed by the Overhauser
field due to spin fluctuations

Bfluct =

√√√√
N∑

k=1

A2
k.

For external fields larger than this critical field it was re-
ported that a large portion of the original value of the
spin can be recovered using a spin echo sequence. This
can be explained by the fact that the Overhauser field
fluctuations cannot overcome the Zeeman gap caused by
the external field, thus making direct flip-flopping be-
tween nuclear spins and the central spin a negligible pro-
cess.

In order to study the role of this critical field in the
presence of an additional fluctuating bath, we have per-
formed spin echo simulations for values of the external
field below and above the Overhauser field fluctuations.

The results for Bz = 0.5Bfluct, 1.5Bfluct, 2Bfluct are shown
in Fig. 2.

For external fields larger than Bfluct the shape of the
echoes for the initial pure state differs significantly from
the echoes for the random initial state. The echoes for
the Néel state show an apparent early arrival of the echo
as compared to the expected arrival time at 2τ , an effect
which is not observed in the case of the random initial
bath configuration.

This shift can be attributed to an asymmetrical de-
cay of the echo due to the dynamics of the mean-field
bath through the dipolar interactions. This source of dy-
namics in the bath cannot be reversed with a spin echo
sequence, thus leading to an additional decay of the spin
echo on top of the decay due to the transverse hyper-
fine interactions. The asymmetry of the decay is due
to a larger effect of decoherence by the fluctuating field
on the later parts of the echo signal as compared to the
earlier parts.

The reason why this asymmetry only leads to a visible
shift for the pure state, is the difference in dephasing
times, which is much longer in the case of the Néel-like
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state [36]. This leads to an echo signal which is much
wider for the pure state, such that the asymmetry will
be stronger, leading to a shift in the maximum of the
echo. Nevertheless, it should be noted that even though
there is no visible shift in the echoes for the random initial
state, the echoes are asymmetric around t = 2τ .

Another noteworthy feature is that the shifts of the
echoes at Bz = 1.5Bfluct and Bz = 2Bfluct seem to be
of the same size, which indicates that it is the fluctu-
ating field that is responsible for the shift, and not the
dynamics of the closer nuclear spins through the hyper-
fine mediated exchange for which the effective interaction
parameters are field dependent (see eq. 18).

In contrast to the cases with high magnetic field, there
is no visible shift in the echo for either initial states when
Bz = 0.5Bfluct. This implies that even in the presence of
a fluctuating bath due to dipolar couplings, the dynamics
of the nuclear spins through the hyperfine coupling is
the dominant source of dephasing at short times, and
is competing at longer times with the mean-field bath
fluctuations, not leaving enough room for the asymmetry
of the echo to lead to a shift.

Even though the shape of the echo signal differs sig-
nificantly between the two initial states for fields larger
than Bfluct, the actual value of the signal at the expected
arrival time 2τ does not show a strong dependence on
the initial state for 2τ > 5, as can be seen in Fig. 3. The

0

0.25

0.5

0 5 10 15 20

〈 S
x 0
(2
τ
)〉

2τ

Néel static
random static

random R = 0.01
Néel R = 0.01

FIG. 3. For N = 14 and Bz = 2Bfluct, the expectation value
〈Sx

0 (2τ)〉 is plotted for the Néel pure initial state and an av-
erage over initial random states. The red and green curves
show the results for the integrable model with only hyperfine
interactions, corresponding to a static mean-field bath with
zero average polarization. The purple and blue curves show
the echo envelope for a slow mean-field bath with R = 0.01,
averaged over 40 OU processes for each point (every point
thus requires 40 time evolution computations of which only
the value 〈Sx

0 (2τ)〉 is saved).

expectation value 〈Sx0 (2τ)〉, also referred to as the echo
envelope, is shown as a function of the total free preces-

sion time 2τ for the two different initial states, where
the corresponding cases for static mean-field baths are
also shown. For short times the hyperfine flip-flopping
terms are the dominant source of decoherence, such that
the curves with the slowly varying mean-field bath follow
their corresponding curves for the static mean-field bath
closely. For longer times, the dynamics of the mean-field
spin bath becomes the primary source of decoherence,
and since these dynamics are independent of the initial
state, the decay for the two initial states of the echo en-
velope becomes of the same order of magnitude.

Next, we will consider the effect of the correlation
decay rate R of the mean-field bath on the spin echo
envelope. We only show results for a magnetic field
Bz = 2Bfluct, since the effect of dipole-dipole interactions
is believed to be the dominant source of decoherence for
large external fields. We furthermore focus on the ran-
dom initial bath configuration as it is the most realistic
initial state. The spin echo envelopes are shown in Fig. 4
together with the result for the integrable case for which
the effect of the mean-field bath has been neglected.

Similar to what was observed in [29] for the case of
Rabi oscillations, we find that the decay of the echo en-
velope due to the mean-field bath changes nonmonoton-
ically with R. It is strongest for R ∼ b, and becomes
less effective for R < b and R > b. Fig. 4 furthermore
shows that the slow bath with R = 0.1b causes a faster
decay than the bath with R = 10b, for which we enter
the motional narrowing regime where the dynamics of the
mean-field bath is faster than the dynamics of the central
spin. When R � b, the effect of the mean-field bath on
the central spin is effectively averaged out, leading to an
echo envelope curve which approaches the result of the
integrable static case.

An intuitive picture describing our results is given by
the following reasoning. The quantity R represents the
rate of change of the Larmor frequency of the additional
stochastic field on the central spin. The typical Larmor
frequency is given by the standard deviation of the Gaus-
sian distribution, namely b. If the change in the stochas-
tic field is much faster than the typical Larmor frequency
(R� b), no Larmor precession due to the stochastic field
will have a noticeable influence (motional narrowing).

If, in the other limit the change in the stochastic field is
much slower than the rate of the typical larmor frequency,
the central spin will have performed many Larmor pre-
cessions before feeling a noticeable difference in Larmor
frequency. The dynamics is then in the adiabatic regime
where the evolution is described by the eigenstates of the
slowly changing integrable model. Since the change is so
slow this is only noticeable on longer times, thus leading
to a small decay due to the change in magnetic field.

In between these two limiting cases, there must be an
“optimal” decay rate, such that a considerable portion
of one Larmor precession corresponding to a given value
of the stochastic field can be traced by the central spin,
before the Larmor frequency has changed significantly.
Naturally, the portion of Larmor precession that the cen-
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(2
τ
)〉

2τ

static
R = 0.1b
R = 1b
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FIG. 4. Echo envelopes for N = 14 nuclear spins treated
with the full hyperfine coupling, an external field of Bz =
2Bfluct and varying mean-field bath correlation decay rates
R. All curves corresponding to a non static mean-field bath
have been computed by averaging over 50 OU processes. The
mean-field bath fluctuations are most destructive for R = b,
and show a slower decay for R = 0.1b and R = 10b.

tral spin traces should not be much larger than the typi-
cal Larmor frequency, otherwise leading to an effectively
static field over multiple Larmor precessions. The rate
with which the stochastic field decorrelates to 1/e should
thus be of the order of magnitude of b. Our results are
in agreement with this order of magnitude estimation.

B. Zero Field Free Induction Decay

Another interesting feature of the integrable central
spin model emerges at zero external field. Both semi-
classical and full quantum treatments [16, 20, 45] of the
hyperfine interaction have predicted a non-decaying fi-
nite fraction of the initial value of the central spin. Our
last results focus on the effect of dipolar interactions in a
mean-field bath on this non-decaying fraction. Since the
Richardson-Gaudin equations in (9) cannot be solved for
Bz = 0, we solve them for a small field and set the aver-
age of the OU process such that it cancels the magnetic
field, bringing us to the effective Bz = 0 case. The results
are shown in Fig. 5 for an average over random initial
states and varying bath speeds.

As can be expected, the dynamics of the mean-field
bath destroys the non-decaying fraction 〈Sx0 〉 caused by
the closer nuclear spins. Similar to the spin echo simu-
lations, the curve corresponding to the mean-field bath
with correlation decay rate R = b shows the fastest decay,
again in agreement with the intuitive picture described
above. Furthermore, the cases for R = 10b and R = 0.1b
follow each other closely for short times, after which the

0

0.25

0.5

0 5 10 15 20 25

〈 S
x 0
(t
)〉

time

static
R = 0.02b
R = 0.1b
R = 1b

R = 10b
R = 50b

FIG. 5. The free induction decay of 〈Sx
0 〉 for different mean-

field bath speeds R. The results have been averaged over 100
OU processes, with a newly generated initial random state for
each run. For comparison the integrable case is shown as well.
Similar to the case of spin echo simulations, the mean-field
bath with R = b shows the fastest decay of the correlation
function.

slower bath leads to faster decay. The curves shown for
R = 50b and R = 0.02b reflect the same behaviour, with
the fast bath (R = 50b) approaching the static curve.

V. CONCLUSION

Summarizing, we have proposed a new integrability-
based method to treat time-dependent integrability-
breaking perturbations, and applied it to the central spin
model describing semiconductor quantum dots. Using
the integrable basis we treat the hyperfine contact in-
teraction between the central spin and the closest nu-
clear spins without any approximation. The influence
of the dipolar interactions between the nuclear spins
more weakly coupled to the central spin is taken into
account using a mean-field treatment and represented by
a stochastic field in the z-direction.

We have shown that the hyperfine contact interac-
tion and the dipole-dipole interaction represented by the
mean-field treatment compete in different ways in spin
echo simulations, depending on the size of the external
magnetic field. For external fields lower than the fluc-
tuations of the hyperfine Overhauser field, the hyperfine
interaction is the dominant decoherence source at short
times. At longer times it competes with the mean-field
fluctuations, leading to a narrow echo that decays due to
the mean-field bath fluctuations.

Our main result is the observation of an asymmetry
in the echo at high fields, present for both the Néel-like
initial state as well as the more realistic random bath
configuration. We argue that this asymmetry can be at-
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tributed to the fact that later parts of the echo signal
have suffered more decoherence caused by the mean-field
bath fluctuations compared to the earlier parts. More-
over, due to the wider echo signal of the Néel state (larger
T ∗2 ), the asymmetry gives rise to a shift in the echo max-
imum.

The results for the zero field free induction decay show
that the non-decaying fraction of 〈Sx0 〉, which is present
in the integrable Gaudin central spin model, is destroyed
at longer times by mean-field bath fluctuations simulat-
ing the dipole-dipole interactions. Furthermore, both the
spin echo simulations as well as the free induction de-
cay simulations show that the decay of 〈Sx0 〉 exhibits a
non-monotonic dependence on the decay rate R of the
stochastic field, where R ≈ b leads to the strongest de-
cay.

A possible improvement to our work could be to in-
crease the number of nuclear spins with hyperfine cou-
plings between 1 and 1/e, which have been treated in
an exact manner. However, free induction decay simula-
tions at zero field in [16] showed that for the particular
coupling distribution of eq. (4), the value of the non-
decaying fraction of 〈Sx0 〉 shows a very weak dependence
on system size N . We thus do not expect a significant
change in behaviour for the zero field case when taking
into account more nuclear spins with couplings between
1 and 1/e. This leads us to believe that a reduced dis-
cretization of couplings for the spin echo simulations will
not influence the results too strongly either.

It should furthermore be noted that the number of
particles in this example is limited by the fact that ev-
ery curve has to be averaged over different realizations
of the Ornstein-Uhlenbeck process in order to get reli-
able results. If this method would be applied to a case
where the perturbation is not of a stochastic nature, this
limitation would not be present, and a higher number of
particles up to N = 20 can be expected to be accessible
when no additional symmetries are used. If, for instance,

the total magnetization is still a valid quantum number
in the presence of the perturbation, and when the observ-
able we are interested in does not couple different sectors,
our method should also be able to go beyond N = 20.

Finally, it should be stressed once more that the
method we propose is applicable to a larger scope of prob-
lems than was shown here for the example of the central
spin model. Particular examples one could think of are
perturbations of the integrable XXX or XXZ spin chain
with a transverse field, or driving one of the spins in the
chain with a time-dependent field. Another possibility
is to make a local change in the anisoptropy of the XXZ
chain, and study integrability breaking effects on the con-
served charges. Using the Bethe states as the computa-
tional basis then facilitates an efficient computation of
the time evolution of these quantities, since their corre-
sponding operators are diagonal in this particular basis,
and have matrix elements which are simple functions of
the rapidities of the Bethe states. We will consider the
application of our method to the XXZ spin chain in future
publications. In addition we hope to apply this method
to study perturbations of the Lieb-Liniger model with an
eye to applications to quenches in one dimensional Bose
gases. We think this approach will act as a useful com-
plement to the numerical renormalization group method-
ology used to study such quenches in Refs. [33, 46].
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