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ABSTRACT 19 
Staphylococcus aureus is responsible for a large number of diverse infections worldwide. In 20 order to support its pathogenic lifestyle, S. aureus has to regulate the expression of 21 virulence factors in a coordinated fashion. At the center of the S. aureus regulatory 22 networks is the transcription factor Repressor of Toxins (Rot). Rot plays a key role in 23 regulating S. aureus virulence through activation or repression of promoters that control 24 expression of a large number of critical virulence factors. However, the mechanism by 25 which Rot-mediates gene regulation has remained elusive. Here, we have we determined 26 the crystal structure of Rot and used this information to probe the contribution made by 27 specific residues to Rot function. Rot was found to form a dimer, with each monomer 28 harboring a Winged-Helix-Turn-Helix (WHTH) DNA binding motif. Despite an overall acidic 29 pI, the asymmetric electrostatic charge profile suggests that Rot can orient the WHTH 30 domain to bind DNA. Structure-based site-directed mutagenesis studies demonstrated that 31 R91, at the tip of the wing, plays an important role in DNA-binding, likely through 32 interaction with the minor groove. We also found that Y66, predicted to bind within the 33 major groove, contributes to Rot interaction with target promoters. Evaluation of Rot 34 binding to different activated and repressed promoters revealed that certain mutations on 35 Rot exhibit promoter-specific effects, suggesting for the first time that Rot differentially 36 interacts with target promoters. This work provides insight into a precise mechanism by 37 which Rot controls virulence factor regulation in S. aureus. 38 
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INTRODUCTION 39 
Staphylococcus aureus, a leading cause of hospital acquired infections, is an opportunistic 40 Gram-positive pathogenic bacterium able to infect diverse body tissues and manifest in a 41 variety of disease states such as osteomyelitis, endocarditis, sepsis and toxic shock 42 syndrome, among others (1-3). S. aureus has adapted to circumvent therapeutic strategies 43 by developing resistance to antibiotics (4, 5). These resistant strains were initially 44 observed in hospital settings, but are now prevalent in the community, infecting otherwise 45 healthy individuals (6). The ability of S. aureus to evolve in response to therapeutic efforts 46 has resulted in strains resistant to vancomycin, which was previously used as a drug of last 47 resort (7). Thus, this versatile pathogen presents a great challenge to human health, 48 creating an urgent need for the development of new therapeutics to combat infections. 49  50 
S. aureus can modify gene transcription for optimal pathogenesis by way of temporal 51 control of virulence factors in response to quorum sensing via the accessory gene 52 regulatory system (Agr) (8-10). The receptor kinase of the Agr two-component system 53 (TCS), AgrC, is engaged by the auto-inducing peptide AIP, the extracellular concentration of 54 which is proportional to the density of the bacteria within a certain radius. AgrC, in turn, 55 activates the response regulator, AgrA, to regulate target genes (11). Once a concentration 56 threshold of AIP is reached, usually at late exponential phase, Agr is activated, altering 57 virulence factor expression (9). Activation of Agr results in the upregulation of a regulatory 58 RNA molecule known as RNAIII (12-14). This molecule interacts with target mRNAs, 59 resulting in either degradation of the transcript or exposure of the Shine-Delgarno 60 sequence and increased translation (14-18). One of the most well-characterized targets of 61 
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RNAIII is the SarA family member repressor of toxins (Rot) (15, 16, 19). Interaction of 62 RNAIII with rot mRNA results in degradation of the transcript and a reduction of Rot in the 63 bacteria (15, 16), leading to changes in virulence factor expression, including the down-64 regulation of cell wall-associated proteins (including protein A, fibrinogen and fibronectin 65 binding proteins) and up-regulation of secreted factors (such as hemolysins and proteases) 66 (19, 20). By way of this system, S. aureus is thought to synchronize its patterns of virulence 67 expression on a population-wide scale during infection (9, 21).  68  69 Rot was originally identified in a transposon screen as a repressor of hla, which encodes 70 the α-Toxin (19). Mutation of the rot locus is associated with increased virulence in a rabbit 71 endocarditis model of infection and in a murine bacteremia model (22, 23). Transcriptional 72 profiling studies demonstrated that Rot regulates 146 genes, serving as a repressor of 60 73 and an activator 86 (20). Rot is known to have direct and specific interactions with several 74 target promoters to regulate gene expression, notably those of hla (20, 22), ssl7, which 75 encodes a staphylococcal superantigen-like protein (24), and seb, encoding enterotoxin B 76 (25). Importantly, Rot can act as either an activator or a repressor of target promoters, 77 activating genes such as ssl7 and spa, encoding staphylococcal protein A, and repressing 78 genes such as hla and lukED, which encodes a pore-forming toxin. However, how Rot 79 differentiates amongst these promoters is not known. 80  81 Rot is a member of the SarA family of transcription regulators (26). The SarA family was 82 first identified by sequence-based homology studies, with all family members containing a 83 conserved sequence motif KxRxxxDER (26). Previous sequence and structural analyses of 84 
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several family members have shown that all possess a Winged-Helix-Turn-Helix (WHTH) 85 domain, a variation of the classical DNA-binding Helix-Turn-Helix (HTH) motif (27). The 86 prototypic members of the HTH family are the well-known λ-phage proteins Cro and the 87 catabolite activator protein (CAP) from E. coli, in which the C-terminal Recognition Helix 88 (RH) was demonstrated to project into the major groove of DNA (28-30). Further 89 structure-based analyses classified SarA family members into three groups: (i) single-90 domain structures (SarA, SarR, SarT, SarV, SarX, and Rot), (ii) two-domain structures (SarS, 91 SarU and SarY), and (iii) single domain structures that are highly homologous to the MarR 92 family (SarZ, MgrA and homologues) (26).  93  94 Rot is a unique member of the SarA family because it has a very acidic sequence and does 95 not contain any cysteine residues (26). The aim of this work was to combine structural and 96 functional analyses to uncover the molecular means of Rot-mediated regulation. To this 97 end, we determined a crystal structure of Rot and used this information to predict residues 98 involved in DNA binding. Construction and characterization of mutants to probe the 99 contribution made by specific residues resulted in identification of key residues necessary 100 for Rot binding and function. Our results provide important insights into how Rot is able to 101 orient itself to DNA, and bind to and make selective contact with specific promoters. 102  103 
MATERIALS AND METHODS 104 
Bacterial strains and culture conditions. Strains used in this study are described in 105 Table 4. S. aureus strains were grown at 37°C with shaking at 180 rpm in tryptic soy broth 106 (TSB) or in Roswell Park Memorial Institute medium (RPMI) supplemented with 1% CAS 107 
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amino acids (RPMI/CAS). When indicated, TSB and RPMI were supplemented with 108 chloramphenicol (Cm) to a final concentration of 10 μg/mL. E. coli DH5α were grown in 109 Luria-Bertani (LB) broth at 37°C with shaking at 180 rpm. When necessary, LB was 110 supplemented with ampicillin (Amp) to a final concentration of 100 μg/mL. 111 
 112 
Rot Production. Recombinant Rot protein was produced as previously described by 113 Benson et al (31). Briefly, the rot gene with additional C-terminal His-tag was cloned into 114 the pET41b expression vector and was transformed into the E. coli expression strain T7 115 
lysY/Iq (NEB). To produce a selenomethionine derivative, cells were initially grown in a 116 mixture of Base, Nutrient Mix, Methionine (Molecular Dimensions) and antibiotics at 37°C 117 with shaking at 220 rpm until the cell density reached an A600 of 0.8. Cells were isolated by 118 centrifugation at 5000 rpm, washed with media and resuspended in a mixture of Base, 119 Nutrient Mix, Selenomethionine (Molecular Dimensions) and antibiotics. Protein 120 expression was induced with IPTG for 3 hours. Cells were collected from the medium by 121 centrifugation at 5000 rpm and resuspended in Tris-buffered saline (TBS) supplemented 122 with 10 mM Imidazole and an EDTA-free protease inhibitor, and then lysed by sonication 123 on ice. Soluble proteins were isolated from cellular debris by centrifugation at 15,000 rpm. 124 The recombinant Rot protein was further purified by Ni-NTA chromatography and eluted 125 with 500 mM Imidazole.  126  127 
Crystallization, Data Collection, Structure Determination, and Refinement. Purified 128 Rot protein was assayed by size exclusion chromatography for purity and homogeneity. 129 Native and selenomethione-labeled (SeMet) Rot proteins were concentrated to 6 and 2.5 130 



 

 7

mg/mL for crystallization, respectively. Both native and SeMet crystals were obtained by 131 hanging drop vapor diffusion over reservoirs containing 10% PEG 6K, 0.7 M LiCl and 0.2 M 132 Citric Acid pH 5. Single crystals were briefly soaked in the mother liquor supplemented 133 with 20% MPD (v/v) prior to being flash cooled in liquid nitrogen. Both native and MAD 134 diffraction data were collected at beamline X6A, National Synchrotron Light Source, 135 Brookhaven National Laboratory. The native dataset was collected from a single crystal at a 136 wavelength of 1.0 Å. All three MAD datasets were collected from a single SeMet crystal at 137 energies of 12656 eV (inflection point), 12661 eV (peak) and 13580 eV (high energy 138 remote), based on a fluorescence scan of the Se absorption K edge. All four datasets were 139 comprised of 360 images collected in a stream of gaseous nitrogen at 100 K and with a 1° 140 oscillation for each frame. Full data-collection statistics are given in Table 1. Each data set 141 was processed separately, first integrated using iMosflm (32), then merged and scaled 142 using POINTLESS and SCALA from the CCP4 suite (33). The 3 MAD datasets were combined 143 using CAD and normalized using Scaleit in CCP4 (34). The SHELXCDE set of programs (35) 144 was used to determine the selenium substructure and calculate the initial phase; a model 145 was built into the resultant electron density using BUCCANEER (36) in CCP4. This initial 146 MAD-phased model was improved by alternating cycles of real space fitting and restrained 147 refinement against the native dataset using Coot (37) and Refmac5 (38), using 148 automatically generated NCS restraints. Final restrained refinement was done with PHENIX 149 Refine (39). Structural figures were generated using PyMOL (40) and ICM (41). Buried 150 surface area and dimerization calculations were done with the PISA server (42). 151  152 
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Generation of site-directed Rot mutants. Plasmids expressing site-directed Rot 153 mutations F10A/L13A/Q14A/T17A, S36A/E38A/E39A, Q48A, L54A/K55A, K64A-R70A, T71A/N74A, 154 R91A and L41A/L44A were generated by using a PCR splicing by overlap extension (SOE) 155 approach. Primers are described in Table 5. The mutated PCR products were digested with 156 NdeI and XhoI and then ligated into the E. coli/S. aureus shuttle vector pOS1Plgt, which had 157 been similarly digested. Point mutants F10A, L13A, Q14A, Q14E, T17A, E39A, Y66A, K67A, N74A 158 and ΔHis were generated by site directed mutagenesis directly on the pOS1Plgt rot plasmid 159 via a Quickchange kit (Agilent). The ligation products were then transformed into E. coli 160 DH5α. Resulting plasmids were sequenced to confirm desired mutations were present. 161 
 162 
Construction of an integrated ssl7 transcriptional reporter S. aureus strain. 163 Integration of the ssl7 promoter (Pssl7) driving enhanced GFP (sGFP) expression into the S. 164 
aureus chromosome was performed by cloning the construct into the suicide plasmid 165 pJC1111, which stably integrates into the SaPI-1 site of S. aureus resulting in single copy 166 insertion into the chromosome. Primers are described in Table 5. A PCR amplicon 167 containing Pssl7 driving sGFP expression was amplified from pOS1sGFP Pssl7-sodRBS and 168 was subsequently digested and cloned into pJC1111 (24). Integration was initially carried 169 out in RN4220 containing plasmid pRN7203, which encodes the integrase. Phage 170 transduction was employed to generate Newman Wild Type and mutant rot strains with 171 the Pssl7-sGFP transcriptional reporter integrated into the chromosome. 172  173 
GFP reporter assays. GFP reporter assays were performed as previously described (24). 174 Briefly, S. aureus cultures grown overnight in RPMI/CAS + 10 μg/mL Cm were subcultured 175 
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1:100 in 5 mL RPMI/CAS + 10 μg/mL Cm and grown at 37°C and 180 rpm. OD600 and GFP 176 fluorescence were measured 5 hours post subculture using a Perkin Elmer Envision 2103 177 Multilabel Reader. 178  179 
Immunoblots. S. aureus was grown in RPMI/CAS + 10 μg/mL Cm overnight. These cultures 180 were subcultured 1:100 in 5 mL RPMI/CAS + 10 μg/mL Cm and grown at 37°C and 180 181 rpm. Cells were OD600 normalized and pelleted by centrifugation. 182  183 For Hla and Ssl7 immunoblots, exoproteins from culture supernatants were precipitated 184 with 10% trichloroacetic acid (TCA) and incubated at 4°C overnight. Precipitated proteins 185 were sedimented by centrifugation, washed once with 100% ethanol, air-dried, 186 resuspended in SDS-Laemmli buffer, and boiled for 10 minutes. Proteins were resolved on 187 a 12% or 15% SDS-PAGE gel and transferred to nitrocellulose. Membranes were blocked 188 with PBS + 5% milk and probed with either polyclonal rabbit anti-Ssl7 (1:5,000) or 189 polyclonal rabbit anti-Hla (1:1,000). An AlexaFluor680 goat α-rabbit antibody was used at 190 1:25,000 dilution as the secondary antibody. Membranes were imaged using an Odyssey 191 Infrared Imaging System (LI-Cor Biosciences, Lincoln, NE). 192  193 For Rot immunoblots, cell pellets were resuspended in PBS containing 0.1 g 0.1 mm glass 194 beads. Cells were lysed by disruption using a FastPrep-24 Tissue and Cell Homogenizer 195 (MP Biomedicals, Solon, OH) for 40 seconds. Protein concentrations of samples were 196 normalized by bicinchoninic acid (BCA) assay using a BCA Protein Assay Kit (Thermo 197 Scientific). Proteins were resolved on a 4% - 20% gradient SDS-PAGE gel and transferred to 198 
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nitrocellulose. Membranes were blocked with PBS + 5% milk + 0.1 mg/mL human IgG and 199 probed with polyclonal rabbit anti-Rot primary antibody at 1:1,000 dilution. Secondary 200 antibody and imaging were as described above. 201  202 
RNA isolation. S. aureus cultures grown in RPMI/CAS + 10 μg/mL Cm overnight were 203 diluted to 1:100 in 20 mL RPMI/CAS + 10 μg/mL Cm and grown at 37°C with shaking at 204 180 rpm for 5 hours. Cultures were mixed with an equal volume of 1:1 ethanol:acetone and 205 frozen at -80°C. For RNA extraction, frozen cultures were thawed on ice and cells were 206 pelleted by centrifugation and washed twice with TE. Cells were transferred to MP 207 Biomedicals Lysing Matrix B 2 mL tubes and lysed using the FastPrep-24 Tissue and Cell 208 Homogenizer for 40 seconds (MP Biomedicals, Solon, OH). Cell debris was removed by 209 centrifugation. RNA was isolated from lysates using the RNeasy mini kit (Qiagen, Valencia, 210 CA) according to manufacturer’s instructions. On-column DNase digestion was performed 211 using an RNase-free DNase set (Qiagen, Valencia, CA). A second DNase digestion was 212 performed after RNA elution using RQ1 DNaseI (Promega, Madison, WI). RNA was 213 quantified using a nanodrop spectrophotometer and quality was evaluated on an agarose-214 formaldehyde gel. 215 
 216 
Quantitative reverse transcriptase PCR (qRT-PCR). 100 ng purified RNA was used in a 217 SYBER green-based comparative CT assay (Qiagen, Valencia, CA) in a 7300 Real Time PCR 218 System (Applied Biosystems, Carlsbad, CA) to determine relative quantification of gene 219 transcription from ssl7, spA, hla and lukE. 10 ng purified RNA was used to examine 220 amplification of 16S rRNA as an endogenous control. Primers used to detect transcripts are 221 
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listed in Table 5. Relative quantification of gene expression was determined for duplicate 222 reactions of each strain using the 7300 Real Time Quantitative PCR Software (Applied 223 Biosystems, Carlsbad, CA). Relative gene expression was determined by comparing all 224 strains to an isogenic strain that does not produce Rot or an isogenic strain that produces 225 wild type Rot. 226 
 227 
Purification of Rot-His from S. aureus. S. aureus Newman rot::spec strains carrying 228 plasmid pOS1/Plgt-Rot-His mutants were grown overnight in TSB + 10 μg/mL Cm, then 229 subcultured 1:100 into 400 mL TSB + 10 μg/mL Cm and grown for 5 hours at 37°C with 230 shaking at 180 rpm. Cells were pelleted by centrifugation at 4,000 rpm for 30 min. and 231 washed once with TSM (50 mM Tris-HCl pH 7.5, 0.5 M sucrose, 10 mM MgCl2). Pellets were 232 resuspended in 20 mL TSM + 25μg/mL lysostaphin. Suspensions were incubated at 37°C 233 for 10 min. Cells were pelleted by centrifugation at 4,000 rpm for 15 min. and washed once 234 with TSM. Pellets were resuspended in 40 mL TBS supplemented with 10 mM imidazole 235 and an EDTA-free protease inhibitor. Cells were lysed by sonication on ice. Soluble proteins 236 were isolated from cellular debris by centrifugation at 20,000 rpm 20 min. at 4°C. Rot was 237 selectively purified by Ni-NTA chromatography and elution with 500 mM imidazole. 238 

 239 
Electrophoretic Mobility Shift Assay. The regions upstream of lukED and ssl7 were 240 amplified using biotinylated primers listed in Table 5 to generate DNA probes between 300 241 – 400 base pairs in length. 100 fmol biotinylated probes were mixed with 2 μg Rot-His for a 242 total reaction volume of 20 μL in EMSA buffer (10 mM Tris H-Cl pH 7.4, 50 mM KCl, 5 mM 243 MgCl2, 10% glycerol, 5 μg/mL salmon sperm DNA). Reactions were incubated at room 244 
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temperature for 20 min. Samples were analyzed on 6% native polyacrylamide gels run at 245 10 mA per gel in Tis-borate EDTA (TBE). Gels were incubated for 15 min. in 50% IPA/5% 246 acetic acid, followed by 15 min. in dH2O. Gels were developed by incubation for one hour in 247 Streptavidin DyLight (Thermo Scientific, Waltham, MA) diluted 1:1,000 in phosphate 248 buffered saline (PBS) + 0.1% Tween + 5% BSA. Gels were imaged using an Odyssey 249 Infrared Imaging System (LI-Cor Biosciences, Lincoln, NE). 250 
 251 
Protein structure accession numbers. The atomic coordinates and structure factors for 252 the Rot structure have been deposited in RCSB Protein Data Bank with accession code 253 4RBR. 254 
 255 
RESULTS 256 
X-ray structure determination. To gain insight into how Rot mediates promoter 257 recognition, we solved a crystal structure of Rot by the Multi-wavelength Anomalous 258 Dispersion (MAD) method using a selenomethionine (SeMet) derivative. The presence of 259 SeMet in the crystal was confirmed by fluorescence spectroscopy, and four selenium sites 260 of each molecule were identified. The resulting experimental phases were used as initial 261 phases in a restrained refinement against the native diffraction data set of 1.7Å resolution. 262 Rot was crystallized in space group P1, with unit cell lengths of 31.6, 37.5, and 63.9 Å and 263 angles of 85.5, 82.3, and 81.3 degrees, and its structure was refined to Rwork and Rfree of 264 18.74% and 21.26%, respectively (Table 1). The final model contains residues 6-133 along 265 with 3 additional C-terminal His residues from a Poly-His tag (Fig. 1). A chloride ion, 266 
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located between the Helix-Turn-Helix (HTH) and the wing and coordinated by backbone 267 amides, was refined into the final model for each monomer (Fig. 1A). 268  269 
Overall structure of the Rot dimer. The structure shows Rot as a non-crystallographic 270 dimer (Fig. 1A), with two dimers in the asymmetric unit. When superimposed, the two 271 monomers are nearly identical, with inter-chain Cα root-mean-square deviation (RMSD) of 272 0.21 Å (without 3 residues at the tip of the wing that have different conformations between 273 the monomers). The Rot structure is largely helical, with 5 alpha helices (α1-α5) and a 274 single 2-stranded (β1 & β2) beta sheet for each monomer (Fig. 1B). It is composed of 3 275 distinct structural regions (Fig. 1B & C): the HTH motif, the wing, and the dimerization 276 helices. The HTH motif is composed of two helices (α3 and α4) connected by a short loop. 277 The C-terminal portion of this motif is termed the Recognition Helix (RH, α4), and is likely 278 to make specific contacts with the backbone and bases of the major groove of DNA (28-30). 279 The wing region of Rot consists of the two β-strands (β1 & β2), connected by an 11-residue 280 flexible loop with a high crystallographic B-factor and slightly different conformations at 281 the loop tips (Fig. 1D). The two long helices, N-terminal α1 and C-terminal α5, as well as 282 helix α2 located below the HTH motif from each monomer, join together to form a head-to-283 head dimer with 2-fold symmetry about a vertical axis at the center of the dimer. The long 284 α1 and α5 from each monomer come together to form a 4-helix bundle, creating an 285 extensive hydrophobic interface between the monomers with a buried surface area of 286 ~1800 Å2 (Fig. 2A). There are also hydrogen bonds and water-mediated interactions 287 between the monomers (Fig. 2B), including the formation of a water-mediated hydrogen 288 bond network between side chain of E16 of one monomer and the side chains of R37 of the 289 
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other monomer (Fig. 2C), and hydrogen bonds between the side chains of the symmetry-290 related Q124 from each monomer (Fig. 2D).  291 
 292 The Rot dimer has a highly negatively charged surface (Fig. 3A), consistent with its acidic pI 293 of 5.1, which is 2 pH units below that of any other SarA family member and more than 3 pH 294 units below the family average pI of 8.2. There are 21 negatively and 17 positively charged 295 residues per monomer, with 2 N-terminal lysine residues not observed in the crystal 296 structure. The majority of the positively charged residues are located in the WHTH domain, 297 rendering it overall positively charged, consistent with its DNA binding function. The 298 dimerization helices are negatively charged; they, together with the positively charged 299 WHTH domains, create an asymmetric charge distribution that would help to orient the 300 WHTH domains in the Rot dimer toward the negatively charged phosphate backbone of the 301 target DNA. A comparison of Rot’s structure to those of other SarA family members and 302 WHTH-containing proteins showed a correlation between sequence conservation and 303 charge distributions. Sequence conservation mapping indicates this group of proteins to be 304 most conserved in the WHTH region and least conserved in the dimerization helices on the 305 underside of the dimer (Table 2, Fig. 3B & C). Interestingly, among the SarA family and 306 other WHTH proteins, the electrostatic profile mimics the conservation profile, i.e., the 307 surface of conserved residue regions are also positively charged, and vice versa (Fig. 3A & 308 C).  309  310 
Structural implication of Rot’s DNA binding. To understand how Rot interacts with DNA, 311 we superimposed its structure with that of other WHTH proteins in complex with DNA, and 312 
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found that the Rot dimer is structurally highly homologous to the Bacillus subtilis OhrR 313 protein (PDB ID 1Z9C) (43), with a RMSD of ~2.0Å when the WHTH domains are 314 superimposed (Table 2). Like Rot, OhrR forms a dimer using both N-terminal and C-315 terminal helices, although its C-terminal dimerization domain is formed by two helices (α5 316 and α6), while Rot has a relatively straight long single helix (α5). By superimposing the 317 WHTH domain of Rot onto that of OhrR in the DNA complex, we were able to predict the 318 residues that potentially interact with the DNA (Fig. 4A & B). 319  320 Residues that predicted from our modeling to interact with DNA can be divided into two 321 groups: those that likely make sequence-specific contact with the bases of DNA (colored 322 orange in Fig. 1B) or those that likely make non-specific contact with the backbone of DNA 323 (purple in Fig. 1B). Seven residues (64KPYKRTR70) located at the N-terminal corner of the 324 RH are predicted to bind into the major groove of DNA (Fig. 4A & B); thus, they can 325 potentially make sequence specific interactions. Residue R91, located at the tip of the wing, 326 is predicted to insert its side chain into the minor groove of DNA; thus it can also interact 327 with DNA in a sequence specific fashion. Thirteen residues from different Rot domains are 328 predicted to be involved in non-specific DNA interactions, forming contacts with the DNA 329 backbones. When we fit the Rot structure onto that of OhrR-DNA complex, the position of 330 the chloride ion in each monomer overlapped with that of a phosphate of the DNA 331 backbone; thus, the chloride ion will likely be displaced upon DNA binding (Fig. 1A and 4A). 332  333 Rot’s structure was also analyzed using the Optimal Docking Area (ODA) tool of ICM to 334 predict potential sites of protein-partner interaction (44). ODA applies an algorithm 335 
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benchmarked to accurately predict protein-interaction regions based on the biophysical 336 properties of the functional groups on the surface of the protein. The residues predicted by 337 ODA to interact with protein partners are located on the undersurface of Rot at the junction 338 between the two monomers, including F10, L13, Q14, and T17 from helix α1 of one monomer 339 and Q48 of helix α2 from the other monomer (Fig. 4C and D).  340 
 341 
Functional Studies of Specific Rot Residues. Based on the predicted DNA and protein 342 partner binding regions in our model, we made 4 sets of alanine substitutions to further 343 map the functionally important residues (Table 3, Fig. 5A - E). The first set of mutants 344 included substitutions in the WHTH domain that may affect specific binding between Rot 345 and DNA: group substitutions of residues K64-R70 that line the top of the RH and individual 346 substitutions of Y66 and K67 of RH and R91 of the wing (Fig. 5B and C). The second set of 347 mutants included substitutions in the WHTH domain that were predicted to affect non-348 specific binding of DNA: group substitutions of L54 and K55 of α3 (Fig. 5B), and of T71 and 349 N74 on the underside of the recognition helix (α4), as well as the individual substitution of 350 N74 (Fig. 5C). The third set of mutants included substitutions in the core helices to perturb 351 non-specific interactions with DNA: group substitutions of L41 and L44 in addition to S37, E38 352 and E39 of α2, and the individual substitution of E39 (Fig. 5C and D). The fourth set of 353 mutants included substitutions of surface residues of Rot that are predicted to make 354 contact with potential protein partners: group substitutions of F10, L13, Q14, and T17 and 355 individual substitutions of F10, L13, Q14, T17 and Q48 (Fig. 5E). We also made a specific 356 substitution of Q14 to glutamic acid to determine if we could alter the specificity of this 357 interface. 358 
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 359 Mutant constructs were cloned into the vector pOS1Plgt (45). Immunoblot analysis was 360 performed to ensure that mutation of these residues did not impact Rot production (data 361 not shown). We then tested these mutants for activation of the ssl7 promoter (24, 31). 362 Promoter activation function was quantified by the use of a single copy integrated Pssl7-363 sGFP transcriptional reporter (Fig. 6A). Although a number of mutations, including F10A, 364 L13A, Q14A/E, T17A, E39A, L41A and L44A, Q48A, K67A, N74A, did not result in significant 365 changes in promoter activation compared to WT Rot, six of the tested mutations, with 366 alanine substitutions of either individual or group residues, resulted in drastic changes in 367 function from WT Rot (Fig. 6A). The phenotypes observed with the transcriptional 368 reporters were further validated by monitoring the levels of the Ssl7 protein in culture 369 filtrates (Fig. 6B). 370  371 
Rot differentially activates and represses target genes. Quantitative reverse-372 transcription PCR (qRT-PCR) was used to further assess the ability of Rot and the Rot 373 mutants described in Fig. 6 to either activate transcription of ssL7 and spa (Fig. 7A & B) (20, 374 24, 31, 46), or repress transcription of lukE and hla (Fig. 7C & D) (19, 23, 47). Comparison 375 of activation and repression of these genes revealed that R91, in the wing motif, and L54/K55, 376 in the RH α3, are the most important residues for Rot-mediated regulation of both 377 repressed and activated genes. The F10A/L13A/Q14A/T17A mutant demonstrated 378 intermediate effects on both activation and repression activity of the tested targets. 379 Interestingly, the remaining mutants demonstrated effects on Rot activity that varied 380 among the studied promoters. For example, the Y66A mutant had an intermediate effect on 381 
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activation of ssl7 and repression of hla, but severely impaired activation of spa, while 382 having almost no effect on repression of lukED. The T71A/N74A mutant demonstrated 383 intermediate effects on activity of all promoters except lukED, where it had no effect on 384 repression of this gene. Finally, the S36A/E38A/E39A mutant had little effect on activation of 385 
spa or repression of lukED, but significantly decreased the ability of Rot to activate ssl7 and 386 repress hla. Taken together, these results indicate that certain residues may be of more 387 importance in the recognition of specific promoters, highlighting a potential novel 388 mechanism by which Rot differentiates target promoters. 389  390 To determine whether substitution of these residues altered the ability of Rot to directly 391 bind these target promoters, electromobility shift assays (EMSAs) were performed. In 392 correlation with the qRT-PCR results, Rot L54A/K55A and R91A no longer bind to the ssl7 393 promoter, correlating with a loss of activation (Fig. 7E).  Additionally, Rot L54A/K55A and 394 R91A no longer bind to the lukED promoter, corroborating the qRT-PCR data, which 395 demonstrates a loss of repression of lukED by these mutants (Fig. 7F).  These results 396 suggest that loss of activation or repression of these promoters is due to lack of binding to 397 the target promoters.  Interestingly, the Rot F10A/L13A/Q14A/T17A and Y66A mutants still 398 appear to retain some binding ability, which may account for the intermediate 399 activation/repression phenotypes observed by qRT-PCR (Fig. 7E & F).  400  401 The large effects on Rot function and DNA binding resulting from mutants of R91 on the 402 wing and L54/K55 adjacent to the wing suggest that these two sites likely play an important 403 role in the insertion of the wing into the minor groove of DNA (Figs. 6A and 7). The alanine 404 
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substitution of residue Y66 at the very tip of the RH (thus likely bind the bases in the major 405 groove) had a much larger effect on Rot’s function than that of the neighboring residue K67 406 (Fig. 6B), but this Y66 mutation did not have a strong effect on promoter binding (Fig. 7E & 407 F), suggesting an alternative role for Y66 in Rot activity. Interestingly, Y66 and the other 408 mutated residues of the HTH and helical core have a less pronounced and more varied 409 effect on activating or repressing transcription than residues involved with insertion of the 410 wing into the minor groove. These results may suggest that interactions between the wing 411 and minor groove are important for Rot binding to DNA, while residues in the HTH and 412 helical core facilitate recognition and differentiation among target promoters. 413 
 414 
DISCUSSION  415 Rot is a central regulator of S. aureus virulence and is known to specifically interact with 416 target promoters (19, 20, 22-25, 47). Work presented here aimed to gain insight into how 417 Rot interacts with promoters by solving a high-resolution crystal structure. The structure 418 of Rot showed a conserved DNA-binding face that is positively charged despite the overall 419 very acidic pI of the protein. Like some other WHTH proteins that bind DNA (such as 420 OhrR), Rot’s electrostatic profile is asymmetrical and can therefore orient the WHTH motif 421 toward the DNA helix. This specific electrostatic profile and a delicate charge balance may 422 have profound functional significance. One possibility is that the overall negative charge of 423 Rot may create a slight repulsion between Rot and the DNA, and this repulsion can be 424 altered by interactions with protein partners that possess an overall positive charge, such 425 as RNA polymerase. Therefore, Rot’s unique electrostatic features may serve a functional 426 purpose enabling its central role in regulating the S. aureus virulon. 427 
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 428 Despite Rot’s known ability to interact specifically with certain promoters (20, 22, 24, 25), 429 the binding site of Rot is still unknown. Our structure allows several predictions about its 430 potential DNA binding mechanism. First, the Rot dimer is highly symmetric with an almost 431 exact twofold rotational symmetry, suggesting that the DNA sequences in the Rot-432 interacting promoters will likely contain palindromic elements. Second, the distance in the 433 dimer between the Cα atoms of the two R91 residues, whose side chains likely penetrate 434 into the minor groove of DNA, is 60 Å (Fig. 5A). Given that the length per base pair of a 435 standard DNA helix is 3.3 Å (48), Rot likely interacts with a section of DNA about 18 base 436 pairs long. This is in agreement with a study by Rechtin and colleagues, who made a similar 437 prediction about SarA (49); however, the SarA binding site is still a subject of debate (50, 438 51). It should be noted that this estimation of the Rot binding site length is rudimentary, as 439 the wing regions are very flexible and the distance between the R91 residues can vary. 440 Third, the side chain of R91, which is part of the conserved DER region of SarA family 441 proteins, will interact specifically with a base in the minor groove. The crystal structure of 442 OhrR-DNA showed that the side chain of the corresponding arginine forms a base-specific 443 interaction with the oxygen atom of a thymine. Since it is highly conserved in the SarA 444 family (Fig. 3B), R91 will likely also interact with a thymine in the Rot-interacting 445 promoters. In addition, K55, adjacent to the wing, is also highly conserved among SarA 446 family proteins (Fig. 3B), suggesting this residue may play a key role in interaction with 447 DNA as well. These predictions are consistent with our functional data demonstrating that 448 alanine substitution of R91 and the two residues L54 and K55 had more substantial effects on 449 activation or repression of promoters than other mutated residues of the HTH or the 450 
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helices at the center of the dimer. The loss of either activation or repression that results 451 from substitution of R91 and L54/K55, combined with the conservation of the DER region in 452 the SarA family, implies a uniform mechanism utilized by this protein family for the 453 interaction of the wing region with the minor groove. 454  455 In contrast, mutations of the HTH region of Rot have a much more varied effect on the 456 activation or repression of promoters (Fig. 7). It is possible that the determinants of 457 functional selectivity between different Rot-interacting promoters may reside in the 458 residues of the RH, which likely make contact with the major groove of DNA. For example, 459 residue Y66, projecting from the top of the RH, could play the role of selectivity filter for 460 different promoters; this residue is unique to Rot and its substitution to alanine has a 461 differential effect on activation versus repression. The residues on the top of the 462 recognition helix of other SarA family members are variable and likely play a similar role, 463 such as P71, K74, and/or R75 of MgrA; S65 of SarS; Y63 of SarR; P65 and/or K69 of SarA; and S68 464 and/or T70 of OhrR (Fig. 3B).  465  466 While we writing the present study, Zhu et al published a structure of Rot of equal 467 resolution to ours, that agrees completely with the findings described herein (e.g. Rot is a 468 homodimer and has a winged HTH DNA binding domain) (52). In our Rot structure, 469 however, we were able to capture the wing domain, which was absent in the Zhu et al 470 structure (52), providing a more detailed molecular picture of Rot. The mutagenesis 471 studies described in our study also validate and extend the Zhu et al findings, highlighting 472 the role of critical residues for Rot function. In addition, while Zhu et al discussed the 473 
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potential contribution of residues involved in the hydrophobic dimer interface, we actually 474 tested residues within this interface and showed that they contribute to Rot function, 475 which is consistent with the finding by Zhu et al that demonstrates that the formation of 476 the Rot dimer is required for Rot binding to synthetic DNA. One of the most important 477 differences between our study and that of Zhu et al is the fact that Zhu et al performed Rot 478 binding studies exclusively with a synthetic AT rich DNA, while our studies were done 479 using DNA from Rot-regulated promoters. Moreover, our study provided greater insight 480 into how Rot regulates target promoters by analyzing four different promoters in total –481 two repressed and two activated. By analyzing these promoters, we discovered that certain 482 mutations exhibit promoter-dependent effects, thus highlighting the fact that Rot interacts 483 with target promoters differently. Altogether, the data presented herein provide insight 484 into the structure and function of Rot as a transcriptional activator and repressor. 485 However, it is clear that additional work needs to be undertaken to better understand Rot’s 486 selectivity for activated versus repressed promoters, as well as to identify a specific Rot 487 binding site. 488  489 
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Table 1. Data collection and refinement statistics.  Data collection statistics are shown for the native data set and those used 653 for MAD phasing (peak, inflection, remote). The final model was refined against the native set. 654  655  Native Selenomethionine Derivative   Peak Remote Inflection 
Data collection  Wavelength (Å) 1.0 0.9793 0.913 0.9797 Space group P1 P1 P1 P1 Cell dimensions     a, b, c 31.56, 37.53, 63.91 31.70, 38.13, 64.08 31.73, 38.22, 64.13 31.71, 38.17, 64.19 alpha, beta, gamma 85.45, 82.26, 81.26 85.60, 82.06, 81.54 85.64, 82.10, 81.28 85.56, 82.06, 81.45 Resolution Range (Å) 37.03-1.7 (1.79-1.7)a 37.65-1.86 (1.96-1.86)a 37.72-1.73 (1.82-1.73)a 37.68-1.86 (1.96-1.86)a Total reflections   113354 (15961) 92762 (13115) 114487 (16212) 93035 (13094) Unique reflections 29564 (4221) 23720 (3384) 29331 (4195) 23733 (3384) Rsym (%) 0.074 (0.424) 0.081 (0.617) 0.092 (0.858) 0.070 (0.645) Mean I/sigma(I) 10.8 (2.8) 9.4 (1.7) 7.6 (0.8) 10.8 (1.6) Multiplicity  3.8 (3.8) 3.9 (3.9) 3.9 (3.9) 3.9 (3.9) Completeness (%)  93.7 (91.7) 95.6 (93.5) 95.4 (93.3) 95.3 (93.1) 
Refinement  Resolution (Å) 31.6 Å/1.7 Å  R-factor 0.19 (0.27)  R-free 0.21 (0.32)  No. of atoms 2589  Macromolecules   Protein 2168  Ligand/ion 2  Water 419  Protein Residues 262  B-factors 29.7  Protein 28.1  Solvent 37.8  rmsd   
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Bond lengths (Å) 0.006  Bond angles (°) 0.879  Ramachandran favored (%) 98.6  Ramachandran outliers (%) 0.39  Clashscore 5.57  a Values in parentheses are stated for the highest resolution bin for each structure. 656 
  657 



 32

Table 2. Sequence and structural comparison of Rot to SarA and WHTH proteins. Rot’s sequence and structure are compared 658 to other SarA family members and several WHTH-containing proteins whose structures were solved in complex with DNA. 659 Tabulated data shown with respect to Rot are: the PDB ID of each structure; the sequence identity of the entire protein; the 660 sequence identity of the WHTH region defined by structural alignment; the root-mean-square devition (RMSD) of the 661 monomer (in the case of 1P4X, only have the protein which corresponds to one Rot monomer was compared); the RMSD of the 662 WHTH region defined by structural alignment; the isoelectric point of each protein defined by the whole protein sequence. 663  664  665 
Protein PDB ID 

Identity 
(%) 

Identity 
WHTH (%) RMSD (Å) 

RMSD 
WHTH (Å) PI Rot - - - - - 5.1 

SarA family members      SarA 2FNP 19 26 4.6 2.4 7.8 SarR 1HSJ 22 40 6.3 1.7 9.3 SarS 1P4X 19 21 5.5 2.3 8.9 MgrA 2BV6 14 17 5.6 1.9 7.0 
DNA complexes      OhrR 1Z9C 13 24 3.7 2.1 6.3 SlyA 3Q5F 8.3 14 6.1 2.3 6.2 MecI 1SAX 5.7 7.3 7.2 2.4 8.9 IscR 4HF1 2.3 7.5 5.7 2.7 6.8 RTP 1F4K 4.1 11.9 7.2 3.7 9.5  666  667 
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Table 3. Site-direction mutations in Rot. The location of each mutation within the protein 668 and the predicted contact interrupted by each mutant is indicated. 669  670 
Mutation Location Predicted Contact R91A Wing Specific DNA K64A – R70A HTH-RH Specific DNA Y66A HTH-RH Specific DNA K67A HTH-RH Specific DNA L54A/K55A HTH-α3 Non-specific DNA T71A/N74A HTH-RH Non-specific DNA N74A HTH-RH Non-specific DNA L41A/L44A Core-α2 Non-specific DNA S36A/E38A/E39A Core-α2 Non-specific DNA E39A Core-α2 Non-specific DNA F10A/L13A/Q14A/T17A Core-α1 Protein Partners F10A Core-α1 Protein Partners L13A Core-α1 Protein Partners Q14A Core-α1 Protein Partners Q14E Core-α1 Protein Partners T17A Core-α1 Protein Partners Q48A Core-α2 Protein Partners 
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Table 4. Bacterial strains used in this study. 672  673 
Strain Background Description Genotype Reference RN4220 8325-4 Restriction deficient cloning host  Kreiswirth et al 1962 RN9011 RN4220 RN4220 containing the pRN7023 vector encoding the SaPI integrase  Geisinger et al., 2008 VJT 1.01 Newman Wild type wildtype Duthie and Lorenz 1952VJT 34.79 VJT 1.01 Newman wildtype containing the ssl7 promoter driving 

gfp expression integrated into the chromosome wildtype This study VJT 9.98 VJT 1.01 Transduction of rot::Tn917 from RN10623 into VJT 1.01 rot::Tn917 Benson et al 2011 VJT 34.84 VJT 9.98 Newman rot::Tn917 containing the ssl7 promoter driving 
gfp expression integrated into the chromosome rot::Tn917 This study 

  674 



 

 35

Table 5. Primers used in this study. 675  676 
# Name Sequence Description 341 pssl7-F-PstI 5’-CCCC-CTGCAG-GCAGACTAGTAATTGTAGGG Pssl7-sgfp reporter 489 sGFP-R-BamHI 5'-CCC-GGATCC-TTAGTGGTGGTGGTGGTGG Pssl7-sgfp reporter 1118 Rot-Mut1-F-NdeI 5'-CCCCCATATGATGAAAAAAGTAAATAACGACACTG TAGCAGGAATTGCAGCATTAGAAGCACTTTTGG Forward primer to make a Rot F10A/L13A/Q14A/T17A mutant. Use with primer 311 to clone into pOS1Plgt 1120 Rot-Mut3-F 5'-CAAAATGGCAAGAGCAGCAATTTTAATTTTACTAAC Forward SOEing primer to make a Rot S36A/E38A/E39A mutant. Use with primer 311. 1121 Rot-Mut3-R 5'-GTTAGTAAAATTAAAATTGCTGCTCTTGCCATTTTG Reverse SOEing primer to make a Rot S36A/E38A/E39A mutant. Use with primer 313. 1122 Rot-Mut4-F 5'-CTTTATGGGCAAAAGGTTCTATGAC Forward SOEing primer to make a Rot Q48A mutant. Use with primer 311. 1123 Rot-Mut4-R 5'-GTCATAGAACCTTTTGCCCATAAAG Reverse SOEing primer to make a Rot Q48A mutant. Use with primer 313. 1124 Rot-Mut5-F 5'-GGTTCTATGACGGCAGCAGAAATGGAC Forward SOEing primer to make a Rot L54A/K55A mutant. Use with primer 311. 1125 Rot-Mut5-R 5'-GTCCATTTCTGCTGCCGTCATAGAACC Reverse SOEing primer to make a Rot L54A/K55A mutant. Use with primer 313. 1126 Rot-Mut6-F 5'-GATTTGTTGAAGCAGCAGCAGCAGCAGCAGCAGCAA CGTATAATAATTTAG Forward SOEing primer to make a Rot K64A/P65A/Y66A/ K67A/R68A/T69A/R70A mutant. Use with primer 311. 1127 Rot-Mut6-R 5'-CTAAATTATTATACGTTGCTGCTGCTGCTGCTGCT GCTGCTTCAACAAATC Reverse SOEing primer to make a Rot K64A/P65A/Y66A/ K67A/R68A/T69A/R70A mutant. Use with primer 313. 1128 Rot-Mut7-F 5'-CGAGAGCATATAATGCATTAGTTGAATTAG Forward SOEing primer to make a Rot T71A/N74A mutant. Use with primer 311. 
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1129 Rot-Mut7-R 5'-CTAATTCAACTAATGCATTATATGCTCTCG Forward SOEing primer to make a Rot T71A/N74A mutant. Use with primer 313. 1132 Rot-Mut9-F 5'-GACGATGAAGCAACAGTTATTATTC Forward SOEing primer to make a Rot R91A mutant. Use with primer 311. 1133 Rot-Mut9-R 5'-GAATAATAACTGTTGCTTCATCGTC Reverse SOEing primer to make a Rot R91A mutant. Use with primer 313. 1137 Rot-Mut13-F 5'-GAAGAAATTGCAATTTTAGCAACTTTATGGC Forward SOEing primer to make a Rot L41A/L44A mutant. Use with primer 311. 1138 Rot-Mut13-R 5'-GCCATAAAGTTGCTAAAATTGCAATTTCTTC Reverse SOEing primer to make a Rot L41A/L44A mutant. Use with primer 313. 311 rot-6xHis-3'-RXhoI 5’-CCCCTCGAG-TTAGTGATGGTGATGGTGATG-CACAGCAATAATTGCGTTTAAAC Reverse primer to clone rot into pOS1-Plgt  313 rot5'F-NdeI 5’-CCCC-CATATG-AAAAAAGTAAATAACGACACTG Forward primer to clone rot downstream of the lgt promoter in the pOS1-Plgt plasmid. 270 hla P1-RT 5’- AAAAAACTGCTAGTTATTAGAACGAAAGG qRT-PCR analysis of hla 271 hla P2-RT 5’- GGCCAGGCTAAACCACTTTTG qRT-PCR analysis of hla 278 16S P1-RT 5’- TGAGATGTTGGGTTAAGTCCCGCA qRT-PCR analysis of 16S rRNA 279 16S P2-RT 5’- CGGTTTCGCTGCCCTTTGTATTGT qRT-PCR analysis of 16S rRNA 280 ssl7 P1-RT 5’- AACGTTAGCTAAAGCAACATTGGC qRT-PCR analysis of ssl7 281 ssl7 P2-RT 5’- TTGCTTGAACTGCTTGGCCTTCTG qRT-PCR analysis of ssl7 290 spA1P1-RT 5’- CAGCAAACCATGCAGATGCTA qRT-PCR analysis of spA 291 spA2P2-RT 5’- GCTAATGATAATCCACCAAATACAGTTG qRT-PCR analysis of spA 370 lukE-P1 5’-GAAATGGGGCGTTACTCAAA qRT-PCR analysis of lukE 371 lukE-P2 5’-GAATGGCCAAATCATTCGTT qRT-PCR analysis of lukE 305 pssl7-R-BIO 5’-BIO-CCCC-AGTACTATTCTCCCAATCTATTT biotinylated primer for EMSA probe amplification 341 pssl7-F 5’-CCCC-CTGCAG-GCAGACTAGTAATTGTAGGG EMSA probe amplification 736 plukED-F-BIO 5'-BIO-AAGTTTCACTTTCTTTCTATATAAAT biotinylated primer for EMSA probe amplification 397 plukED-R 5'-CCC-CTGCAG-ATCTTCGTTTAACGGACAATAG EMSA probe amplification 
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Table 6. Plasmids used in this study. 677 
Name Description Resistance Reference pOS1sGFP-Pssl7-sodRBS ssl7 promoter and sod RBS driving sgfp expression Cm Benson et al., 2011 pJC1111 Suicide vector used for integration into the SaP-1 site Cd Geisinger et al., 2008pJC1111 Pssl7-sodRBS-sGFP ssl7 promoter and sod RBS driving sgfp expression cloned into the pJC1111 suicide vector 

Cd This study pRN7023 Vector encoding the SaP-1 integrase Cm Ruzin et al., 2001 pOS1Plgt lgt promoter in an empty vector Cm Bubeck Wardenburg et al 2006 pOS1Plgt rot lgt promoter driving rot expression Cm Benson et al., 2011 pOS1Plgt rot F10A/L13A/Q14A/T17A lgt promoter driving rot F10A/L13A/Q14A/T17A expression 
Cm This study pOS1Plgt rot S36A/E38A/E39A lgt promoter driving rot S36A/E38A/E39A expression Cm This study pOS1Plgt rot Q48A lgt promoter driving rot Q48A expression Cm This study pOS1plgt rot L54A/K55A lgt promoter driving rot L54A/K55A expression Cm This study pOS1Plgt rot K64A/P65A/Y66A/ K67A/R68A/T69A/R70A lgt promoter driving rot K64A/P65A/Y66A/K67A/ R68A/T69A/R70A expression Cm This study pOS1Plgt rot T71A/N74A lgt promoter driving rot T71A /N74A expression Cm This study pOS1Plgt rot R91A lgt promoter driving rot R91A expression Cm This study pOS1Plgt rot L41A/L44A lgt promoter driving rot L41A/L44A expression Cm This study pET41b rot6xhis rot expression vector Kan Benson et al., 2012 

  678 
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FIGURE LEGENDS 679 
FIGURE 1. Rot Structure. (A) The Rot dimer is shown in a ribbon representation from a 680 side view. Monomers are colored in either cyan or green. The chloride ion is represented as 681 a magenta sphere. (B) The sequence of the region in the crystal structure from residue 6 to 682 133 plus three residues from the 6 x His tag is shown with the secondary structure 683 elements, including five α-helices and a two-stranded β-sheet. The structural motifs are 684 color-coded: the dimerization core helices (α1, α2, and α5) in green, the Helix-Turn-Helix 685 (HTH) (α3 and α4) containing the Recognition Helix (RH) (α4) in magenta, and the wing 686 (β1 and β2) in dark blue. The underlined residues make dimerization contacts. Red 687 residues are predicted to make contact with protein-partners, purple residues non-specific 688 contact with DNA, and orange residues specific contact with DNA. (C) Structural motifs 689 listed in (B) are shown on the Rot monomer. (D) The Rot dimer is shown in a B-factor putty 690 representation where the thickness of a region is proportional to its local B-factor and thus 691 its flexibility. 692  693 
FIGURE 2. Hydrophobic dimerization interface and hydrogen bonds in the Rot dimer. (A) 694 The surfaces of the Rot molecules. The two monomers in the Rot dimer are colored cyan 695 and green, respectively and the hydrophobic residues depicted in yellow. (B) Water-696 mediated contacts span the Rot dimerization interface. The side chains of residues that 697 extend across the dimerization interface are colored in magenta. The key water molecules 698 that participate in dimerization are shown as small red spheres. (C) A close-up view of (B) 699 in which hydrogen bonds are shown as black dotted lines. (D) A close-up view of the 700 
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hydrogen bonds formed between the side chains of the symmetry-related Q124 from each 701 Rot monomer. 702  703 
FIGURE 3. Surface charge distribution and sequence conservation among SarA family 704 members. (A) Electrostatic profiles of SarA family proteins. The electrostatic surface 705 potentials of each protein are colored by charge, with blue representing positive and red 706 negative charge. Proteins are oriented with their WHTH facing forward. Proteins are 707 depicted from most to least acidic isoelectric point (left to right, top to bottom). (B) 708 Sequence alignment of WHTH domains of SarA family members. The height of each letter in 709 the top portion of the figure represents the prevalence of that amino acid at the particular 710 position. (C) Sequence conservation of SarA family members projected onto Rot surface. 711 Each residue on the surface of Rot is colored according to sequence conservation, with blue 712 representing the most and red the least conserved. Sequence conservation was defined by 713 alignment generated by BLAST. Figure was generated by the ConSurf program (Ashkenazy 714 et al., 2010). 715  716 
FIGURE 4. Prediction of domains important for Rot function. (A) Model of Rot/DNA 717 interaction. Rot dimer (cyan and green) are depicted as ribbons, while the DNA (brown) 718 backbones and bases are depicted as thin tubes with an overall transparent surface. The 719 side chains of Y66 and R91 are shown. (B) A zoomed in view of the modeled interaction at 720 the major and minor grooves. The side chains are shown for Y66 in the RH with the major 721 groove of DNA and R91 of the wing with the minor groove. (C) Optimal Docking Area (ODA) 722 analysis. ODA was used to predict interfaces for protein-protein interactions (Fernandez-723 
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Recio et al., 2002). Red spheres indicate locations on the surface of Rot where protein 724 interactions are likely to occur. (D) Side chains are shown for residues predicted from the 725 ODA analysis to interact with protein partners. 726 
 727 
FIGURE 5. Targeted Rot residues for site directed mutagenesis. (A) Residues altered to 728 generate mutant Rot proteins are shown in stick representation. Orange residues are 729 predicted to make specific contacts with DNA. Purple residues are predicted to make non-730 specific contacts with DNA. Red residues are predicted to be involved in interactions with 731 protein partners. Distances between the Y66 residues and the R91 residues in the two 732 monomers are reported. (B) The WHTH region is shown in a close-up view with the side 733 chains of selected residues in stick representation. The chloride ion is shown as a red 734 sphere. (C) and (D) The HTH region is shown from two orientations. (E) Close-up view of 735 the region predicted by ODA to be involved in interaction with protein partners. 736  737 
FIGURE 6. Mutant Rot proteins display functional defects. (A) Mutant rot alleles carried on 738 plasmid pOS1Plgt were transformed into an S. aureus reporter straining containing sgfp 739 under the control of the ssl7 promoter, which is activated by Rot. Activation activity of Rot 740 mutants was assessed by GFP fluorescence in cultures grown to post-exponential phase. 741 Values represent the average of three independent experiments ± standard deviation (SD). 742 
(B) Immunoblot analysis of α-toxin and Ssl7. S. aureus strain Newman was grown to post-743 exponential phase. Exoproteins were collected, precipitated, separated by SDS-PAGE, 744 transferred to nitrocellulose, and probed with antibodies to indicated proteins. 745  746 
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FIGURE 7. Mutations in Rot differentially affect activation, repression, and DNA binding. (A 747 
– D) Transcript levels of ssL7 (A) and spA (B), which are activated by Rot, or lukE (C) and 748 
hla (D), which are repressed by Rot, were quantified by qRT-PCR from strains containing 749 the wild type Rot or its mutant proteins. Transcript levels were quantified in units of 750 Relative Quantitation (RQ) and compared to that of the empty vector (Neg) or the wild type 751 Rot protein (WT). Data bars represent an average of 3 experiments ± SD. (E – F) EMSA 752 analysis of purified WT and mutant Rot proteins incubated with either the ssl7 (E) or lukED 753 (F) promoters containing a biotin tag. Promoter DNA probes alone (Neg) or pre-incubated 754 with Rot-His proteins were separated by PAGE. DNA probes were visualized using 755 streptavidin DyLight. “P” denotes unbound DNA probe. “S” denotes shifted band resulting 756 from Rot-DNA complex. The asterisk denotes a non-specific band. 757 



Figure 1!

FIGURE 1. Rot Structure. (A) The Rot dimer is shown in a ribbon representation from a 
side view. Monomers are colored in either cyan or green. The chloride ion is represented 
as a magenta sphere. (B) The sequence of the region in the crystal structure from residue 
6 to 133 plus three residues from the 6 x His tag is shown with the secondary structure 
elements, including five α-helices and a two-stranded β-sheet. The structural motifs are 
color-coded: the dimerization core helices (α1, α2, and α5) in green, the Helix-Turn-Helix 
(HTH) (α3 and α4) containing the Recognition Helix (RH) (α4) in magenta, and the wing 
(β1 and β2) in dark blue. The underlined residues make dimerization contacts. Red 
residues are predicted to make contact with protein-partners, purple residues non-specific 
contact with DNA, and orange residues specific contact with DNA. (C) Structural motifs 
listed in (B) are shown on the Rot monomer. (D) The Rot dimer is shown in a B-factor putty 
representation where the thickness of a region is proportional to its local B-factor and thus 
its flexibility. !



Figure 2!

FIGURE 2. Hydrophobic dimerization interface and hydrogen bonds in the Rot dimer. (A) 
The surfaces of the Rot molecules. The two monomers in the Rot dimer are colored cyan 
and green, respectively and the hydrophobic residues depicted in yellow. (B) Water-
mediated contacts span the Rot dimerization interface. The side chains of residues that 
extend across the dimerization interface are colored in magenta. The key water 
molecules that participate in dimerization are shown as small red spheres. (C) A close-up 
view of (B) in which hydrogen bonds are shown as black dotted lines. (D) A close-up 
view of the hydrogen bonds formed between the side chains of the symmetry-related 
Q124 from each Rot monomer. !



Figure 3!

FIGURE 3. Surface charge distribution and sequence conservation among SarA family 
members. (A) Electrostatic profiles of SarA family proteins. The electrostatic surface 
potentials of each protein are colored by charge, with blue representing positive and red 
negative charge. Proteins are oriented with their WHTH facing forward. Proteins are 
depicted from most to least acidic isoelectric point (left to right, top to bottom). (B) 
Sequence alignment of WHTH domains of SarA family members. The height of each 
letter in the top portion of the figure represents the prevalence of that amino acid at the 
particular position. (C) Sequence conservation of SarA family members projected onto 
Rot surface. Each residue on the surface of Rot is colored according to sequence 
conservation, with blue representing the most and red the least conserved. Sequence 
conservation was defined by alignment generated by BLAST. Figure was generated by 
the ConSurf program (Ashkenazy et al., 2010). !



Figure 4!

FIGURE 4. Prediction of domains important for Rot function. (A) Model of Rot/DNA 
interaction. Rot dimer (cyan and green) are depicted as ribbons, while the DNA (brown) 
backbones and bases are depicted as thin tubes with an overall transparent surface. The 
side chains of Y66 and R91 are shown. (B) A zoomed in view of the modeled interaction at 
the major and minor grooves. The side chains are shown for Y66 in the RH with the major 
groove of DNA and R91 of the wing with the minor groove. (C) Optimal Docking Area 
(ODA) analysis. ODA was used to predict interfaces for protein-protein interactions 
(Fernandez-Recio et al., 2002). Red spheres indicate locations on the surface of Rot 
where protein interactions are likely to occur. (D) Side chains are shown for residues 
predicted from the ODA analysis to interact with protein partners. !



Figure 5!

FIGURE 5. Targeted Rot residues for site directed mutagenesis. (A) Residues altered to 
generate mutant Rot proteins are shown in stick representation. Orange residues are 
predicted to make specific contacts with DNA. Purple residues are predicted to make 
non-specific contacts with DNA. Red residues are predicted to be involved in interactions 
with protein partners. Distances between the Y66 residues and the R91 residues in the 
two monomers are reported. (B) The WHTH region is shown in a close-up view with the 
side chains of selected residues in stick representation. The chloride ion is shown as a 
red sphere. (C) and (D) The HTH region is shown from two orientations. (E) Close-up 
view of the region predicted by ODA to be involved in interaction with protein partners. !



Figure 6!

FIGURE 6. Mutant Rot proteins display functional defects. (A) Mutant rot alleles carried 
on plasmid pOS1Plgt were transformed into an S. aureus reporter straining containing 
sgfp under the control of the ssl7 promoter, which is activated by Rot. Activation activity 
of Rot mutants was assessed by GFP fluorescence in cultures grown to post-exponential 
phase. Values represent the average of three independent experiments ± standard 
deviation (SD). (B) Immunoblot analysis of α-toxin and Ssl7. S. aureus strain Newman 
was grown to post-expontential phase. Exoproteins were collected, precipitated, 
separated by SDS-PAGE, transferred to nitrocellulose, and probed with antibodies to 
indicated proteins. !



Figure 7!

FIGURE 7. Mutations in Rot differentially affect activation, repression, and DNA binding. (A 
– D) Transcript levels of ssL7 (A) and spA (B), which are activated by Rot, or lukE (C) and 
hla (D), which are repressed by Rot, were quantified by qRT-PCR from strains containing 
the wild type Rot or its mutant proteins. Transcript levels were quantified in units of Relative 
Quantitation (RQ) and compared to that of the empty vector (Neg) or the wild type Rot 
protein (WT). Data bars represent an average of 3 experiments ± SD. (E – F) EMSA 
analysis of purified WT and mutant Rot proteins incubated with either the ssl7 (E) or lukED 
(F) promoters containing a biotin tag. Promoter DNA probes alone (Neg) or pre-incubated 
with Rot-His proteins were separated by PAGE. DNA probes were visualized using 
streptavidin DyLight. “P” denotes unbound DNA probe. “S” denotes shifted band resulting 
from Rot-DNA complex. The asterisk denotes a non-specific band.	
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