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Booster Double Harmonic Setup Notes

C.J. Gardner

February 17, 2015

1 Motivation and Setup Scenario

1. Reducing the peak beam current reduces the transverse space charge
force, which reduces beam loss due to resonance excitation. This
reduction can be achieved by flattening the RF bucket with a second
RF harmonic [1, 2, 3].

2. Flattening the RF bucket also reduces the momentum spread of the
beam, which reduces tune spread due to nonzero chromaticity and
can reduce beam loss in regions of nonzero dispersion.

3. RF capture and acceleration of polarized protons (PP) is first set up
in the single harmonic mode with RF harmonic h = 1. PP are
adiabatically captured at injection with hf = 841.166738 kHz (which
corresponds to 200 MeV kinetic energy) and then accelerated to
1362.77885 kHz (which corresponds to Gpγ = 4.5).

4. This is normally done with RF stations A3 and B3, but here we use
stations A6 and E6, so that A3 and B3 (which have a greater
frequency range) can be used to introduce the second harmonic for
the double harmonic setup.

5. Once capture and acceleration have been set up in the single
harmonic mode, the second harmonic system is brought on (with
stations A3 and B3) and programmed to operate in concert with the
single harmonic system.

6. The second harmonic system operates at harmonic 2h = 2 with
capture at 2hf = 1.682 MHz and acceleration to 2.726 MHz.

7. The phase and amplitude of the second harmonic are programmed to
produce a flattened RF bucket throughout the magnetic cycle.
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2 Equations for Turn-by-Turn Motion

The turn-by-turn motion for the double harmonic setup is governed by the
potential U , where [4]

∂U

∂φ
= −F (φ+ φs) + F (φs) (1)

F (θ) = A1 sin θ −A2 sin(2θ − 2ψ0). (2)

and

A1 =
eQV1

2πh
, A2 =

eQV2

2πh
. (3)

Here φs is the stable synchronous phase and φ is the deviation from φs.

ψ0 is an adjustable phase offset.

e is the proton charge and eQ is the charge of the particle.

h is the RF harmonic number for the single harmonic setup.

V1 and V2 are adjustable amplitudes of the first and second harmonic
voltages.

Thus we have

∂U

∂φ
= −A1 sin(φ+ φs) +A2 sin(2φ+ 2φs − 2ψ0) + C (4)

∂2U

∂2φ
= −A1 cos(φ+ φs) + 2A2 cos(2φ+ 2φs − 2ψ0) (5)

and

U(φ) = A1 cos(φ+ φs) −
1

2
A2 cos(2φ+ 2φs − 2ψ0) + Cφ+D (6)

where
C = A1 sinφs −A2 sin(2φs − 2ψ0) (7)

and D is a constant independent of φ.

If we define
ψ = φ+ φs (8)

then the potential U expressed as a function of ψ is

U(ψ) = A1 cosψ −
1

2
A2 cos(2ψ − 2ψ0) +C(ψ − φs) +D. (9)
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Choosing
D = Cφs (10)

we then have

U(ψ) = A1 cosψ −
1

2
A2 cos(2ψ − 2ψ0) + Cψ (11)

∂U

∂ψ
= −A1 sinψ +A2 sin(2ψ − 2ψ0) + C (12)

and
∂2U

∂2ψ
= −A1 cosψ + 2A2 cos(2ψ − 2ψ0) (13)

where
C = A1 sinφs −A2 sin(2φs − 2ψ0). (14)

The turn-by-turn equations of motion are [4]

tn+1 = tn +
2π

ωs
n

(

ωs

n
− ωn

ωn

)

(15)

en+1 = en + eQ
{

V (T s

n+1 + tn+1) − V (T s

n+1)
}

(16)

where

V (T s

n+1 + tn+1) =

(

2πh

eQ

)

F (φn+1 + φs

n+1) (17)

V (T s

n+1) =

(

2πh

eQ

)

F (φs

n+1) (18)

and
φn = tnhω

s

n
, φn+1 = tn+1hω

s

n+1. (19)

Here tn and en are the time and energy deviations of a given particle (with
respect to the arrival time and energy of the synchronous particle), and ωn

and ωs

n
are the angular frequencies of the particle and synchronous

particle, respectively. In (17) and (18) the RF voltage V is defined as an
explicit function of time. We also define

V (φn+1 + φs

n+1) =

(

2πh

eQ

)

F (φn+1 + φs

n+1) (20)

and

V (φs

n+1) =

(

2πh

eQ

)

F (φs

n+1). (21)
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3 RF Voltage

As a function of phase, the RF voltage for the single harmonic setup is

V (ψ) = V1 sinψ. (22)

The synchronous phase φ1 is given by

V1 sinφ1 = 2πRsρs

(

1

c

dB

dt

)

(23)

where Rs and ρs are the radius and radius-of-curvature of the orbit
followed by the synchronous particle, and B is the programmed guide field.

For the double harmonic setup the RF voltage is

V (ψ) = V1 sinψ − V2 sin(2ψ − 2ψ0). (24)

The synchronous phase φs for this setup must satisfy

V (φs) = V1 sinφ1 (25)

where V1 sinφ1 is given by (23). Thus we must have

V1 sinφs − V2 sin(2φs − 2ψ0) = V1 sinφ1. (26)

Using a prime to denote differentiation with respect to ψ we have

V ′(φs) = V1 cosφs − 2V2 cos(2φs − 2ψ0) (27)

and
V ′′(φs) = −V1 sinφs + 4V2 sin(2φs − 2ψ0). (28)

If we specify that
V ′(φs) = V1F, V ′′(φs) = V1G (29)

for some F and G, then

V1 cosφs − 2V2 cos(2φs − 2ψ0) = V1F (30)

and
−V1 sinφs + 4V2 sin(2φs − 2ψ0) = V1G. (31)

Equations (26) and (31) can be written in matrix form as
(

V1 −V2

−V1 4V2

)(

sinφs

sin(2φs − 2ψ0)

)

=

(

V1 sinφ1

V1G

)

(32)
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from which we obtain

3V1V2

(

sinφs

sin(2φs − 2ψ0)

)

=

(

4V2 V2

V1 V1

)(

V1 sinφ1

V1G

)

. (33)

Thus
3 sin φs = 4 sinφ1 +G (34)

and
3V2 sin(2φs − 2ψ0) = V1 (sinφ1 +G) . (35)

From (30) we also have

2V2 cos(2φs − 2ψ0) = V1(cosφs − F ). (36)

Dividing (35) by (36) then gives

tan(2φs − 2ψ0) =
2

3

(

sinφ1 +G

cosφs − F

)

. (37)

If φ1 and G are given then φs can be obtained from equation (34). If F is
also given then equation (37) gives ψ0 and equation (36) gives

2V2 =
V1(cosφs − F )

cos(2φs − 2ψ0)
. (38)

Thus if we specify the synchronous phase φ1 for the single harmonic setup
and if we choose values for the parameters F and G, then equations (34),
(37), and (38) give the synchronous phase φs, the phase ψ0, and the ratio
V2/V1 for the double harmonic setup.

4 Normalized Voltage, Potential, and RF Bucket

We define normalized voltage

V(ψ) =
1

V1

V (ψ) (39)

and normalized potential

U(ψ) =
1

A1

{U(ψu) − U(ψ)} (40)

where
V (ψ) = V1 sinψ − V2 sin(2ψ − 2ψ0) (41)
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U(ψ) = A1 cosψ −
1

2
A2 cos(2ψ − 2ψ0) + Cψ (42)

and
C = A1 sinφs −A2 sin(2φs − 2ψ0). (43)

The normalized RF bucket is defined by the curves

B(ψ) = ±
√

−U(ψ). (44)

The phase ψu appearing in (40) is the unstable synchronous phase defined
by

V (ψu) = V (φs) (45)

and (below transition)
V ′(ψu) < 0. (46)

We then have

U ′ = −
1

A1

U ′(ψ) (47)

where
U ′(ψ) = −A1 sinψ +A2 sin(2ψ − 2ψ0) + C (48)

−
1

A1

U ′(ψ) = sinψ −
A2

A1

sin(2ψ − 2ψ0)

− sinφs +
A2

A1

sin(2φs − 2ψ0). (49)

With the help of (3) we have

A2

A1

=
V2

V1

(50)

which gives

−
1

A1

U ′(ψ) =
1

V1

V (ψ) −
1

V1

V (φs) (51)

and
U ′(ψ) = V(ψ) − V(φs). (52)

Thus
U ′′(ψ) = V ′(ψ), U ′′′(ψ) = V ′′(ψ), U ′′′′(ψ) = V ′′′(ψ) (53)

where

V(ψ) = sinψ −
V2

V1

sin(2ψ − 2ψ0) (54)
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V ′(ψ) = cosψ −
2V2

V1

cos(2ψ − 2ψ0) (55)

V ′′(ψ) = − sinψ +
4V2

V1

sin(2ψ − 2ψ0) (56)

V ′′′(ψ) = − cosψ +
8V2

V1

cos(2ψ − 2ψ0). (57)

Equations (55) and (57) also give

V ′′′(ψ) + 4V ′(ψ) = 3 cosψ. (58)

Thus at the stable synchronous phase φs we have

V(φs) = sinφ1, V ′(φs) = F, V ′′(φs) = G (59)

U ′(φs) = 0, U ′′(φs) = F, U ′′′(φs) = G (60)

and
U ′′′′(φs) = 3 cosφs − 4F. (61)

At the unstable synchronous phase we have

V(ψu) = V(φs), U(ψu) = 0, U ′(ψu) = 0. (62)

Expanding the normalized potential about the stable synchronous phase
we have

U(ψ) = U(φs) +
1

2!
F (ψ − φs)

2 +
1

3!
G(ψ − φs)

3

+
1

4!
(3 cos φs − 4F ) (ψ − φs)

4 + · · · . (63)

If F > 0 then U(ψ) reaches a minimum at ψ = φs. We can make the
minimum flat by keeping F small and positive. This produces a flattened
RF bucket. Note that if G is nonzero then the minimum will not be
centered in the potential well.

If F = 0 and G = 0 then

U(ψ) = U(φs) +
1

4!
(3 cos φs) (ψ − φs)

4 + · · · (64)

which also gives a flat minimum at ψ = φs. In this case the minimum is
centered in the potential well.
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5 Flattened Bucket Option I

Suppose we want to keep the synchronous phase the same for the single
and double harmonic setups. This means that the second harmonic voltage
must be zero at the synchronous phase φ1 for the single harmonic setup.
The RF system can then use the calculated value of φ1 to set the phase ψ0

of the second harmonic voltage.

For easy reference we write down equations (34), (37), and (38) here as

3 sin φs = 4 sinφ1 +G (65)

tan(2φs − 2ψ0) =
2

3

(

sinφ1 +G

cosφs − F

)

(66)

2V2 cos(2φs − 2ψ0) = V1(cosφs − F ). (67)

Then we have
φs = φ1 (68)

and it follows from (65), (66), and (67) that

G = − sinφ1, ψ0 = φs = φ1, 2V2 = V1(cosφs − F ). (69)

For a flattened RF bucket we want F to be small and positive. This gives

2V2 < V1 cosφs (70)

with 2V2 close to but less than V1 cosφs. We call this Flattened Bucket
Option I.

If we take single harmonic stable synchronous phase

φ1 = 30◦ (71)

then we have

φs = 30◦, ψ0 = 30◦,
V2

V1

< 0.4330127. (72)

Figure 1 shows the normalized potential and RF bucket for the case in
which V2/V1 = 0.41.

Figure 2 is a magnified view of Figure 1 showing that the normalized
potential does indeed reach a minimum at φs = 30◦. Note that the
minimum is not centered in the potential well.
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6 Flattened Bucket Option II

If we want a flattened bucket with

V ′(φs) = 0, V ′′(φs) = 0 (73)

then we have
F = 0, G = 0 (74)

and it follows from (65), (66), and (67) that

sinφs =
4

3
sinφ1, sinφ1 =

3

4
sinφs (75)

tan(2φs − 2ψ0) =
1

2
tan φs (76)

and

2V2 =
V1 cosφs

cos(2φs − 2ψ0)
. (77)

These equations give

φs = arcsin

{

4

3
sinφ1

}

(78)

ψ0 = φs −
1

2
arctan

{

1

2
tan φs

}

(79)

and
V2

V1

=
cosφs

2 cos(2φs − 2ψ0)
. (80)

We call this Flattened Bucket Option II.

If we again take single harmonic stable synchronous phase

φ1 = 30◦ (81)

then we have

φs = 41.8103◦ , ψ0 = 29.7629◦, V2/V1 = 0.408248. (82)

Note that the value of ψ0 obtained here is very close to the value obtained
in the previous section for Flattened Bucket Option I.

Figure 3 shows the normalized potential and RF bucket for these
numbers. Figure 4 is a magnified view of Figure 3 showing that the
normalized potential does indeed reach a minimum at φs = 41.8103◦. Note
that the minimum is now centered in the potential well.
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Figure 5 shows the potential wells of Figures 2 and 4 together for
comparison. The stable synchronous phases are 30◦ and 41.8103◦,
respectively. Although these are different, the centers of the two wells are
very nearly the same.

7 RF Capture

During injection of PP in Booster the guide field is held constant and RF
capture takes place by raising the RF voltage adiabatically from zero.

For capture with the single harmonic setup the stable synchronous phase is

φ1 = 0. (83)

Figure 6 shows the normalized voltage, potential, and RF bucket. Here

V(ψ) = sinψ (84)

and
U(ψ) = − cosψ − 1. (85)

For capture with the double harmonic setup we take

φs = φ1 = 0. (86)

Equations (65), (66), and (67) then give

G = 0, ψ0 = 0, 2V2 = V1(1 − F ). (87)

Taking F = 0 then gives the conditions for Flattened Bucket Option II.

Figure 7 shows the normalized harmonic 1 and 2 voltages and their sum

V(ψ) = sinψ −
V2

V1

sin 2ψ. (88)

Here
V2/V1 = 1/2 (89)

V(φs) = 0, V ′(φs) = 0, V ′′(φs) = 0, V ′′′(φs) = 3 (90)

U ′(φs) = 0, U ′′(φs) = 0, U ′′′(φs) = 0, U ′′′′(φs) = 3 (91)
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and

U(ψ) = U(0) +
3

4!
ψ4 + · · · . (92)

Figures 8 and 9 show the normalized potential and RF bucket.

Figures 10 and 11 show the normalized voltages, potentials, and RF
buckets for single and double harmonic capture together for comparison.

Figure 12 shows the result of simulated single harmonic capture of PP in
Booster at injection. The simulation starts with a uniform distribution of
unbunched beam consisting of a 100-by-100 array of particles covering the
rectangle indicated in the figure. The area of the distribution is 1 eV s.
The kinetic energy of the synchronous particle at the center of the
distribution is 200 MeV. The RF voltage amplitude V1 is raised
quadratically from zero to 2 kV over a time interval of 8 ms.

Figure 13 shows the result of simulated double harmonic capture of PP
at injection. The simulation starts with the same uniform distribution of
unbunched beam as before. The RF voltage amplitude V1 is again raised
quadratically from zero to 2 kV over a time interval of 8 ms, but now the
second harmonic voltage follows along with amplitude V2 = V1/2.

Figure 14 shows the two simulation results together for comparison. The
bunch obtained with double harmonic capture is noticeably flatter. This
effect becomes much more pronounced with acceleration.

8 Acceleration

During acceleration of PP in Booster with the single harmonic setup, the
stable synchronous phase increases from zero at capture to a maximum of

φ1 = 30◦. (93)

For Flattened Bucket Option I with φ1 = 30 degrees we have

φs = 30◦, ψ0 = 30◦, V2/V1 < 0.4330127 (94)

and for Flattened Bucket Option II

φs = 41.8103◦ , ψ0 = 29.7629◦, V2/V1 = 0.408248. (95)

Figure 15 shows the normalized voltage, potential, and RF bucket for
single harmonic acceleration of PP in Booster with stable synchronous
phase φ1 = 30◦.
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Figures 16, 17, and 18 show the normalized voltages, potential, and RF
bucket for double harmonic acceleration of PP in Booster with Flattened
Bucket Option I. Here φs = φ1 = 30◦, ψ0 = 30◦, and V2/V1 = 0.41, just as
in Figures 1 and 2.

Figures 19 and 20 show the normalized voltages, potentials, and RF
buckets of Figures 15 and 18 together for comparison. One can see by
inspection that for a stable synchronous phase of 30 degrees, the double
harmonic bucket area is larger than that of the single harmonic bucket.

Figure 21 gives the same comparison for a stable synchronous phase of
35 degrees. For the double harmonic setup, Flattened Bucket Option I has
been used with φs = φ1 = 35◦, ψ0 = 35◦, and V2/V1 = 0.384. One can see
by inspection that the double harmonic bucket area is slightly smaller

than that of the single harmonic bucket.

Figure 22 gives the comparison for a stable synchronous phase of
40 degrees. For the double harmonic setup, Flattened Bucket Option I has
been used with φs = φ1 = 40◦, ψ0 = 40◦, and V2/V1 = 0.347. One can see
by inspection that the double harmonic bucket area is significantly

smaller than that of the single harmonic bucket. Thus for synchronous
phases greater than 35 degrees, the double harmonic setup may not be
particularly useful.

Figure 23 shows the result of simulated single harmonic acceleration of
PP in Booster. Here a 1 eV s uniform distribution of unbunched beam was
captured as in Figure 12 and then accelerated to a synchronous proton
kinetic energy of 386.8495 MeV. The corresponding revolution frequency is
1.04915084266 MHz. The stable synchronous phase is 30 degrees.

Figure 24 shows the result of simulated double harmonic acceleration
using Flattened Bucket Option I. Here a 1 eV s uniform distribution of
unbunched beam was captured as in Figure 13 and again accelerated to a
synchronous proton kinetic energy of 386.8495 MeV. The stable
synchronous phase is again 30 degrees. Note that the bucket and bunch
are not centered on the synchronous phase (which has time deviation zero
in the figure), but the bunch is centered in the bucket. This is in
accordance with Figure 5 and the findings of sections 5 and 6.

Figure 25 shows the simulation results of Figures 23 and 24 together for
comparison.

Figure 26 shows the binned data of Figure 25. Here one sees that the
double harmonic setup reduces the peak current by about 30%.
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Figure 27 gives a comparison of the results of simulated single and double
harmonic acceleration, but now with Flattened Bucket Option II used for
the double harmonic setup. The synchronous proton kinetic energy is
again 386.8495 MeV. The stable synchonous phase for the double harmonic
setup is 41.8103 degrees. Note that the flattened bucket and bunch are
now centered on the synchronous phase (which has time deviation zero in
the figure). This is again in accordance with Figure 5 and the findings of
sections 5 and 6.

Figure 28 shows the binned data of Figure 27. Here again one sees that
the double harmonic setup reduces the peak current by about 30%.

9 Implementation

The Booster RF system was set up as outlined in section 1. Flattened
Bucket Option I was adopted as the simplest way to move from the single
to the double harmonic setup. Freddy Severino [5] and Kevin Smith made
the necessary changes to the RF system. In particular, they used the
calculated synchronous phase φ1 for the single harmonic setup to
automatically set the phase ψ0 of the second harmonic voltage. With the
help of a mountain range display of the circulating bunched beam, the
amplitude V2 was then programmed by Keith Zeno to produce flattened
bunches. The end result was significantly reduced beam loss during early
acceleration where the space charge force is largest [6, 7, 8, 9]. The double
harmonic setup has been found to be robust in that once it has been set
up, it requires minimal further tuning.

In the future we may want to consider using Flattened Bucket Option II.
This would allow the second harmonic voltage V2 to be programmed
automatically. From the synchronous phase φ1 of the single harmonic setup
one would use equations (78), (79), and (80) to calculate φs, ψ0, and V2.

Figures 29 and 30 show the values of φs, ψ0, and V2/V1 obtained as φ1

varies from 0 to 30 degrees.

Figure 31 shows φ1, φs, ψ0, and V2/V1 along with the guide field B and
dB/dt for capture of PP at 200 MeV and acceleration to 386.8495 MeV
(kinetic energy) using Flattened Bucket Option II.
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Figure 1: Normalized potential (blue curve) and RF bucket (green curve) for
Flattened Bucket Option I. Here φs = φ1 = 30◦, ψ0 = 30◦, and V2/V2 = 0.41.
The dashed blue line marks the stable synchronous phase φs.
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Figure 2: Magnified view of Figure 1 showing that the normalized potential
for Flattened Bucket Option I does indeed reach a minimum at φs = 30◦.
Note that the minimum is not centered in the potential well.
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Figure 3: Normalized potential (blue curve) and RF bucket (green curve)
for Flattened Bucket Option II. Here φs = 41.8103◦ , ψ0 = 29.7629◦, and
V2/V1 = 0.408248. The dashed blue line marks the stable synchronous
phase φs.
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Figure 4: Magnified view of Figure 3 showing that the normalized po-
tential for Flattened Bucket Option II does indeed reach a minimum at
φs = 41.8103◦. Note that the minimum is now centered in the potential
well.
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Figure 5: Here the potential wells of Figures 2 and 4 are shown together
for comparison. The corresponding stable synchronous phases are 30◦ and
41.8103◦ , respectively. Although these are different, the centers of the two
wells are very nearly the same.
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Figure 6: Normalized voltage, potential, and RF bucket for single harmonic
capture of PP at Booster injection. These are the orange, blue, and green
curves respectively. The horizontal axis gives the phase ψ in degrees. The
voltage V (ψ) = V1 sinψ goes from negative to positive as ψ passes through
the stable synchronous phase φ1 = 0. The normalized potential is U(ψ) =
− cosψ − 1.
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Figure 7: Normalized harmonic 1 and 2 voltages and their sum for double
harmonic capture of PP at Booster injection. These are the black, brown,
and orange curves, respectively. The horizontal axis gives the phase ψ in
degrees. The sum of the voltages is V (ψ) = V1 sinψ − V2 sin 2ψ. Note that
the harmonic 2 voltage (brown curve) goes from positive to negative as the
phase ψ passes through the stable synchronous phase φs = 0. The ratio
V2/V1 = 1/2 flattens the voltage sum at ψ = φs.
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Figure 8: Normalized voltages and potential for double harmonic capture of
PP at Booster injection. The horizontal axis gives the phase ψ in degrees.
The blue curve is the normalized potential. Its expansion about φs = 0 is
given by (92).
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Figure 9: Normalized voltage, potential, and RF bucket for double harmonic
capture of PP at Booster injection. The green curve is the RF bucket.
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Figure 10: Here the normalized voltages, potentials, and RF buckets for
single and double harmonic capture are shown together for comparison.
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Figure 11: Same as Figure 10 but showing just the normalized voltages
and RF buckets.
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Figure 12: Result of simulated single harmonic capture of PP in Booster at
injection. The simulation starts with a uniform distribution of unbunched
beam consisting of a 100-by-100 array of particles covering the rectangle
indicated in the figure. The area of the distribution is 1 eV s. The kinetic
energy of the synchronous particle at the center of the distribution is 200
MeV. The RF voltage amplitude V1 is raised quadratically from zero to 2 kV
over a time interval of 8 ms. The units of the horizontal and vertical axes
are nanoseconds and MeV respectively. The synchronous revolution period
is 1188.825 nanoseconds.
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Figure 13: Result of simulated double harmonic capture of PP at injection.
The simulation starts with the same uniform distribution of unbunched beam
as before. The RF voltage amplitude V1 is again raised quadratically from
zero to 2 kV over a time interval of 8 ms, but now the second harmonic volt-
age follows along with amplitude V2 = V1/2. The units of the horizontal and
vertical axes are again nanoseconds and MeV. The synchronous revolution
period is 1188.825 nanoseconds.
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Figure 14: Here the results of simulated single and double harmonic capture
of PP in Booster are shown together for comparison. The bunch obtained
with double harmonic capture is noticeably flatter. This effect becomes
much more pronounced with acceleration.
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Figure 15: Normalized voltage, potential, and RF bucket for single har-
monic acceleration in Booster. These are the orange, blue, and green curves
respectively. The stable synchronous phase is 30 degrees. The stable and
unstable synchronous phases are marked by the dashed vertical lines at 30
and 150 degrees respectively.
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Figure 16: Normalized harmonic 1 and 2 voltages and their sum V(ψ) =
sinψ − (V2/V1) sin(2ψ − 2φs) for double harmonic acceleration in Booster.
These are the black, brown, and orange curves, respectively. The stable
and unstable synchronous phases are marked by the dashed vertical lines at
30 and 173.745 degrees respectively. Here we have used Flattened Bucket
Option I with φs = φ1 = 30◦, ψ0 = 30◦, and V2/V1 = 0.41, just as in
Figures 1 and 2. Note that the harmonic 2 voltage (brown curve) goes
from positive to negative and the sum of the voltages is flattened as the
phase ψ passes through the stable synchronous phase.
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Figure 17: Same as Figure 16 but showing the normalized potential (blue
curve). A magnified view of this potential is shown in Figure 2.
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Figure 18: Same as Figure 17 but showing the RF bucket (green curve).
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Figure 19: Here the normalized voltages, potentials, and RF buckets of
Figures 15 and 18 are shown together for comparison.

33



-180 -120 -60 0 60 120 180 240
-1.5

-1

-0.5

0

0.5

1

Figure 20: Same as Figure 19 but showing just the normalized voltages
and RF buckets. One can see by inspection that for a stable synchronous
phase of 30 degrees, the double harmonic bucket area is larger than that of
the single harmonic bucket.
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Figure 21: Same comparison but with a stable synchronous phase of
35 degrees. For the double harmonic setup, Flattened Bucket Option I has
been used with φs = φ1 = 35◦, ψ0 = 35◦, and V2/V1 = 0.384. One can
see by inspection that the double harmonic bucket area is slightly smaller

than that of the single harmonic bucket.
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Figure 22: Same comparison but with a stable synchronous phase of
40 degrees. For the double harmonic setup, Flattened Bucket Option I has
been used with φs = φ1 = 40◦, ψ0 = 40◦, and V2/V1 = 0.347. One can see by
inspection that the double harmonic bucket area is significantly smaller

than that of the single harmonic bucket.
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Figure 23: Result of simulated single harmonic acceleration of PP in Booster.
Here a 1 eV s uniform distribution of unbunched beam was captured as in
Figure 12 and then accelerated to a synchronous proton kinetic energy
of 386.8495 MeV. The corresponding revolution frequency is 1.04915084266
MHz. The stable synchronous phase is 30 degrees. The units of the hori-
zontal and vertical axes are nanoseconds and MeV respectively. The syn-
chronous revolution period is 953.1518 nanoseconds.
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Figure 24: Result of simulated double harmonic acceleration of PP in
Booster using Flattened Bucket Option I. Here a 1 eV s uniform distribution
of unbunched beam was captured as in Figure 13 and again accelerated
to a synchronous proton kinetic energy of 386.8495 MeV. The stable syn-
chronous phase is again 30 degrees. Note that the bucket and bunch are not
centered on the synchronous phase (which has time deviation zero in the
figure), but the bunch is centered in the bucket. This is in accordance with
Figure 5 and the findings of sections 5 and 6. The units of the horizontal
and vertical axes are nanoseconds and MeV respectively. The synchronous
revolution period is 953.1518 nanoseconds.
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Figure 25: Here the simulation results of Figures 23 and 24 are shown
together for comparison. The units of the horizontal and vertical axes are
nanoseconds and MeV respectively. The synchronous revolution period is
953.1518 nanoseconds.
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Figure 26: Binned data of Figure 25 showing that the double harmonic
setup reduces the peak current by about 30%. Here the horizontal axis
gives the phase ψ in degrees.
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Figure 27: Comparison of the results of simulated single and double har-
monic acceleration, but now with Flattened Bucket Option II used for the
double harmonic setup. The synchronous proton kinetic energy is again
386.8495 MeV. The stable synchonous phase for the double harmonic setup
is 41.8103 degrees. Note that the flattened bucket and bunch are now cen-
tered on the synchronous phase (which has time deviation zero in the figure).
This is again in accordance with Figure 5 and the findings of sections 5
and 6. The units of the horizontal and vertical axes are nanoseconds and
MeV respectively. The synchronous revolution period is 953.1518 nanosec-
onds.
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Figure 28: Binned data of Figure 27 showing again that the double har-
monic setup reduces the peak current by about 30%. The horizontal axis
gives the phase ψ in degrees.
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Figure 29: φs (black curve) and ψ0 (red curve) obtained as functions of φ1

from (78) and (79) for Flattened Bucket Option II. Both axes are marked
in degrees. The horizontal axis is φ1.
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Figure 30: V2/V1 obtained from (78), (79), and (80) as a function of φ1 for
Flattened Bucket Option II. The horizontal axis is φ1 marked in degrees.
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Figure 31: Phases φ1, φs, ψ0, and ratio V2/V1 along with the guide field B
and dB/dt for capture of PP at 200 MeV and acceleration to 386.8495 MeV
(kinetic energy) using Flattened Bucket Option II. The horizontal axis is
marked in ms from injection.
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