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Deconfinement as an entropic self-destruction:
a solution for the quarkonium suppression puzzle?
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The entropic approach to dissociation of bound states immersed in strongly coupled systems is
developed. In such systems, the excitations of the bound state are often delocalized and characterized
by a large entropy, so that the bound state is strongly entangled with the rest of the statistical
system. If this entropy S increases with the separation r between the constituents of the bound
state, S = S(r), then the resulting entropic force F = T 05/0r (T is temperature) can drive the
dissociation process. As a specific example, we consider the case of heavy quarkonium in strongly
coupled quark-gluon plasma, where lattice QCD indicates a large amount of entropy associated with
the heavy quark pair at temperatures 0.9 T. < T < 1.5 T, (7. is the deconfinement temperature);
this entropy S(r) grows with the inter-quark distance r. We argue that the entropic mechanism
results in an anomalously strong quarkonium suppression in the temperature range near 7T,.. This
entropic self-destruction may thus explain why the experimentally measured quarkonium nuclear
modification factor at RHIC (lower energy density) is smaller than at LHC (higher energy density),
possibly resolving the “quarkonium suppression puzzle” — all of the previously known mechanisms
of quarkonium dissociation operate more effectively at higher energy densities, and this contradicts
the data. Moreover, we find that near 7. the entropic force leads to delocalization of the bound
hadron states; we argue that this delocalization may be the mechanism underlying deconfinement.

PACS numbers: 05.10.Gg, 05.40.Jc, 12.38.Mh, 25.75.Cj

INTRODUCTION

Entropy is one of the key concepts in modern science,
with applications that far transcend the boundaries of its
native thermodynamics. For example, the entropy of the
black hole [Il 2] was instrumental in understanding the
interplay of quantum mechanics and gravity, and subse-
quently led to the holographic [3, 4] gauge/gravity cor-
respondence [5H7]. The entanglement entropy provides a
non-local order parameter of topological order in strongly
coupled systems [8]. The absence of entropy production
serves as a stringent constraint on anomaly-induced non-
dissipative transport [9], fixing most of the transport co-
efficients in chiral magnetohydrodynamics [10, [IT]. Quite
often, the considerations based on the entropy allow to
understand the behavior of complex systems with compli-
cated dynamics not amenable to microscopic treatment.

In particular, if the entropy S of a composite system
depends on the coordinate r of a constituent, it is useful
to introduce the notion of the entropic force with magni-
tude

oS
F(r) =T (1)

The entropic force does not describe any additional fun-
damental interaction; instead, it is an emergent force
that stems from multiple interactions driving the sys-
tem, in accord with the second law of thermodynamics,
towards the state with a larger entropy. The entropic
force was originally introduced [12] to explain the elas-
ticity of polymer strands in rubber. The rubber polymer

strands are long, and when stretched, possess smaller en-
tropy than in the ground state where their motions are
unrestricted. The stretched polymers thus tend to con-
tract to the ground state, and this causes a macroscopic
entropic force resulting in the contraction of the stretched
rubber band. The underlying fundamental interactions
are of course electromagnetic, but the notion of entropic
force allows to bypass the consideration of complicated
microscopic dynamics.

The notion of entropic force offers a simple alterna-
tive way of deriving kinetic theory; for reader’s conve-
nience, we will outline below an entropic approach to
diffusion developed by Neumann [I3]. It has been pro-
posed by Verlinde [I4] that the entropic force may play
a much more profound role in physics, being responsible
for gravity. This intriguing idea is a subject of a lively
controversy, and will not be discussed here. We will re-
strict ourselves to statistical physics where the notion of
the entropic force has been firmly established. Moreover,
the entropic force is even put to practical use in entropic
self-assembly, where nano-particles arrange themselves in
a desired pattern that maximizes their entropy; see e.g.
[15].

In this paper, we address the behavior of bound states
in QCD matter at finite temperature. We will argue that
the process of deconfinement can be viewed as an entropic
self-destruction, when bound hadron states are driven
towards a delocalized state that maximizes the entropy
of the system. This delocalization occurs at tempera-
tures around the deconfinement temperature, and may



be considered as an entropic representation of the de-
confinement itself. Specifically, we consider the dissocia-
tion of heavy quarkonia in quark-gluon plasma (originally
proposed as a signature of deconfinement in [16]) within
this entropic framework. In this case, the increase of the
entropy associated with the heavy quark-antiquark pair
with the inter-quark distance has been observed in lat-
tice QCD [I7HI9], and so the entropic force (1f) should be
present.

The physical reason for this increase of the entropy
with the inter-quark distance is likely the abundance of
the physical states that become available for the sepa-
rating heavy quarks — while at short distances the color
dipole moment of the pair is small and it decouples from
the medium, at larger distances the heavy quarks may
form extended bound states characterized by a larger en-
tropy. This picture is supported by the recent lattice
results [20] indicating that close to the crossover tran-
sition the charmed degrees of freedom can no longer be
described using an uncorrelated gas of known hadrons.
In string picture, this increasing entropy is associated
with the entropy of a “long string” [21H25] connecting
the heavy quark pair; the condensation of long strings
(equivalent to a black hole formation [26]) describes a
deconfined phase. The condensation of long strings (or
”string nets”) can also describe the topological phases
in condensed matter systems [27], implying an interest-
ing cross-disciplinary connection. Indeed, it has been
proposed recently that QCD matter can be viewed as
a topological phase [2§].

By , the increase of the entropy with the quark-
antiquark distance leads to the entropic force that points
outward and can induce the self-destruction of the bound
state. Below we will find that the resulting delocalization
of heavy quarks, and thus the quarkonium suppression
rate, is maximal near the deconfinement transition tem-
perature. This provides a possible explanation for the
puzzling energy dependence of the heavy quarkonium
nuclear modification factor observed at RHIC [29] and
LHC [30]: even though the density of produced matter is
higher at LHC than at RHIC, the nuclear modification
factor at LHC appears larger than at RHIC. It has been
pointed out [3I] that an appropriate measure of char-
monium suppression is the ratio of the hidden-to-open
charm, and not the nuclear modification factor (which is
the normalized ratio of nucleus-nucleus and pp charmo-
nium production cross sections). Even so, to reconcile
the increase of the charmonium nuclear modification fac-
tor at the LHC with the stronger suppression expected in
conventional scenarios would require a large increase in
the production of open charm at the LHC, which would
be a puzzle in itself; the forthcoming data on open charm
production at small transverse momentum will clarify the
situation. A possible explanation of the charmonium sup-
pression puzzle is the heavy quark recombination [32} 33],

see [34] for a recent review. However, here we propose
an alternative explanation linked to the nature of decon-
finement transition.

ENTROPIC VIEW ON EINSTEIN’S DIFFUSION

Let us begin by summarizing the entropic approach
to diffusion proposed by Neumann [I3]; see [35] for a
recent discussion. Consider a particle released at the
origin » = 0. The number of states for the particle at
distances between r and r + dr is proportional to the vol-
ume dV (r) = 4nr?dr = Q(r)dr, and the corresponding
r-dependent part of the entropy is

S(r) =kInQ(r) = 2kInr + const; (2)

where we wrote explicitly the Boltzmann constant k. The
resulting entropic force is

S  2kT
Fry=T—=——. 3
(=T == (3)
In a viscous fluid, the ensemble average of the entropic
force is equilibrated by the average of the Stokes force
that is proportional to the particle’s velocity,

o= () (@

for a spherical particle of radius R the constant ¢ in the
Stokes force is proportional to the shear viscosity of the
fluid #:

¢ = 6mRn. (5)

In using the hydrodynamical notion of viscosity, we as-
sume that the number of interactions needed to change r
substantially is very large. The ensemble average is thus
performed over the continuous three-dimensional Gaus-
sian probability distribution

4 r? 2
P Zegs v () O

defined as follows: after time ¢ the particle will be lo-
cated between r and r + dr with the probability P(r)dr
normalized by [ P(r)dr =1, and ¢(t) is the most prob-
able value of r(t). It is well known that the Gaussian
distribution as a limit of Bernoullian distributions when
the number of steps in a walk becomes very large [36].

The averages of different powers of r over the distribu-
tion @ are given by



Substituting and (|9)) into and using the expression
for the entropic force (3)), we get the differential equation

qdq = 2Ddt, (10)

where D is the diffusion coefficient that according to
is given by
kT kT

D=—= .
c 6mRn

(11)

The solution of consistent with the initial condition
q(t=0)=0is

¢*(t) = 4Dt. (12)

Using (22) = (r?)/3 for isotropic diffusion in three spatial
dimensions, and ¢? = 2r?/3 = 222, we get the Einstein
relation for diffusion:

(z%(t)) = 2Dt. (13)

THE CHANDRASEKHAR’S LAW

Let us now consider the particle bound to the origin
by a quadratic potential U(r) = ar?/2 resulting in the
Hooke’s force

oU

Fo=—%=

—ar. (14)
Equating the average of the force Fy to the average of
the entropic force (3) (pointing in the opposite direction)
similarly to , we get

r

a(r) = 2T <1> (15)

Using , @I), and ¢% = 2(x?) we get

T
kT

() (16)
This is the classic Chandrasekhar’s law [36] underlying
the theory of thermal expansion. Note that this deriva-
tion based on the entropic force [I3] is significantly sim-

pler than the original one [36].

If we consider the force as resulting from the in-
teraction among the constituents of a bound state, then
we can note that unlike in the case of diffusion , the
distance between the constituents does not increase with
time, so the state does not dissolve. However the square
of the effective size of the bound state grows linearly with
temperature.

THE LAW FOR LINEAR CONFINEMENT

Let us now assume a linear confining potential U(r) =
or with a string tension o; the corresponding force is
F, = —0U/0r = —o. The balance of the confining and
entropic forces yields

J:QkT<1>. (17)

r

Using @ we get

since (z2) = ¢?/2 we find for the average distance

@%zg(“jé (19)

s g

We thus find that, in analogy with Chandrasekhar’s law,
the square of the average distance between the con-
stituents grows with temperature, but for the linear con-
fining potential the dependence on the temperature is
quadratic. This means that hadronic systems bound
by the confining potential undergo a much more pro-
nounced ”thermal expansion” than the ones governed by
the Chandrasekhar’s law.

Let us investigate the consequences of the relation
for the dissociation of quarkonium in quark-gluon
plasma. As the temperature T' of the plasma grows, the
average distance between the heavy quark and antiquark
will increase, and at some value T' = T, will reach the
distance x4(T') at which the potential is screened and the
entanglement entropy no longer depends on the distance,
so the quarks become uncorrelated. It is natural to asso-
ciate this temperature Ty with the dissociation tempera-
ture at which the heavy quarkonium ”melts”. The string
tension also has a mild dependence on the temperature
o = o(T). We thus get from an equation for the
dissociation temperature:

<ﬁ@»8(j%f. (20)

™

The screening length x4(T") and the string tension o (7))
have been extensively studied in Euclidean lattice QCD
simulations, see e.g. [[THI9]; using this input, we can
solve and find the dissociation temperature T,. Us-
ing the lattice data from [I9], we get an estimate of the
dissociation temperature, T ~ 300 MeV. However, as we
will now discuss, this estimate misses a very important
feature of the lattice data — a substantial entanglement of
the heavy quark pair with the quark-gluon plasma, and
the entropy associated with it [I7HI9].



ENTROPIC SELF-DESTRUCTION

The lattice QCD data clearly indicate the presence of
a significant additional entropy associated with a static
heavy quark-antiquark pair [I7HI9], see Fig Moreover,
in a broad range of quark-antiquark distances r, this en-
tropy S = S(r,T) increases linearly in r, indicating an
exponential growth of the number of states Q(r) with the
distance. The exponential growth of the number of states
is in sharp contradiction with the conventional power law
Qr) ~ r? (see ) that drives the usual diffusion de-
scribed by Einstein’s law . This behavior may result
from the presence of delocalized ”long string” states that
possess large entropy far exceeding that of a two-particle
quark-antiquark state, see Fig. 2} In other words, the
quark-antiquark pair is strongly entangled with the rest
of the system.

TS, [MeV]
1000 r 1
500 r 1
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0 0.5 1 15
FIG. 1: The additional entropy S1 (multiplied by tempera-

ture T) associated with the color singlet quark-antiquark state
at temperature T' ~ 1.3 T, (T, is the deconfinement temper-
ature) in 2 flavor lattice QCD as a function of the distance
between the quark and antiquark; from [19].

Within the range of distances where the entropy is ap-
proximately linear in r (see Figll) S(r,T) = ks'(T)r +
const, the entropic force
oS(r,T)

or

F=T = kTs'(T) (21)
does not fall off with the distance unlike and is thus
much more efficient in dissociating the bound states.

At short distances r, the quark and antiquark represent
a small color dipole and decouple from long wavelength
gluon excitations. Because of this, the entanglement of
the pair with the rest of the system is small, the cor-
responding entropy as indicated by Fig[l] vanishes, and
the heavy quarkonium is intact. In this regime the dom-
inant mechanism of heavy quarkonium dissociation is by
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the impact of thermal gluon fluctuations [37] through the
QCD version of photo-effect [38,[39]. On the other hand,
at large distances the quark and antiquark are no longer
correlated and the entropy no longer depends on r. In
this regime the entropic force is dominated by the con-
ventional expression , and the motion of heavy quarks
is driven by the Einstein’s diffusion .

The difference in the dissociation mechanisms in the
hadron gas at T' < T, and in the deconfined phase around
T, is illustrated in Fig. In the hadron gas phase, the
confining interaction between the heavy quark and anti-
quark is screened by the produced light quark-antiquark
pair, leading to the production of two open charm mesons
(see left panel of Fig. . In this case the number of phys-
ical states can be expected to grow as a square of the
distance between the heavy quark and antiquark, simi-
lar to the case of diffusion . In the deconfined phase,
the number of physical states grows exponentially with
the inter-quark distance r, corresponding to the linear in-
crease of entropy with r observed at intermediate values
of r, see Fig[l] This exponential growth likely originates
from coupling to the "long string” excitations that are
characterized by a large density of states, see the right
panel of Fig.

FIG. 2: The dissociation of heavy quark-antiquark state in
the hadron gas (left panel) and in the deconfined phase near
the transition temperature (right panel).

The presence of the entropy S associated with the
quark pair means that the free energy A and internal
energy U differ, since A = U —T'S. It has been proposed
to use the free energy [40], the internal energy [41], [42], or
combination of the two [43] as inputs in potential model
calculations of heavy quarkonium spectra in the medium.
In the present author’s opinion, the entropy associated
with the quark pair signals that the pair couples to on-
shell degrees of freedom, and this coupling invalidates the
key assumption of the potential approach - namely, that
the interaction between the constituents is instantaneous.



The coupling to on-shell degrees of freedom (manifested
by the entropy) inevitably introduces retardation effects
and leads to the breakdown of the potential model. We
thus need a different treatment taking account of the en-

tropy.

In the lattice setup, the quarks are static, and the mea-
sured entropy (let us call it Siq:(r,T)) does not include
the entropy resulting from the quark motion in co-
ordinate space. Since the entropy is additive, the total
entropic force is thus given by the sum

_ p08u(nT) | 2T

E(r) or r

(22)
The balance of the average of and the confining force
yields

JOS(rT) | AT _ QU(rT)
or N

where we used @D

(23)

Let us assume that both the entropy and the confining
potential are linear in r, Sy (r,T) = ks'(T) r + const
and U(r,T) = o(T) r, as indicated by the lattice data
at intermediate distances r. Using ¢? = 222 we get from

(23)

2 8 U(T) / -
@ =2 (%P -vm) e
If we neglect the entropy Sj: describing the entangle-
ment of quarkonium with the plasma and put §'(T) =0
in , we recover the law . The dependence of (x2)
on the temperature as given by is illustrated on Fig.
to produce this plot, we assumed for simplicity the
fixed values of 0 ~ 0.2 GeV? and s’ ~ 0.7 GeV.

0.5¢
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FIG. 3: The mean radius squared (z?) of the heavy
quark-antiquark bound state in strongly coupled quark-gluon
plasma as a function of temperature T, as given by . The
value of ((z2))'/? that exceeds the screening length implies
the dissociation of the bound state.

- T, GeV

It is clear from that the entanglement entropy
leads to a dramatic increase of the average distance be-
tween the heavy quarks. In particular, when

o(T)

/ —
() =22

(25)
the quark-antiquark state becomes completely delocal-
ized!

The condition for dissociation, as before, is (x2) >
(x2(T)), where x4(T) is the screening distance at which
the confining potential is screened and the entanglement
entropy no longer depends on the distance. When the
condition is met, (r?) — oo, and no bound states

exist in equilibrium.

In two flavor QCD as in Fig. [1} ¥7,. ~ 200 MeV [44],
so the divergence of the relative distance occurs at

~ 280 MeV ~ 1.4 kT,. (26)

However the average distance starts to exceed the screen-
ing length already around T, as can be seen from Fig.
[Bl This means that around T, all bound hadronic states
should cease to exist. It is thus tempting to speculate
that the condition presents an entropic view on the
deconfinement itself. Namely, the deconfinement occurs
because the excited hadron states become delocalized and
entangled. This resembles the percolation picture of de-
confinement [45] 46], in which the size of the percolation
cluster diverges at the deconfinement phase transition.

Our assumption of the linear dependence of the en-
tropy on the inter-quark distance r holds only within the
range 0.2 fm < r < 0.6 fm, see Fig. [1} at larger distances,
the entropy flattens off. However it is this range of dis-
tances which is crucial for our considerations, since once
the inter-quark distance exceeds the screening length the
quarkonium dissociates. At inter-quark distances exceed-
ing the screening length both the entropy and internal
energy cease to depend on r, and we get back to the Ein-
sten diffusion of heavy quarks in the plasma described by

(L3).

It is nevertheless interesting to examine the cases when
the entropy’s dependence on the inter-quark distance is
slower than linear, e.g. a) logarithmic S(r) = alnr or b)
square root S(r) = a’4/r. Repeating the computations
made above, we find that in the case a) the square of the
inter-quark distance < z? > grows quadratically with the
ratio of temperature to string tension, similarly to
but with a larger coefficient (2a + 4)?/27; when a — 0,
we recover 8/ as in (19)). For the case b), we need the
average of 1/4/r over the distribution (6)); it is given by

1 - 2I' (2)
< r<t>> = ) (#1)




The resulting expression for < 22 > is easily obtained

by solving a quadratic equation for ,/g; it has simple low
and high temperature T limits. At low T, we recover
(19). In high T limit, we get

(o) = LT ()" 23)

272 o

which is quartic in temperature and thus signals a much
faster increase of the thermal expansion than .

We are now ready to address the heavy quarkonium
suppression puzzle. The key lattice observation in this
case is the following: the additional entropy associated
with the heavy quark pair peaks around T, and essen-
tially vanishes above 1.5 T, [19]. Since the entropic force
drives the dissociation process in our scenario, the sup-
pression of charmonia (which have the sizes affected by
the presence of the entropy) has to be stronger at tem-
peratures close to T, (which is the case at RHIC energy)
than at higher temperatures achieved at the LHC. On
the other hand, most of the bottomonium states have
smaller sizes, and are thus much less affected by the en-
tropic forces. In accord with our discussion above, this
implies that their dissociation mechanism is mostly con-
ventional (Debye screening [I6] or thermal gluon activa-
tion [37]) leading to a sequential suppression pattern [48],
and thus the bottomonium suppression gets stronger at
higher energy densities. The available data indicate that
the bottomonium suppression is indeed stronger at the
LHC [49] 50] than at RHIC [51l (2], in accord with our

scenario.

Of course, a detailed quantitative study including
state-of-the art analysis of the available lattice QCD re-
sults and a real time evolution of the quark-gluon plasma
is needed to reach a definitive conclusion. This study is
forthcoming, and will be presented elsewhere. Neverthe-
less, the entropic enhancement of charmonium dissocia-
tion at temperatures close to T is a very robust feature of
our scenario. Let us note also a similarity to the peak in
jet quenching close to T, pointed out theoretically in [47]
and indicated by the data on jet azimuthal distributions.

CONCLUSIONS

The entanglement of a bound state with the rest of
the system can lead to its entropic self-destruction. This
happens in particular when the excitations of the bound
state are delocalized and characterized by a large entropy.
If this entropy increases with the separation between the
constituents of the bound state, then the resulting en-
tropic force can drive the dissociation process.

We have applied this treatment to the dissociation of
heavy quarkonium in quark-gluon plasma, where lattice
QCD indicates the presence of a large amount of entropy

associated with the heavy quark pair, and this entropy
grows with the inter-quark distance. We have argued
that ”entropic self-destruction” can lead to a strong sup-
pression of the bound states close to T, possibly provid-
ing a solution to the heavy quarkonium suppression puz-
zle. A detailed quantitative study of this phenomenon
will allow to check whether the proposed scenario ade-
quately describes the experimental observations.

The proposed mechanism of quarkonium dissociation
underlines the importance of entanglement and entropy
in the deconfinement transition. The presented approach
to dissociation of bound states may also find applications
in other systems with delocalized excitations, including
topological phases in condensed matter.
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