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Abstract: Here we review the current knowledge on maturation of adenovirus, a 
non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the 
capsid in complex with a large amount of histone-like viral proteins, forming the core. 
Maturation involves proteolytic cleavage of several capsid and core precursor proteins by 
the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a 
“molecular sled” to slide on the viral genome and reach its substrates, in a remarkable 
example of one-dimensional chemistry. Immature adenovirus containing the precursor 
proteins lacks infectivity because of its inability to uncoat. The immature core is more 
compact and stable than the mature one, due to the condensing action of unprocessed core 
polypeptides; shell precursors underpin the vertex region and the connections between 
capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating 
by facilitating vertex release and loosening the condensed genome and its attachment to the 
icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. 
Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, 
providing a mechanism for its removal during maturation. Finally, possible roles for 
maturation of the terminal protein are discussed. 
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1. Adenovirus

Adenoviruses (AdVs) [1] are among the most complex non-enveloped, icosahedral viruses. They
have been found in most types of vertebrates, from fish to humans [2]. For historical reasons, and also 
because of their dual character as pathogens and therapeutic tools [3–5], the best characterized AdVs 
are those infecting humans, in particular the prototypes of human AdV (HAdV) species C, HAdV-C5 
and HAdV-C2. Although different AdV species share many common traits, it must be understood that 
most of the information reviewed here has been derived from studies on these two prototypes, and 
details may vary (or are still unknown) for other human or non-human AdVs. 
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The AdV capsid is an icosahedron of ~950 Å maximum diameter and triangulation number pseudo 
T = 25 (see [6] for a description of the concepts “triangulation number” and “quasi-equivalent 
interactions”. For a detailed explanation on the adenovirus triangulation number, see [7]). Each capsid 
facet has 12 trimers of the major coat protein, hexon. A pentamer of penton base protein sits at each 
vertex, in complex with a trimer of the projecting fiber (300 Å-long in HAdV-C5). In addition, correct 
assembly requires four different minor coat proteins: IIIa, VI and VIII on the inner capsid surface, and 
IX on the outer one (reviewed in [7]). Minor coat proteins, together with flexible termini in hexon and 
penton base, modulate the quasi-equivalent icosahedral interactions and make up an intricate network 
that only recently could be visualized in detail via both X-ray crystallography and cryo-electron 
microscopy (cryo-EM) [8,9]. HAdV-C5 is the largest complex ever solved at high resolution (~3.5 Å) 
by either of the two techniques. Further witness to this complexity is the fact that even after being 
solved by two different techniques with close-to atomic resolution, the location of some of the minor 
coat proteins is still a subject of debate [7,10,11]. One issue is whether polypeptide IIIa is externally 
located. For the purpose of this review, we will follow the structural work indicating that it is  
internal [8,12–14], since this location is in better agreement with evidence indicating that IIIa interacts 
with the maturation protease (see below) and with the viral genome [15,16], and is released together 
with other internal vertex components in the early stages of virus entry [17]. 

The icosahedral shell encloses a non-icosahedral core composed of the linear, dsDNA genome  
(35 kbp in HAdV-C5), tightly packed in complex with a variety of DNA binding, viral proteins:  
core proteins V, VII and X (also called µ); the terminal protein (TP); and the maturation protease, 
AVP. Stoichiometric estimations indicate that from the 150 MDa total mass of the AdV particle, 
between 25 and 30 MDa are contributed by the core proteins [18,19]. There are no structural data on 
the core proteins (except for AVP, see below), and little is known regarding their organization within 
the particle, although it seems that polypeptide VII creates nucleosome-like beaded units that help to 
condense the genome so it can fit within the reduced capsid space [20,21]. 

The AdV infectious cycle starts with attachment to cell surface receptors (CAR for HAdV-C5) by 
the fiber distal domain [22]. Then, an RGD sequence motif in penton base binds to αV integrins, 
promoting their clustering and triggering a signaling cascade that results in virus internalization by 
endocytosis [23]. Next, the viral particle travels from the cell membrane to the nuclear pore, while 
undergoing a stepwise uncoating process. The sequential uncoating starts at the plasma membrane, 
where upon binding to its receptor some fibers are released [24], and the penton base undergoes  
a conformational change that might result in weakening its interactions with the rest of the capsid [25]. 
Already at the membrane, and later on in the early endosome, vertex proteins are released, together 
with part of core protein V and protein VI [17,26–29]. Release of polypeptide VI is crucial, as this 
protein interacts with the endosomal membrane to promote its disruption and subsequent release of  
the AdV particle into the cytosol [27,30]. Although mild acidification in the early endosome may play 
a role in this second stage of uncoating, recent studies indicate that pH decrease is not required for 
entry of HAdV-C5/2 [31]. The partially disrupted virion associates with dynein motors via the hexon [32] 
and travels along the microtubular network until reaching the nuclear pore, where final dismantling 
occurs, and the viral DNA and core proteins enter the nucleus [33–37]. In the nucleus, the viral 
genome is transcribed into early mRNA, replicated, and finally late mRNA is synthesized. Newly 
synthesized capsid and core proteins are imported from the cytosol to the nucleus to assemble into new 
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viral particles. The new genomes are packaged by an as yet unclear process, requiring the coordinated 
action of viral proteins IIIa, L1 52/55k, L4 33k, L4 22k and IVa2 between themselves and with the 
viral DNA packaging sequence [15,38–45]. One of these proteins, L1 52/55k, is present in empty 
capsids but must be released upon genome entry, as it is absent from the final virion. For this reason,  
it is considered a putative assembly scaffold [46]. Genome packaging produces the so-called young 
virions, which must be further processed by proteolytic maturation to yield the final, infectious AdV 
particle [47,48]. 

In AdV, correct uncoating is tightly linked to maturation. Young, immature virions are defective in 
uncoating. They cannot release fibers at the cell membrane, or polypeptide VI in the early endosome; 
consequently, they become trapped in the endocytic pathway, and are finally destroyed in lysosomes, 
thereby aborting infection [49,50]. Recent studies have provided new insights on the sophisticated 
mechanism of AdV proteolytic maturation and how this process modulates the stability of the viral 
particle, as well as the release of the putative scaffold, to confer the virion its full infectious character. 

2. Players in Adenovirus Maturation: The Protease and Its Substrates 

AdV shell proteins IIIa, VI and VIII, as well as core proteins VII, µ and TP are synthesized  
as precursors, and processed by the adenovirus protease (AVP) during assembly [51–54]. The gene for 
AVP, which codes for a 23 kDa protein in HAdV-C5, is part of the L3 transcription unit and belongs to 
a conserved core of assembly-related genes present in all AdVs sequenced so far [55,56]. The locations 
of the protease substrates in the viral particle, as well as the cleavage sites and copy numbers for each 
of them are shown in Figure 1. Estimates on the copy number of AVP ranged between 10 and 50 
[57,58]. A recent quantitative proteomics study gave an even lower number, with only seven AVP 
molecules per viral particle [19]. More than 2000 cleavages have to occur in each virion, giving a 
range of ~40 to ~300 cleavages per AVP copy. Furthermore, since all substrates are located internally 
and interact with the viral DNA, these cleavages have to take place in the highly crowded environment 
of the viral core. 
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Figure 1. Substrates of the AdV maturation protease, AVP. (a) Schematics showing the 
location of substrates in the viral particle. The internal location of L1 52/55k is inferred 
from its interactions with core elements [59]; (b) Each HAdV-C2 precursor protein is 
represented as a bar with the polypeptide length in amino acids indicated in the center. 
Consensus cleavage sites are denoted by arrows, reported non-consensus sites by 
arrowheads [53,60]. The prefix “p” denotes the unprocessed precursors. Copy numbers are 
derived from stoichiometric analyses [18,19]. A star (*) in place of the copy number for  
L1 52/55k indicates that its copy number varies depending on the assembly stage:  
100 copies in empty particles, 50 in fully packaged, immature ts1 particles, and 0 in mature 
virions [46,60]. Panel (b) modified from [7]. 
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An HAdV-C2 thermosensitive mutant, ts1, has served as an invaluable experimental system to 
elucidate the AdV maturation mechanism and its effect on infectivity. Weber and coworkers isolated 
the ts1 mutant which, when grown at the nonpermissive temperature, contains precursor proteins 
instead of mature components [51]. The mutation was mapped to the gene encoding the 23 kDa L3 
protein [51,61] which was later cloned and expressed in E. coli [57,62], and the resultant 204-amino 
acid protein purified [52,62–64]. The ts1 mutation consists in the substitution of Proline 137 by 
Leucine in the AVP gene [65], and this mutation is both necessary and sufficient to generate the ts1 
phenotype [66]. The precise molecular effects of this mutation are not yet understood, but it is known 
that, when the virus is propagated at the non-permissive temperature (39 °C), the incorporation of AVP 
to the viral particles is minimal [51,61,65,66]. As a result, ts1 particles are stalled at the young virion 
stage in morphogenesis: they accomplish genome packaging but do not undergo maturation; they 
contain the precursor versions of all AVP targets (L1 52/55k, pIIIa, pVI, pVIII, pVII, pµ, and pTP), 
and are not infectious. 

AVP cleaves specifically at sequence motifs (M/I/L)XGG↓X or (M/I/L)XGX↓G [67,68]. However, 
these specificity requirements can be relaxed, as cleavages where the P4 residue is Gln or Asn, instead 
of Met, Leu or Ile were found by mass spectrometry analyses of HAdV-C5 [53]. In HAdV-E4, 
cleavage of pTP was observed at a site with Gln at P4 [69]. The packaging scaffold, L1 52/55k protein, 
had been predicted to undergo cleavage by AVP, based on the presence of a LAGT↓G motif close to 
its C-terminal end. Recent studies confirmed that indeed L1 52/55k is a substrate for AVP [60]. 
Immature ts1 particles were shown to contain ~50 copies of full length L1 52/55k, indicating that 
although this protein is absent from mature virions, its presence is not incompatible with genome 
packaging. When these particles were treated with recombinant AVP, after mild disruption to gain 
access to the internal substrates, multiple fragments of L1 52/55k were generated, apart from the one 
expected from its consensus cleavage motif. Bioinformatics and mass spectrometry analyses indicated 
that AVP is able to cleave L1 52/55k at sites with various departures from the consensus cleavage 
sequences (Figure 1b). A comparison of the protein products of gene 52K indicates that the cleavage 
sites are highly conserved in human AdVs, and conservation is substantial throughout the Mastadenovirus 
genus (Figure 2). When some of the sites described for HAdV-C5/2 are missing, very frequently  
a series of Gly residues are observed in a nearby position in the sequence; these represent potential 
cleavage sites for the viral protease. 
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Figure 2. Conservation of AVP cleavage sites in the L1 52/55k protein. (a) Conservation 
across human AdV species; (b) Conservation across mastadenovirus species. Sequences 
were downloaded from GenBank and aligned with TCoffee [70]. The figure was created 
using JalView [71]. HAdV: human adenovirus; BAdV: bovine adenovirus; CAdV: canine 
adenovirus; EqAdV: equine adenovirus; SAdV: simian adenovirus; MuAdV: murine 
adenovirus; OAdV: ovine adenovirus; PAdV: porcine adenovirus; TsAdV: tree shrew 
adenovirus; BatAdV: bat adenovirus. Black frames indicate the AVP consensus cleavage 
site in HAdV-C2 L1 52/55k; gray frames indicate non-consensus sites described in [60]; 
red ovals indicate Gly stretches that could be possible additional cleavage sites. 



 8 
 
3. Unveiling the Enzymatic Mechanism of AVP 

AVP has presented numerous conundrums on how its enzyme activity is regulated and how the 
active enzyme cleaves its substrates. What prevents the protease from being active after its synthesis 
but before completion of virion assembly? How is it activated? How can a few molecules of AVP 
cleave more than 2000 times within the tightly packed interior of a nascent virus particle, under conditions 
in which almost no three-dimensional diffusion can occur? Resolution of these conundrums revealed  
a new paradigm for virion maturation and a new type of biochemistry: one-dimensional biochemistry. 

3.1. Discovery of the AVP Cofactors 

A specific, sensitive, and quantitative assay for AVP using Rhodamine 110 as the reporting  
group [72,73] facilitated characterization of many of the biochemical properties of the enzyme.  
Rhodamine 110 is detectable at extremely low concentrations, because it has a molar absorbance 
coefficient greater than 70,000 M−1cm−1and a quantum yield (the fraction of absorbed light that is 
emitted as fluorescence) greater than 90%. The assay is based on the observation that AVP will cleave 
small peptides that contain an AVP consensus cleavage sequence [68,74]. A fluorogenic substrate 
containing an AVP consensus cleavage sequence, (Cbz-Met-Arg-Gly-Gly-NH)2-Rhodamine, was 
synthesized and assays developed to characterize proteinase activity in disrupted wild-type virus [75,76]. 
Bis-substitution of Rhodamine 100 puts the Rhodamine moiety in the nonfluorescent, lactone state, 
because the conjugation in the Rhodamine moiety is interrupted. In the lactone state, the Rhodamine 
moiety does not absorb light and hence does not fluoresce. Cleavage of one of the two AVP consensus 
cleavage sequences generates mono-substituted Rhodamine; here, the Rhodamine moiety is in the 
highly fluorescent quinone state because the conjugation in the Rhodamine moiety is restored. 
Predictably, there was enzyme activity in disrupted wild-type virus and no activity in ts1 disrupted 
virus. Surprisingly, no substrate hydrolysis was observed with purified recombinant AVP expressed  
in E. coli. 

Eventually, it was shown that AVP needed cofactors for complete enzyme activity. When assayed 
with a Rhodamine-based substrate, neither recombinant AVP alone nor disrupted ts1 virus alone exhibited 
enzyme activity. However, when mixed together, significant enzyme activity was observed [52,75]. 
Therefore, there are cofactors in the virus particle required by AVP for activity. Kemp and colleagues 
reached a similar conclusion after observing that although purified AVP cleaves the precursor to  
AdV protein VII, pVII, in the presence of ts1 cell extracts, no cleavage of the peptide substrate 
SGGAFSW is detected with AVP alone [56]. One cofactor is the viral DNA, which stimulates AVP 
activity in vitro [75]. If disrupted wild-type virus is treated with DNase and then assayed with  
the synthetic substrate, proteinase activity is lost but, upon inactivation of the DNase, enzyme activity 
can be restored upon the addition of HAdV-C2 DNA [52]. A second cofactor is a plasmin-sensitive 
virion protein which turned out to be the 11-amino acid peptide, pVIc (GVQSLKRRRCF), from the  
C-terminus of the precursor to virion protein VI, pVI [56,75]. 

To investigate whether there was a nucleotide sequence specificity in the role of DNA as a cofactor, 
various nucleic acid and amino acid polymers were substituted for HAdV-C2 DNA in a series of 
cofactor assays [75]. Not only does T7 DNA substitute for HAdV-C2 DNA, but also single-stranded 
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DNAs, circular single- and double-stranded DNAs, poly A, and even polymers of glutamic acid [77]. 
Neither polylysine nor the corresponding monomers of anionic polymers, such as AMP or glutamic 
acid, substitute for HAdV-C2 DNA [75]. Thus, there is no sequence specificity; rather, it appears as if 
the requirement is for a polymer of high negative-charge density, e.g., the viral DNA in the virus particle. 

The cofactors affect the macroscopic kinetic constants for the interaction of AVP with the 
Rhodamine-based fluorogenic substrates [52]. In the absence of any cofactor, the Km is 94.8 μM and 
the kcat is 0.002 s−1. In the presence of AdV DNA, the Km decreases 10-fold and the kcat increases  
11-fold. In the presence of pVIc, the Km decreases 10-fold and the kcat increases 118-fold. With both 
cofactors present, the kcat/Km ratio increases synergistically, 34,000-fold compared to that with AVP 
alone. Binding to DNA is coincident with stimulation of proteinase activity by DNA [78]. Other 
proteinases bind to DNA [79], but only the enzymatic activity of AVP is stimulated by being bound to 
DNA [52,75,78]. 

Interestingly, AVP has been shown to use a non-viral cofactor in vivo. Throughout an AdV infection, 
the actin, cytokeratin, tubulin, and vimentin networks that make up the cell cytoskeleton undergo 
dramatic changes [80]. Late in AdV infection, cytokeratin 18 is cleaved at two contiguous AVP consensus 
cleavage sequences, leading to the destruction of the cytokeratin network [81]. An AVP-GFP fusion 
transfected into HeLa cells was initially found in the cytoplasm where it colocalized with cytokeratin 
18; later on in the experiment, the cytokeratin network was destroyed [82]. Thus, AVP can be active in 
the cytoplasm in the absence of other viral components. However, there must be a cytoplasmic 
cofactor ensuring activation of AVP, as incubation with AVP of cytokeratin-18 partially purified from 
the cytoplasm of HeLa cells resulted in no cleavage, while under the same conditions but in the 
presence of pVIc, cleavage of cytokeratin 18 was observed. 

Actin was considered a potential cytoplasmic cofactor for AVP, because its C-terminal amino acid 
sequence (SGPSIVHRKCF) is highly homologous to the amino acid sequence of pVIc 
(GVQSLKRRRCF). Of the last eight amino acid residues of actin, four are identical and three are 
homologous to the last eight amino acid residues in pVIc. Furthermore, in the crystal structure of an 
actin-profilin complex [83], the C-terminus of actin is on the surface and could, therefore, be 
accessible to interact with AVP.  Indeed, actin interacts directly with AVP [82]. When increasing 
concentrations of monomeric (G-)actin are incubated with AVP, the rate of substrate hydrolysis 
increases in proportion to the actin concentration until a plateau is reached, indicating that actin is 
indeed a cofactor for AVP. AVP binds to the C-terminus of actin, because the fluorescence from actin 
labeled with PRODAN at Cys374 is quenched upon incubation with AVP. The Kd for the binding of 
AVP to actin is very tight, 4 nM.  The role of actin as a cofactor in the cleavage of cytokeratin 18 was 
confirmed by the observation that when AVP and actin were incubated with a cytokeratin-18-enriched 
HeLa cell fraction, cleavage was detected. In an identical assay but without actin, no cleavage of 
cytokeratin 18 occurred. Inspection of the β-actin sequence revealed two AVP consensus cleavage 
sequences, one at the N-terminus and one at the C-terminus, raising the possibility that actin is not only 
a cofactor for AVP, but also a substrate. This possibility was verified by experiments in which actin 
and AVP were incubated together, and cleavage at the termini of actin was observed. In virus-infected 
cells, cleavage of cytoskeletal proteins weakens the mechanical structure of the cell. This weakening 
may promote cell lysis which is required for release of nascent virions [81]. 
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3.2. Structure of AVP 

When AVP was first described, it was difficult to place it in any particular family of proteases.  
The sequence of the AVP gene [84,85] was not related to any gene sequences in the databases at  
the time. Inhibitor profiles of enzyme activity gave ambiguous results. The answer came from the crystal 
structure of the enzyme in a covalent complex with its cofactor pVIc [86–88]. The AVP-pVIc structure 
is ovoid, appearing to consist of two domains (Figure 3a). One domain contains a five-stranded β-sheet; 
the other domain contains mostly α-helices. pVIc forms a “strap” that helps position the two domains. 
Comparing the structure of AVP-pVIc with the structures of all unique protein molecules in the 
Brookhaven Protein Data Bank revealed no equivalent structure, suggesting that AVP represented a 
new family of protein molecules. However, a helix and several β-strands within the central region of 
AVP appeared to be in similar positions in papain [89]. When the common secondary structures were 
aligned, and the amino acids of the active-site region of papain and those in the same position in  
the AVP-pVIc complex were compared, it was clear what type of proteinase AVP was, as well as  
the location of its active site. 

 

Figure 3. Crystal structure of the AVP-pVIc complex and locations of the four amino acid 
residues involved in catalysis in AVP and in AVP-pVIc. (a) Secondary structure of the 
AVP-pVIc complex with the four amino acid residues involved in catalysis in blue and  
the pVIc peptide in green; (b) The four amino acids involved in catalysis in AVP-pVIc 
(blue) and in AVP (red) are juxtaposed. Only His54 is in a different position in the two 
structures. Figure created with UCSF Chimera [90]. 

AVP was the first member of a new class of cysteine proteinases. The four amino acids involved  
in catalysis by papain have identical counterparts in the same relative positions in the AVP-pVIc  
complex [87] (Figure 3b). Cys122 of AVP is in an identical position to the nucleophilic Cys25 of 
papain. Two other residues of AVP (His54 and Glu71) are in identical positions to those of His159 and 
Asn175 in papain which have been shown to be involved in catalysis [91]. Even Gln19 of papain, 
presumed to participate in the formation of the oxyanion hole [92], aligns with Gln115 of AVP. The 
putative active site is on the surface of AVP lying within a ~25-Å long bent groove that is ~8-Å wide. 
Cys122 and His54, the general base, lie in the middle of that groove. Even with these juxtapositions, 
because the order along the polypeptide chain of the amino acids involved in catalysis in AVP and 
papain is different, AVP is the first member of a new class of cysteine proteases. This remarkable 
juxtaposition of catalytic elements in a groove that can accommodate substrate, strongly suggests that 
AVP employs the same catalytic mechanism as papain [93]. 
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Surprisingly, pVIc, which exerts powerful control on the rate of catalysis, was found to bind quite 
far from the active-site residues involved in catalysis; the pVIc cysteine residue, which forms  
a disulfide bond with Cys104 of the AVP chain, is 32 Å away from the active-site nucleophile Cys22. 
The residue of pVIc closest to the active site is Val2', of which the side chain is 14.5 Å from Cys122. 
There is a reason for this long distance between the active site and the pVIc binding site, which is 
related to how AVP-pVIc complexes encounter their substrates and cleave them (see below). 

Later on, AVP was crystallized in the absence of any cofactor, and its structure solved to atomic 
resolution, 0.98 Å [94]. Both the crystal structure of AVP and the AVP-pVIc complex have an α plus  
β fold; the major structural differences between them lie in the β-sheet domain. Now, the structure  
of the inactive form of the enzyme could be compared to that of the active form, the AVP-pVIc 
complex [78,87], hopefully revealing at the structural level why AVP is inactive and providing insights 
as to how binding of pVIc to AVP activates the enzyme. In AVP-pVIc, the general base His-54 Nδ1 is  
3.9 Å away from the Cys-122 Sγ; this distance allows the proton on Cys122 to be abstracted,  
thereby rendering Cys122 nucleophilic. In AVP, however, His-54 Nδ1 is 7.0 Å away from Cys-122 Sγ,  
too far away to be able to abstract the proton from Cys-122 (Figure 3b). The new structure revealed  
a fifth amino acid involved in catalysis. In AVP-pVIc, Tyr84 forms a cation-π interaction with His54  
(Figure 4b). A cation-π interaction is a noncovalent molecular interaction between the face of an 
electron-rich system, e.g., Try84, and an adjacent cation, e.g., His54; between a monopole (cation) and  
a quadrupole (π system). Bonding energies are significant, with solution-phase values of the same 
order of magnitude as hydrogen bonds and salt bridges. The cation-π interaction between Tyr84 and 
His54 should raise the pKa of His54 and freeze the imidazole ring in the optimal place for forming  
an ion pair with Cys-122. In AVP, however, Tyr84 is more than 11 Å away from its position in  
AVP-pVIc. The differences in position of His54 and Tyr84 are two major reasons why AVP is inactive 
and AVP-pVIc is active. 

pVIc appears to function as a strap holding together the domain containing Cys122, with the other 
domain containing His54 and Glu71, in a configuration optimal for catalysis [95,96]. There is 
extensive contact between AVP and pVIc: 34 hydrogen bonds, four ion pairs, and a disulfide bond 
between Cys104 of AVP and Cys10' of pVIc [88,97,98]. The N-terminus of pVIc (Gly1', Val2', and 
Gln3') binds in a pocket, the “NT-pocket,” which is an invagination within the helical domain of AVP. 
Binding displaces a well-ordered sodium atom in the NT-pocket. That this pocket is structurally 
conserved between AVP and AVP-pVIc implies that perhaps the first step in the interaction of pVIc 
with AVP is the binding of the N-terminus of pVIc in this pocket. The binding of the next three amino 
acids of pVIc (Ser4', Leu5', and Lys6') also does not alter the structure of AVP; only surface side chain 
movements are necessary to accommodate these residues that bind as an extended β-strand. It is at 
Arg-7' and beyond that the binding of pVIc begins to induce significant rearrangements in AVP. These 
changes are: formation of a disulfide bond between Cys10' of pVIc and Cys104' of AVP and the 
formation of a new pocket, the “CT-pocket.” In the induced CT-pocket, which is hydrophobic, the side 
chain of pVIc Phe11' is buried. 

pVIc can form a homodimer via disulfide bond formation, and half of the homodimer can 
covalently bind to AVP via thiol-disulfide exchange [56,99]. Alternatively, monomeric pVIc can form 
a disulfide bond with AVP via oxidation [99]. Regardless of the mechanism by which AVP becomes 
covalently bound to pVIc, the kinetic constants for substrate hydrolysis are the same. The cysteine 
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residue in pVIc is clearly involved in the binding of pVIc to AVP. For example, the Kd for the binding 
of pVIc to AVP is 4.4 μM, but the Kd for the binding of the mutant C10'A-pVIc to AVP is much 
greater than 440 μM, at least a 100-fold difference. Surprisingly, the presence of DNA suppressed the 
effect of the mutation; the Kd for the binding of the mutant C10'A-pVIc to AVP is 6.94 μM in the 
presence of 12 mer ssDNA. Although the cysteine in pVIc is important in the binding of pVIc to AVP, 
formation of a disulfide bond between pVIc and AVP is not required for maximal stimulation of 
enzyme activity by pVIc. However, covalent attachment of pVIc to AVP is physiologically relevant, 
because in the virus particle AVP is linked to pVIc via a disulfide bond [99,100]. The major function 
of the disulfide bond may be to keep AVP irreversibly activated inside the virion. If the free 
concentration of pVIc is low relative to its Kd for binding to AVP, then reversible binding of pVIc to 
AVP might not be able to generate enough active enzyme to cleave all the virion precursor proteins. 
One way to ensure sufficient activation is the formation of an irreversible bond, e.g., a disulfide bond, 
between pVIc and AVP. 

3.3. Interactions of AVP with Its Cofactors 

In protein-protein binding, the free energy of binding at the level of amino acid side chains is 
typically not distributed evenly across the interface, but is contributed disproportionately by certain 
amino acids known as hotspots [101]. This is true for AVP-pVIc, as a small subset of buried amino 
acids contributes the majority of binding affinity of pVIc to AVP. This was determined by measuring 
the change in free energy, ΔΔGB, upon mutation of individual residues in pVIc to alanine [97,98].  
The two hot spots in pVIc are Gly1' and Phe11'. The ΔΔG∗𝑇 upon substitution of an alanine for Gly1' is 

1.57 kcal/mol, and for substitution of an alanine for Phe11', the ΔΔG∗𝑇 is 1.15 kcal/mol [97,98]. Gly1' 

and the side chain of Phe11' are both buried in a pocket in the crystal structure [87,88].  
Both residues are largely sequestered from solvent in the complex, with only 20% of the surface area 
of Gly1' accessible and 9% of the surface area of the Phe11' side chain accessible [97,98]. Val2' is also 
sequestered from bulk solvent, with only 0.01% of its side chain surface area accessible. The solvent 
occlusion of the hot spots in pVIc is consistent with studies of protein-protein interfaces, showing that 
solvent exclusion is a necessary condition of tight binding [101]. That the first and last amino acids of 
pVIc are hotspots is consistent with the hypothesis that pVIc acts as a strap that brings the two 
domains of AVP into alignment optimal for efficient substrate hydrolysis [95,96]. 

In general, it seems as if the N-terminus of pVIc is involved in the binding of pVIc to AVP and the 
C-terminus of pVIc is involved in stimulation of AVP activity by pVIc. More specifically, Gly1' is the 
major determinant in the binding of pVIc to AVP, while Phe11' is the major determinant in stimulating 
enzyme activity. The N-terminus of pVIc binds in a preexistent pocket whereas the C-terminus of pVIc 
binds in an induced pocket. These most crucial amino acid residues in the binding of pVIc to AVP and 
in stimulating the activity of AVP are conserved or tolerate only homologous substitution. The strictly 
conserved amino acid residues in pVIc are Gly1' and Cys10' [97,98]. Gly1' is conserved because it is 
part of the AVP consensus cleavage sequence, IVGL↓G; cleavage of pVI at this sequence liberates 
pVIc. Gly1' is also conserved because no amino acid side chain can fit into the hairpin of AVP that is 
the binding site for Gly1' [87,88]. The two other hot spot amino acid residues, Val2' and Phe11', 
tolerate only hydrophobic substitutions. 
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The effects of alanine substitutions in pVIc on binding to AVP are reversed in the presence of 
DNA. For example, the Kd of Gly1'Ala-pVIc for AVP is 56 μM. In the presence of DNA, the Kd drops 
to 0.08 μM, the same Kd (90 nM) as for the binding of wild-type pVIc to AVP in the presence of DNA. 
For the alanine mutants of pVIc that exhibit Kd values for binding to AVP lower than that for  
wild-type pVIc, the presence of DNA raises the Kd values to that of wild-type pVIc. For example,  
the Kd for AVP with the Gln3'Ala-pVIc mutation is 0.04 μM, compared to 4.4 μM with wild-type 
pVIc. In the presence of DNA, the Kd for the mutant peptide is 0.13 μM, compared to 0.09 μM for 
wild-type pVIc. For substrate hydrolysis, the presence of DNA has little effect on the Km values; 
however, it does affect kcat values, up to 10-fold. At the moment, reversal by DNA of the effects of 
alanine substitutions on the amino acids in pVIc is a bizarre observation. Its explanation at the 
structural level should be novel. 

AVP, pVIc, and AVP-pVIc complexes bind to DNA with physiologically relevant Kd values. AVP 
was shown to bind a 12-mer ssDNA with a Kd of 109 nM, and a 12-mer dsDNA a Kd of 63 nM [78]. 
pVIc, with four of its 11 amino acid residues being basic and with an isoelectric point of 11.81, 
predictably binds to DNA; the Kd(apparent) is 0.7 μM for binding to a 12-mer dsDNA. This may be 
physiologically relevant in that pVI, a DNA-binding protein [102], may bind to DNA via pVIc which 
is at its C-terminus. AVP-pVIc complexes exhibit a Kd of 5 μM for 12-mer dsDNA and 109 μM for 
12-mer ssDNA [78]. Consistent with the observation that binding of AVP to DNA is not sequence 
specific are data on the stoichiometry of binding. Three AVP-pVIc molecules saturate the binding sites 
on one 18-mer dsDNA, and six AVP-pVIc molecules saturate the binding sites on one 36-mer dsDNA. 
This implies the footprint on DNA is about six base pairs. On HAdV-C2 DNA, there are, therefore, 
about 3027 binding sites for pVIc. 

The non-sequence specific interaction between AVP-pVIc and DNA exhibits a substantial 
dependence on the monovalent sodium ion concentration [52]. This dependence reflects the electrostatic 
component of the binding reaction [103]. The electrostatic component of the binding reaction 
originates from the formation of ion pairs between positively charged groups on AVP-pVIc and 
negatively charged phosphate groups on DNA. After binding occurs, there is a concomitant release of 
counterions from the DNA and, possibly, from AVP-pVIc. An accurate estimate of the number of ion 
pairs involved in the interaction was obtained from an analysis of the equilibrium association constants 
for the binding of AVP-pVIc to 12-mer dsDNA as a function of the Na+ concentration [78]. Two ion 
pairs are involved in complex formation with AVP-pVIc and 12-mer dsDNA. For comparison, two ion 
pairs of the T4 gene 32 protein are involved in non-sequence specific binding to helical DNA [103]. 
There is also a substantial favorable nonelectrostatic component of the binding interaction of  
AVP-pVIc to DNA [78]. The nonelectrostatic free energy of binding ΔG0

0 is −4.6 kcal/mol. These 
experiments indicate that much of the binding free energy under physiological conditions results from 
nonspecific interactions between AVP-pVIc and base or sugar residues on the DNA. But, the dominant 
factor driving the nonspecific interaction between AVP-pVIc and DNA is the entropic contribution 
from the release of counterions. 
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3.4. AVP Activation Pathways 

A model has been proposed for the activation of AVP upon the binding of pVIc that is consistent 
with the structural differences between AVP and AVP-pVIc complexes [94].The structural changes 
that occur upon the binding of pVIc to AVP are localized for the most part to the β-strand domain and 
appear to involve a path over 62 amino acids long. This implies there may be an “activation” pathway 
along which contiguous conformation changes occur, analogous to falling dominos. The model (Figure 4)  
proposes that upon the binding of pVIc to AVP, a series of structural transitions occur in AVP, 
beginning with the induction of the CT-pocket. There is a common pathway that then bifurcates into 
pathways that lead to the repositioning of His54 and of Tyr84, the two amino acids in AVP that must 
be reoriented for the AVP-pVIc complex to become active. 

 

Figure 4. AVP activation pathway and cation-π interaction. (a) Upon binding of pVIc 
(green) to AVP, a series of contiguous conformational changes occur along a common path 
that bifurcates into an upper and lower path. At the end of the upper path, His54 drops 
down from its position in AVP (red) to a position in AVP-pVIc (blue) that is opposite 
Cys122. At the end of the lower path, Tyr84 (red) moves 11 Å to a position in AVP-pVIc 
(blue) where it can form a cation-π interaction with His54; (b) Electron clouds of Tyr84 
and His54 in their cation-π interaction. Figure created with UCSF Chimera [90]. 

The activation pathway is triggered when the three N-terminal amino acids of pVIc (Gly-Val-Gln) 
bind in a preformed, hydrophobic pocket, the NT-pocket, on AVP. Beginning with Leu5', the remaining 
amino acids of pVIc lay down upon AVP as an extended β-strand. Cys10’ of pVIc forms a disulfide 
bond with Cys104 of AVP. The C-terminal amino acid, Phe11', binds in an induced, hydrophobic 
pocket. The differences in the structure of AVP and the AVP-pVIc complex indicate that pVIc binding 
causes an extension in the S5 β-strand of the β-sheet by three amino acids: Cys104, Ile105,  
and Ser110. The CT pocket formation is coincident with the formation of the tight turn involving 
residues 100–103. The C-terminus of the long helix is extended from Ser95 to Ser99. Then, this 
portion of the helix rotates approximately 20 degrees from the long helix axis and changes its pitch by 
a similar amount. This is the common activation pathway. 

The extension of the lower end of the long helix by a full turn and its movement alter the positions 
of its side chains and their interactions with the residues in the coil connecting strands S1 and S2.  
This results in repositioning of the backbone between amino acid residues 26–33, as indicated by the 
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extensive phi and psi angle differences observed between the two structures. With these changes in the 
AVP structure, different portions of the coil interact with the repositioned helix, and other residues are 
now in positions to interact with the region of the undefined loop between residues 47–52 in AVP. 
This change allows hydrogen bonding to occur between residues 26–28 and residues within the 
undefined loop such that it now becomes much less flexible. A further consequence of this 
rearrangement is that the backbone moves, allowing the phi/psi rotation of the His54 backbone, which 
would enable its side chain to drop down to a position where it forms a hydrogen bond to Glu71 and is 
in a more optimal position for interacting with the active site nucleophile Cys122. 

Triggering of the common activation pathway also initiates changes in the Tyr84 branch of the 
activation pathway. At Tyr88, the long helix breaks, extending into a coil through Tyr84. The 
extension of this portion of the long helix into a coil, along with the anchoring of its lower end due to 
the disulfide bond formation with pVIc and the “tethering” of the N-terminal portion of the helix to  
the central strand of the beta sheet, makes the N-terminal portion of the long helix rotate roughly  
105 degrees generating the helix-coil-helix motif of AVP-pVIc. This movement also completes the 
formation of the active site groove across the domain interface. These events allow Tyr84 to move 
almost 11 Å so that it can now form a cation-π interaction with His54. 

3.5. AVP Activation in Its Biological Context 

AVP is synthesized as an inactive enzyme, which raises the question how pVIc is cleaved from  
pVI inside immature particles to activate AVP, i.e., to form AVP-pVIc complexes. Restricting  
any model for the activation of AVP by pVI in such particles is the inability of AVP and pVI to 
undergo bimolecular interactions by diffusion in three-dimensional space. Both AVP and pVI are 
sequence-independent DNA binding proteins [75,78,97,102,104]. The high concentration of DNA 
inside the virion (>500 g/L) [105] forces both AVP and pVI onto the DNA. For AVP and pVI, the 
DNA-bound state predominates by at least 10-million-fold over the unbound state [78,106], meaning 
that most of the time, essentially none of these protein molecules is present in solution in the virion. 
This situation would diminish their three-dimensional diffusion constants by a similar factor. 
Additionally, the compacted DNA forms a tight mesh [106] that retards diffusion of the few molecules 
appearing in solution by 10-fold or more. From these points of view, inside the virion, the  
three-dimensional diffusion constants of these proteins are reduced by more than eight orders of 
magnitude relative to in a buffer solution with no DNA. The DNA genome cannot move to enable two  
DNA-bound proteins to interact. The friction on the capsid shell of the virion by densely-packed DNA 
immobilizes the DNA and the proteins bound to it. Given this situation inside the virion, it is not clear 
how a bimolecular interaction between AVP and pVI can occur that leads to cleavage of pVI and 
activation of the enzyme by released pVIc. Without this occurring, the virus particle cannot  
become infectious. 

To elucidate in detail the mechanism of pVI cleavage and AVP activation by pVIc, the gene for pVI 
was cloned and expressed in E. coli, and the resultant protein purified and characterized [104]. pVI is  
a monomer at nanomolar concentrations, and binds very tightly to dsDNA independently of sequence. 
The Kd(app) for binding of pVI to DNA is 46 nM in the presence of 1 mM MgCl2; in its absence binding 
to DNA was too tight to determine a Kd(app). Several lines of evidence indicate that pVI binds to DNA 
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mostly through its pVIc moiety: First, AVP-pVIc complexes also bind tightly to DNA, with  
a Kd(app) of 4.6 nM in the absence of magnesium [78]. Both proteins VI and AVP bind less tightly to 
DNA [78,104]. Their Kd(app) values are almost 10-fold higher, 307 and 63 nM, respectively. Second,  
the number of base pairs covered while bound to DNA is similar for the complete pVI precursor (8 bp) 
and for AVP-pVIc complexes (6 bp). In contrast, the virion precursor protein pIIIa covers 33 bp [107]. 
Third, some thermodynamic parameters of pVI binding to DNA are similar to those of AVP-pVIc 
complexes binding to DNA [78,104]. The number of ion pairs formed in the binding to 12-mer dsDNA 
is three, whereas two ion pairs are involved in the interaction of AVP-pVIc complexes with DNA. The 
nonelectrostatic free energy of binding, ΔG 0

0 , is −4.5 kcal/mol, identical to that of AVP-pVIc 
complexes binding to DNA. 

When AVP is mixed with pVI, no enzymatic activity is detected, even when both components are 
present at μM concentrations [108]. Incubation of AVP and pVI with 1 nM dsDNA results in 100% of 
pVI being cleaved, and all the AVP forming active AVP-pVIc complexes. Thus, activation of AVP to 
AVP-pVIc complexes by pVI requires the presence of DNA. Further analysis revealed that for AVP 
and pVI to interact, they both must be bound to the same DNA molecule. 

The observation that both AVP and pVI must be on the same molecule of DNA for activation to 
occur in the absence of three-dimensional diffusion suggested that one of the molecules must slide into 
the other via one-dimensional diffusion along the DNA to promote the bimolecular interactions  
that lead to cutting out pVIc and its binding to AVP. Using total internal reflection fluorescence 
microscopy, AVP was observed binding randomly to phage lambda DNA, but not sliding [108].  
In a similar assay, pVI was also observed binding randomly to DNA. However, once bound, pVI slid 
rapidly over tens of thousands of base pairs before dissociating from the DNA. The MSD (mean square 
displacement, the square of the distance traveled) for each molecule was linear with diffusion time, 
indicating transport dominated by Brownian motion. The mean one-dimensional diffusion constant 
was 1.45 ± 0.13 × 106 bp2/s. 

There is a specific sequence of events in the cleavage of pVI by AVP in the presence of DNA, both 
in vitro and in vivo. In vitro, pVI is initially cleaved at its N-terminus (releasing amino acids 1–33) and 
then at its C-terminus (releasing pVIc, amino acids 239–250). After the second cleavage, the released 
pVIc binds to the AVP that cut it out. An identical cleavage and activation sequence occurs in a quasi 
in vivo system with ts1 virus grown at the nonpermissive temperature. Incubation of heat disrupted ts1 
particles with AVP results in the processing of pVI to protein VI. If disrupted virus is incubated with 
DNase and then AVP is added, no processing of pVI is observed. Most convincing, if disrupted virus 
is incubated with DNase, the DNase inactivated and DNA added back along with AVP, pVI undergoes 
processing to protein VI and AVP-pVIc complexes are formed [108]. 

3.6. AVP Function in Its Biological Context 

Once the active AVP-pVIc complex has been formed, how can a few molecules of the active protease 
cleave at several thousand sites within the nascent particle? Like AVP, pVI, and the AVP-pVIc 
complex [75,78,97], the adenoviral precursor proteins pVI, pTP, pVII, pIIIa, pµ, and L1 52/55k are 
sequence-independent DNA-binding proteins [59,102,109–111]. The situation is not dissimilar to that 
faced by AVP and pVI in the formation of AVP-pVIc complexes, in that the active protease needs to 
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reach its substrates when both AVP-pVIc complexes and their substrates are essentially irreversibly 
bound to a fixed matrix, the viral DNA. 

Single-molecule fluorescence microscopy with flow-stretched DNA was used to determine whether 
AVP-pVIc complexes slide on DNA [16]. AVP-pVIc complexes bound randomly to DNA and were 
observed to diffuse rapidly over tens of thousands of base pairs (Figure 5). The mean one-dimensional 
diffusion constant was estimated as 21.0 ± 1.9 × 106 bp2/s, and sliding exhibited Brownian motion. 
These observations implied that AVP-pVIc complexes may slide on DNA to encounter and process  
the virion precursor proteins also bound to DNA. 

 

Figure 5. Sliding of the AVP-pVIc complex along DNA. (a) An AVP-pVIc complex 
sliding almost 16,000 bp in less than 1 s; (b) Mean square displacement (MSD) versus time 
of the data in (a). The MSD is the square of the distance traveled. The slope of the curve is 
the one-dimensional diffusion constant for this slide, 32 × 106 bp2/s.  The line parallel to 
the abscissa is the MSD from the y-axis versus time. 

If sliding of AVP-pVIc complexes on DNA is required for the processing of virion precursor 
proteins, then one would predict that processing of virion precursor proteins would occur only in  
the presence of DNA [16]. The validity of this prediction was confirmed by experiments showing that  
in vitro, in the absence of DNA, no conversion of pVI to VI occurred upon incubation of AVP-pVIc 
complexes with pVI. In the presence of DNA, pVI was processed to VI in two steps; the same way  
it was processed by AVP in the presence of DNA [108]. In vivo, processing of the precursor proteins  
in heat-disrupted ts1 virus by AVP-pVIc complexes was also found to be DNA dependent. When  
AVP-pVIc complexes were incubated with heat-disrupted ts1 virus, all the virion precursor proteins 
were processed [16]. If, before adding AVP-pVIc complexes, the heat disrupted ts1 particles were 
incubated with DNase, no processing of pVI or the other precursor proteins was observed. However, 
when heat disrupted ts1 particles are incubated with DNase, the DNase inactivated by EDTA, and ts1 
viral DNA added back along with AVP-pVIc complexes, full processing of virion precursor proteins  
is observed. 

Proteins can slide along DNA either by traveling straight down the double helix (simple  
one-dimensional translational diffusion) or by rotating along the DNA double helix while maintaining 
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a specific orientation with respect to the DNA double helix. If a protein is constrained to move along 
the DNA helix (for instance, in order to maintain optimum contact between its DNA-binding patch and 
the surface of the DNA helix), the protein will be forced to rotate while translating. It was shown that 
AVP-pVIc complexes undergo rotation-coupled sliding along the DNA helix on a rugged free-energy 
landscape [112]. The average free-energy barrier for AVP-pVIc complexes sliding along the DNA is 
1.1 ± 0.2 kBT. Such a small barrier facilitates rapid movement. 

3.7. Using AVP as a Target for Anti-Adenovirus Drugs 

Adenoviruses are the cause of numerous, significant diseases and antiviral agents against AVP 
would be valuable. In general, adenoviruses cause ocular, acute respiratory and gastrointestinal 
infections. Adenoviruses are responsible for approximately 5% of the acute respiratory diseases in 
children under the age of five [113] and for about 10% of the pneumonias of childhood [4,114]. They 
are also opportunistic pathogens in AIDS patients [115]. HAdV-B7 has been shown to be responsible  
for major outbreaks of acute respiratory disease among military recruits [116,117]. More recently, 
HAdV-D36 has been found to be associated with obesity [118], and a variant of HAdV-B14 infected 
more than 140 people on an island, 10 of whom died [119]. It is estimated that 20–40 million cases of 
epidemic keratoconjunctivitis arise each year, more than one million cases in Japan alone. While 
vaccines are highly effective in preventing viral infections, with other viruses, permanent, universal 
vaccines have been difficult to develop (e.g., HIV, flu, etc.). As there are more than 60 adenovirus 
serotypes, it may be difficult to get a universal, effective adenovirus vaccine. Antiviral agents can  
be useful for short-term protection, e.g., for self- limiting virus infections such as those that can  
be induced by adenovirus. 

One antiviral agent has been identified based on the biology of AVP. Regulation of AVP activity 
requires that the enzyme is synthesized in an inactive form, because if it were active before virion 
assembly, it would cleave virion precursor proteins, thereby preventing virus morphogenesis. From 
this point of view, it can be predicted that pVIc could be turned into an antiviral agent if it were present 
before complete virion assembly. This hypothesis was tested by adding pVIc to virus-infected cells at 
various times after infection [97,98]. When pVIc was added between 4 and 16 h post infection, there 
was no reduction in the level of synthesis of infectious virus. However, when added at time zero along 
with virus, or beyond 20 h post infection, there was a large reduction in the synthesis of infectious 
virus, e.g., 99.8% at 28 h post infection. 

A series of AVP inhibitors have also been developed based on the biology of the enzyme, and new 
methods for using inhibitors have been devised to prevent drug resistance [120–122]. In silico screening 
of a chemical database identified 2,4,5,7-tetranitro-9-fluorenone [123] as a potential inhibitor of AVP. 
This compound selectively and irreversibly inhibits AVP in a two-step reaction: reversible binding  
(Ki = 3.09 μM) followed by irreversible inhibition (ki = 0.006 s−1). The reversible binding is due to 
molecular complementarity between the inhibitor and the active site of AVP which is the basis for  
the selectivity of the inhibitor. The irreversible inhibition is due to substitution of a nitro group of  
the inhibitor by the nearby Cys122 in the active site of AVP. 

Comparison of the crystal structures of inactive AVP [94] and active AVP-pVIc complexes [86–88] 
reveals a number of differences which could be considered as targets for drug interactions. These sites, 
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which cover more than 40% of the surface of AVP, include the active site [86–88,94], pVIc binding 
site, DNA binding region [96,101], and the activation pathway [94]. Using structure-based drug 
design, a lead compound was identified that was predicted to bind to both the active site and the 
conserved site at which the N-terminus of pVIc binds [124]. This compound is a competitive inhibitor 
with a Ki of 0.43 μM. A derivative of this compound has an IC50 of 140 nM, and does not inhibit 
trypsin or papain at concentrations of enzyme up to 10 μM. 

4. Effect of Adenovirus Maturation on the Viral Particle 

Assembly and maturation in dsDNA viruses is most understood for the tailed bacteriophage and 
structurally related herpesviruses. In herpesvirus and in many bacteriophage, maturation is triggered by 
a viral protease and coupled with DNA packaging [125]. Large rigid-body movements of capsomers 
and dramatic capsid expansion allow the packaged genome to become part of a highly stable particle 
that will protect it from the environment until reaching a new host cell [126]. Bacteriophage and 
herpesvirus maturation are the obligate references when picturing dsDNA virus maturation. In AdV, 
however, studies on the structure and stability of the immature particle show a rather different picture. 

4.1. Structural Changes Induced by Maturation of the Viral Particle 

Two cryo-EM studies have analyzed the structural differences between mature (wild type, wt) and 
immature (ts1 mutant at the non-permissive temperature) adenovirus particles, at resolutions in the 
subnanometer range [127,128]. It was evident that, unlike bacteriophage, AdV does not experience 
massive conformational rearrangements during maturation. However, three differences between the 
mature and immature particles were observed. First, on the inner capsid surface of ts1, extra densities 
located between the peripentonal hexons and those in the central plate of the facet were dubbed  
a “molecular stitch”, that is, a structure that would contribute to hold the vertex components in place 
during assembly, but is removed afterwards to facilitate vertex release for uncoating [128] (Figure 6a). 
The molecular stitch is in close proximity to polypeptide VIII, one of the substrates of AVP. It is 
directly adjacent to two regions where polypeptide chains no longer could be traced in a quasi-atomic 
resolution HAdV-C5 study by cryo-EM, either because of their absence or because of disorder [7,8]. 
These regions are: a short stretch of residues in polypeptide IIIa (residues 216–225), and the central 
fragment of polypeptide VIII produced by AVP cleaving at residues 112 and 157 (Figure 1). There are 
two independent copies of polypeptide VIII in the AdV asymmetric unit. One is located beneath the 
peripentonal hexons, in close contact with polypeptide IIIa, while the other is closer to the three-fold 
icosahedral axis. The molecular stitch was only observed close to the peripentonal copy of VIII. 
Therefore, it seems likely that this structure is formed by the contribution of the central peptide of 
uncleaved pVIII and IIIa. 
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Figure 6. Structural differences between immature (ts1) and mature (wt) AdV virions.  
(a) View from inside the capsid looking at the 5-fold icosahedral symmetry axis, with the 
density for the molecular stitch derived from the ts1-wt difference map at 8.9 Å resolution 
in red [128]. The five peripentonal hexons are shown in pale pink; penton base in blue; 
polypeptide IIIa in yellow; and polypeptide VIII in tan. Surfaces in (a) and (b) were 
created from the HAdV-C5 high resolution cryo-EM structure (PDB ID 3IYN) [8] and 
represented with UCSF Chimera [90]. The bars represent the precursor polypeptides IIIa 
and VIII with the cleavage sites indicated (arrows). Polypeptide regions not traced in the 
cryo-EM HAdV-C5 high resolution structure are in gray. Untraced regions close to the 
molecular stitch are indicated with a red rectangle. Modified from [7]; (b) A section across 
the capsid showing the density attributed to the precursor of protein VI (red circles) inside 
the inner cavities of two hexon trimers [128]. Colors are as those shown in (a). Density for 
the molecular stitch is also seen in this view, wedged between polypeptide IIIa and VIII. 
The bar represents the precursor polypeptide VI with the cleavage sites indicated (arrows); 
(c) A disrupted particle found in a cryo-EM preparation of ts1 virus, showing the capsid 
separating from the core, while the latter remains as a compact sphere. The bar in the 
micrograph represents 50 nm. The bars below represent the precursor polypeptides pVII 
and pμ with the cleavage sites indicated (arrows). Reproduced with permission from 
Reference [128]. Copyright 2009, Elsevier. 
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The second difference observed consisted in additional density located inside all hexon cavities in 
the ts1 structure (Figure 6b) [127,128]. Weak density has been observed at this location in the mature 
particle, and attributed to polypeptide VI [8,9,12]. In one of the cryo-EM studies on ts1, the extra 
density inside hexons was assigned to pVIc, based on size considerations [128]. More recent structural 
and molecular studies indicate that the part of polypeptide VI located within the hexon cavity may be 
the pVI N-terminal peptide, although in this case the density observed occupies a more external 
position in the hexon cavity than the extra density observed in ts1 [10,129]. Nevertheless, stronger 
density in cryo-EM maps of ts1 indicates that the interaction between polypeptide VI and hexon 
changes upon pVI cleavage by AVP, with a more uniform occupancy or ordering of the part of pVI 
within the hexon cavity prior to maturation. This interaction change relates to the lack of infectivity in 
immature AdV: a strong interaction with hexon established by the precursor would have to be loosened 
by maturation to facilitate release of protein VI from the capsid in the endosome. 

The third difference observed between mature and immature AdV particles concerns core 
organization. Both cryo-EM studies indicated that the core undergoes a transition from a more ordered 
to a more disorganized structure during maturation [127,128]. Disrupted ts1 virions released compact, 
spherical cores, hinting at an extra stabilization of the structure (Figure 6c) [128]. This observation 
suggests that precursor proteins pVII and pµ have a much stronger dsDNA condensing activity than 
their mature versions. 

4.2. Stability Changes Induced by Maturation of the Viral Particle 

Early studies on the ts1 mutant had related its entry defect with increased stability of the virus 
particle [130]. The structure of the ts1 mutant at 8.9 Å resolution revealed extra ordered densities and a 
tighter core condensation attributable to the presence of uncleaved precursors in the immature particle 
(Figure 6) [128]. These structural differences suggested changes in interactions between the components 
of the viral particle that would be related to the ability, or lack thereof, to uncoat. The actual effect of 
the different interactions on particle stability and disassembly was revealed by in vitro disruption 
studies [131]. 

Immature ts1 particles are considerably more stable than the mature (wt) virions under a variety of 
stress sources (heat, acidification, denaturing agents), as indicated by differential scanning calorimetry, 
extrinsic fluorescence and electron microscopy analyses. Wild type capsid disassembly starts at mild 
conditions at which ts1 remains unaltered: for example, at 40 °C in heat disruption experiments; or at 
pH 6 to 6.5, which interestingly, mimics the pH conditions in the early endosome. This is another 
difference with the maturation process in bacteriophage. Unlike the bacteriophage capsids, the mature 
AdV virion does not represent a global energy minimum in the assembly pathway. It is rather  
a metastable particle, primed for sequential disassembly through a series of irreversible events, and 
massive genome exposure under the appropriate conditions. These energetic differences are likely 
related to the different infection mechanisms used by bacteriophage and AdV. dsDNA bacteriophage 
translocate their genomes into the host cell leaving the protein shell behind [132], while AdV is 
engulfed by the cell and disassembles within to expose its genome to the cell nucleus machinery. In 
this sense, AdV is similar to other non-enveloped animal viruses, such as poliovirus, where interaction 
with the receptor is the trigger to start the cascade of structural changes leading to uncoating [133]. 
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Maturation facilitates penton release under the appropriate conditions, e.g., mild acidification. Not 
all pentons are released at the same time; in particular, at pH 6 only one or two pentons per wt particle 
were found missing in cryo-electron tomography images [131]. Real time observations of the 
disassembly process induced by mechanical stress showed how pentons are sequentially released, and 
indicated that maturation reduced the energetic demands for penton ejection by a factor of 2 [134]. 
Penton loss is accompanied by loss of density in the peripheral core region, consistent with 
observations indicating release of some internal components in the early endosome, such as core 
polypeptide V and, more crucially, the membrane disrupting polypeptide VI [26,27]. A massive 
increase in DNA accessibility to intercalating dyes accompanies penton loss [131]. Interestingly, the 
viral genome also becomes accessible to click chemistry labels while the viral particle traffics within 
the cytosol in infected cells [36]. DNA accessibility in the first stages of disassembly results from 
penton defects and core reorganization, but not from core ejection, as most particles observed still 
retained electron dense contents, and only very rarely were short dsDNA stretches observed protruding 
from the virions [131,134]. These properties correlate with the need for the partially disassembled 
virion to keep protecting its genome while trafficking in the cytosol until arrival to the nuclear pore, 
while at the same time allowing access to cellular sensors triggering inflammatory responses [135]. 
DNA exposure to the environment occurred at higher levels of stress for the immature particle, and 
never reached the same cooperativity levels as in WT. At pH 5, when mature particles crack open and 
appear completely devoid of genome, the immature core remained forming a compact sphere attached 
to large capsid fragments [131,134]. These observations highlight the role of precursor proteins in 
bridging capsid to core, and in helping condense the viral genome so it can fit inside the capsid shell. 
On the other hand, maturation is required to prepare the viral particle for penton release, induce core 
relaxation and facilitate genome ejection at the nuclear pore. 

4.3. Release of Packaging Scaffold Protein L1 52/55k 

The unique mode of action of AVP and its dependence on dsDNA [16,75,108] imposes a tight  
link between the processes of genome packaging and maturation in AdV. One more link between  
these processes was recently discovered when the putative scaffold protein L1 52/55k was proved to be  
also a substrate for AVP [60]. The phosphoprotein L1 52/55k has been considered a possible 
scaffolding factor in AdV, because it is present in incomplete particles (devoid of the complete 
genome and considered packaging intermediates), but absent from the mature virion [46]. It would  
not be a classical scaffold protein however, since it does not seem to be required for capsid shell 
assembly [38]. Rather, it appears to be involved (as the other shell precursors) in establishing 
interactions that stably bridge shell and genome, acting as a packaging scaffold. Apart from having the 
ability to self-interact, L1 52/55k binds to the AdV packaging signal (through possibly an indirect 
interaction using another viral protein as intermediary) [42,44]; to the putative packaging ATPase  
IVa2 [136]; to the major core protein VII [59]; and to the shell protein IIIa [15]. The last two proteins 
are also processed by AVP during maturation. Interestingly, the multiple cleavages in L1 52/55k 
impair these interactions, facilitating its release from the nascent virion [60]. 

L1 52/55k is processed by AVP, but even after extensive digestion times (12 h) very large 
fragments (even the full length protein) are still present in the reaction, with sizes ranging between  



 23 
 
47 and 17 kDa [60]. However, only traces of L1 52/55k are found in mature viruses [46,60]. How are 
the large fragments expelled from the immature virion? One possible mechanism is that L1 52/55k is 
further processed into smaller fragments by another, as yet unknown, maturation player. Alternatively, 
the release of these large fragments must occur at a time when there are still considerably large exit 
ways in the particle. As AdV does not undergo large conformational rearrangements upon maturation, 
it follows that L1 52/55k fragments must be released while the capsid shell is still assembling. For 
other AVP substrates however (pVI, pVII, pVIII, pre-µ), excised terminal peptides have been found to 
be present in mature virions by MS analyses [19,53,129], indicating that either they strongly bind to 
other partners in the particle, or their cleavage is taking place after the particle is sealed. 

The presence of full length L1 52/55k protein in ts1 had previously been considered negligible [46]. 
However, recent studies indicate that as much as 50 copies of L1 52/55k are present in the young 
virion even after full genome packaging [60]. This new observation suggests that unprocessed  
L1 52/55k may also be a factor in the immature AdV inability to uncoat, by preserving strong 
interactions between core and shell that preclude genome detachment at the nuclear pore. 

5. Proteolytic Processing of Pre-Terminal Protein 

AdV terminal protein is the only early protein processed by AVP (Figure 1). One copy of mature 
TP (37 kDa) is covalently bound to each 5' terminus of the dsDNA genome in the infectious virus 
particle [137], but TP is synthesized as a larger precursor (pTP, 76.5 kDa) [54,138]. Cleavage proceeds 
via an intermediate form (iTP, 56 kDa) that was observed in ts1 virions grown at the permissive 
temperature (32 °C) [138]. iTP is short-lived in HAdV-C2 but can be readily detected in vitro in 
HAdV-E4, probably reflecting a lower efficiency of cleaving at the non-consensus site QRGF↓G [69]. 
pTP has four potential cleavage sites (Figure 1) in HAdV-C5, of which three have experimentally been 
observed [109]. The iTP intermediate is actually a mixture of the products obtained after cleavage at 
either residues 175–176 or 183–184, while cleavage at 349–350 produces the mature TP. 

Although the crucial function of pTP in viral genome replication has been extensively studied 
(reviewed in [139]), the role of its proteolytic maturation in the viral cycle is less clear. It has been 
proposed that maturation of pTP is required to release the nascent virions from the nuclear matrix [140]. 
However, the fact that ts1 immature particles are readily assembled, packaged and released is 
inconsistent with this hypothesis. Both pTP and TP, as well as iTP, can serve as primers to initiate viral 
genome replication [69,141,142]. Parental TP must be used in the first replication round after entry, 
while for subsequent rounds the newly synthesized pTP form will be available. Therefore, it cannot be 
ruled out that mature TP helps to make early replication more efficient, under conditions in which viral 
templates are still scarce. A third hypothesis is the requirement for pTP processing to help target it and 
its final product TP to different nuclear localizations. Immunofluorescence assays showed that the 
location of TP in the nucleus of HAdV-C2 infected cells is limited to a punctate pattern similar to that 
of early replication sites, while pTP was localized throughout the nucleus [69]. Further support for the 
role of TP in targeting of the entering genomes comes from recent work showing that a mutation 
changing Gly 315 to Val in HAdV-C5 pTP results in viral particles containing 10 times more iTP than 
WT. These particles could escape the endosome, but their genomes had difficulty reaching their 
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destination in the nucleus and were degraded in the cytosol [143]. This study proved that processing of 
the fourth consensus site in pTP is relevant for AdV infectivity. 

6. Concluding Remarks and Remaining Questions 

6.1. Enzymology and Mode of Action of AVP 

Model on the role of AVP in virion maturation. Detailed studies on the enzymology of AVP have 
resulted in the following model for its role in maturation: (a) AVP is synthesized in a catalytically 
inactive form [56,75]. If AVP were synthesized as an active enzyme, it could cleave virion precursor 
proteins before virion assembly, and this would abort the infection [97]; (b) Inside immature virions, 
AVP binds to the viral DNA [75,78]. Binding to DNA partially activates the enzyme [75,78];  
(c) Although AVP bound to DNA does not slide on DNA, pVI does slide on DNA via one-dimensional 
diffusion [108]. pVI slides into AVP when both are bound to the same DNA molecule; (d) The 
partially activated AVP [52] cleaves pVI first at its N-terminus releasing a 33 amino acid peptide, and 
then at its C-terminus releasing pVIc [108]; (e) The released pVIc binds to and forms a disulfide bond 
with the AVP that cut it out; (f) AVP-pVIc complexes bind tightly to DNA, and the ternary complex, 
AVP-pVIc-DNA, is the most active form of the enzyme [52,78,97]; (g) Although AVP binds to but 
does not slide on DNA [108], the fully active protease, the AVP-pVIc complex bound to DNA, does 
slide along the DNA via one-dimensional diffusion [16]; (h) As the AVP-pVIc complexes slide along 
DNA, they process the precursor proteins also bound to the DNA. In summary, the pVIc peptide  
is a molecular sled used first as part of pVI to slide itself into DNA bound AVP; then the sled is cut 
out from pVI whereupon it binds to AVP to form the AVP-pVIc complex. The sled activates AVP and 
enables it to slide into the rest of its substrates to process them. 

Gaps in understanding how AVP functions at the molecular level. To fully understand the molecular 
action of AVP, crystal structures of AVP, pVIc, AVP-pVIc, and pVI bound to DNA are required, as 
well as AVP-pVIc complexes in the presence of substrate plus and minus DNA. These structures will 
reveal at the structural level how DNA increases the activity of AVP and AVP-pVIc complexes;  
the structure of the sliding interface of AVP-pVIc complexes, pVIc, and pVI on DNA; the amino acids 
involved in sliding; the relative positions and orientation between the sliding interface, the active site 
and the substrate binding site; and the physical mechanism of sliding. 

Cleavage by sliding of AVP on “decorated” viral DNA. A major unanswered question is: how can 
AVP and AVP-pVIc complexes slide on the viral DNA in vivo, given that the DNA is decorated with 
multiple copies of the seven different precursor proteins? That this sliding does occur has been shown 
by experiments with heat-disrupted ts1 virions. Electron microscopy studies of mildly heat-disrupted 
ts1 virions show that part of the viral DNA is extruded through a hole in the virion [128]. The width of 
the extruded filament implies that the DNA is decorated with precursor proteins. When AVP is added 
to mildly heat-disrupted ts1 virions, the precursor proteins are processed [60]. It has also been shown 
that for AVP to be activated by pVI in vitro, not only is DNA required, but both AVP and pVI must be 
on the same DNA molecule. Thus, pVI and AVP-pVIc complexes slide on decorated DNA to interact 
with their substrates. 
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There are several different ways in which pVI and AVP-pVIc complexes could slide on decorated 
DNA to interact with their enzymes or substrates. The cleavage products of some of the precursor 
proteins may dissociate from the DNA after processing of the precursor form. For example, pVI has  
a Kd of 46 nM for DNA, whereas its fully processed product, protein VI, has a Kd of 397 nM [104].  
It has been shown that DNA compaction driven by precursor core proteins is relaxed by  
maturation [128,131,134]. On the other hand, it is clear that protein VII remains bound to DNA after 
processing of pVII. Furthermore, protein V is also bound to the viral DNA but is not a substrate for 
AVP. It is possible that pVI and AVP-pVIc complexes can slide past other proteins bound to DNA, 
e.g., by sliding in a groove of the DNA, major or minor, in which the other proteins are not bound.  
A more likely possibility is that a combination of sliding along the DNA and hopping on and off  
the DNA is occurring. These hypotheses are currently being tested experimentally. 

New type of biochemistry: one-dimensional biochemistry. The data on how AVP is activated and 
cleaves its substrates imply that a new type of biochemistry, one-dimensional biochemistry, is 
operative in AdV maturation. Some of the classic parameters characterizing bimolecular interactions 
are less meaningful in this new type of biochemistry. For example, pVI is not cleaved by highly active 
AVP-pVIc complexes in solution; AVP-pVIc complexes must slide along the DNA into pVI for a 
productive bimolecular interaction to occur [16]. In this case, equilibrium dissociation constants that 
characterize bimolecular interactions in three-dimensional space are less predictive of productive 
collisions than the individual equilibrium dissociation constants for the binding of the two components 
to DNA and the one-dimensional diffusion constants. AVP-pVIc complexes and their substrates bound 
to DNA are highly constrained, both in space and in orientation. That, plus the constraint that within 
the virus particle AVP-pVIc complexes move only in the one-dimensional space of the viral DNA, 
greatly reduces the number of possible orientations of AVP and its precursor protein substrates relative 
to each other, compared to both being free in solution. It is possible that the orientation of AVP-pVIc 
complexes sliding on DNA and the orientation of their substrates also bound to DNA are such  
that almost every collision between enzyme and substrate will be productive, i.e., lead to catalysis.  
This one-dimensional biochemistry, in a crowded milieu where DNA defines a highway through space, 
may be the only way bimolecular reactions between proteins can occur efficiently inside a virus 
particle or even in the nucleus of a cell. 

6.2. Role of Maturation in the AdV Infectious Cycle 

Goals for virion maturation. There is a double goal for maturation on the viral cycle: first, to 
produce virions stable enough to protect the genome from aggressive conditions in the extracellular 
milieu; and second, to prepare the viral particle for correct delivery of the genome into the new host 
cell. In AdV, maturation prepares the particle for a programmed uncoating sequence upon reception of 
the appropriate signal, for example attachment to the receptor, or pH changes along the endocytosis 
pathway [128,131,134]. Interestingly, AdV maturation is related to genome packaging in a unique 
way, determined by the use of dsDNA as a fundamental cofactor in the function of AVP. Additionally, 
a protein required for genome packaging, L1 52/55k, is also a substrate for the protease and its 
processing is the mechanism used to remove it from the particle [60]. Scaffold release triggered by 
proteolysis is a common mechanism encountered in other dsDNA viruses [125]. Adenovirus may use  
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a dual scaffolding system, including both a separate protein and flexible regions of minor capsid 
proteins removed by the viral protease during maturation. 

Temporal sequence of events. One of the many remaining questions regarding AdV assembly, 
packaging and maturation is the temporal sequence of events. While only negligible amounts of  
L1 52/55k are found in mature particles, in vitro proteolytic processing yields large fragments of this 
protein (17 kDa minimum), suggesting that large openings must exist in the nascent virion for them to 
be released [60]. On the other hand, excised peptides of other AVP substrates remain trapped in mature 
virions [19,53,129]. From these observations, it could be hypothesized that maturation would occur in 
two different phases: one simultaneously with packaging, through some openings which may or may 
not be also used for genome translocation; and another after packaging and L1 52/55k release, when 
the viral particle is already sealed. 

Roles of precursor proteins and their cleavage products in maturation. Structural and biophysical 
analyses indicate that cleavage of all AVP substrates results in a metastable particle [128,131,134]. 
However, the exact role of each particular cleavage or of each particular precursor in determining 
particle stability and infectivity is not known. Mutation studies where each cleavage is separately 
impaired are required to elucidate this point. To understand these roles in detail, it is essential to 
progress in the structural studies. First, to overcome the current uncertainties regarding the location of 
the different minor coat proteins in the icosahedral shell [8,10]; second, to start obtaining data on the 
organization of non-icosahedral capsid components. This last point is particularly relevant to the 
maturation process, as many of the AVP substrates (Figure 1) are not icosahedrally ordered.  
One particularly intriguing example is polypeptide pVI. This protein must slide on the viral genome 
until it finds AVP to activate the protease and trigger the maturation cleavage cascade [108]. However, 
pVI is bound to hexon in the icosahedral shell [10,104,127,128], therefore being unable to slide. Is it 
possible that there are two different pVI pools during assembly, one interacting with hexons, the rest 
free to slide on DNA and activate AVP? The disparity between the copy number of VI in the virion 
(360) and that of hexon (720 monomers, 240 trimers) may be hinting at such protein distribution. 
Latest advances in the field of cryo-electron microscopy [144] or mass spectrometry of large 
complexes [145] will likely be crucial in addressing these challenging questions. 
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