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Abstract

We report a rigorous full dimensional quantum dynamics algorithm, the multi-layer

Lanczos method, for computing vibrational energies and dipole transition intensities of

polyatomic molecules without any dynamics approximation. The multi-layer Lanczos

method is developed by using a few advanced techniques including the guided spectral

transform Lanczos method, multi-layer Lanczos iteration approach, recursive residue gener-

ation method, and dipole-wavefunction contraction. The quantum molecular Hamiltonian

at the total angular momentum J = 0 is represented in a set of orthogonal polyspheri-

cal coordinates so that the large amplitude motions of vibrations are naturally described.

In particular, the algorithm is general and problem-independent. An application is illus-

trated by calculating the infrared vibrational dipole transition spectrum of CH4 based on

the ab initio T8 potential energy surface of Schwenke and Partridge and the low-order

truncated ab initio dipole moment surfaces of Yurchenko and co-workers. A comparison

with experiments is made. The algorithm is also applicable for Raman polarizability active

spectra.
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1 Introduction

During the past decades, remarkable progress has been made in computational studies of

rovibrational spectra of molecules.1–10 Now rigorous full dimensional quantum dynamics

calculations can be done for polyatomic molecules up to nine atoms.11–16 Those great ac-

complishments become possible mainly due to the advent of efficient eigensolvers,8,16–20 dis-

crete variable representation (DVR) techniques,21–29 multilayer basis set constructions,10,15,16,28,30

and compact quantum Hamiltonian in optimally selected coordinates1,6, 7, 11,12,14,15,31–33 in

addition to the massive parallel computing of supercomputers. For high dimensional sys-

tems, their eigenvalues are often solved using an iterative diagonalization approach8,19,34–41

based on a sparse Hamiltonian matrix. Among them the Lanczos algorithm42 is one of the

most used iterative methods. It needs only two Lanczos vectors to calculate eigenvalues

which minimizes the core memory requirement.

The standard Lanczos algorithm is a powerful method to compute extreme and widely

spaced eigenstates. In order to efficiently compute interior states in dense spectrum re-

gions, where eigenvalues are clustered with small spacings, variants of spectral transform

techniques12,43–54 and projection or filter diagonalization methods48,55–67 have been devel-

oped. Indeed, the spectral transform Lanczos method pioneered by Ericsson and Ruhe43

has fully taken the advantage of the Lanczos method because the transformed spectrum of

original dense one becomes a strongly dilated spectrum. Recently, Yu and Nyman49,68,69

have developed an universal guided spectrum transform Lanczos (GSTL) method to avoid

the difficulty occurring in the action of analytical spectral transform functions on Lanc-

zos vectors.43–46,50,51,54 In the guided spectral transform technique, the spectral transform

functions are expanded a short series of classical or formally orthogonal polynomials of

Hamiltonian. As a result, the spectral transform function-vector products can be per-

formed as the normal Hamiltonian-vector products in the Lanczos recurrence. The GSTL

approach has been widely used in quantum reactive scattering (e.g. see Refs.[8,70] and ref-
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erences therein) and molecular spectroscopy7,8, 12 calculations including resonance states.69

By using a divide and conquer strategy, we have developed a two-layer Lanczos algo-

rithm40,71 that is capable of solving the eigenvalue problem of polyatomic systems up to

six atoms without any dynamics approximation.12 It also makes possible the routine cal-

culation of vibrational energies of four- and five-atom molecules,6,7 once a global potential

energy surface of molecule is provided. In addition, Wang and Carrington13 have also

developed a contracted Lanczos method that is capable of rigorously computing the eigen-

values of six-atomic systems.13 The contracted Lanczos method is similar to the two-layer

Lanczos algorithm but also contracting the basis functions in radial coordiantes.

The Lanczos algorithm has also been used to study the transition amplitudes34 except

for eigenvalues. Currently, the most powerful algorithm is the recursive residue generation

method (RRGM) of Wyatt and co-workers72–74 and its improved variants.36,44,75–78 Those

methods utilize the standard Lanczos recursion so that they are low storage methods.

Nevertheless, it is well known, the Lanczos vectors are not orthogonal after a few tens of

iterations due to the precision of machine. The loss of orthogonality will produce spurious

states including the duplications of true eigenstates. Results72,73 showed that the RRGM

algorithm can calculate transition amplitudes accurately in spite of the loss of orthogonal-

ity of Lanczos vectors, and describe the degeneracy of energy levels correctly.74,75 In the

Lanczos eigenvector version of Chen and Guo77,78 and the quasi-minimum residue (QMR)

version of Yu and Smith,76 the orthogonality issue is fixed by taking the Lanczos vector

overlaps with the initial vector in calculations. An arithmetic average method73,77–79 has

been proposed to deal with the duplication problem for non-degenerate cases. The out-

comes are very accurate. In particular, the improved RRGM version of Chen and Guo77,78

is capable of computing all transitional amplitudes with a single Lanczos recursion.

However, compared to the energy level calculations, the exact full dimension studies

of dipole transition intensities are still limited for large polyatomic molecules. It is ham-
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pered by the requirement of at least one eigenstate wavefunction that is often expensive

to be obtained for a high dimension problem. Since those Lanczos-based methods44,76–79

are performed in original full dimension, they are applicable for polyatomic molecules with

up to four atoms if no dynamics approximation is adapted. In order to overcome this

difficulty, one common approach is to construct a compact basis set while not complicat-

ing the eigenvalue problem. For instance, the multiconfiguration time-dependent Hartree

(MCTDH) methods use pruned bases.10,28 Recently, Leclerc and Carrington30 proposed

a sum of product basis method to calculating vibrational spectra without storing full-

dimensional vectors.

In this work, we develop an efficient algorithm for studying large molecules, based on

the Lanczos recursion, the spectral transform technique, the RRGM approach, and the

basis set contraction. Theory is presented in Sec. 2 whereas an application to CH4 is

described in Sec. 3. Finally, a short conclusion is in Sec. 4.

2 Theory

In this section, we describe the multi-layer Lanczos iteration algorithm to calculate vibra-

tional energies, wavefunctions and dipole transition intensities of polyatomic molecules. Ba-

sically, the algorithm is an extension of our two-layer Lanczos method40,71 by implementing

with the recursive residue generation method (RRGM),44,72–75 the Green function-guided

spectral transform technique in formally orthogonal Lanczos polynomials,12,69 and DVR

contraction and pre-screening enhancement.

2.1 Hamiltonian and guided spectral transform Lanczos method

Following previous studies6,7, 31,32,80–84 the molecular vibrational Hamiltonian is expressed

in a set of orthogonal polyspherical coordinates. For a system with N atoms, the (3N − 6)

internal variables are defined by (N − 1) radial coordinates (R = {r1, r2, · · · , rN−1}) and
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(2N − 5) angular variables (Q) that are defined by (N − 2) polar angles {θi} and (N − 3)

azimuthal angles {φj} of the radial vectors in the body-fixed (BF) frame. The angular

variables depend on the choice of the BF frame. By using the orthogonal polyspherical

coordinates, the resulting Hamiltonian has many merits such as simplicity, a partitioned

structure and the same formulation for general molecules.8,31,32,40,85 By taking the advan-

tage of the partitioned structure in orthogonal polyspherical coordinates, the Hamiltonian

is written as40,71

Ĥ = T̂R(R) + ĤQ(Q;R) (1)

with

ĤQ(Q;R) = T̂Q(Q;R) + V (Q,R), (2)

where V (Q,R) is the potential energy surface of the system. T̂R(R) and T̂Q(Q;R) are the

kinetic energy operators in the radial and angular coordinates, respectively. The kinetic

operator T̂R is just a summation of one dimensional (1D) Hamiltonian ĥ(ri), i.e.,

T̂R(R) =
N−1∑
i=1

[ĥ(ri)− V0(ri)], (3)

ĥ(ri) = − h̄2

2µir2i

∂

∂ri
r2i

∂

∂ri
+ V0(ri), (4)

where V0(ri) is a 1D reference potential in ri with its associated reduced mass µi. And

T̂Q only parametrically depends on R through pre-factors without any crossed partial

derivative terms between the two coordinate groups. Generally, it can be partitioned as

T̂Q(Q;R) =
N−1∑
i=1

1

2µir2i
T̂

(i)
Q (Q), (5)

where T̂
(i)
Q (Q) are R-independent.

The eigenvalues of Ĥ is solved using the standard Lanczos method42

βj+1|ψj+1 >= Ĥ|ψj > −αj|ψj > −βj|ψj−1 >, (6)
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where αj and βj are the mean energy and residual of the jth vector respectively. They are

defined as

αj =< ψj|Ĥ|ψj >, βj+1 =< ψj+1|Ĥ|ψj > (7)

with

β1 = 0, |ψ0 >= 0. (8)

Therefore the Lanczos recursion reduces the original Hamiltonian matrix to a symmetric

tridiagonal form

TK =



α1 β2
β2 α2 β3 0

β3
. . . . . .

0
. . . . . . βK

βK αK

 . (9)

The three term recurrence starts with an initial random Lanczos vector |ψ1 >. In matrix

form Eq. (6) is expressed as

ĤVK = VK+1TK = VKTK + βK+1ψK+1e
T
K . (10)

Here ′T ′ refers to transpose, and ej is a unit vector in the jth dimension. VK = {|ψ1 >

, |ψ2 >, · · · , |ψK >} is the Lanczos vector matrix with a size K.

Although the standard Lanczos method is very simple and powerful, it is difficult to

use for the computation of the eigenvectors of large system. This is largely due to the loss

of orthogonality of Lanczos vectors and the long iterations required for convergence. In

this work, we instead use the guided spectral transform Lanczos (GSTL) algorithm49,68 if

both the eigenvalues and eigenvectors are wanted. Similar to the standard recursion, the

GSTL method is written as

βj+1|ψj+1 >= F (Ĥ)|ψj > −αj|ψj > −βj|ψj−1 >, (11)

or in the matrix form

F (Ĥ)VK = VK+1TK = VKTK + βK+1ψK+1e
T
K , (12)
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where F (Ĥ) is a guided spectral transform function of Ĥ. It is expanded in a short series

of formally orthogonal Lanczos (FOL) polynomials (Lk(Ĥ)),12,69,86 i.e.

F (Ĥ) =
LC∑
k=1

Ak(Eref )Lk(Ĥ). (13)

The FOL polynomials are defined by the pre-calculated Lanczos parameters (αk, βk) as

βk+1Lk+1 = ĤLk − αkLk − βkLk−1, (14)

with

L0(Ĥ) = 0 and L1(Ĥ) = 1.

By using the property of the Lanczos polynomials

< E ′|L(Ĥ)|E >= L(E)δEE′ , (15)

one can write the transformed spectral curve as

F (E) =
LC∑
k=1

Ak(Eref )Lk(E). (16)

It also defines the relationship between the eigenvalues (denoted En and Fn(En) respec-

tively) of Ĥ and F (Ĥ). On the other hand, both Ĥ and F (Ĥ) share the same eigenvectors.

In Eq. (13) the expansion coefficients AT
k = {A1(Eref ), A2(Eref ), · · · , Ak(Eref )} are

determined by the guidance of the Green operator

Ĝ(Eref ) =
1

Ĥ − Eref

(17)

with a given reference energy (Eref ). Then they are obtained by solving the linear minimal

residual (MINRES) equation48,87

LkL
T
kAk = ((Tk − ErefI)

2 + β2
k+1eke

T
k )Ak = (Tk − ErefI)e1. (18)

The linear equation can be easily solved using a LQ factorization method.17,87 The ex-

pansion order LC is determined by the criterion |ALC
| < 0.01 as recommended.12,68,69 It
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should be mentioned that the Green operator is used just as guidance for the spectral

transform, and is never to be converged. In other words, the resulting spectral transform

function may not look like a Kronecker delta-function here.

The GSTL algorithm has been widely used in quantum scattering and molecular spec-

troscopy calculations in the past decade. The reader can see the recent review8 and ref-

erences therein. In those applications, the F (Ĥ) functions are commonly expanded in

Chebyshev polynomials. In contrast, here, the FOL polynomials are employed. The use

of FOLs is somewhat preferable. For instance, the expansion coefficients are optimal with

respect to the system of interest as the Lanczos parameters used are produced using the

system Hamiltonian. If one selects the reference energy Eref close to the vibrational ground

state of Ĥ, it is more efficient to compute the lowest eigenstates.

In short, the GSTL method using the FOL polynomials involves two loops of Lanczos

iterations. The outer loop is shown in Eq. (11). The inner loop is used to carry out the

F (Ĥ)− |ψj > products using the pre-defined parameters {LC , Ak, αk, βk}.

2.2 Dipole transition strength

Within the dipole approximation, the infrared vibrational transition intensity from an

initial state i to a final state f can be determined from the quantity88,89

D(νif ) =
∑

η=x,y,z

|µif
η |2, (19)

with

|µif
η | = | < ψi|µη|ψf > | =

∑
a,b

| < ψa
i |µη|ψb

f > |2


1/2

, (20)

where a and b refer to the summation of degenerate states of the ith and f th energy states

(denoted |ψi(Ei) > and |ψf (Ef ) > respectively) if any. νif = |Ef − Ei| is the transition

energy, and µη are the Cartesian components of the dipole moment in the molecule-fixed

frame.
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For a large polyatomic molecule, the basis size representing wavefunctions of eigenstates

is often huge. Thus it is formidable to get many state wavefunctions for evaluating the

average values |µif
η | in Eq. (20) explicitly. In order to avoid this difficulty, we employ

the elegant recursive residue generation method.44,72–75 The RRGM approach uses the

standard Lanczos iterations to calculate the spectral density for a given initial normalized

vector |ϕ0 > via Green operator Ĝ(E), i.e.73,76

G00(E) =< ϕ0|Ĝ(E)|ϕ0 >=< ϕ0|
1

Ĥ − E
|ϕ0 > . (21)

By using the identity in a set of orthonormal basis set {|ψb
f (Ef ) >}

∑
f

∑
b

|ψb
f (Ef ) >< ψb

f (Ef )| = I, (22)

the spectral density is obtained as

G00(E) =
∑
f

∑
b

< ϕ0|ψb
f >

1

Ef − E
< ψb

f |ϕ0 >=
∑
f

R00(Ef )

Ef − E
, (23)

with the diagonal residue at the energy pole Ef

R00(Ef ) =
∑
b

| < ϕ0|ψb
f > |2 = | < ϕ0|ψf > |2, (24)

or

R00(Ef ) = lim
E→Ef

(Ef − E)G00(E). (25)

In particular, if one carries out K (large enough) standard Lanczos iterations with an

initial Lanczos vector |ψ1 >= |ϕ0 > in Eq. (6), the element G00(E) is then determined

by72,73

G00(E) =
det[TK − EI]r

det[TK − EI]
, (26)

where the superscript r refers to the reduced matrix obtained by removing the first row

and column from [TK − EI]. With the help of the eigenvalues (denoted {λk} and {λrk}

respectively) of the tridiagonal matrices TK and Tr
K , the ratio of determinants reads

G00(E) =
ΠK−1

k=1 (λ
r
k − E)

ΠK
k=1(λk − E)

. (27)
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Now, let |ϕ0 > be µη|ψi(Ei) > /wηi with the normalization factor wηi. By using

Eqs. (24-25) and (27), the final dipole transition element becomes

|µif
η | = wηi

{
lim

E→Ef

(Ef − E)ΠK−1
k=1 (λ

r
k − E)

ΠK
k=1(λk − E)

}1/2

. (28)

Therefore, for a given initial state |ψi(Ei) >, the transition elements to all final states

|ψf > are calculated with a single Lanczos recursion. It is worthwhile to point out that

the RRGM algorithm has correctly taken the energy degeneracy into account, and the loss

of orthogonality of Lanczos vectors has a negligible effect on results.72–74 The eigenvalues

of tridiagonal matrix TK can be easily solved using a LQ factorization method that has a

nice CPU time scaling as O(K2). Most importantly, no explicit wavefunction other than

the initial state is required in the calculations.

2.3 Initial vibrational wavefunction

The initial vibrational state |ψi(Ei) > used above is computed using the GSTL algorithm in

Eq. (11) via a Green function Ĝ(EFD)-guided functional F (Ĥ). That is, the wavefunction

is built up as

|ψi(Ei) >=
K∑
k=1

Bki|vk > (29)

in the Lanczos subspace {|vk >}, where Bki is the eigenvector of state Ei. In this eigen-

state calculation, one needs only to perform the Ĥ − |vk > products. Following the same

techniques used in our two-layer Lanczos iteration method, those products are carried out

in a combined grid/diabatic basis functions in which the Lanczos vector |vk > is expressed

as

|vk >=
∑
m,α

Ck
m,αfm(Q;R0,R

V
0 )|Rα >, (30)

where |Rα >= ΠN−1
i=1 |rαi

> refer to the direct-product PO-DVR functions in the radial

coordinates; and α being a collective DVR index. The 1D PO-DVRs are calculated using

the lowest eigenstates of the Hamiltonian ĥ(r) in Eq. (4). In this work, the direct-product
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basis functions are further contracted by discarding those PO-DVRs where the minimum

potential energies in their corresponding Rα sectors are larger than a threshold value

(Vth).
12,40,41

In Eq. (30) fm are the vibrationally diabatic basis functions in the angular variables Q

as they are independent of the R coordinates. They are formed by the lowest eigenstates

of a reference reduced-dimension Hamiltonian Ĥ0
Q(Q;R0,R

V
0 ) in Q, namely

Ĥ0
Q(Q;R0,R

V
0 )fm(Q;R0,R

V
0 ) = E0

mfm(Q;R0,R
V
0 ), (31)

with

Ĥ0
Q(Q;R0,R

V
0 ) = T̂Q(Q;R0) + V (Q;RV

0 ), (32)

whereR0 are the radial references in the kinetic energy operator. Usually, they are constant

as {ri0}. RV
0 are the references in the potential energy surface. In contrast, RV

0 can be

selected as a function of Q in order to define a good reference potential. For instance, the

reference potential is obtained by partially optimizing the radial variables for every given

Q values.90

Again, the eigen-equation in Eq. (31) is solved by the GSTL algorithm in Eq. (11) via

another Green function Ĝ(EQ)-guided functional F (Ĥ0
Q). In this step, a non-direct product

FBR basis set {|l >} is often employed in order to properly deal with the singularities

in polar angles.7,40 In FBR, the action of Ĥ0
Q(Q;R0,R

V
0 ) on a Lanczos vector |v′

k >=∑
l C

k
l |l > is performed as

Ĥ0
Q|v

′

k >=
∑
l

N−1∑
i=1

Ck
l

1

2µir2i0
T̂

(i)
Q (Q)|l > +

∑
l′

∑
l

∑
γ

U†
l′γ
V (Qγ;R

V
0 )UγlC

k
l |l

′
>, (33)

where U is the collocation matrix between the FBR and DVR ({|γ >}) basis sets, i.e.

|γ >=
∑
l

Uγl|l > . (34)

Here one should note that l and γ are the collective FBR and DVR indices with a dimension

of 2N − 5, respectively. Although the detailed formulae of T̂
(i)
Q and U are dependent of
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the definition of Q, usually, the T̂
(i)
Q − |l > products are analytically computed on-the-fly

in FBR. They are very simple and easy. In practice, the last potential term in Eq. (33) is

often carried out using a pseudo-spectral transformation technique.91–93 As a result, the

overall matrix-vector multiplications are efficiently accomplished by using a series of small

sequential matrix-vector products in one-by-one degree, which avoids the direct multi-

dimensional matrix multiplications. Nevertheless, in this circumstance, the DVR basis size

is larger than the FBR, i.e., U†U = I but UU† ̸= I. For more details, the reader can

see Refs. [85], [6, 85], [7] and [12, 31] for tri-, tetra-, penta- and hexa-atomic molecules,

respectively. Therefore, the final diabatic basis function is obtained as

fm(Q;R0,R
V
0 ) =

∑
l

Plm|l >=
∑
γ

Xγm|γ >, m = 1, 2, · · · ,M (35)

Xγm =
∑
l

UγlPlm, (36)

where Plm and Xγm are the eigenvector coefficients of fm in FBR and DVR respectively.

Eventually, the key action of Ĥ on vector |vk > in the GSTL recurrence is written as

Ĥ|vk > =
∑
n,β

∑
m,α

{
< Rβ|T̂R(R)|Rα > δnm + E0

mδnmδβα

+ < fn|∆ĤQ(Rα)|fm > δβα

}
Ck

m,αfn(Q;R0,R
V
0 )|Rβ >, (37)

with

< Rβ|T̂R(R)|Rα > =
N−1∑
i=1

{
< rβi

|ĥ(ri)|rαi
> −V0(rαi)δβiαi

}
× ΠN−1

j ̸=i δβjαj
, (38)

< fn|∆ĤQ(Rα)|fm > =
N−1∑
i=1

∆Iαi0(rαi) < fn|T̂ (i)
Q |fm > + < fn|∆V (Q;Rα)|fm >,(39)

and

∆V (Q;Rα) = V (Q;Rα)− V (Q;RV
0 ), (40)

∆Ii0(ri) =
1

2µir2i
− 1

2µir2i0
, (41)

Here the pre-factors ∆Ii0(ri) have a diagonal matrix representation in DVR. TheR−independent

T̂
(i)
Q matrices need only be calculated once for allRα sets.40 In addition, < fn|∆V (Q;Rα)|fm >
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are the potential residual matrix elements. They are computed using a DVR representation

of the diabatic functions. In practice, the upper or lower matrices of ∆ĤQ(Rα) are first

evaluated, and saved on disk before the GSTL Lanczos iterations start.

By using Eq. (30), the initial vibrational wavefunction becomes

|ψi(Ei) >=
∑
α,m

biαmfm(Q;R0,R
V
0 )|Rα > (42)

with the coefficients

biαm =
∑
k

BkiC
k
m,α. (43)

Here biαm has a dimension of N among which one dimension refers to the diabatic basis

functions. In the latter calculations, only biαm and Xγm are required. Xγm are saved on

disk to reduce core memory usage, once the calculation of the potential residual matrix

elements is complete.

2.4 Dipole wavefunction and DVR contraction

In this subsection we present a few practical techniques how to cope with the dipole-initial

state product wavefunction

|ψi,η >= µη|ψi(Ei) >=
∑
α,n

ai,ηαnfn(Q;R0,R
V
0 )|Rα > (44)

for a high dimension problem. Although the calculations of transition strengths are per-

formed in a reduced N dimension manner as shown in Eq. (37), one has to access the full

(3N − 6) dimension spatial space for computing |ψi,η >. If it is directly calculated in full

dimension, we will encounter with not only a memory problem but also a CPU (central

processing unit) time issue. For instance, as discussed below for the application of CH4,

the primitive DVR basis size is as large as 396 billion that require about 3168 GB memory

to save a single vector. It is also time-consuming to evaluate the dipole moment surfaces

on such a large set of grids. Our previous studies12,40 have already shown that computing
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potential energy points is one of two CPU-time dominant steps in the eigenvalue calcu-

lations with the two-layer Lanczos method. Indeed, it is the most CPU time-consuming

step in the six-atomic molecule (H2)3 case owing to the complexity of the potential energy

surface.12 Calculating the dipole moment surfaces has the same issues as the potential

energy surface.

In order to overcome those difficulties, here, we use the DVR contraction and partial

transformation procedures. Firstly, the diabatic basis functions are truncated in DVR.

The truncation procedure is done just after finishing the calculations of the < fn|T̂ (i)
Q |fm >

matrices in Eq. (39). In this approach, the FBR diabatic functions are first transformed

into their DVR functions Xγm. Then, the compact DVR basis is obtained by discarding

those DVR points where the potential energy values are larger than Vth. The truncation

procedure could introduce some errors. However, the errors are negligible because the

resulting diabatic functions often conserve their norms very well in the compact DVR

basis owing to the large potential threshold Vth. Previous studies41,94,95 have shown that

the errors introduced into eigenvalues are small in the order of about 0.02 cm−1. In this

work the contracted DVR basis set is denoted as X̃γ̃m where the collective index γ̃ stands

for the compact DVRs. The compact DVR basis functions are also used to construct the

potential residual matrix elements in Eq. (39).

Secondly, the dipole-wavefunction coefficients are evaluated using the following partial

transformation manner, i.e.

ãiγ̃α(Rα) =

{ ∑
m X̃γ̃mb

i
αm, if (

∑
m |biαm|2)1/2 ≥ ϵb

0, otherwise
(45)

and

ai,ηαn =
∑
γ̃

X̃γ̃nd̃
i,η
γ̃α(Rα), η = x, y, z, (46)

with

d̃i,ηγ̃α(Rα) =

{
µη(Rα, γ̃)ã

i
γ̃α(Rα), if |ãiγ̃α| ≥ ϵa

0, otherwise
(47)
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for a given set of Rα in the radial coordinates. As one can see, this calculation routine is

performed in reduced dimension (i.e. 2N − 5 in Q) instead of full dimension. Therefore,

the memory problem is solved in addition to the numerical efficiency. This merit results

from the use of DVR representation in the radial coordinates.

Furthermore, the conditions in Eqs. (45) and (47) are used to pre-screen those grids

with negligible amplitude of the wavefunction at which the dipole-wavefunction values

are approximately taken as zero. Vain numerical operations are avoided, saving further

CPU time. Of course, the two criteria ϵa and ϵb selected should be small enough so that

the truncated wavefunction density is small enough, e.g., say about 10−4 to preserve the

accuracy of the calculated dipole transition strengths. This treatment has no influence on

the eigenvalues.

2.5 Computational procedure and discussions

The multi-layer Lanczos iteration algorithm is depicted in Fig. 1. It involves two short

standard Lanczos iterations, two GSTL propagations, and three times Ninit (the number

of initial vibrational states of interest) long standard Lanczos recurrences. The first short

Lanczos iteration is to prepare the Lanczos coefficients for constructing the guided spectral

transform function of F (Ĥ0
Q) in the reduced dimension angular coordinates Q while the

second short iteration is for the function F (Ĥ) with the whole system Hamiltonian. In

addition, the first GSTL propagation is used to calculate the vibrationally diabatic basis

functions {fm} in terms of F (Ĥ0
Q), and the second GSTL propagation is employed to

obtain a few of the lowest vibrational wavefunctions of the system of interest by using

F (Ĥ). Those iterations and propagations start with a random vector. The last 3Ninit

long Lanczos recurrences are used to calculate the dipole transition strengths from a given

initial vibrational state for each dipole moment component (x, y, z). That is, in this loop,

the recurrences begin with an initial Lanczos vector defined by the dipole-wavefunction

in Eq. (44). Importantly, those sequentially layered iterations are performed separately
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so that they are able to share the same core memory. Thus the effort to calculate the

dipole transition intensities is in the same order as pure eigenvalue calculations. Like the

two-layer Lanczos method40,71 all calculations are done in a reduced dimension manner

without any dynamics approximation. Therefore this multi-layer Lanczos algorithm is a

rigorous full dimension quantum dynamics method.

In particular, the algorithm is general and problem-independent for polyatomic molecules.

This important feature is inherited from the same partitioned structure of quantum Hamil-

tonian in any set of orthogonal polyspherical coordinates. In addition, the large amplitude

motions of vibrations are naturally described in terms of the use of scattering coordinates.

By using the DVR representation, the resulting Hamiltonian matrices (e.g. see Eq. (37)

are very sparse. Therefore the Hamiltonian matrix-vector products are always calculated

on-the-fly without explicitly constructing any large Hamiltonian matrices. In other words,

such a structure is very suitable for iterative diagonalizations and massive parallel compu-

tations.

In the multi-layer Lanczos algorithm, the time-limiting steps are the computations

of the potential residual matrix elements < fn|∆V (Q;Rα)|fm > and the diabatic basis

functions as shown in Eq. (33). Fortunately, both the properties need only be calculated

once. The diabatic function calculation is also the core memory-limiting step. Although the

Ĥ0
Q Hamiltonian is in reduced dimension, it still has 2N −5 degrees of freedom. Therefore,

the multi-layer Lanczos algorithm is applicable for polyatomic molecules with up to six

atoms only. In the next section we will present an application to the benchmark five-atom

molecule CH4.

3 Application

The multi-layer Lanczos algorithm described above is universal, and requires only that the

molecular Hamiltonian has the partitioned structure in Eqs. (1)-(5). Such a partitioned
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Hamiltonian is always true in any set of orthogonal polyspherical coordinates regardless

of the number of atoms in molecule.6,7, 31,85 Therefore, one can choose an optimal set of

orthogonal polyspherical coordinates for the specific molecule of interest. In this section, we

will present an application to calculating the energies and dipole intensities of methane CH4

using the (4+1) Radau coordinates (see Fig. 2),96,97 i.e., the ”Icd=2” set in the PetroVib

program.7 The rovibrational spectrum of methane and isotopomers have extensively been

studied during the last half century.35,36,41,89,90,98–108 In this work, we mainly address the

numerical demonstration of the algorithm for calculating the IR spectrum of CH4. One

should not expect spectroscopically accurate results owing to the limited accuracy of both

potential energy and dipole moment surfaces.

3.1 Kinetic operator T̂
(i)
Q and numerical aspects

According to the definition of the coordinates for CH4, we have four radial coordinates

R = {r1, r2, r3, r4} and five angular variables Q = {θ1, φ1, θ2, φ2, θ3}. The R-dependent

kinetic operator T̂R has been given in Eqs. (3) and (4). And the Q-dependent kinetic

operator parts are given by7

T̂
(i)
Q (Q) = ĵ2i , i=1,2,3 (48)

T̂
(4)
Q (Q) =

3∑
i=1

ĵ2i +
3∑

i<k=1

(2ĵiz ĵkz + ĵi+ĵk− + ĵi−ĵk+), (49)

where ĵi, ĵiz and ĵi± are the angular momentum, its Z projection and the ladder operators

respectively.109

As usual, we use a symmetrically adapted FBR (SA-FBR) |l >= |j1j2j3nmp > in the

angular coordinates. It is written as7

|l >= 1√
2(1 + δ0nδ0m)

{|j1j2j3nm > +(−1)p|j1j2j3 − n−m >} (50)

where p refers to the parity of inversion symmetry. |jm > are the orthonormal spherical
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harmonic basis functions,109 i.e.,

< θ, φ|jm >= Θm
j (θ)

1√
2π
eimφ, (51)

where Θm
j (θ) are the normalized associated Legendre polynomials. These functions are the

common eigenstates of both ĵ2 and ĵz, namely,

ĵ2|jm > = j(j + 1)h̄2|jm >, (52)

ĵz|jm > = mh̄|jm > . (53)

For the ladder operators, we have the relationship,

ĵ±|jm >= [j(j + 1)−m(m± 1)]1/2h̄|jm± 1 > . (54)

Therefore the TQ-FBR basis products can be easily computed by using Eqs. (52)-(54).

The detailed expressions are given in Ref. [7]. Furthermore, the corresponding collocation

matrix in Eq. (33) is then written as

U = CST2DΘ
(n+m)
θ3

Θ
(m)
θ2

Θ
(n)
θ1

(55)

where CST2D is the two-dimensional cosine/sine transformation in the two azimuthal an-

gles (φ1, φ2) while the Θ
(k)
θ are the one-dimensional collocation matrices in θ. They are

defined by the normalized associated Legendre polynomials in Eq. (51).6,7, 110 As a result,

the matrix multiplications are performed by a series of sequential low dimensional matrix

multiplications using the U matrix in Eq. (55).

The total Hamiltonian is represented in a combined FBR/DVR basis set. Ten potential

optimized DVR (PO-DVR) points are used for each radial coordinate. The non-direct

product FBR in the angular variables are formed by the largest quantum number jmax = 28.

The symmetrically adapted DVR basis with respect to inversion symmetry is used with

respect to the SA-FBR. The potential threshold value is set at Vth = 2.75 eV for the

DVR basis contraction. The primitive DVR basis sizes are 3.96 × 107 (or a basis set of
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5.65×106 FBR functions) in Q that leads to a basis set of 3.96×1011 in total. 440 diabatic

basis functions and 19 lowest state wavefunctions are calculated. The criteria used for DVR

contraction are ϵa = 10−6 and ϵb = 2×10−4 (see Eqs. (45) and (47)) in the dipole transition

strength calculations.

The T8 potential energy surface of Schwenke and Partridge103 (labeled as SP(T8) in

the literature) is employed to compute the vibrational energy levels and wavefunctions of

CH4. The SP(T8) surface is an accurate global ab initio potential energy surface for vibra-

tional states up to 5000 cm−1.41,90,111 The dipole transition strengths are computed using

the first order expansion of the ab initio dipole moment surfaces (DMS) of Yurchenko et

al.89 Using the truncated DMS is to avoid the unphysical interpolations at large geom-

etry distortions89 although they are one of the best dipole surfaces near the equilibrium

geometry of CH4. In the calculations, the reference radial coordinates in the kinetic energy

operators are 2.05791 a0 for ri0 with its associated mass µi = 1.0072764 amu. As in previ-

ous works,41,90,103,105 we have employed nuclear masses of atoms, i.e., 1.0072764 amu for

H and 11.9967085 amu for C in order to be consistent with the convention of the SP(T8)

potential.

3.2 Results and discussion

The parameters used in the guided spectral transform functions are listed in Table 1 where

the Lanczos coefficients are obtained using the Ĥ0
Q (or Ĥ) Hamiltonian with a random

initial Lanczos vector. The expansion coefficients are computed with a reference of Eref =

0.45 eV for F (Ĥ0
Q) or Eref = 1.25 eV for F (Ĥ). The reference energies are selected to

be close to the zero-point energy levels of the corresponding Hamiltonians in order to

calculate the lowest eigenstates. Figure 3 shows the guided spectral profiles. As expected,

the spectra have strongly been dilated at low energies so that the low-lying eigenstates can

be converged quickly. Furthermore, the curves resemble an exponential function although a

Green operator is used as guidance. This is due to the low order expansion of the formally
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orthogonal Lanczos polynomials.69 Actually it is the desired spectral transform shape. A

δ-function is unwanted here for the calculations of many states.

Our calculations have converged the vibrational energies up to 6200 cm−1 within 0.05

cm−1. The obtained energies are in excellent agreement with previous best theoretical

results90,111 based on the same SP(T8) surface.103 The total dipole transition spectrum

up to 6200 cm−1 from the vibrational ground state is shown in Fig. 4. Since this work

focuses on the study of transition strengths, a trivial comparison of energies will not be

given here except for the F2-symmetry levels having strong dipole transition intensities.

They are listed in Table 2, where the energy levels are labeled as ”(v1v3)(v2v4)symmetry”

following the polyad notation of Wang and Carrington.41,111 v1(A1) and v3(F2) are the

stretch modes of CH4 while v2(E) and v4(F2) are the bend ones.

Overall, the computed values are in good agreement with the theoretical89 and exper-

imental99–101,112–115 results. The vibrational band intensities from the energy level Ei are

calculated by2,89,112,113

S =
8π310−36

3hcQv(T )

LT0
T

e−Ei/kBTνif (1− e−hcνif/kBT )|µif |2, (56)

where L = 2.686754 × 1019 cm−3 is the Loschmidt’s number. T0 = 273.15 K is the

reference temperature. Qv is the vibrational partition function of CH4. As expected, the

SP(T8) surface103 has about 10 cm−1 errors in energy. Since Yurchenko et al.89 used a

refined potential energy surface, more accurate frequencies are obtained. In particular,

our calculated band intensities are consistent with those of Yurchenko and co-workers

although this work used only the first order truncated DMS of them. This is not surprising

because the first order expansion is a good approximation for the vibrational ground state.

Nevertheless, a better agreement should not be expected. Importantly, such a numerical

demonstration really verifies that this algorithm works well.

Secondly, the accuracy of the algorithm has been tested. For instance, by using the ex-

plicit wavefunctions, the dipole transition elements in Debye for the (00)(00)A1 →(00)(01)F2
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transition at 1312 cm−1 are obtained as

[|µif
X |, |µ

if
Y |, |µ

if
Z |]b =

 −0.053036 0.014073 0.011647
−0.030079 0.016723 0.021064
−0.015815 0.009807 0.058884

 (57)

or

[|µif
X |, |µ

if
Y |, |µ

if
Z |] = [0.062990, 0.023956, 0.063614], (58)

which are accurately reproduced. This results from the merit that the RRGM method is

capable of describing the degenerate states correctly. On the other hand, if one uses the

arithmetic average method, the results obtained are

[|µif
X |, |µ

if
Y |, |µ

if
Z |] = [0.035514, 0.013319, 0.039535] (59)

which are smaller than the accurate values. Therefore, one should be careful to use the

transition amplitudes involving degenerate states by using the arithmetic average method.

As the individual transition strength µif,b
α =< ψi|µα|ψb

f > is not necessary to be same for

those degenerate levels, in general, we have

∑
b

(N b
C |µif,b

α |2)/
∑
b

N b
C ̸=

∑
b

|µif,b
α |2, (60)

where N b
C are the copy number of the converged states. Obviously, Eq. (60) holds only if

N b
C are the same for all degenerate states |ψb

f >. In addition, those individual transition

components also depend on the orientation of the body-fixed frame although their total

value is independent of it.

Finally, as we expected, the ”GSTL iteration with F (Ĥ0
Q)” step (see Fig. 1) dominates

the allocation of CPU time. On a CRAY XC30 machine with 12 CPUs, this step took

about 186 hours (without the factor of 12 for the sake of simplicity) in which 41 hours were

used for computing the 440 diabatic functions and 145 hours for the construction of po-

tential residual matrices. It cost only 0.95 hours in the ”GSTL iteration with F (Ĥ)” step

for computing the 19 eigenstate wavefunctions. In the ”Do dipole moment loop” step, the

allocation of CPU time were 17.4 hours (3×5.8) for 9000 Lanczos iterations of each dipole
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component, where near half hour was spent to obtain the dipole-wavefunction products.

The CPU time in all other steps is negligible. Therefore, the CPU time ratio of the IR spec-

trum to pure vibrational state calculations is roughly 1.065 ((186+0.95+17.4)/(186+5.8)).

In other words, compared to the study of pure vibrational energies, the cost increases about

6.5% for the IR calculations. No additional core memory is required to compute the IR

spectrum beyond that needed for vibrational energies in the ”GSTL iteration with F (Ĥ0
Q)”

step.

4 Conclusion

We have developed a multi-layer Lanczos algorithm for computing vibrational energies and

dipole transition intensities of polyatomic molecules with the help of the elegant recursive

residue generation method (RRGM), the guided spectral transform Lanczos technique, the

reduced dimension strategy of the two-layer Lanczos method, and DVR basis contraction.

The two latter techniques allow us to construct (dipole-) eigenstate wavefunctions without

explicitly accessing the huge primitive basis set, which makes it possible to calculate the

vibrational spectra of large molecules. The algorithm uses only an initial state wavefunc-

tion in a reduced dimension basis set to give its transition spectrum to all final states with

a single Lanczos propagation. No product wavefunction is needed. Furthermore, it is a rig-

orous full dimensional quantum dynamics algorithm without any dynamics approximation.

In particular, the algorithm is general and problem-independent for polyatomic molecules.

The large amplitude motions of vibrations are naturally described in terms of the use of

scattering coordinates, i.e., the orthogonal polyspherical coordinates.

An application is presented by calculating the infrared vibrational dipole transition

spectrum of CH4 based on the ab initio T8 potential energy surface of Schwenke and

Partridge and the low-order truncated ab initio dipole moment surfaces of Yurchenko and

co-workers. Results shows that the multi-layer Lanczos method is very promising. Now the
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multi-layer Lanczos algorithm has been implemented with the PetroVib program.7 There-

fore, it becomes a routine to calculate both the vibrational energies and dipole transition

intensities of a general five-atomic molecule in a rigorous full dimension approach once a

global potential energy surface and dipole moment surfaces are provided.

This algorithm is also applicable for studying vibrational Raman polarizability active

spectra as they can be determined from the quantities116

|aifηη′ | = | < ψi|aηη′|ψf > |, (61)

where aηη′ (η, η
′ = x, y, z) are the polarizability tensor matrices. One can see that Eq. (61)

is in the same form as Eq. (20). Therefore, the vibrational Raman spectra can be done

in the same manner once the dipole surfaces are replaced with the polarizability tensors.

But we have to run six times for each independent tensor component instead of three in

the dipole case for a given initial state.

Essentially, the algorithm requires only the action of the two Hamiltonians (Ĥ0
Q and

Ĥ) on Lanczos vectors. This is very similar to those powerful time-dependent or real

wavepacket methods8,10,16,37,77,78 for calculating transition amplitudes. Recently, Hammer

and Manthe16 have used a Lanczos-tpye iteration approach using a energy-filtered operator

for calculating dipole transition strengths of polyatomics with up to nine atoms in MCTDH.

Their calculations also started with a dipole-ground state wavefunction as an initial Lanczos

vector. In this work, the key condition is that the resulting Hamiltonian matrices are

sparse regardless of the choice of coordinates. Otherwise, the efficiency of the algorithm

will reduce owing to the expensive cost for performing Hamiltonian-vector products with

a dense matrix, which likes all other iterative methods. For a semi-rigid molecule, a set

of non-orthogonal coordinates are often optimal for studying the low-lying vibrational

states.1 If a proper set of basis functions are used, the Hamiltonian matrix can still be

sparse in non-orthogonal coordinates but with more samll low rank (often rank 2 due to

the crossed terms in kinetic energy operators between two coordinate variables) matrix
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blocks. In this circumstance, the cost of calculations of Hamiltonian-vector products could

be compensated by shorter Lanczos iterations for convergence. Indeed, more future work

is needed to explore this topics.
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Table 1: Parameters used in the guided spectral transform functions F (Ĥ0
Q) and F (Ĥ).

All units are in eV.

Function k αk βk Ak

F (Ĥ0
Q) 1 8.21513982 0.0 0.14617555

2 9.85952164 2.72459589 -0.04963823
3 10.61340640 3.46931589 0.01997182
4 10.83134600 3.87337344 -0.00824994
5 10.91429670 4.08729944 0.00268117
6 − 4.24630998

F (Ĥ) 1 7.19160774 0.0 0.18935762
2 7.21051576 1.77365660 -0.07074326
3 7.14451184 2.38605981 0.03650476
4 7.00083633 2.63358606 -0.01872734
5 7.16833841 2.57112439 0.00660002
6 − 2.45822701
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Table 2: A comparison of vibrational frequencies νif in cm−1, dipole transition strengths

|µif | in D and band intensities S in cm−1atm−2 at T = 278.15K for the transition from

the vibrational ground state to the F2 vibrational states of CH4.

This worka WC111,a Y90,a YTBT89 Expt.99–101,115

label νif |µif |cal Scal νif νif νif |µif |cal νif Sobs

(00)(01)F2 1312.18 0.09267 115.043 1311.74 1311.75 1310.87 0.09831 1310.76 127.68
(00)(02)F2 2617.10 0.02111 11.920 2616.24 2616.24 2614.32 0.00706 2614.26 1.05
(00)(11)F2 2831.56 0.02230 14.392 2831.53 2831.53 2830.28 0.01797 2830.32 6.63b

(01)(00)F2 3014.57 0.08199 207.109 3013.60 3013.43 3019.49 0.09370 3019.49 269.92
(00)(03)F2 3875.94 0.00609 1.469 3874.75 3874.73 3870.49 0.00401 3870.49 0.59b

(00)(03)F2 3936.61 0.00275 0.303 3935.34 3935.34 3930.81 0.00288 3930.92 0.14b

(00)(12)F2 4145.28 0.00166 0.116 4144.88 4144.85 4142.99 0.00295 4142.86 0.34
(10)(01)F2 4222.76 0.00378 0.616 4221.85 4221.72 4223.52 0.01343 4223.46 7.84
(01)(01)F2 4315.64 0.01050 4.865 4314.23 4314.06 4319.43 0.01593 4319.21 10.24
(00)(21)F2 4349.71 0.00153 0.104 4350.10 4350.07 4348.97 0.00252 4348.71 0.55b

(00)(21)F2 4379.31 0.00212 0.202 4379.77 4379.75 4379.15 0.00023 4378.98 0.23b

(01)(10)F2 4538.30 0.00938 4.077 4537.82 4537.67 4543.90 0.00678 4543.76 1.26
(00)(04)F2 5150.71 0.00160 0.135 5150.56 5149.13 5143.25 0.00060 5143.24 0.01
(00)(04)F2 5217.30 0.00073 0.028 5216.98 5215.66 5210.65 0.00037 5211.29
(00)(13)F2 5376.36 0.00067 0.025 5383.09 5375.58 5370.37 0.00023 5376.95
(00)(13)F2 5435.09 0.00070 0.027 5440.67 5434.34 5429.07 0.00101 5429.58
(00)(13)F2 5449.35 0.00070 0.027 5455.06 5448.69 5444.87 0.00020 5445.12
(10)(02)F2 5522.28 0.00232 0.306 5521.21 5520.84 5519.47 0.00019 5517.17
(01)(02)F2 5586.85 0.00125 0.089 5585.36 5584.80 5586.76 0.00270 5587.98
(01)(02)F2 5613.59 0.00169 0.163 5612.27 5611.63 5620.63 0.00129 5623.01
(01)(02)F2 5624.86 0.00072 0.030 5625.32 5623.11 5633.69 0.00176 5628.40
(00)(22)F2 5645.32 0.00075 0.032 5651.12 5645.28 5643.64 0.00009 5640.66
(00)(22)F2 5670.76 0.00098 0.055 5676.63 5670.76 5668.70 0.00047 5668.98
(10)(11)F2 5725.66 0.00287 0.481 5725.66 5725.13 5727.16 0.00028 5729.68
(01)(11)F2 5818.02 0.00680 2.750 5817.23 5816.63 5823.03 0.00368 5826.65
(01)(11)F2 5839.90 0.00233 0.324 5839.47 5838.92 5843.72 0.00089 5849.30
(11)(00)F2 5855.94 0.01075 6.916 5853.96 5853.28 5861.92 0.00054 5819.72
(00)(31)F2 5867.54 0.00238 0.339 5872.47 5868.38 5868.23 0.00046 5867.66
(00)(31)F2 5895.14 0.00078 0.036 5900.48 5895.19 5894.54 0.00013 5894.12
(02)(00)F2 5992.71 0.00466 1.333 5993.51 5992.44 6004.45 0.00522 6004.69 1.63
(01)(20)F2 6048.18 0.00212 0.278 6048.22 6047.96 6054.67 0.00094 6054.64
(01)(20)F2 6059.64 0.00172 0.184 6060.06 6059.67 6065.26 0.00095 6065.32

a Results calculated on the SP(T8) potential energy surface; b The total intensity of this band.
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Figure 1: A schematic flow chart of the multi-layer Lanczos iteration algorithm for com-

puting vibrational energies and dipole transition strengths

Figure 2: The (4+1) Radau coordinates for CH4, where the body-fixed Z-axis is coincident

with the Radau vector r4 while the vector r3 lies in the XZ-plane toward the positive X

direction.

Figure 3: Spectral transform curves F (Ĥ0
Q) and F (Ĥ) for the calculations of the diabatic

basis functions and the lowest vibrational wavefunctions respectively.

Figure 4: Calculated dipole transition strengths from the vibrational ground state of CH4.
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Fig. 2
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