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Abstract

A complex guided spectral transform Lanczos (cGSTL) algorithm is proposed to com-

pute both bound and resonance states including energies, widths and wavefunctions. The

algorithm comprises of two layers of complex-symmetric Lanczos iterations. A short inner

layer iteration produces a set of complex formally orthogonal Lanczos (cFOL) polynomials.

They are used to span the guided spectral transform function determined by a retarded

Green operator. An outer layer iteration is then carried out with the transform function to

compute the eigen-pairs of the system. The guided spectral transform function is designed

to have the same wavefunctions as the eigenstates of the original Hamiltonian in the spec-

tral range of interest. Therefore the energies and/or widths of bound or resonance states

can be easily computed with their wavefunctions or by using a root-searching method from

the guided spectral transform surface. The new cGSTL algorithm is applied to bound and

resonance states of HO2, and compared to previous calculations.
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1 Introduction

Since Paige and Saunders1 discovered that spurious eigenstates (also called ghosts) ap-

pearing in the standard Lanczos iterative diagonalization2 did not preclude the calculation

of the true eigenstates in 1975,3,4 the Lanczos algorithm2 has been widely used in many

fields5,6 including molecular spectroscopy6–15 and chemical dynamics.16–23 The Lanczos

method has many merits, e.g., see the reviews6,8, 22,24 and references therein. For instance,

it requires only the action of matrix (or quantum Hamiltonian) on Lanczos vectors, which

is very suitable for large sparse matrices and parallel computing. In chemical physics, the

Hamiltonian-vector products are usually evaluated on-the-fly without explicitly construct-

ing Hamiltonian matrices. Thus the requirement of core memory is roughly defined by the

size of two Lanczos vectors if only eigenvalues are wanted.

The standard Lanczos algorithm is also very efficient to compute extreme and widely

spaced eigenstates but becomes rather slow to converge interior states in dense spectrum

regions where eigenvalues are clustered with small spacings. Techniques such as the restart-

ing approach25–30 and the projection or filter diagonalization methods7,12,31–40 have been

developed in order to speed up the computation of those interior eigenstates. In particu-

lar, Ericsson and Ruhe41 proposed an excellent spectral transform technique in which they

used a shifted and inverted matrix instead of the matrix itself to carry out the Lanczos

iterations. As a result, the states near the shift value are calculated quickly as in this

region the transformed matrix has a strongly dilated spectrum. Indeed, the spectral trans-

form Lanczos (STL) method has fully taken the advantage of the Lanczos method. The

powerful spectral transform technique has then been explored by several groups includ-

ing us12,42–51 in chemical physics. The most used functions f(Ĥ) are the Green function

(Ĥ − E0)
−1,12,42,49,50,52 the exponential function exp[−α(Ĥ − E0)],

43,48,53 the Gaussian

exp[−α(Ĥ − E0)
2]51 and its derivative (Ĥ − E0) exp[−α(Ĥ − E0)

2],44 and the hyperbolic

tangent tanh[α(Ĥ − E0)].
45 Nevertheless, the STL method has not been widely applied
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for large systems. This is largely because it is difficult and computationally expensive to

perform the actions of the spectral transform f(Ĥ) on Lanczos vectors44,47,48 owing to the

nonlinearity of f(Ĥ).

In order to avoid this difficulty, we have recently developed an efficient guided spectrum

transform Lanczos (GSTL) method.45,54 The GSTL method uses a mimic function F (Ĥ)

of an analytic function f(Ĥ) as mentioned above. Here F (Ĥ) is a low order polynomial

obtained by truncating the accurate expansion of f(Ĥ) in orthogonal polynomials. The

efficiency of the GSTL algorithm also relies on the fact that the action of F (Ĥ)-vectors

can be efficiently done via the recurrence polynomial-vector products. The GSTL method

is problem-independent. It has been widely used in high dimensional quantum reactive

scattering (e.g. see Refs.[21, 22] and references therein) and molecular spectroscopy22,49,55

calculations. By using the GSTL method, we have developed a two-layer Lanczos algo-

rithm56,57 that is capable of solving the eigenvalue problem of polyatomic systems up to

six atoms without any dynamics approximation.49 It also makes possible the routine calcu-

lation of vibrational energies of four- and five-atom molecules,13,55 once a global potential

energy surface of molecule is provided.

Although the STL/GSTL methods have been successfully implemented with Hermitian

matrices or operators, their application for non-Hermitian complex matrices is still rather

limited. In chemical physics, one often needs to study resonance states (similar to bound

states but having complex eigenvalues). They are usually computed by using an extended

Hamiltonian,

Ĥ = Ĥs − iW, (1)

in a square integrable (L2) basis set. Here Ĥs is the system Hamiltonian while −iW refers

to a negative imaginary potential (NIP)58,59 to impose boundary conditions. Obviously,

its Hamiltonian matrix is no longer Hermitian but complex symmetric. It gives complex

eigenvalues as zn = En − iΓn/2 in which En and Γn are the energies and widths, re-
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spectively. Nowadays, the complex symmetric Lanczos algorithm46,52,60–64 is often used to

solve the eigen-equation of Eq. (1) although the algorithm may suffer from the numerical

instability problem for long iterations.5,59 Therefore, the algorithm is inefficient to study

resonances in dense regions, for example, those resonances that appear above a deep po-

tential well, as in molecules HO2, NO2 and HOCO etc. A combined filter diagonalization

and Lanczos iteration approach7,40,63,65 has been proposed to improve the convergence of

calculations. On the other hand, if one is interested only in resonance energies and widths,

there are several efficient algorithms based on the real (damped) Chebyshev propagation

methods33–35,66–71 in addition to the Lanczos,7,63,73 Newton,74–77 and Faber20,78 polyno-

mial expansions. Leforestier and co-workers52 have proposed a spectral transform Lanczos

method by using an LU decomposition of complex scaled Hamiltonian. However, those

low-storage methods are inferior to calculating the wavefunctions of resonance states since

a restarting iteration has to be done for extracting wavefunctions. Therefore, it is still

challenging to compute resonance wavefunctions beyond resonance energies and widths,

especially, for those long-lived resonances in large systems.

In this work, we present a direct extension of our real guided spectral transform Lanczos

method54 to incorporate complex symmetric matrices and thereby enable the calculations

of resonance states including energies, widths and wavefunctions. The spectral transform

function is produced with the guidance of the retarded Green operator G+(E), and is

expanded in a series of complex formally orthogonal Lanczos (cFOL) polynomials. The

cFOL polynomials are used in order to avoid the numerical instability of classical orthog-

onal polynomial expansion that is normally utilized in real algorithms. In Sec. 2 we will

describe the extended version, which we name the complex guided spectral transform Lanc-

zos (cGSTL) method. Numerical application and results for computing both the bound

and resonance states of HO2 are discussed in Sec. 3. Finally a short summary is given in

Sec. 4.
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2 The complex guided spectral transform Lanczos method

Similar to the real Lanczos algorithm, the complex-symmetric Lanczos recursion can be

written as46,52,60–64

βj+1|ψj+1) = Ĥ|ψj)− αj|ψj)− βj|ψj−1), (2)

where Ĥ is the extended Hamiltonian in Eq. (1). αj and βj are the complex mean value

and residual of the jth vector respectively. They are defined as

αj = (ψj|Ĥ|ψj), βj+1 = (ψj+1|Ĥ|ψj) (3)

with

β1 = 0, |ψ0) = 0. (4)

Basically, the Lanczos recursion reduces the original Hamiltonian matrix to a symmetric

tridiagonal form

TK =



α1 β2
β2 α2 β3 0

β3
. . . . . .

0
. . . . . . βK

βK αK

 (5)

in the Kth order subspace VK = {|ψ1), |ψ2), · · · , |ψK)} with the orthonormal conditions62

(ψi|ψj) = δij, (6)

where ′(· · · | · · ·)′ refers to a c−product (i.e., no complex-conjugation in contrast to normal

Hermitian cases). In matrix form Eq. (2) can be expressed as

ĤVK = VK+1TK = VKTK + βK+1ψK+1e
T
K . (7)

Here ′T ′ stands for transpose only, and ej being an unit vector in the jth dimension.

Following our real GSTL algorithm,45,49,54 the complex guided spectral transform Lanc-

zos (cGSTL) algorithm is given by

βj+1|ψj+1) = F (Ĥ)|ψj)− αj|ψj)− βj|ψj−1), (8)
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or in the matrix form

F (Ĥ)VK = VK+1TK = VKTK + βK+1ψK+1e
T
K , (9)

where F (Ĥ) is a guided spectral transform function of Ĥ. The difference to Eq. (7) is that

instead of using the Hamiltonian directly in the recursion a function of the Hamiltonian,

F (Ĥ), is used. Again F (Ĥ) will be expanded in a set of complex orthogonal polynomial

functions.

As usual, we aim at the calculation of the lowest lying resonance states of Ĥ as well as

the bound states below them. Even so, the number of states can be large for molecules with

deep potential wells. For this purpose a good F (Ĥ) should have a strongly dilated spectrum

at low energies and widths near zero, and be a monotonic function in the spectral range

of interest. As a result, the eigenstates of F (Ĥ) in the dilated spectrum can be computed

quickly by the Lanczos method, and the calculated states can uniquely match with those of

Ĥ. Our previous studies have shown that the exponential54 and the hyperbolic tangent45

functions are good choices. Their transform functions can be robustly expanded in a

series of classical orthogonal polynomial functions79 such as Chebyshev or Legendre in the

case of Hermitian Hamiltonian. Unfortunately, the same approach can not be applied for

constructing F (Ĥ) with a complex non-Hermitian Hamiltonian owing to the numerical

instability and/or the strongly oscillating behavior in the imaginary direction. It is well

known that the standard Chebyshev recursion is unstable for a complex Hamiltonian76,78

despite being the best one for a Hermitian operator. Alternatively, the Newton74–77 and

Faber20,78 polynomials have often been employed for complex Hamiltionian in quantum

dynamics calculations. However, it is noticed that both polynomial expansions are not

satisfied to represent the spectral transform function. This is because the spectrum is

hardly dilated along the imaginary direction near zero.

Eventually, it is found that the complex guided spectral transform function F (Ĥ)

can be expressed in a series of complex formally orthogonal Lanczos (cFOL) polynomi-
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als (Lk(Ĥ)),80 i.e.

F (Ĥ) =
LC∑
k=1

Ak(Eref )Lk(Ĥ). (10)

Similar to the standard Lanczos recurrence in Eq. (2), the cFOL polynomials can be

obtained using the recurrence

βk+1Lk+1 = ĤLk − αkLk − βkLk−1, (11)

with

L0(Ĥ) = 0 and L1(Ĥ) = 1.

By using the property of the Lanczos polynomials

(E ′|L(Ĥ)|E) = L(E)δEE′ , (12)

one can write the transformed spectral surface as

F (E) =
LC∑
k=1

Ak(Eref )Lk(E), (13)

where E is a complex variable.

In Eq. (10) the expansion coefficients AT
k = {A1(Eref ), A2(Eref ), · · · , Ak(Eref )} are

determined by the guidance of the retarded Green function (G+(Eref ) = (Ĥ − Eref )
−1)

with a given reference pivot (real or complex). Then they are obtained by solving the

linear equation

LkL
T
kAk = ((Tk − ErefI)

2 + β2
k+1eke

T
k )Ak = (Tk − ErefI)e1 (14)

that is an extended version of the minimal residual (MINRES) equation.1,12 Here the lower

tri-band matrix Lk is defined for the shift Eref as

Lk =



γ1
δ2 γ2

ϵ3 δ3
. . . 0

ϵ4
. . . . . .

0
. . . . . . . . .

ϵk δk γ̄k


. (15)

7



The complex elements γi, δi and ϵi are calculated from the Lanczos coefficients αi and βi

in Eq. (2) using a LQ factorization method.1,5 The Lanczos coefficients are first calculated

with any initial random vector.

Since we are interested in obtaining a desired spectral transform function F (Ĥ) rather

than in converging the retarded Green function, a low order (LC) expansion in Eq. (10)

is always used. The value LC is selected by the condition |ALC
(Eref )| < 0.01 in which

LC is the minimum subspace k = LC in Eq. (14). The criterion (0.01) is the same as

that optimized in the real GSTL method.45,54 It is worthwhile to mention that, unlike the

Chebyshev or other classical orthogonal polynomial expansions, the MINRES algorithm

optimizes the expansion coefficients with respect to the subspace size k too. Therefore, it

is not necessary that the lth coefficient |Al| will always decay with increasing k. In other

words, the truncation method45,54 starting with a given large subspace size k is not an

optimal way to determine LC . This is why we propose the opposite procedure beginning

at a small subspace. This approach has been numerically verified.

Furthermore, the complex quasi-MINRES method (QMR) was used by Yu and Smith63

for the calculation of resonance energies and widths, in which the Green operator is utilized

as a filter operator. In order to get a nearly energy-resolved filter, a long Lanczos recursion

has to be carried out for computing approximate filter states. In contrast, the cGSTL

method uses the Green operator as a spectral transform reference rather than a filter

operator. Here, other crucial difference is that the QMRFD method does the standard

Lanczos iterations with Hamiltonian Ĥ whereas the cGSTL method performs the iterations

with a spectral transform function of Ĥ.

Now we can summarize the cGSTL calculations as following steps:

(i) Select an initial Lanczos vector, and run a short Lanczos iteration in Eq. (2) to

obtain a set of Lanczos coefficients (αj, βj).

(ii) Give a reference Eref , and determine the order LC and expansion coefficients Ak in
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F (Ĥ) by solving the MINRES equation (14) based on the Lanczos coefficients.

(iii) Select another initial Lanczos vector, and perform the spectral transform Lanc-

zos iterations in Eq. (8) using the pre-defined function F (Ĥ) until converge N -wanted

bound/resonance states.

(iv) Calculate the eigenvalues (F (En)) and eigenvectors (|ψn)) of F (Ĥ), and find the

eigenvalues (En) of Ĥ either using a root-searching method from F (En) via Eq. (13) or

directly computing with En = (ψn|Ĥ|ψn) as both Ĥ and F (Ĥ) share the same eigenvectors

in this spectral region.

Actually, the cGSTL algorithm in step (iii) involves two layers of complex-symmetric

Lanczos iterations. A short inner layer iteration (LC) is repeated, using the coefficients

(αj, βj) in step (i), to yield the spanning cFOL polynomials for the F (Ĥ)-vector products.

A long outer layer iteration is the one described in Eq. (8). Since LC is usually small, about

ten, the generated cFOL polynomials are orthonormal. In contrast, the orthogonality of

the Lanczos vectors in the outer layer will be lost after a few tens of iterations owing

to the finite precision of machine. In order to avoid this loss of orthogonality, here, we

have applied the partial reorthogonalization procedure of Simon.48,81 For more details, the

reader can see Ref.[81]. As a result, one can not only avoid the spurious problem but also

resolve degenerate states in calculations.

One can notice a few advantages of the cFOL polynomial expansion approach for F (Ĥ).

For instance, it is problem-independent. As the expansion coefficients Ak are obtained from

the molecule-adapted parameters (i.e., they are calculated using a real Hamiltonian), the

order LC is optimal to the system of interest. A small order will substantially enhance the

efficiency of the cGSTL algorithm because the CPU time increases approximately linearly

with LC . In particular, the action of F (Ĥ) on |ψj) can be efficiently performed using

the three term recurrence of Lanczos polynomials, which is similar to other real classical

orthogonal polynomials79 such as Chebyshev. Of course, the cFOL polynomials are also
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applicable for expanding other operators except for the Green operator.

3 Numerical results and discussion

In this section, we will present an application of the new cGSTL algorithm to calculating

the bound states and lowest-lying resonances of the hydroperoxyl radical HO2. HO2 is a

benchmark molecule with two equivalent deep potential wells. Its bound and resonance

energies and widths have been extensively studied.12,63,65,66,68,82,83 As in our previous

study,63 we used the Jacobi coordinates (RH−OO, ROO, θ) with zero total angular momentum

J = 0. Thus the system Hamiltonian is written as

Ĥs = − h̄2

2µH,OO

1

RH−OO

∂2

∂R2
H−OO

RH−OO − h̄2

2µOO

1

ROO

∂2

∂R2
OO

ROO

−
(

1

2µH,OOR2
H−OO

+
1

2µOOR2
OO

)
h̄2

sin θ

∂

∂θ
sin θ

∂

∂θ
+ V, (16)

where V is the potential energy surface of HO2. The DMBE IV surface84 is used for

numerical test and comparison with other work. At the equilibrium geometry, the potential

value is -2.378377 eV relative to the dissociation limit of H + O2. In Eq. (1) the absorbing

potential is given by63

W (RH−OO) =
V0

cosh2[(Rmax −RH−OO)/λ]
(17)

with the parameters V0 = 2.0 eV, Rmax = 11.0 a0, and λ = 0.50 a−1
0 .

The Hamiltionian is represented in a DVR basis set. 110 potential optimized DVR

(PODVR) points are used for the RH−OO coordinate in the range [0.5, 11.0] a0. 50 POD-

VRs spanning the range [1.3, 5.0] a0 are for ROO. To take account for the odd O-O exchange

parity, 43 odd symmetry-adapted Gauss-Legendre pivots are adopted for the θ angle. Fur-

thermore, the direct product DVR basis set is contracted by using a threshold energy of

2.0 eV, which gives a final basis size of 105781. A total 400 lowest-lying states will be

computed with a convergence within 1.0× 10−8 eV.
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The normal complex symmetric Lanczos algorithm was first run with 50 iterations

with a random initial vector. The obtained Lanczos iteration parameters were then used to

determine the expansion coefficients in F (Ĥ) with a reference Eref = 0.0 eV in the retarded

Green operator. The Eref value was selected to calculate the lowest lying resonance states

near the H + O2 dissociation limit in addition to all bound states. According to the

criterion (0.01) discussed above, the order of cFOL polynomial expansion is obtained as

LC = 6. It is very small, and also implies the efficiency of Green operator filter. The

parameters obtained are listed in Table 1. One can see that the absolute values of |Ak|

gradually decrease as k increasing. The imaginary parts of Ak are small but noticeable

compared to their real parts. This is a general behavior observed.

By using the parameters in Table 1, we have explored the transformed spectral surface

that is shown in Fig. 1. The surface does not look like a Green function owing to the short

expansion. As desired, the real component of F (E) displays an exponential-like profile

along the real energy axis and remains the same property in the imaginary direction.

That is, the F (Ĥ) function has substantially dilated the energy spectrum at low energies

regardless of widths. Importantly, the imaginary sheet of F (E) also gives wonderful feature

that largely dilate the width spectrum monotonically at low energies. At high energies, both

the real and imaginary sheets become flat toward zero but having small oscillating waves.

Nevertheless, those waves will not affect our calculations as they are well separated from

the spectrum at low energies. Indeed, the flat transformation at high energies says that

the corresponding transformed spectrum is very dense, in which the states are unwanted.

The lowest 400 states of HO2 with odd O-O exchange parity have been well converged

using 2160 cGSTL iterations. The highest bound states are given in Table 2 while the low-

est resonances are listed in Table 3, together with a comparison with previous theoretical

results63,66,82,83 based on the same potential energy surface. Our results are in excellent

agreement with them except for that a few of artificial resonance states are also obtained.
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(see discussion below). The cGSTL algorithm demonstrates a better efficiency compared

to the order of polynomial iterations in previous studies.63,66,82,83 For instance, to con-

verge the same states as in this work, the Chebyshev-based filter diagonalization method

of Mandelshtam et al.66 needs 40000 real propagations while the QMRSD and QMRFD

methods63 require 55000 and 40000 complex iterations respectively. The QMRFD method

is also a filter diagonalization method but using the complex Lanczos recurrence. Since

the cGSTL algorithm is a nested Lanczos method, its equivalent single-loop iterations are

10800 (2160×(LC-1) with LC = 6) in complex or 21600 in real. Here a similar contracted

basis size is used in the Chebyshev-based FD (130K), QMRFD (106K) and cGSTL (106K)

methods. It is also found that the number of cGSTL iterations to converge those eigen-

states is not sensitive to the strength V0 of absorbing potential (within 20 deviations).

Here one should notice that the old Chebyshev-based FD method66 is not optimal. A bet-

ter convergence can be achieved by using the improved Chebyshev-based algorithm with

multiple optimal damping parameters.85 As similar to other filter diagonalization meth-

ods,7,31,32,35,85 the cGSTL method enables us to compute wavefunctions easily. Compared

with those Chebyshev-based methods that calculate the whole energy range equally, the

cGSTL algorithm has a strong bias to the dilated spectral region. That is, a single run with

the cGSTL algorithm is expected to compute about up to one thousand states efficiently

at a time.

The two highest bound states are displayed in Fig. 2. As expected, their wavefunctions

are localized above the potential well, and quickly decay to zero at large Jacobi coordinate

RH−OO. In contrast, the wavefunction density of a resonance state will spread into the

H + O2 dissociation channel along the radial Jacobi coordinate because of the nature of

scattering states. For HO2, two typical resonance states are shown in Fig. 3, where the

vanishing densities at the edge of largeRH−OO are due to the absorbing potentialW (R) used

in the calculations. Here the absorbing potential prevents the reflection of wavefunctions
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from the edge, and let resonance states behave correctly in the interaction region. In Fig. 3

the En = 0.099908 eV state is a normal resonance but the En = 0.103597 eV resonance is

unusual. The latter has large amplitudes in the H + O2 dissociation channel. Actually,

this kind of states are artifical resonance states33 as they are not stable with the strength of

absorbing potentials. At the trajectory cusp points they would converge to true resonance

states.

The eigenvalue trajectories of resonances can be calculated using the perturbation the-

ory with the help of the perturbed Hamiltoniam,

Ĥ
′
(λs) = Ĥ + λs(−iW ), (18)

with λs ≥ −1. By using the eigenstates ψn of Ĥ, we have its Hamiltoniam matrix elelments,

H
′

ij = ziδij + λs[C
TWcGSTLC]ij (19)

and

WcGSTL
kl = (ψk| − iW |ψl), (20)

where zi and C are the eigenvalues and eigenvectors of H. And WcGSTL is the matrix of

the negative imaginary potential in the guided spectral transform Lanczos subspace. This

symmetric matrix is calculated only once during the Lanczos propagation. In this example,

it has a dimension of 2160. The eigenvalue trajectories are then evaluated by changing the

parameter λs in the 40 highest eigenstates of Ĥ. A typical trajectory is shown in Fig. 4.

These calculations are very fast. Therefore, multiple Lanczos propagations can be avoided.

4 Summary

We have developed a complex guided spectral transform Lanczos (cGSTL) algorithm for

studying the bound and resonance states of molecules. By using this method, both com-

plex eigenvalues and eigenvectors (or wavefunctions) can be calculated. The algorithm is
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formed by two layers of complex symmetric Lanczos iterations. In particular, we have pro-

posed a numerically robust technique to build up the complex guided spectral transform

function F (Ĥ) that is expanded in a series of complex formally orthogonal Lanczos (cFOL)

polynomials. The new algorithm has been applied for studying the bound and resonance

states of the prototype HO2. Calculated energies and widths are in good agreement with

previous results. The numerical application shows that the cGSTL method is more efficient

compared to other algorithms, and is capable of providing wavefunctions as well as energies

and widths. Importantly, the algorithm is problem-independent so that it can be combined

with other techniques such as multi-layer basis contraction to get better efficiency.
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Table 1: The Lanczos recurrence coefficients (αk, βk) in eV and the expansion parameters

Ak(Eref ) with Eref = 0.0 eV.

k αk βk Ak

1 ( 4.88743474, -0.07689197) ... ( 0.32064155, 0.01499251)
2 ( 8.83652709, -0.02763156) ( 3.63591360, 0.00007170) ( -0.18217999, -0.01336861)
3 ( 17.07405668, -0.09132401) ( 6.19472456, 0.05132989) ( 0.09223438, 0.00901126)
4 ( 17.04257005, 0.03263378) ( 9.73912037, 0.00285816) ( -0.05883206, -0.00590884)
5 ( 18.33514909, 0.05016775) ( 9.14477624, -0.01630337) ( 0.02658333, 0.00256294)
6 ( 16.39878832, 0.15186702) ( 9.21863377, -0.05136340) ( -0.00811432, -0.00064216)
7 ... ( 9.18164233, -0.07287073)
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Table 2: A comparison of computed highest bound states of HO2 with the total angular

momentum J = 0 and odd O-O exchange parity, where E0 is the vibrational ground state

while En are the energy levels with respect to the asymptote H + O2. The energy unit is

eV.

MGT66 YS63 This work
n En − E0 En En En

336 2.06234 0.04658 0.04669 0.046693
337 2.06320 0.04744 0.04766 0.047713
338 2.06643 0.05067 0.05102 0.051020
339 2.06854 0.05278 0.05316 0.053161
340 2.07000 0.05424 0.05471 0.054712
341 2.07188 0.05612 0.05629 0.056296
342 2.07277 0.05701 0.05711 0.057109
343 2.07446 0.05870 0.05895 0.058949
344 2.07692 0.06116 0.06166 0.061657
345 2.07722 0.06146 0.06170 0.061709
346 2.08127 0.06551 0.06600 0.066009
347 2.08157 0.06581 0.06642 0.066424
348 2.08224 0.06648 0.06721 0.067211
349 2.08703 0.07127 0.07168 0.071681
350 2.08900 0.07324 0.07354 0.073547
351 2.09103 0.07527 0.07580 0.075804
352 2.09268 0.07692 0.07729 0.077296
353 2.09565 0.07989 0.08017 0.080170
354 2.09649 0.08073 0.08090 0.080904
355 2.09800 0.08224 0.08255 0.082555
356 2.10144 0.08568 0.08614 0.086136
357 2.10607 0.09031 0.09040 0.090407
358 2.10697 0.09121 0.09150 0.091503
359 2.10804 0.09228 0.09263 0.092631
360 2.10997 0.09421 0.09448 0.094480
361 2.11232 0.09656 0.09706 0.097059
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Table 3: A comparison of computed energies (En) and widths (Γn) of the lowest resonance

states of HO2 for J = 0 and odd O-O exchange parity. The numbers in parentheses are

the power of 10. All units are in eV.

KP82,83 MGT66 YS63 This work
En Γn En Γn En Γn En Γn

0.098056 1.841(-4) - - - - - -
0.099152 6.387(-6) 0.099075 2.8(-5) 0.099177 3.454(-5) 0.099189 3.153(-6)
0.099661 6.151(-5) 0.09972 3.2(-5) 0.099896 2.687(-5) 0.099908 1.604(-5)
0.100274 8.227(-4) - - 0.100376 5.571(-4) 0.100956 6.184(-4)
0.102036 9.471(-5) 0.10189 8.6(-5) 0.101886 7.214(-5) 0.101907 4.361(-5)
0.103760 1.527(-5) 0.103717 1.56(-5) 0.103758 1.671(-5) 0.103761 1.168(-5)
0.104668 2.334(-5) 0.104622 3.2(-5) 0.104857 6.096(-5) 0.104862 4.399(-5)
0.107208 1.066(-4) 0.106964 7.6(-5) 0.106997 5.051(-5) 0.107005 3.022(-5)
0.110424 1.779(-4) 0.11034 1.14(-4) 0.110754 1.427(-4) 0.110770 5.101(-5)
0.112204 9.403(-4) 0.11214 7.4(-4) 0.112588 3.611(-4) 0.112582 6.896(-4)
0.114299 6.209(-5) 0.11391 1.8(-4) 0.114234 1.020(-4) 0.114264 4.404(-5)
0.115788 6.300(-7) 0.11561 2.6(-7) 0.115654 1.200(-6) 0.115572 5.308(-7)
- - 0.11872 2.30(-3) 0.117880 3.558(-3) 0.118760 2.717(-3)
0.118964 1.060(-5) 0.11878 1.56(-5) 0.119039 1.254(-5) 0.119037 3.084(-6)
0.120778 3.827(-5) 0.12058 3.6(-5) 0.120751 3.763(-5) 0.120750 4.893(-5)
0.124675 2.491(-5) 0.124484 1.82(-5) 0.124701 1.651(-5) 0.124702 2.224(-5)
0.126862 5.266(-4) 0.12657 4.70(-4) 0.126852 4.663(-4) 0.126583 7.728(-4)
0.127474 1.135(-4) 0.127312 8.44(-5) 0.127592 5.192(-5) 0.127607 7.304(-5)
0.130950 4.885(-5) 0.130690 6.88(-5) 0.130749 5.596(-5) 0.130765 4.204(-5)
0.133196 8.776(-3) 0.132897 2.36(-3) 0.132643 1.359(-3) 0.133164 1.377(-3)
0.135807 1.284(-4) 0.135603 2.20(-4) 0.135814 5.085(-4) 0.135861 2.199(-4)
0.136527 3.816(-4) 0.136566 3.74(-4) 0.136195 3.717(-4) 0.136327 2.939(-4)
0.138706 8.227(-4) 0.13848 7.80(-4) 0.138631 1.253(-3) 0.138645 1.047(-3)
0.141310 5.485(-4) 0.141133 4.76(-4) 0.141486 3.719(-4) 0.141496 4.821(-4)

23



Figure 1: A plot for the guided spectral transform surface F (E − Eref ) as a function of

energy and resonance width in eV, where its real and imaginary part is shown in the upper

and lower panels, respectively.

Figure 2: Wavefunctions for the two highest bound states, n = 361 (upper panel) and

n = 360 (middle panel), with the contour plot of 2D potential energy surface in the Jacobi

coordinates (lower panel).

Figure 3: As the same as in Fig. 2 but for two typical resonance states, En = 0.103597 eV

(upper panel) and En = 0.099908 eV (middle panel).

Figure 4: An eigenvalue trajectory of a typical resonance state obtained by changing the

perturbation strength of absorbing potential.
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