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First-order phase transformations via nucleation are @meoed in a variety of natural and
technological processes. The vapor-phase synthesis opaditles with prescribed properties for
subsequent assembly into novel nanostructures is onecapeptil In the Earth’s atmosphere, the
formation of new particles and their growth into cloud comsion nuclei give rise to feedback
processes that modulate cloudiness, precipitation, danthtd?2 The reliable modeling of such
processes requires going beyond classical phenomenaogyds a molecular-level description.
To this end the development of so-called nucleation thesreas been particularly effective,
however, in their current form, these theorems rely on iste assumptions that limit their use
mainly to interpretation of carefully controlled laborataneasurements. Here we derive extended
forms of the first nucleation theorem, and related sum riatesclude loss of molecular clusters
from a prescribed nucleation and growth sequence. Lossedndto scavenging by background
aerosol and/or container walls, or removal from the numeatolume by diffusion or phoretic
forces. We also include the possibility that clusters, eslg ones of sub-critical size, are lost
due to their serving as heterogeneous condensation siéesay that opens up new off-sequence
channels for new particle formation. These results havextisonsequences for the interpretation

of atmospherically relevant field and laboratory measuréme

As demonstrated by Bowles et althese theorems—with emphasis on the first nucleation
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theorem,

—are a direct consequence of the law of mass action for ntimtettom an ideal vaporlV,- is
the work needed to form a cluster of critical sizZey* is the excess number of molecules in the
nucleus over that present in the same volume of parent phaseis the chemical potential of nu-
cleating species present in the parent phase. Under typlmadatory and atmospheric conditions
Ag* can be approximated by the thermodynamic critical gizewhich is given in the classical
nucleation theory by the minimum of the constrained equititn distribution ofg-mers (clusters
containingg monomeric units of condensed phase),= n;e~"+/*7, wheren, is the number
concentration of monomers. The connection with nucleatat@ measurements is achieved by
expressing the nucleation rate in Arrhenius-formy Ke~"o*/kT where the prefactok” should
take into account the law of mass action. These relatiomeliimg the reversible work of cluster
formation, can be described tgrmodynamic nucleation theorems. Alternatively,kinetic nucle-

ation theorems can be derived directly from the master equation approactutteation kinetics
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using the law of mass action and detailed baldice.

A detailed kinetic treatment of homogeneous nucleation pvasented by Farkdsfollowing
Szilard’s suggestion that clusters grow or decay by alasgror evaporating a monomer. This
simplification does not usually compromise the accuracyheftheory, as in a typical case of
vapor—liquid nucleation the collisions with monomers doaté the total number of collisions
encountered by-mers. Lettingf, denote the actual population gfmers, the net forward flux

between adjacent sizes, sagndg + 1, is given as

Jg - 5gf1fg - ag-l—lfg-i—l (2)

where 3, is the addition rate of a monomer togamer, ande, is the evaporation rate of a
monomer from a-mer. The detailed balance conditiof,n,fi = ag411n411, Where f; is the
actual monomer concentration, which we hold as constardaléqu:;, is used to eliminate the

evaporation rate:

Jg = By fing (Q - ﬁ) = py (ug — ugt1) - (€))

g Ngt1
The new variableg, andu, are introduced for subsequent use. Dividing both sides of&dy
pg, and summing foy = 1,..., G, whereG is a sufficiently large integer with boundary conditions

uc = 0 andu; = 1, and noticing that/, is constant {) for all ¢ when no losses are present, we

. (z) @

The remarkable fact of this well-known result is that it deg® only onjg,—determined from

arrive at the Becker—Dorifgesult

kinetic theory—anch,,.
For an ideal vapor, incorporating the law of mass acfign= gu, or n, x n{, the following

result is obvious:
l@ In(nin,)

0lnny }T:g—i-l. ®)

As defined heref, does not depend om, [see Eq. (3)] and substitution of this last result into

Eq. (4), withp, = 3,n1n,, gives the kinetic version of the first nucleation theofem,

<8an) _gi, ©)
T

Jdlnng

where the kinetic critical size is defined as an expectataneg = 25;11 P(g)g with respect to
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FIG. 1. A schematic description of the Szilard process Vafises.

the normalized /p, distribution

e -1
P(g):p_g<zp_g> . (7)

g9=1

Although the first nucleation theorem has been tested wellbnd chamber studies of single-
component and binary nucleatidhyecent atmospherically relevant fiéldand laboratory?—14
studies of sulfuric acid driven nucleation have producesbmsistent results; suggesting, for ex-
ample, that new particle formation may occur via activatedi barrier) or purely kinetic (with-
out barrier) mechanisms under nearly identical experialerdnditions. Several possible rea-
sons for this behavior have been suggested, including @mublrelated to the experimental de-
tection of freshly nucleated clustéfsind the influence of other trace vaprs® on the new par-
ticle formation rate® Recent simulation studies have underlined the effect of aval coagula-
tion losses—and alternative growth paths including additf clusters containing severa} &0,
molecule$’—on the interpretation of the first nucleation theor&r,an effect that has not been
yet fully accounted for when applying the first nucleatioedtem to laboratory or atmospheric
measurements.

To extend the kinetic nucleation theorem for cases withdesge apply the discrete model of
McGraw and Marlow® which is more appropriate at small cluster sizes than cpomding con-
tinuum presentatiodsand allows cluster grow by condensation, evaporation, aeddependent
cluster losses. Net fluxes betwegmer and g+ 1)-mers are still given by Eq. (3), but eaghmer
is additionally scavenged at ralg. The assumption of linear dependencd.gon f,, L, = q, f,,
whereg, is the rate coefficient that can apply to each of the loss nmesimes mentioned above, but
not to removal by self-coagulation or production of smatleisters through fragmentation, allows
derivation of a closed-form solutions for the relative sevisies of ratesJ, with respect to;.22

Prior to consideration of more complex systems, it is wotthewcomparing the thermodynamic
and kinetic approaches underlying derivation of Eqgs. (H)(&), respectively. Both approaches are

extendable to multicomponent nucleation with the kinetipraach having advantage of working
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with a directly measurable quantity, nucleation rate. Téseatial difference is that thermody-
namic nucleation theorems focus on extrema of the freeggrmurface whereas the kinetic ap-
proaches work with rate coefficients and the (possibly mpldjipathways over which nucleation
can occur (cf. Ref. 23). From the kinetic viewpoint, the @lerate sensitivity for a complex
system can often be expressed simply as a flux-weighted gez@fasensitivities over dominant
paths’

Using now the model described in Fig. 1, we derive two sumsrifibe the nucleation rates:

First, from Eqg. (3) we get

Q

-1

Q
-

= (ug — ugs1) = ug —ug = 1. (8)
g

g

Q

Q
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—

g
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Multiplying both sides by/ = <Z§’: 1/pg> from Eq. (4) yields the first sum rule:

P(Q)Jg = _g =J, (9)
g=1
that is, at steady state th&(g)-averaged transition rate equals the homogeneous nurieatie

without losses. As the fluxes in Fig. 1 are conserved, at eaely s
Jy=Jy—1 — L. (10)

Equations (9) and (10) imply that the net forward rates atlissiges are larger than the corre-
sponding loss-free rates, and smaller at large $Z€ke addition of cluster loss tends to promote
the assumption of steady state used in the derivation of @yjand (10). This is because cluster
losses actually drive the system towards steady state thstie would otherwise happen without
the loss2® Additionally, it has been shown that background aerosoiclwvincreases scavenging
loss, widens the stability range of steady-state conditiomlynamical systems involving coupled
nucleation and growtFf

Taking the derivatives of both sides of Eq. (9), completimg logarithms of differentials, and
applying Egs. (5)—(7) to evaluate the derivativepof.J, andP(g) we get after some algebra the

| /omyJ,
Z dlnn —9
1 L/ T {qq}

g=

second sum rule:

P(g)Jy = J. (11)

This sum rule involving both rates and rate sensitivities ba seen as a generalization of the

kinetic first nucleation theorem, as Eq. (11) reduces to &xfof the loss-free case with = J,.
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FIG. 2. Normalized formation rates ofg@amer as a function of and A at S = 10. Dashed line denotes

Jy = J. Inset shows in linear scale how in the case of large logges J for largeg.

It should be noted that Eqgs. (9) and (11) do not depend on theenaf losses as long as self-

coagulation and fragmentation of clusters can be neglected

To illustrate the new sum rules we perform calculations fan@del condensable vapor—a
proxy to ethanesulfonic acid that facilitates comparisath\wrevious work®?127-2% Table Sl
lists properties of the model compouffdLosses of clusters are taken to be due to Brownian
coagulation with background aerosol with specific surfaea aensityA varying from particle-
free conditions {l = 0 m~!) to a high value of4 typical of a severe duststorm; an intermediate
valueA = 0.072 m~!, which gives a loss rate comparable to the diffusion lossftioe nucleation
zone in a thermal diffusion cloud chamiBémvas used in earlier wor¥. Fuchs surface are®sare
implied throughout. Results are shown in Figs. 2 and 3. E@ushows that the net growth rates
can be considerably larger with loss than without for clissté sub-critical size. This behavior
can be rationalized by the fact that the loss channel is nmopitant for clusters that are, in
effect, trapped by the thermodynamic barrier and thus haue itime to experience loss. Super-
critical clusters are able to grow much faster and thus daabtoss that efficiently at any given
size. Similar behavior is seen in continuous models foreatabn with los$82° As can be seen
by comparing Figs. 2 and 3(a), qualitatively similar bebavs observed whether the loss rate
is increased by increasing at fixed S (Fig. 2) or the saturation ratio is decreased at fixed
[Fig. 3(a)]. This similarity is related to the importanceaohon-dimensional loss parametér=
A/(A:f1), whereA, is the surface area of monomer, introduced independenshjghtly different
contexts in Refs. 20 and 30. In what follows, only the effdch warying saturation ratio at fixed

background aerosol surface area is considered.
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FIG. 3. (a) Normalized formation rates ofyamer as a function of at different saturation ratios with a
fixed A = 0.0072 m~!. (b) Apparent resultg§ of naively applied first nucleation theorem as a function of
cluster sizgy, note the linear regime for smajl Open and filled symbols refer to loss-free and lossy cases,

respectively. (c, d) Distribution®(g).J,/J and |(d1ln J,/0 lnnl)mqg} —g| P(g)Jg/J (markers and
values at left axes) and their cumulative sums (for lossgxasly; histograms and values at right axes). In

all panels, yellow vertical lines indicate the locationgtad loss-free critical sizegfrom Eq. (6).

Figure 3(b) shows size dependent sensitivitielof, with respect tdn n, at constanf’ [term
in parenthesis in Eq. (11)] as a function @ffilled symbols). The result, if naively interpreted,
would indicate an apparent critical sizg) ¢hat can differ appreciably from the kinetic critical
size determined in the loss-free cagg, (which, in turn, is very close to the actual number of
molecules in the critical nucleug?, of homogeneous nucleation theory. For the smallest ¢histe
the apparent critical size depends linearly from the sizehath the rate is determined, i.6.~
¢.%? For clusters larger thag, slight overestimates are obtained. Thus, it is possiblebtain
estimateg biased into either direction, if the effect of loss is netgelc The quantitative deviation

depends in a complicated mannergrandg, [Eq. (S6)].
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An interesting feature that is apparent from Figs. 2 and Bas the first nucleation theorem
seems to approximately hold if applied to the rdfedetermined at the loss-free kinetic critical
sizeg. However, it is premature to say whether this behavior issoiggal nature, or a consequence
of the model system; the effect of losses on the gradignt ., is mainly important at sizes
smaller thary [see, e.g., Fig. S1(b)]. It would also be possible to definaatlc critical size for
the lossy casej, by averaging; with respect to the generalized distributiég).J,/.J: in such
case the second sum rule could be writtei? as

G-1
. J,P(g) (OInJ,
1= § g g . 12
! i J (8111 1 ) Ty{‘lg} ( )

g=1
As can be interpreted from Fig. 3(c), at least for our modeksa is well approximated byj.
However, there is no unambiguous physical interpretatiofy @s there is no single rate limiting
step corresponding the bottleneck for the observed nucteatte, though the thermodynamic
critical sizeg* appears in the theoretical estimates for the transientsgake of nucleation also in
such casé>3!

Figures 3(c) and (d) demonstrate the first and second surs, méspectively. In Panel (c),
the distributionP(g).J,/J, generalizing Eq. (7), is given together with its cumulatsum. These
cumulative sums are given for the cases with loss only: uloderfree conditions it is clear that the
cumulative distributions approach unity as the distri#(¢) is normalized, in the case of Panel
(c), and the second sum rule, demonstrated in Panel (d)cesda Eq. (6). These figures show the
effect of applying the first nucleation theorem to the forimratrates of clusters of different size,
and illustrate the validity of Egs. (9) and (11) for a redliaa of the flux network model illustrated
in Fig. 1.

In a recent simulation study with qualitatively similar finds, Ehrhart and Curtid&used the
SAWNUC sulfuric acid—water nucleatidtmodel to study sensitivity of nucleation rate to changes
in vapor phase sulfuric acid concentration as a functiorudter size and scavenging rate. Similar
behavior was also seen in simulations of the binary sulfacid—ammonia system using another
modeling approach (ACDCJ. However, for an even more nonideal system of sulfuric acidl an
dimethylamine, a more complicated behavior was obsetethjch is likely due to kinetic effects
and/or breakdown of the Szilard mechanism.

Yet another loss process that can be approximately caslin@ar form is the heterogeneous
nucleation on the small sub-critical clusters in the preseof, e.g., an organic vapdt.This is

essentially a new channel for growth that opens up, therbgtavely removing clusters from the
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growth sequence illustrated in Fig. 1. Conversely, cahsiof sub-critical clusters with existing
ambient nanoparticles, for which we can also consider silaghe organic moleculéécan also
result in crossing of the heterogeneous nucleation baEgatier applications of the (kinetic) first
nucleation theorem on such cases have produced meaniegtasates for;.1”3> However, when
considering some fraction of each loss rateactually resulting in a channel contributing to the
observed new particle formation, an extension of the firet#c nucleation theorem can be derived
[Eq. (S21)]. In this case the resulting apparent criticaégiis smaller than the corresponding
being either characteristic size for the heterogeneoukeusicif only one path is available, or
a flux-weighted average over possible homo- and heterogeneathways® This mechanism,
together with the observation of the linear estimate foraiygarent critical size at small sizes, also
casts some doubts on the interpretation of measurementgiadticle size magnifiers when used
to detect critical clusters at low nucleation rate (e.g..R&). In reality the working fluid may be

condensing on clusters of sub-critical size leading to toalkan estimate of.

As demonstrated by our results—as well as recent simulatimties®%—a naive application
of the first nucleation theorem when sub-critical clustssks are expected can lead to seriously
biased estimates on the critical cluster size, and consdégien the mechanism behind the new
particle formation, even if the other known deficienéfesf the analysis have been appropriately
considered. The fundamental concepts behind nucleatemréins, like mass action and detailed
balance, still apply but the theorems themselves needatmmeto yield physically meaningful
results. Here we have provided sum rules that can be usedrtfidand/or correct these biases.
Besides applications to analysis of field and laboratorysuesaments of new particle formation,
derived sum rules can also find applications in control ofnaical vapor deposition and vapor-
phase synthesis of nanomaterials in inhomogeneous mediany also in a broader context to

other types of nucleation processes that can be descrilmggithe Szilard model.
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