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Preface to the Series 
 

 
The RIKEN BNL Research Center (RBRC) was established in 1997 at Brookhaven National Laboratory.* 
RBRC is funded by “Rikagaku Kenkyosho” (RIKEN, The Institute of Physical and Chemical Research) in 
Japan and the United States Department of Energy’s Office of Science. 
 
A Memorandum of Understanding between RIKEN and BNL, initiated in 1997, has been renewed in 2002, 
2007 and 2012. 
 
RBRC is dedicated to the study of strong interactions, including spin physics, lattice QCD and relativistic 
heavy ion physics through the nurturing of new generations of young physicists. The RBRC founding Director 
T.D. Lee and the second Director N. P. Samios conceived and implemented this vision, which has been 
maintained and further developed down to the present day. 
 
The RBRC research program has theory, lattice gauge computing and high-energy experimental nuclear 
physics components. Recently, an astrophysics/cosmology component has been added. The RBRC Theory, 
Computing and Experimental Groups presently comprise 48 researchers. Positions include full-time RBRC 
Fellows, half-time joint RHIC Physics Fellows and full-time postdoctoral Research Associates. The RHIC 
Physics Fellows hold joint appointments with RHIC and other institutions, where they have tenure track 
positions. To date, RBRC has over 101 graduates (Fellows and Research Associates) of whom approximately 
67 have already attained tenure at major research institutions worldwide. 
 
In 2001 a RIKEN Spin Program (RSP) was initiated at RBRC. The research staff comprises joint 
appointments in theory and experiment between RBRC and RIKEN, including RSP Researchers, RSP 
Research Associates and Young Researchers. They are mentored by senior RBRC Scientists. A number of 
RIKEN junior Research Associates and Visiting Scientists also contribute to the program. 
 
In support of the lattice gauge program at RBRC and elsewhere, a series of high-performance computers has 
been designed and built by researchers from Columbia University, IBM, BNL, RBRC and University of 
Edinburgh, with the U.S. DOE Office of Science providing infrastructure support at BNL. To date, the steps 
in this program have been: QCDSP (0.6 TFlops, 1998-2006), which was awarded the Gordon Bell Prize for 
price performance in 1998; QCDOC (10 TFlops, 2005-2012); QCDCQ (600 TFlops, 2011-present). Recent 

K results were awarded the Ken Wilson Prize in 2012. 
 
A very important activity of RBRC is its active Workshop series on Strong Interaction Physics, with each 
workshop focused on a specific physics problem. A list of proceedings of all past Workshops can be found on 
the RBRC website (http://www.bnl.gov/riken/proceedings.php). The talks from many of the recent 
workshops can be accessed from the link at the top of the Proceedings page. To date, about 119 Workshops 
have taken place; the full proceedings of most of the workshops from 2005 – 2014 are available at this link. 
 
 
        S. H. Aronson, Director 
        March 2015 
 
 
 
 
 
 
* Work Performed under the auspices of U.S.D.O.E. Contract No. DE-SC0012704 

http://www.bnl.gov/riken/proceedings.php


Introduction 
  

 
Nonperturbative QCD calculations of hadronic matrix elements are needed to understand the structure 

of the matter in our universe and to search for physics beyond the Standard Model. Numerical lattice 

gauge theory is uniquely suited for this task and has reached a remarkable level of precision. However, 

the types of observables that are accessible in a straightforward way are limited because lattice 

calculations are performed with imaginary time. Traditionally, lattice QCD determinations of hadronic 

matrix elements have been restricted to situations with at most one stable hadron in the initial and final 

states, and with a single insertion of a local current. This situation has been changing recently thanks 

to theoretical breakthroughs and pioneering numerical studies of new observables. At this workshop, 

the latest developments concerning multi-hadron systems and nonlocal matrix elements in lattice QCD 

were discussed: 
 

 Lüscher's quantization condition relates the energy spectrum of two interacting particles in a finite 

volume to the scattering phase shifts.   At this workshop, generalizations of Lüscher's quantization 

condition to three-particle systems, and to two-particle systems with long-range QED  interactions 

were presented. 

 Advanced numerical lattice QCD studies of hadronic resonances using the Lüscher method were 

shown, including coupled-channel scattering and near-threshold resonances. 

 The Lellouch-Lüscher formula relates two-hadron matrix elements computed in a finite volume to 

the infinite-volume matrix elements. This workshop included presentations of the latest numerical 

lattice QCD calculations of the nonleptonic weak decay K ® π π, as well as new theoretical results 

extending the Lellouch-Lüscher formula to general multichannel 1 ® 2 transition matrix elements. 

 Novel methods allowing the direct calculation of parton distribution functions in lattice QCD were 

discussed, and a one-loop calculation of the lattice-to-continuum matching required for these 

methods was presented. 

 Lattice QCD calculations of nonlocal matrix elements relevant for rare kaon decays and for the 

KL-KS mass difference were shown. The inclusion of QED corrections in weak decays was 

discussed. Results from a new method for computing the hadronic light-by-light contribution to the 

muon anomalous magnetic moment were shown. 

 Calculations of the binding energies and magnetic moments of light nuclei directly from lattice 

QCD were presented. The theoretical foundations of a potential-based method for studying multi-

hadron interactions on the lattice were discussed, and an application of this method to charmed 

tetraquarks was shown. 
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Resonance form factors in lattice QCD

Andria Agadjanov, University of Bonn

Brookhaven, February 5, 2015

AA, V. Bernard, U.-G. Meißner, A. Rusetsky, Nucl. Phys. B 886 (2014)
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Outline

◮ Introduction: the ∆Nγ∗ transition

◮ Motivation

◮ Goals, results

◮ Outlook: the B → K ∗
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Introduction

∆Nγ∗ transition

B → K∗(892)
EXPERIMENT THEORY

LatticeQCD

Phenomenology

QCDSumRules

DSequations

· · ·

• γ∗N → πN near the ∆(1232): study of the hadron deformation

• B → K ∗γ∗, B → K ∗l+l− with K ∗(892) → Kπ: sensitive to NP
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γ∗
N → ∆

γ∗p → ∆+(1232) → pπ0 (66%)

γ∗p → ∆+(1232) → nπ+ (33%)

γ∗p → ∆+(1232) → pγ (0.56%)

→֒ study of the de-excitation radiation pattern

C. Alexandrou et al., Rev. Mod. Phys. 84 (2012) 1231
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• The electromagnetic transition matrix element:

〈∆(P , λ)|Jµ(0)|N(Q, ǫ)〉 =

(
2

3

)1/2

ūσ(P , λ)Oσµu(Q, ǫ) ,

with the Lorentz-structure

Oσµ = GM(Q2)KM1
σµ + GE (Q

2)KE2
σµ + GC (Q

2)KC2
σµ

H. F. Jones and M. D. Scadron, Ann. Phys. 81 (1973) 1

EMR ≡
ImE

3/2
1+

ImM
3/2
1+

= −
GE (Q

2)

GM(Q2)
, CMR ≡

ImL
3/2
1+

ImM
3/2
1+

= −
|~Q|

2m∆

GC (Q
2)

GM(Q2)

→֒ extracted from experiment calculated on the lattice ←֓
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Experiment vs. theory

...notwithstanding its steady progress toward results with input parameters that

approximate the real world, the numerical simulation of lattice-regularised QCD will

not suffice. Approaches formulated in the continuum and inspired by, based upon, or

connected directly with QCD are necessary.

C. D. Roberts arXiv:1501.06581 (2015)

• γ∗N → ∆: infrared evolution of QCDs β-function
6/25



The values of EMR and CMR

χEFT extrapolation of lattice results to the physical pion mass

V. Pascalutsa, M. Vanderhaeghen, Phys. Rev. D 73 (2006) 034003

• The ∆ is treated as a stable particle!
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Motivation

The largest conceptual question as we enter the chiral regime in full QCD, is how to

fully incorporate the physical effect of the decay of the ∆ into a pion and nucleon on

the transition form factors.

C. Alexandrou et al., Phys. Rev. D 77 (2008) 085012

→֒ seminal work on K → ππ by
L. Lellouch and M. Lüscher, Commun.Math.Phys. 219, 31 (2001)

• generalization of Lellouch-Lüscher method for matrix elements,
involving resonances is needed
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The framework: non-relativistic EFT

• Basic properties of the theory:

⊲ the total number of heavy particles is conserved
⊲ manifestly Lorentz-invariant formulation is possible
⊲ the theory is matched to the full QFT (e.g., ChPT).

= + + + · · ·

Bubble-chain diagrams

T ∝ 1 + cJ + c2J2 + · · · =
1

1− cJ

• A bridge: finite volume spectrum ↔ scattering sector

G. Colangelo, J. Gasser, B. Kubis, A. Rusetsky, Phys. Lett. B 638 (2006) 187

J. Gasser, B. Kubis, A. Rusetsky, Nucl. Phys. B 850 (2011) 96
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Goals, results

• Previous work:
D. Hoja, U.-G. Meißner, A. Rusetsky, JHEP 1004 (2010) 050

V. Bernard, D. Hoja, U.-G. Meißner, A. Rusetsky, JHEP 1209 (2012) 023

→֒ scalar resonance form factor in the external scalar field (analog: ∆∆γ
∗)

• The ∆Nγ∗ transition:

⊲ inclusion of spin;

⊲ generalization to transition form factors.
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Extraction of the form factors

• on the real energy axis → model-dependent

I. G. Aznauryan, V. D. Burkert and T. -S. H. Lee, arXiv:0810.099

D. Drechsel,O. Hanstein,S.S. Kamalov,L. Tiator, Nucl. Phys. A 645 (1999) 145

• at the resonance pole → process-independent

⊲ definition of the resonance matrix element:

〈P, resonance|J(0)|Q, stable〉 = lim
P2→sR ,Q

2→M2
Z

−1/2
R Z

−1/2(sR−P2)(M2−Q2)F (P,Q)

→֒ analytic continuation to the pole is unavoidable

S. Mandelstam, Proc. Roy. Soc. Lond. A 233 (1955) 248.

• infinitely narrow resonances → identical results

→֒ however, discrepancies in the results could be sizable:

R. L. Workman, L. Tiator and A. Sarantsev, Phys. Rev. C 87 (2013) 6, 068201
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Kinematics

θ

N

∆

• The ∆ is at rest P = 0 and nucleon momentum Q along 3-axis.

• To perform the fit (see below): vary p, while |Q| fixed.

⊲ (partially) twisted boundary conditions;

→֒ nucleon form factors: M. Göckeler et al., PoS LATTICE 2008 (2008) 138

⊲ asymmetric boxes L× L× L′. Alexandru, Döring

• Note: in practice, the case P 6= 0 could be preferable.
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Spin

• Spin-projecting local operators:

G2 O3/2(t) =
∑

x

1

2
(1 + Σ3)

1

2
(1 + γ4)

1√
2
(O1(x, t)− iΣ3O2(x, t)) ,

G2 O1/2(t) =
∑

x

1

2
(1− Σ3)

1

2
(1 + γ4)

1√
2
(O1(x, t) + iΣ3O2(x, t)) ,

G1 Õ1/2(t) =
∑

x

1

2
(1 + Σ3)

1

2
(1 + γ4)O3(x, t),

ψ̄Q
±1/2

(t) =
∑

x

e iQxψ̄(x, t)
1

2
(1 ±Σ3)

1

2
(1 + γ4), Σ3 = diag(σ3 , σ3 )

• Irreps G1, G2: no S − P–wave mixing (the P31 wave is small)

p cot δ(p) =
2√
πL

{

Ẑ00(1; q
2)± 1√

5q2
Ẑ20(1; q

2)

}

≡ −p cotφ(q), q =
pL

2π

→֒ Lüscher eq. for the P33 wave: M. Göckeler, Phys. Rev. D 86 (2012) 094513
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Lattice correlators
• The two-point functions:

D̃1/2(t) = Tr 〈0|Õ1/2(t)
¯̃O1/2(0)|0〉 ,

D1/2(t) = Tr 〈0|O1/2(t)Ō1/2(0)|0〉 ,

D3/2(t) = Tr 〈0|O3/2(t)Ō3/2(0)|0〉 ,

D±

Q
(t) = Tr 〈0|ψQ

±1/2
(t)ψ̄Q

±1/2
(0)|0〉.

• The three-point functions:

R̃1/2(t
′, t) = 〈0|Õ1/2(t

′)J3(0)ψ̄ Q
1/2

(t)|0〉 ,

R1/2(t
′, t) = 〈0|O1/2(t

′)J+(0)ψ̄ Q
−1/2

(t)|0〉 ,

R3/2(t
′, t) = 〈0|O3/2(t

′)J+(0)ψ̄ Q
1/2

(t)|0〉,

where
J+(0) =

1√
2
(J1(0) + iJ2(0)).

=⇒
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• In the limit t ′ → +∞, t → −∞:

N
Tr (R̃1/2(t

′, t))

D̃1/2(t′ − t)

(
D+

Q
(t′)D̃1/2(−t)D̃1/2(t

′ − t)

D̃1/2(t′)D
+
Q
(−t)D+

Q
(t′ − t)

)1/2

→ 〈1/2|J3(0)|1/2〉 ,

−N
Tr (R1/2(t

′, t))

D1/2(t′ − t)

(
D−

Q
(t′)D1/2(−t)D1/2(t

′ − t)

D1/2(t′)D
−

Q
(−t)D−

Q
(t′ − t)

)1/2

→ 〈1/2|J+(0)| − 1/2〉 ,

−N
Tr (R3/2(t

′, t))

D3/2(t′ − t)

(
D+

Q
(t′)D3/2(−t)D3/2(t

′ − t)

D3/2(t′)D
+
Q
(−t)D+

Q
(t′ − t)

)1/2

→ 〈3/2|J+(0)|1/2〉,

where N = (4E
√

m2
N
+ Q2)1/2. ‖

Fi , i=1, 2, 3

⇒ three ∆Nγ∗ form factors are separately projected out.

→֒ similar procedure can be applied to fields with other spin

15/25



∆Nγ∗ vertex

= Oi · · · F̄iOi
Xi

Fi

⊲ The Fi = Fi(pn, |Q|), i=1, 2, 3 → GM , GE , GC form factors,
are measured on the lattice.

⊲ The F̄i(pn, |Q|) are volume-independent irreducible amplitudes.

|F̄i(pn, |Q|)| = V 1/2

(
cos2 δ(pn)

|δ′(pn) + φ′(qn)|
p2n
2π

)−1/2

︸ ︷︷ ︸

LL factor

|Fi(pn, |Q|)|
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Real axis

• The F̄i are related to the γ∗N → πN multipole amplitudes

Ai(p, |Q|) = e iδ(p) cos δ(p) F̄i (p, |Q|)

→֒ Watson’s theorem

• Ai(pA, |Q|) = 0 at δ(pA) = π/2 ? No!

Ai(p, |Q|) =
e iδ(p)

p3
sin δ(p)

︸ ︷︷ ︸

potential

p3 cot δ(p)
︸ ︷︷ ︸

zero at p2 = p2
A

F̄i (p, |Q|)
︸ ︷︷ ︸

divereges at p2 = p2
A

Ai(pn, |Q|) = e iδ(pn) V 1/2

(
1

|δ′(pn) + φ′(qn)|
p2n
2π

)−1/2

|Fi(pn, |Q|)|

→֒ LL equation for the photoproduction amplitude in the elastic region
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• The Ai ↔ multipoles:

Ã1/2 = −16πiE
√
2

√
Q2

|Q| S1+,

A1/2 = −
1

2
(3E1+ +M1+)(−16πiE),

A3/2 =

√
3

2
(E1+ −M1+)(−16πiE).

• The narrow width approximation:

|ImAi (pA, |Q|)| =

√

8π

pAΓ
|FA

i (pA, |Q|)|,

p = pA - Breit-Wigner pole, FA
i (pA, |Q|) → ∆Nγ∗ form factors.

I. G. Aznauryan, V. D. Burkert and T. -S. H. Lee, arXiv:0810.099
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Analytic continuation

l

−l Q− l

Q

−Q

A potentially dangerous diagram in the F̄i

I =
1

V

∑

l

1

8w1(l)w2(−l)w2(Q− l)

1

(w1(l) + w2(−l) − En)(w1(l) + w2(Q− l)− Q0)

• After some transformations ⇒

I =
1

V

∑

l

1

2En(l2 − p2n)
︸ ︷︷ ︸

∝ pn cot δ(pn)

1

2

∫ 1

−1
dy

1

2ŵ2(ŵ1 + ŵ2 −Q0)
︸ ︷︷ ︸

polynomial in p2n

ŵ1 =
√

m2
N
+ p2n , ŵ2 =

√

M2
π + p2n + Q2 − 2|Q|pny .

⇒ p2 I is a low-energy polynomial in p2
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Complex plane
• The ∆Nγ∗ matrix elements, evaluated at the pole p = pR :

FR
i (pR , |Q|) = Z

1/2
R F̄i(pR , |Q|),

ZR =

(

pR

8πER

)2(
16πp3

RE
3
R

w1Rw2R (2pRh′(p2
R) + 3ip2

R)

)

, wiR =
√

m2
i + p2

R ,

p3 cot δ(p)
.
= h(p2) = −

1

a
+

1

2
rp2 + · · · , h(p2R) = −ip3R

⊲ The narrow width approximation (pR → pn):

FR
i (pR , |Q|) → FA

i (pA, |Q|) as pR → pA !

FR
i (pn, |Q|) = V 1/2

(
En

2w1nw2n

)1/2

Fi(pn, |Q|)

→֒ proper normalization of states
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Prescription on the lattice

• Measure the Fi(p, |Q|) at different values of p with |Q| fixed.

• Real energy: extract the multipole amplitudes (see above).

• Extraction of the matrix elements at the resonance pole:

1. fit the functions p3 cot δ(p) F̄i (p, |Q|)

p3 cot δ(p) F̄i (p, |Q|) = Ai(|Q|) + p2Bi(|Q|) + · · ·

2. evaluate the resonance matrix elements by substitution

FR
i (pR , |Q|) = i p−3

R Z
1/2
R (Ai (|Q|) + p2RBi(|Q|) + · · · ) .

• No finite fixed points ⇒ easier to measure than ∆∆γ∗ vertex
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B → K
∗ transitions

• A problem: long distance contributions.

b s

γ, Z

c c

W

B

b

u u

s, d

γ

ρ
K∗

• Recent lattice measurement:

R. R. Horgan, Z. Liu, S. Meinel, M. Wingate, Phys. Rev. D 89, 094501 (2014)

→֒ consistent with LCSR determinations

• Related work: multichannel LL equation, kinematics.

R. A. Briceño, M.T. Hansen, A. Walker-Loud, arXiv:1406.5965 (2014)
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Outlook

◮ Rigorous physical analysis of the problem.

◮ Extraction of the matrix elements at the pole: two-channel
case.

πK ηK
K∗

s
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Thank you!
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Finite fixed points (∆∆γ∗,...)
• The corresponding integral I : V. Bernard, et. al., JHEP 1209 (2012)

023

I = I∞ +
1

32πEp
(1 + cot2 δ(p)) ηφ′(η)

)∣
∣
∣
∣
p=pn

, η =
pL

2π

• p → pR : Z00(1; η
2
R) + iπ3/2ηR = 0 → ∃ ηR : |Im ηR | < ∞

p
0

η
0

p
R

1

2

1
2

X

X

pη

Infinite fixed point

Finite fixed point

• Now, cotφ(η)+i ∝ η − ηR and φ(η) ∝ ln(η − ηR) ⇒

(cotφ(η) + i)φ′(η) → const 6= 0

• Solution: perform the measurement at two energy levels
25/25



Lattice QCD calculation of long distance
contribution to εK

Ziyuan Bai

Columbia University
RBC and UKQCD collaboration

February 5, 2015



Outline

I Introduction and theoretic background.

I Evaluation of ImM00̄ and εK .

I Preliminary results and short distance correction.

I Outlook and summary.



Introduction

I One of the most important test of the Standard Model: CP violating
observables εK , with the experimental value.

|εK | = 2.228(11)× 10−3

I All previous attempt to calculate εK involve only the short distance part,
(evaluating the kaon bag parameter BK ). The estimate of long distance
contribution is a few percent, but not preceisely calculated.

I Previous method for the calculation of ∆MK , with the technique of
evaluating the space time integrated four point correlator, can also be
used to calculate the long distance part of εK .



Introduction

I Our major challenge includes:

1. different from the ∆MK calculation, we focus on the CP violating part
of kaon mixing. More operators and more diagrams to evaluate on lattice.

2. In the ∆MK calculation, all the diagrams are convergent. However, in
our εK calculation, most of our four point diagrams have an log(a)
ultraviolet divergence and therefore treatment of the divergence is required.



Theoretical background: K 0 − K 0 mixing

I Let i , j stand for K 0 and K 0, from the kaon mixing theory we obtain:

I dispersive part:

Mij = P
∑
α

〈i |HW |α〉〈α|HW |j〉
mK − Eα

I absorptive part:

Γij =
∑
α

2π〈i |HW |α〉〈α|HW |j〉δ(mK − Eα)

I We have the εK :

εK =
exp(iπ/4)√

2∆MK

(ImM00̄ + 2ξ ReM00̄)

ξ =
ImA0

ReA0



Evaluation of ImM00̄

I Two types of diagram contribute to the ∆S = 2, K 0 − K 0 mixing process:

s d

sd

W W

t, c, u

t, c, u

W

s d

s
d

W

t, c, u

t, c, u

box topology disconnected topology

Figure : two types of ∆S = 2 diagram

I Write the sum over three types of quark (u,c,t) into two terms
(λi = VidV

∗
is , and λu + λc + λt = 0 has been used).

The usual way is to eliminate up:∑
i=u,c,t

λi6 p
p2 + m2

i

= λc

{ 6 p
p2 + m2

c
− 6 p

p2 + m2
u

}
+ λt

{ 6 p
p2 + m2

t

− 6 p
p2 −m2

u

}
(1)



Evaluation of ImM00̄

I We choose to eliminate the charm.

∑
i=u,c,t

λi6 p
p2 + m2

i

= λu

{ 6 p
p2 + m2

u
− 6 p

p2 + m2
c

}
+ λt

{ 6 p
p2 + m2

t

− 6 p
p2 −m2

c

}
(2)

I This choice has the following advantages:

1. Take the product of the two internal quark lines:
λuλu term: has no imaginary parts (λu is real).
λtλt term: pure perturbative.
Therefore, only focus on the λuλt term.

2. Connected diagrams for the current-current operators don’t have a pion
intermediate state (all internal quark involve charm).



Evaluation of ImM00̄: ∆S = 1 weak Hamiltonian

.

I We calculate 〈K 0|TH∆S=1
W (x)H∆S=1

W (y)|K 0〉 in four flavor theory. The
H∆S=1

W is given by:

H∆S=1
eff =

GF

2

 ∑
q,q′=u,c

V ∗q′sVqd

∑
i=1,2

CiQ
q′q
i − λt

6∑
i=3

CiQi

 (3)

Qq′,q
1 =

∑
q,q′=u,c

V ∗q′,sVq,d (s̄iq
′
j )V−A(q̄jdi )V−A (4)

Qq′,q
2 =

∑
q,q′=u,c

V ∗q′,sVq,d (s̄iq
′
i )V−A(q̄jdj )V−A (5)

Q3 = (s̄idi )V−A

∑
q=u,d,s,c

(q̄jqj )V−A (6)

Q4 = (s̄idj )V−A

∑
q=u,d,s,c

(q̄jqi )V−A (7)

Q5 = (s̄idi )V−A

∑
q=u,d,s,c

(q̄jqj )V +A (8)

Q6 = (s̄idj )V−A

∑
q=u,d,s,c

(q̄jqi )V +A (9)



Evaluation of ImM00̄: 2nd order weak process.

I By multiplying two H∆S=1
W , we get:

THW (x)HW (y) =
G 2

F

2
λuλt

2∑
i=1

6∑
j=1

Ci Cj Qi,j (10)

Qi,j = T
[
2Qcc

i (x)Qcc
j (y)− Quu

i (x)Qcc
j (y)− Qcc

i (x)Quu
j (y)

−Quc
i (x)Qcu

j (y)− Qcu
i (x)Quc

j (y)
]
, (j = 1, 2)

Qi,j = T
[
(Qcc

i (x)− Quu
i (y))Qj (y) + Qj (x)(Qcc

i (y)− Quu
i (y))

]
, (j = 3, ..., 6)

I The Ci are the Wilson Coefficient.

I As in the ∆MK calculation, evaluate the integrated correlator:

A =
1

2

ta∑
t2=1

tb∑
t1=ta

〈0|T
{
K

0
(tf )HW (t2)HW (t1)K

0
(ti )
}
|0〉 (11)



Evaluation of ImM00̄

I After insertion of a complete set of intermediate states, we have:

A = N2
K e−MK (tf−ti )

{∑
n

〈K̄ 0|Hw |n〉〈n|Hw |K 0〉
MK −Mn

(
−T +

e(MK−Mn)T − 1

MK −Mn

)}
(12)

I By doing a linear fit with T , we can find the M00̄.

I Two different parts for the intermediate states |n〉:
1. En > mK : contribution to the exponential terms is highly suppressed,
leaving only terms proportional to T, plus constant terms.

2. En < mK : their exponentially growing term should be identified and
subtracted.



Evaluation of ImM00̄

I Four points diagrams:

type 1 type 2

u− c

c

d

s d

s
d

s d

s

u− c

c

i = 1, 2, j = 1, 2

uu− cc

d

s d

s
d

s d

s

uu− cc

i = 1, 2, j = 3, 4, 5, 6

I In all these diagrams, the momentum in the internal quark lines are cutoff
by a unphysical scale ∝ 1/a (inverse lattice spacing). The divergence piece
should therefore be identified and corrected.



Evaluation of ImM00̄

I Four points diagrams.

type 3 type 4

d s

s
d

u− c c

d

s d

su− c c

d

s

s

s d

u− cV − /+ A

type 5

I Leave these to future work!



Simulation details

I 243 × 64 Iwasaki lattice, mπ = 329 MeV, and mK = 575 MeV. quenched
charm, mc = 0.363 (949 MeV).

I Use wall source propagator for the kaon source and sink, and random
volume source for the self loop.

I Use Lanczos algorithm with 300 eigenvectors.

I The main goal of this calculation:

1.To understand the size of long distance contribution.

2. Develop log(a) correction method.

I For the present analysis, we focus on type 1 and 2 diagrams :

1. Smaller statistical noise.

2. Short distance part easier to evaluate in continuum.



Short distance divergence

I For the case of ∆MK calculation, our diagrams are convergent.

x y

p1

p2

p3

p4

d

s d

s

α, a

β, b γ, c

δ, d

V − AV − A

u− c

u− c∫
d4pγµ(1− γ5)(

/p −mu

/p2 + m2
u

− /p −mc

/p2 + m2
c

)γν(1− γ5)(
/p −mu

/p2 + m2
u

− /p −mc

/p2 + m2
c

) (13)

=

∫
d4pγµ(1− γ5)

/p(m2
c −m2

u)

(/p2 + m2
u)(/p2 + m2

c )
γν(1− γ5)

/p(m2
c −m2

u)

(/p2 + m2
u)(/p2 + m2

c )
(14)

I We get this equation because the V − A structure of the vertex made the
m on the numerator disappear. And the final expression is not divergent
when p is high.



Short distance divergence

I In the εK calculation, with both the two weak operator Q1, Q2, one of the
internal quark lines is a single charm.

x y

p1

p2

p3

p4

d

s d

s

α, a

β, b γ, c

δ, d

V − AV − A

c− u

c∫
d4pγµ(1− γ5)(

/p −mc

/p2 + m2
c

− /p −mu

/p2 + m2
u

)γν(1− γ5)(
/p −mc

/p2 + m2
c

) (15)

=

∫
d4pγµ(1− γ5)

/p(m2
c −m2

u)

(/p2 + m2
u)(/p2 + m2

c )
γν(1− γ5)(

/p

/p2 + m2
c

) (16)

I Ultraviolet logarithm divergence, when the two weak vertex are close to
each other. Cutoff by the unphysical scale ∝ 1/a on lattice. therefore the
divergent part must be corrected.



Short distance divergence

I Gluonic penguin diagrams are also log divergent!
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Short distance divergence: Rome-Southamption method

I Use a local operator OLL = (s̄d)(s̄d), to represent the short distance
divergent part of 〈K 0|THW (x)HW (y)|K 0〉

I Use Rome-Southamption method, work under momentum scale µ and find
the coefficient C lat

i,j (µ2) that∑
x,y

〈K 0|TQj (x)Qj (y)|K 0〉SD = C lat
i,j (µ2)

∑
x

〈K 0|OLL(x)|K 0〉 (17)

I Then work in continuum under same µ, find the physical short distance
part, which can be represented by a coefficient C cont

i,j (µ2). Finally, the
correct correlator :

A → A− C lat(µ2)
∑

x

〈K 0|OLL(x)|K 0〉+ C cont(µ2)
∑

x

〈K 0|OLL(x)|K 0〉

(18)



Short distance divergence: Evaluation of C lat

I To work out the coefficient C lat on lattice, use the off-shell amputated
Green function for our weak Hamiltonian and the OLL operator, projected
on the projection operator Pα,β,γ,δ:(

Γamp
α,β,γ,δ(p)− C lat (µ2)Γamp,SD

α,β,γ,δ(p)
)

Pα,β,γ,δ = 0 (19)

Γαβγδ(p) = 〈sα(p1)d̄β(p2)

∫
d4x1

∫
d4x2HW (x1)HW (x2)sγ(p3)d̄δ(p4)〉. (20)

ΓSD
αβγδ(p) = 〈sα(p1)d̄β(p2)

∫
d4xOLL(x)sγ(p3)d̄δ(p4)〉. (21)

I If the lattice momentum has relatively high scale, then the major
contribution to Γαβγδ(p) is from short distance. Therefore C lat can
correctly represent the divergent part of our correlator.



Short distance divergence: Evaluation of C lat

I choose momentum:
|p1| = |p2| = |p3| = |p4| = µ, |p1 − p2| = |p3 − p4| = µ,
p1 + p4 = p2 + p3 (net momentum flow is 0).
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Short distance divergence: Evaluation of C lat

I Use:

p1 =
2π

La
(M,M, 0, 0), p2 =

2π

La
(M, 0,M, 0)

p3 =
2π

La
(0,M, 0,M), p4 =

2π

La
(0, 0,M,M)

(22)

I To study the short distance divergence of our correlator, we impose a
space-time cutoff R:

Γαβγδ(p) = 〈sα(p1)d̄β(p2)

∫
d4x1

∫
|x1−x2|2<R2

d4x2HW (x1)HW (x2)sγ(p3)d̄δ(p4)〉.

(23)

I Small R dependence when R ≥ 5: C lat really represent short distance part!

cutoff 3 4 5 7 none

C lat
11 0.1726 0.1881 0.1903 0.1905 0.1904

C lat
22 0.0489 0.0520 0.0522 0.0522 0.0522

Table : C lat
i,j : coefficient for Qi Qj .



Short distance divergence: Evaluation of C lat

I Energy scale µ dependence of C lat(µ2):
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Figure : Short distance coefficients for energy scale µ = 1.41GeV − 2.6GeV .
Red line is a logarithm fit.



Preliminary results: Wilson coefficients

I We use the basis for operators (Quu
1 , Quu

2 , Q3, Q4, Q5, Q6). The Wilson
coefficient for Qcc

i , Qcu
i , and Quc

i will be the same to Quu
i (i = 1, 2).

I We can find the Wilson coefficient in MS at µ = 2.15 GeV:

C MS =
(
−0.2967 1.1385 0.0217 −0.0518 0.0102 −0.0671

)
(24)

I Use NPR to find the lattice Wilson coefficient, renormalized at µ = 2.15
GeV.

6∑
i=1

C MS
i QMS

i =
6∑

i=1

C lat
i Q lat

i , (25)

C lat =
(
−0.2373(1) 0.6885(1) 0.0113(8) −0.0213(10) 0.0085(8) −0.0256(8)

)
(26)



Preliminary results

I Integrated correlator before and after short distance correcton:
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Figure : Integrated correlator, only Q1Q1 and Q2Q2 are plotted.



Preliminary results

I Different contribution to ImM00̄, before and after subtraction of short
distance contribution. Error comes from both the fitting of correlator and
the Wilson coefficients.

before after before after
Q1Q1 -0.7241(61) -0.0786(59)
Q1Q2 0.9112(101) 0.0637(099) Q2Q2 -2.3472(281) -0.7816(282)
Q1Q3 0.1181(60) 0.0506(27) Q2Q3 -0.0190(21) 0.0242(22)
Q1Q4 -0.0116(11) 0.0161(12) Q2Q4 0.2216(81) 0.1182(51)
Q1Q5 -0.0681(048) -0.0035(009) Q2Q5 0.3461(245) 0.2917(208)
Q1Q6 0.1577(059) 0.0828(051) Q2Q6 0.0863(121) 0.2914(137)

Table : Imaginary part of M00̄, before/ after subtraction of short distance
contribution.



Preliminary results

I We therefore obtain the λuλt contribution to M00̄. Before the subtraction
of short distance part:

M00̄ = (3.16(10)− 1.32(4))× 10−15MeV

I After the subtraction of short distance part:

M00̄ = (−1.79(99) + 0.75(41))× 10−16MeV

I To obtain correct results, we still need to calculate the physical short
distance contribution in continuum and add them back.

I We can find the εK from:

εk =
exp(iπ/4)√

2∆MK

(ImM00̄ + 2ξ ReM00̄) (27)

I The value for ξ can be obtained from lattice calculation of kaon to two
pion A0. Currently, we can set this term to 0, and we use the experimental
value ∆MK = 3.483(6)× 10−12MeV .



Preliminary results

I The long distance contribution to λuλt part of εK is:

I before short distance correction.

|εK | = 2.69(8)× 10−4,

I after short distance correction.

|εK | = 1.52(84)× 10−5,

I The experimental value(with all parts):

|εK | = 2.228(11)× 10−3

I We have relatively large error on the εK after short distance subtraction,
because there is huge cancellation between different contribution to εK ,
but the error is not cancelled.



Outlook and summary

I To obtain complete calculation of λuλt part of εK , we have to:

1. Find the correct short distance contribution from continuum for the box
diagram topology, and add it back to our results. Then our type 1 and 2
diagrams for the box topology is complete.

2. Include all the diagrams (type 3, 4, 5), do the corresponding NPR to
remove the short distance artifact, and find the short distance contribution
in continuum for the disconnected topology and add to our results.

3. Work on a lattice with more physical kinematics, including lighter pion,
unquenched charm, and larger physical volume.
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Transition Amplitudes

Model independent & non-perturbative 

Universal: lattice QCD, lattice EFT, cold atoms, etc.

Arbitrary quantum numbers for two particles

General volumes and boundary conditions: periodic, anti-
periodic , or any linear combination on any rectangular prism

”Just a mapping”: between finite/infinite volume physics. Not a one-to-one, 
but rather a one-to-many. 

RB, Hansen & Walker-Loud (2014)

RB & Hansen  (2015)

|hE0
n,P

0, L| eJA(0,P�P0)|E
0

,P, L, 1i| = 1p
2E

0

q
Hin

A R(E0
n,P

0) Hout

A



Lüscher formalism

Lüscher (1986), (1991)

Rummukainen and Gottlieb (1995)

Bedaque (2004)

 Li and Liu (2004) 

Feng,  Li, and  Liu (2004)

 Christ, Kim, and Yamazaki (2005)

Kim, Sachrajda, and Sharpe (2005)

 Bernard, Lage,  Meissner, and Rusetsky (2008)

Ishizuka (2009)

Bour, Koenig, Lee, Hammer, and Meissner  (2011)

Gockeler, Horsley, Lage, Meissner, Rakow, Rusetsky, 
Schierholz, Zanotti (2012)  

Hansen and Sharpe (2012)

RB and Davoudi (2012)

Li and Liu (2013)

RB, Davoudi, and Luu (2013)

RB, Davoudi, Luu and Savage (2013) 

RB (2014)

...

Lellouch-Lüscher formalism 

Lellouch & Lüscher (2000)

Lin, G. Martinelli, C. T. Sachrajda (2001)

 Christ, Kim, and Yamazaki (2005)

Kim, Sachrajda, and. Sharpe (2005)

 Hansen and Sharpe (2012)

Agadjanov, V. Bernard, Meissner, Rusetsky (2013)

RB, Hansen & Walker-Loud (2014)

RB & Hansen (2015)

...



Transition Amplitudes

RB, Hansen & Walker-Loud (2014)

RB & Hansen  (2015)

summarizes everything 
previously done and more!
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Transition Amplitudes

a generic vector in the space of open 
channels and angular momentum

RB, Hansen & Walker-Loud (2014)

RB & Hansen  (2015)

Absolute sign of matrix elements is 
unphysical, but relative sign is determinable
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(other applications)
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applies to these examples and any 
other 1-to-2 cases imaginable

photoproduction weak processes nuclear processes



a sketch of the derivation 

for 0-to-2 and 1-to-2 processes

à la mode de Kim, Sachrajda, and Sharpe (2005)



Two-point function
CL(x4 � y4,P) ⌘

Z

L
dx

Z

L
dy e

�iP·(x�y)
h
h0|TA(x)B†(y)|0i

i

L

1. Evaluate two-point correlation function using:

 Complete set of states

 Feynman diagrams

2. Match:

 Spectrum

 Overlap matrix elements



Two-point function
CL(x4 � y4,P) ⌘

Z

L
dx

Z

L
dy e

�iP·(x�y)
h
h0|TA(x)B†(y)|0i

i

L

C

L

(x4 � y4,P)

=

Z

L

dx

Z

L

dy e

�iP·(x�y)
X

n

h
h0|A(x4,x)|En

,P, Li
i

L

h
hE

n

,P, L|B†(y4,y)|0i
i

L

= L

6
X

n

e

�En(x4�y4)
h
h0|A(0)|E

n

,P, Li
i

L

h
hE

n

,P, L|B†(0)|0i
i

L

.

assuming finite volume states 
are normalized to 1

Using complete set of states:



+ ... }{Z
dP0

2⇡
eiP0(x0�y0)

(!k,k)

(P0 � !k,P� k)

A B†V λ = helicity 
This holds for any particle with spin
The particle must be stable
Consequence of:

relativity 
helicity conservation

Two-point function
Using Feynman diagrams:

Single body propagator with arbitrary spin:
smooth and finite

[ ]�↵,�0↵0 =


��,�0�↵,↵0

(4!k!Pk)(E � !k � !Pk + i✏)
+ · · ·

�



+ ... }{Z
dP0

2⇡
eiP0(x0�y0)

(!k,k)

(P0 � !k,P� k)

A B†V

V V=

On-shell states can sample 
boundaries of your volume and lead 
to power law volume dependence

-

Matrices in angular momentum /
open channel space

1 = �L F (P,L) R

Two-point function
Using Feynman diagrams:



+ ...{ }Z
dP0

2⇡
eiP0(x0�y0)

B†VA B† AV V+

...++= + +

= (Scat. amp.)+ = iM

Bethe-Salpeter kernel

Two-point function
Using Feynman diagrams:



+ ...{ }Z
dP0

2⇡
eiP0(x0�y0)

B†VA B† AV V+

Bethe-Salpeter kernel

Two-point function
Using Feynman diagrams:

)( )( V

V
V

Generalization to two-particle multichannels:
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{
}

Z
dP0

2⇡
eiP0(x0�y0)

B†VA B† AV V+

VA V B†V+

= L3

Z
dP0

2⇡
eiP0(x0�y0)

⇢
C1(P )�A(P )

1

F�1(P,L) +M(P )
B†(P )

�

Two-point function
Using Feynman diagrams:

asymptotic infinite volume, two-
particle states

h0|A(0)|E,P, {J}, ini hE,P, {J 0}, out|B†
(0)|0i



poles satisfy:

+ ...

{
}

Z
dP0

2⇡
eiP0(x0�y0)

B†VA B† AV V+

VA V B†V+

det[F�1(P,L) +M(P )] = 0

generalization of Lüscher formalism for arbitrary spin, 
multichannel, two-particle systems [RB (2014)]

= L3

Z
dP0

2⇡
eiP0(x0�y0)

⇢
C1(P )�A(P )

1

F�1(P,L) +M(P )
B†(P )

�

Two-point function
Using Feynman diagrams:

http://arxiv.org/abs/1401.3312
http://arxiv.org/abs/1401.3312


poles satisfy:

+ ...

{
}

Z
dP0

2⇡
eiP0(x0�y0)

B†VA B† AV V+

VA V B†V+

= L3

Z
dP0

2⇡
eiP0(x0�y0)

⇢
C1(P )�A(P )

1

F�1(P,L) +M(P )
B⇤(P )

�

CL(x4 � y4,P) ⌘
Z

L
dx

Z

L
dy e

�iP·(x�y)
h
h0|TA(x)B†(y)|0i

i

L

Two-point function

det[F�1(P,L) +M(P )] = 0

generalization of Lüscher formalism for arbitrary spin, 
multichannel, two-particle systems [RB (2014)]

summarizes everything 
previously done and more!

Lüscher formalism

Lüscher (1986), (1991)

Rummukainen and Gottlieb (1995)

Bedaque (2004)

 Li and Liu (2004) 

Feng,  Li, and  Liu (2004)

 Christ, Kim, and Yamazaki (2005)

Kim, Sachrajda, and. Sharpe (2005)

 Bernard, Lage,  Meissner, and Rusetsky (2008)

Ishizuka (2009)

Bour, Koenig, Lee, Hammer, and Meissner  (2011)

Gockeler, Horsley, Lage, Meissner, Rakow (2012)  

Hansen and Sharpe (2012)

RB and Davoudi (2012)

Li and Liu (2013)

RB, Davoudi, and Luu (2013)

RB, Davoudi, Luu and Savage (2013) 

RB (2014)

...

http://arxiv.org/abs/1401.3312
http://arxiv.org/abs/1401.3312


Residue matrix:

+ ...
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}

Z
dP0

2⇡
eiP0(x0�y0)

B†VA B† AV V+

VA V B†V+

R{J},{J 0}(En,P) ⌘ lim
P4!iEn


�(iP4 + En)

1

F�1(P,L) +M(P )

�

{J},{J 0}

|E,P, {J}, ini ⌘ |E,P, a, J,M, l, S, sa1 , s
a
2 , ini

= L3

Z
dP0

2⇡
eiP0(x0�y0)

⇢
C1(P )�A(P )

1

F�1(P,L) +M(P )
B†(P )

�

Two-point function
Using Feynman diagrams:



+ ...

{
}

Z
dP0

2⇡
eiP0(x0�y0)

B†VA B† AV V+

VA V B†V+

=

X

n

e�En(x4�y4)L3h0|A(0)|E
n

,P, {J}, ini
h
R{J},{J 0}(En

,P)

i
hE

n

,P, {J 0}, out|B†
(0)|0i

= L3

Z
dP0

2⇡
eiP0(x0�y0)

⇢
C1(P )�A(P )

1

F�1(P,L) +M(P )
B†(P )

�

Two-point function
Using Feynman diagrams:

mimics the outer product of 
finite volume states



Master equation
h
h0|A(0)|En,P, Li

i

L

h
hEn,P, L|B†

(0)|0i
i

L
=

1

L3
h0|A(0)|En,P, {J}, ini

h
R{J},{J 0}(En,P)

i
hEn,P, {J 0}, out|B†

(0)|0i

“Relating finite volume and infinite volume states”

Equating both representation of the correlation functions:



V

Equating both representation of the correlation functions:
h
h0|A(0)|En,P, Li

i

L

h
hEn,P, L|B†

(0)|0i
i

L
=

1

L3
h0|A(0)|En,P, {J}, ini

h
R{J},{J 0}(En,P)

i
hEn,P, {J 0}, out|B†

(0)|0i

“Relating finite volume and infinite volume states”

B†V

B†V

+

Similarly, can study three-point function:

+ ... }
{Z

dP
i,0

2⇡

dP
f,0

2⇡
eiPi,0(xf,0�y0)eiPf,0(y0�xi,0)

Alternatively, one can use clever choices for A(0), B†(0)

Master equation



h
h0|A(0)|En,P, Li

i

L

h
hEn,P, L|B†

(0)|0i
i

L
=

1

L3
h0|A(0)|En,P, {J}, ini

h
R{J},{J 0}(En,P)

i
hEn,P, {J 0}, out|B†

(0)|0i

B†(0) =
1p

2E0
0L

3
JA(0)a

†
E0

0,P
0 , A(0) =

1p
2E0

0L
3
aE0

0,P
0J †

A(0)

and some massaging...

Using clever choices for A(0), B†(0)

1-to-2 transitions

|hEn,P, L| eJA(0,P
0 �P)|E0

0

,P0, L, 1i| = 1p
2E0

0

q
Hin

A R(En,P) Hout

A

Subducing this equation onto cubic irreps is 
straightforward, once one understands how to 
subduce the two-body quantization condition 



h
h0|A(0)|En,P, Li

i

L

h
hEn,P, L|B†

(0)|0i
i

L
=

1

L3
h0|A(0)|En,P, {J}, ini

h
R{J},{J 0}(En,P)

i
hEn,P, {J 0}, out|B†

(0)|0i

and some massaging...

B†(0) = JA(0) , A(0) = J †
A(0)

0-to-2 transitions
Using clever choices for A(0), B†(0)

Subducing this equation onto cubic irreps is 
straightforward, once one understands how to 
subduce the two-body quantization condition 

|hEn,P, L| eJA(0,�P)|0i| =
r

V in

A,{J}

h
L3R{J},{J 0}(En,P)

i
Vout

A,{J 0}



Examples: X-to-ππ
X -to-ππ could stand for:

 πγ*-to-ππ, B-to-ππll, D-to-ππll, ...
in the ρ-channel
let’s ignore partial wave mixing for now...

|HX!⇡⇡|2
|h⇡⇡, n|J |XiL|2 =

32⇡EX E⇤
⇡⇡,n

q⇤⇡⇡,n

@(�P + �d)

@P0

����
P0=E⇡⇡,n



free limit

|HX!⇡⇡|2
|h⇡⇡, n|J |XiL|2 = 4EX

E2
⇡⇡,n

⌫n
L3

Examples: X-to-ππ
X -to-ππ could stand for:

 πγ*-to-ππ, B-to-ππll, D-to-ππll, ...
in the ρ-channel
let’s ignore partial wave mixing for now...

|HX!⇡⇡|2
|h⇡⇡, n|J |XiL|2 =

32⇡EX E⇤
⇡⇡,n

q⇤⇡⇡,n

@(�P + �d)

@P0

����
P0=E⇡⇡,n



narrow-width limit

|HX!⇡⇡|2
|h⇡⇡, n|J |XiL|2

= 2EX
32⇡E⇢

q⇤⇢�⇢
[1 +O(�⇢/m⇢)]

free limit

|HX!⇡⇡|2
|h⇡⇡, n|J |XiL|2 = 4EX

E2
⇡⇡,n

⌫n
L3

Examples: X-to-ππ
X -to-ππ could stand for:

 πγ*-to-ππ, B-to-ππll, D-to-ππll, ...
in the ρ-channel
let’s ignore partial wave mixing for now...

|HX!⇡⇡|2
|h⇡⇡, n|J |XiL|2 =

32⇡EX E⇤
⇡⇡,n

q⇤⇡⇡,n

@(�P + �d)

@P0

����
P0=E⇡⇡,n



Million dollar question...
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⇢XX



Hadron Spectrum Coll.
 mπ~400MeV

X-to-ππ

L = 20
L = 24

Unboosted ππ



Hadron Spectrum Coll.
 mπ~400MeV

X-to-ππ

L = 20
L = 24

Boosted ππ



Hadron Spectrum Coll.
 mπ~400MeV

X-to-ππ

L = 20
L = 24

 Breit-Wigner fit



 lattice QCD 
 Breit-Wigner fit

X-to-ππ



 lattice QCD 
 Breit-Wigner fit

X-to-ππ

Note: there is an ambiguity as to which energy 
level is chosen: lattice QCD vs. “model”



X-to-ππ

LL/LLfree

LL/LL
narrow



Tension for the free and narrow width approximations!
 Even though  Γρ/mρ ~1%

X-to-ππ

LL/LLfree

LL/LL
narrow



== =H

X-to-ππ

HX!⇡⇡ = FX!⇢(E
⇤, Q2)

p
E⇤�(E⇤)

m2
⇢ � E⇤2 � iE⇤�(E⇤)

s
16⇡E⇤

q⇤

energy-dependent amplitude

Consider the following parametrization:

current couples to incoming state to 
create an “off-shell” ρ-meson

the ρ-meson propagates and 
decays to two pions

Intuitive picture:



X-to-ππ

|FX!⇢/h⇡⇡|J |XiL|

LL/LLfree



X-to-ππ

Caution: looks promising, but it 
does not justify the narrow width 
approximation

|FX!⇢/h⇡⇡|J |XiL|

LL/LLfree



X-to-ππ

~1.4~1.3

|FX!⇢/h⇡⇡|J |XiL|

LL/LLfree



X-to-ππ

~1.4~1.3

Conclusion: if precision is what you’re seeking, 
the finite volume formalism is your best hope!

|FX!⇢/h⇡⇡|J |XiL|

LL/LLfree



Final comments
Partial wave mixing and coupled channels:

Matrix elements of not just ground states:
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Computing the KL – KS mass 
difference using lattice QCD

Norman H. Christ
Columbia University

RBC and UKQCD Collaborations

Multi-Hadron and Nonlocal Matrix 
Elements in Lattice QCD

February 6, 2015
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Outline

• The KL – KS mass difference

• Current lattice capability 

• The KL – KS mass difference from 

Euclidean space

• Finite volume correction

• Numerical experiments

(2)



RBC Collaboration

• RBRC
– Chris Kelly
– Tomomi Ishikawa
– Shigemi Ohta (KEK)
– Sergey Syrityn

• Columbia
– Ziyuan Bai
– Xu Feng
– Norman Christ
– Luchang Jin
– Robert Mawhinney
– Greg McGlynn
– David Murphy
– Daiqian Zhang

Multi-Hadron Workshop, BNL -- Feb 6, 2015

• BNL
– Chulwoo Jung
– Taku Izubuchi (RBRC)
– Christoph Lehner
– Amarjit Soni

• Connecticut
– Tom Blum

(3)



UKQCD Collaboration

• Edinburgh
– Peter Boyle
– Julien Frison
– Nicolas Garron (Plymouth)
– Jamie Hudspith
– Karthee Sivalingam
– Oliver Witzel

• Southampton
– Shane Drury
– Jonathan Flynn
– Tadeusz Janowski
– Andreas Juttner
– Andrew Lawson
– Edwin Lizarazo
– Andrew Lytle (Mumbai) 
– Marina Marinkovic (CERN)
– Antonin Portelli
– Chris Sachrajda
– Matthew Spraggs
– Tobi Tsang
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Physics Context

(5)



•  S=1 weak interactions allow K0 and K0 to mix.

• New eigenstates are approximately:

• Small mass difference: MK = 3.483(6) x 10-12 MeV
• Effective                 o   operator

would give MK = 3 x 10-12 MeV
for  = 1000 TeV

Multi-Hadron Workshop, BNL -- Feb 6, 2015

K0 – K0 mixing

(6)



• CP violation leads to KL and KS states which are not 
CP eigenstates:

• Here  is closely related to

• Where | | = (2.228 0.011) x 10-3

Multi-Hadron Workshop, BNL -- Feb 6, 2015

K0 – K0 mixing: Indirect CP Violation

(7)



Multi-Hadron Workshop, BNL -- Feb 6, 2015

K0 – K0 Mixing
• Time evolution of K0 – K0 system given by familiar 

Wigner-Weisskopf formula:

where:

(8)



Multi-Hadron Workshop, BNL -- Feb 6, 2015

K0 – K0 Mixing

• CP violating: p ~ mt

• CP conserving: p  mc

(9)



Multi-Hadron Workshop, BNL -- Feb 6, 2015

K0 – K0 Mixing

• CP violating: p ~ mt

• CP conserving: p  mc

(10)

Long distance part is a small 
but important contribution: 
following talk of Ziyuan Bai

Long distance part is large. 
QCD perturbation theory 
fails at the 30% level.
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Lattice QCD
in 2015

(11)
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Current state-of-the-art

(12)

• Use chiral fermions: Mobius DWF
• Physical m=135 MeV and L = 4 – 6 fm.
• Generate 483 x 96 and 643 x 128.
• Many complex ingredients:

• Highly optimized code (64 threads, SPI comms., wide-vector FP)

• Sophisticated algorithms (deflation, FG (t)3 integrator, multigrid)

• Complex measurement strategies (NPR, G-parity BC, 5-pt 
functions, all-mode-averaging)

• Complete set of measurements took 5.3 hours on a 
32-rack BG/Q machine (sustains 1 Pflops)



Simple state-of-the-art 
example:   f

• 2012 (elaborate chiral fit): f = 127(3)stat(3)sys MeV

• 2013 (m=135 MeV): f = 130.0(0.3)stat MeV (40 configs.)

• Experiment:                  f = 130.4(0.04)(0.2) MeV

Multi-Hadron Workshop, BNL -- Feb 6, 2015 (13)
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MK from 
Euclidean space

(14)



• Replace W exchange by four-Fermi operator:

• Use 4-flavor theory incorporating GIM cancellation
• Amplitude is regular when the two weak operators 

collide: x  y 
• This long distance calculation is self-contained with 

no subtraction or perturbative correction needed!

Multi-Hadron Workshop, BNL -- Feb 6, 2015

MK from Euclidean space

(15)



Multi-Hadron Workshop, BNL -- Feb 6, 2015

MK from Euclidean space

• Start with H = HQCD + HW

• Calculate:

• The  ... terms include |0| and |  states 
with energy below MK

• These fall with increasing t exponentially less 
rapidly that the term of interest!

(16)



Multi-Hadron Workshop, BNL -- Feb 6, 2015

MK from Euclidean space

• Evaluate standard, Euclidean, 2nd order K0 – K0 

amplitude:

tb - ta tb - titf - tb

(17)
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Interpret Lattice Result

 mK
FV

2. Uninteresting constant

3. Growing or decreasing exponential:  
En < mK must be removed!

1. 2.

3.

(18)

N.H. Christ, X. Feng, G. Martinelli, C.T. Sachrajda

• Finite volume correction:



Multi-Hadron Workshop, BNL -- Feb 6, 2015

Finite volume correction

(19)

N.H. Christ, X. Feng, G. Martinelli, C.T. Sachrajda

• Exploit Kim, Sachrajda and Sharpe arXiv:hep-lat/0507006

=

=

=
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Numerical 
Experiments

(20)



• Use four-Fermi operators in the four-flavor theory:

• Use Rome-Southampton NPR and 4-flavor 
RI/SMOM / MS-NDR matching from Lehner and 
Sturm

• Assume Cabibbo unitarity:
0 = u + c + t  u + c where q = Vqd Vqs

*

Multi-Hadron Workshop, BNL -- Feb 6, 2015

Choice of weak operators 

(21)
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Lattice setup
• Must include charm quark (GIM u–c cancellation)

• Three calculations performed:
– 163 x 32,  mp = 420 MeV,  types 1 & 2 (arXiv:1212.5931)

– 243 x 64,  mp = 330 MeV, all graphs     (arXiv:1406.0916)

– 323 x 64,  mp = 170 MeV, all graphs 

Type 1 Type 2

Type 3 Type 4

(22)

Jianglei Yu

Ziyuan Bai
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Exponentially growing terms

• The vacuum,  0 and  require special treatment:
– Calculate X | HW | K0 directly and subtract, X = |00, 

– Fit the exponential time dependence in the 4-point function

– Adjust cs s d or cp s  5d terms to completely remove two 
unwanted states.

(23)

vary cs vary cp



Multi-Hadron Workshop, BNL -- Feb 6, 2015

Remove extra contribution

• Calculate  | HW | K0 directly and remove

• Has an  ~10% effect on the result

(24)

K0 K0




Lattice results
(Jianglei Yu)

• Nf=2+1,  243 x 64,  m = 330 MeV,  mc
MS(2 GeV) = 949 MeV

• Incorporate GIM cancellation

• Large statistics (800 configurations, 64 measurements each).
Multi-Hadron Workshop, BNL -- Feb 6, 2015 (25)



Results

• Unphysical, m = 330 MeV

• Active charm but mc a = 0.55

• 802 x 96 x 192, 1/a=3.0 GeV 
calculations planned!

Multi-Hadron Workshop, BNL -- Feb 6, 2015

x 10-12 MeV

x 10-12 MeV

• Result:                                  
MK =   3.30(34) 10-12 MeV

• MK
expt = 3.483(6) 10-12 MeV

• Agreement fortuitous!

(26)



New m = 170 MeV calculation 
(Ziyuan Bai)

• Nf=2+1, 323 x 64, 1/a=1.37 GeV

• Charm:  mc = 592 and 750 MeV

Multi-Hadron Workshop, BNL -- Feb 6, 2015 (27)

Q1

Q2m



• Use mc = 750 MeV, fit for t 8

• Disconnected contribution small
• contribution  and FV correction 0.5%

m = 170 MeV results 
(Ziyuan Bai)

Multi-Hadron Workshop, BNL -- Feb 6, 2015 (28)

MK x 10

Types 1-4 5.76(73)
Types 1-2 4.19(15)
 0
 0.27(14)
 -0.097(49)
 -6.56(6) x 104

FV 0.029(19)



Multi-Hadron Workshop, BNL -- Feb 6, 2015

Outlook
• The KL – KS mass difference in the standard model 

(and beyond) is a practical target for lattice QCD.
• A result with controlled 15-20% errors should be 

possible in ~2 years, as soon as 1/a 3 GeV ensembles 
become available.

• Sub-percent accuracy possible in 5-10 years!

• An exciting time for lattice QCD:
– K   I=3/2 and 1/2,   

– mKL – mKS and 
– K0   l l ,  K±   ± 

– Quark effects on g- 2 at O(3)

(29)



S I N G L E - H A D R O N  S TAT E S  I N  A  
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FIG. 2: The one-loop diagram providing the LO, O(↵e/L), FV correction to the mass of a charged scalar
particle. The solid straight line denotes a scalar particle, while the wavy line denotes a photon.

The LO, O(↵e/L), correction to the mass of a charged scalar particle in FV, �m�, is from the
one-loop diagram shown in Fig. 2. While most simply calculated in Coulomb gauge, the diagram
can be calculated in any gauge and, in agreement with previous determinations [16], is
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for an arbitrary function f(k), and is therefore finite. This shift is a power-law in 1/L as expected,
and provides a reduction in the mass of the hadron. As the infinite-volume Coulomb interaction
increases the mass, and the FV result is obtained from the modes that satisfy the PBCs (minus
the zero modes), the sign of the correction is also expected. The result in Eq. (6) is nothing more
than the di↵erence between the FV and infinite-volume contribution to the Coulomb self-energy
of a charged point particle, as seen from Eq. (2), U(0, L)/2.
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FIG. 3: Diagrams contributing at NLO, O(↵e/m�L2), in the 1/L expansion. The crossed circle denotes an
insertion of the |D|2/2m� operator in the scalar QED Lagrange density, Eq. (4).
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This NLO recoil correction agrees with previous calculations [11, 16], and is the highest order in
the 1/L expansion to which these FV e↵ects have been previously determined. 7
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FIG. 4: (a-d) One-loop diagrams giving rise to the recoil corrections of O(↵e/m

2
�L3). The crossed circle

denotes an insertion of the |D|2/2m� operator. (e,f) One-loop diagrams providing the leading contribution
from the charge radius of the scalar hadron, ⇠ ↵ehr2i�/L3. The solid square denotes an insertion of the
charge-radius operator in the scalar Lagrange density, Eq. (4).
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recoil correction of the form ⇠ ↵e/m
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�L3 and one is from the charge radius, ⇠ ↵ehr2i�/L3. An

evaluation of the one-loop diagrams giving rise to the recoil contributions, Fig. 4(a-d), shows that
while individual diagrams are generally non-zero for a given gauge, their sum vanishes in any
gauge. Therefore, there are no contributions of the form ↵e/m

2
�L3 to the mass of �. In contrast,

the leading contribution from the charge radius of the scalar particle, resulting from the one-loop
diagrams shown in Fig. 4(e,f) gives a contribution of the form
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contributions from the electric and magnetic polarizability operators, ⇠ ↵̃
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M /L4, and

contributions from the cM operator, Eq. (4). There are two distinct sets of recoil corrections at
this order. One set is from diagrams involving three insertions of the |D|2/2m� operator, as shown
in Fig. 5(a-d), and the other is from a single insertion of the |D|4/8m

3
� operator, shown in Fig. 5(e,f).

The sum of diagrams contributing to each set vanish, and so there are no contributions of the form
↵e/m

3
�L4. The other contributions, that include the electric and magnetic polarizabilities, arise

7 The O(↵e) calculations of Ref. [16] at NLO in �PT and PQ�PT do not include the full contributions from the
meson charge radius and polarizabilities, but are perturbatively close. This is in contrast to the NREFT calculations
presented in this work where the low-energy coe�cients are matched to these quantities order-by-order in ↵e, and
provide the result at any given order in 1/L as an expansion in ↵e.
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analogous to (g) provides the leading contribution from the cM operator at O(↵e/m�L4).
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where potential complications due to the electromagnetic decay of the ⇡

0 via the anomaly have been
neglected . The shifts of the charged and neutral kaons have the same form, with m⇡±,0 ! mK±,0 ,
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on the charge radii and polarizabilities of the pions and kaons, numerical estimates of the FV
corrections can be performed at N3LO. The LO and NLO contributions are dictated by only the
charge and mass of the meson. The N2LO contribution depends upon the charge and charge radius,
which, for the charged mesons, are known experimentally to be [52],

p
hr2i⇡+ = 0.672 ± 0.008 fm ,

p
hr2iK+ = 0.560 ± 0.031 fm . (14)

The N3LO contribution from the electric and magnetic polarizabilities of the mesons depends upon
their sum. The Baldin sum rule determines the charged pion combination, while the result of a
two-loop �PT calculation is used for the neutral pion combination [53],

↵

(⇡+)
E + �

(⇡+)
M = (0.39 ± 0.04) ⇥ 10�4 fm3

, ↵

(⇡0)
E + �

(⇡0)
M = (1.1 ± 0.3) ⇥ 10�4 fm3

. (15)

Unfortunately, little is known about the polarizabilities of the kaons, and so naive dimensional

analysis is used to provide an estimate of their contribution [53], ↵

(K+)
E + �

(K+)
M , ↵

(K0)
E + �

(K0)
M =

(1 ± 1) ⇥ 10�4 fm3. With these values, along with their experimentally measured masses, the
expected FV corrections to the charged meson masses are shown in Fig. 6 and to the neutral
meson masses in Fig. 7. 8
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FIG. 6: The FV QED correction to the mass squared of a charged pion (left panel) and kaon (right panel)
at rest in a FV at the physical pion mass. The leading contribution is due to their electric charge, and
scales as 1/L. The 1�-uncertainty bands associated with each order in the expansion are determined from
the uncertainties in the experimental and theoretical inputs.

In a volume with L = 4 fm, the FV QED mass shift of a charged meson is approximately
0.5 MeV. Figure 6 shows that for volumes with L>⇠ 4 fm, the meson charge is responsible for
essentially all of the FV modifications, with their compositeness making only a small contribution,
i.e. the di↵erences between the NLO and N2LO mass shifts are small. For the neutral mesons, the
contribution from the polarizabilities is very small, but with substantial uncertainty. It is worth
re-emphasizing that in forming these estimates of the QED power-law corrections, exponential
corrections of the form e

�m⇡L have been neglected.

8 When comparing with previous results one should note that the squared mass shift of the ⇡+, as an example, due
to FV QED is

�m2
⇡+ = (m⇡+ + �m⇡+)

2 �m2
⇡+ = 2m⇡+ �m⇡+ + O(↵2

e) ,

As is evident, the leading contribution to the mass squared scales as 1/L, contrary to a recent suggestion in the
literature [10] of 1/L2. Note that the quantity shown in Fig. 6 and Fig. 7 is �m2

� as opposed to �m�, as it is this
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FIG. 7: The FV QED correction to the mass squared of a neutral pion (left panel) and kaon (right panel) at
rest in a FV at the physical pion mass. The leading contributions are from their polarizabilities, and scale
as 1/L4. The 1�-uncertainty bands associated with each order in the expansion are determined from the
uncertainties in the experimental and theoretical inputs.

IV. NRQED FOR THE BARYONS AND J = 1
2 NUCLEI

In the case of baryons and J = 1
2 nuclei, the method for determining the FV QED corrections is

analogous to that for the mesons, described in the previous section, but modified to include the
e↵ects of spin and the reduction from a four-component to a two-component spinor. The low-energy
EFT describing the interactions between the nucleons and the electromagnetic field is NRQED,
but enhanced to include the compositeness of the nucleon. A nice review of NRQED, including the
contributions from the non point-like structure of the nucleon, can be found in Ref. [54], and the
relevant terms in the NRQED Lagrange density for a N3LO calculation are [19–26, 28, 45, 51, 54]
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where cF = Q +  + O(↵e) is the coe�cient of the magnetic-moment interaction, with  related
to the anomalous magnetic moment of  , cD = Q + 4

3M

2
 hr2i + O(↵e) contains the leading

charge-radius contribution, cS = 2cF � Q is the coe�cient of the spin-orbit interaction and cM =
(cD � cF )/2. The coe�cients of the |E|2 and |B|2 terms contain the polarizabilities, 1/M and
1/M
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that enters into the determination of the light-quark masses from LQCD calculations.
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FIG. 7: The FV QED correction to the mass squared of a neutral pion (left panel) and kaon (right panel) at
rest in a FV at the physical pion mass. The leading contributions are from their polarizabilities, and scale
as 1/L4. The 1�-uncertainty bands associated with each order in the expansion are determined from the
uncertainties in the experimental and theoretical inputs.
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The operators with coe�cients cW1 , cW2 and cp0p, given in Ref. [53], do not contribute to the FV
corrections at this order. The ellipsis denote terms that are higher orders in 1/M and 1/⇤�. Two
insertions of the magnetic-moment operator provide its leading contribution, as shown in Fig. 8,
giving rise to O(↵e/L

3) corrections to the mass of spin-1
2 particles. Although a single insertion

of the cS operator seems to contribute at N2LO, a straightforward calculation shows that this
contribution is vanishing. At N3LO, in addition to the operators contributing to the scalar case,
one needs to take into account a diagram with two insertions of the magnetic-moment operator and
one insertion of the |D|2/2m operator, plus diagrams with insertions of the cF and cS operators,
as shown in Fig. 9. Without replicating the detail presented in the previous section, the sum of

FIG. 8: The N2LO, O
⇣
↵e/M
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⌘
, FV QED correction to the mass of a baryon from its magnetic moment.

The crossed square denotes an insertion of the magnetic moment operator given in Eq. (16).

(a) (b) (c)

FIG. 9: a) The N3LO, O
⇣
↵e/M

3
 L

4
⌘

FV QED correction to the mass of a baryon from its magnetic moment.

The crossed square denotes an insertion of the magnetic moment operator given in Eq. (16) while the crossed
circle denotes an insertion from the |D|2/2m operator. b) Other non-vanishing contributions at this order
arise from insertions of the cF and cS operators as given in Eq. (16). The black circles denote insertions of
the cS operator.

the contributions to the FV self-energy modification of a composite fermion, up to N3LO, is9
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9 As first noticed by the authors of Ref. [54], performing a non-relativistic expansion of the QED self-energy diagram
for a point-like particle, although reproduces the result obtained via a NREFT at LO and NLO, naively appears to
be a factor of two bigger than the NNLO (and all higher orders) result presented in this paper for both scalar and
spinor QED. We speculate that the source of discrepancy is due to separating the range of (scalar) QED momentum
summation to IR and UV modes where only in the IR part of the sum an expansion of the summand in 1/m is
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FIG. 9: The FV QED correction to the mass of the proton (left panel) and neutron (right panel) at rest
in a FV at the physical pion mass. The leading contribution to the proton mass shift is due to its electric
charge, and scales as 1/L, while the leading contribution to the neutron mass shift is due to its magnetic
moment, and scales as 1/L

3. The 1 � � uncertainty bands associated with each order in the expansion are
determined from the uncertainties in the experimental and theoretical inputs.

There is an interesting di↵erence between the meson and baryon FV modifications. As the
nucleon mass is approximately seven times the pion mass, and twice the kaon mass, the recoil cor-
rections are suppressed compared with those of the mesons. Further, the nucleons are significantly
“softer” than the mesons, as evidenced by their polarizabilities. However, the NLO recoil correc-
tions to the proton mass are of approximately the same size as the N2LO structure contributions,
as seen in Fig. 9.

V. NUCLEI

A small number of LQCD collaborations have been calculating the binding of light nuclei and hy-
pernuclei at unphysical light-quark masses in the isospin limit and without QED [55–64]. However,
it is known that as the atomic number of a nucleus increases, the Coulomb energy increases with
the square of its charge, and significantly reduces the binding of large nuclei. The simplest nucleus
is the deuteron, but as it is weakly bound at the physical light-quark masses, and consequently
unnaturally large, it is likely that it will be easier for LQCD collaborations to compute other light
nuclei, such as 4He, rather than the deuteron.

A NREFT for vector QED shares the features of the NREFTs for scalars and fermions that
are relevant for the current analysis. One di↵erence is in the magnetic moment contribution, and
another is the contribution from the quadrupole interaction. The FV corrections to the deuteron
mass and binding energy, �Bd, are shown in Fig. 10, where the experimentally determined charge
radius, magnetic moment and polarizabilities have been used. Due to the large size of the deuteron,
and its large polarizability, the 1/L expansion converges slowly in modest volumes, and it appears
that L>⇠ 12 fm is required for a reliable determination of the QED FV e↵ects, consistent with
the size of volumes required to extract the binding and S-matrix parameters of the deuteron in
the absence of QED [65]. The QED FV corrections to the deuteron binding energy are seen to be
significantly smaller than its total energy in large volumes, largely because the leading contribution
to the deuteron and to the proton cancel. As the deuteron has spin and parity of J

⇡ = 1+, it also
possesses a quadrupole moment which contributes to the FV QED e↵ects at O �

1/L5
�

through two
insertions.

The NREFTs used to study the FV contributions to the mass of the pions in the previous
section also apply to the 4He nucleus, and the FV corrections to the mass of 4He and its binding
energy, �B4He, are shown in Fig. 11. Unlike the deuteron, the leading FV corrections to 4He do
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it is known that as the atomic number of a nucleus increases, the Coulomb energy increases with
the square of its charge, and significantly reduces the binding of large nuclei. The simplest nucleus
is the deuteron, but as it is weakly bound at the physical light-quark masses, and consequently
unnaturally large, it is likely that it will be easier for LQCD collaborations to compute other light
nuclei, such as 4He, rather than the deuteron.

A NREFT for vector QED shares the features of the NREFTs for scalars and fermions that
are relevant for the current analysis. One di↵erence is in the magnetic moment contribution, and
another is the contribution from the quadrupole interaction. The FV corrections to the deuteron
mass and binding energy, �Bd, are shown in Fig. 10, where the experimentally determined charge
radius, magnetic moment and polarizabilities have been used. Due to the large size of the deuteron,
and its large polarizability, the 1/L expansion converges slowly in modest volumes, and it appears
that L>⇠ 12 fm is required for a reliable determination of the QED FV e↵ects, consistent with
the size of volumes required to extract the binding and S-matrix parameters of the deuteron in
the absence of QED [65]. The QED FV corrections to the deuteron binding energy are seen to be
significantly smaller than its total energy in large volumes, largely because the leading contribution
to the deuteron and to the proton cancel. As the deuteron has spin and parity of J
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FIG. 10: The left panel shows the FV QED correction to the mass of the deuteron at rest in a FV at the
physical pion mass. The leading contribution is from its electric charges, and scales as 1/L. The right panel
shows the FV QED correction to the deuteron binding energy for which the 1/L contributions cancel. The
1�-uncertainty bands associated with each order in the expansion are determined from the uncertainties in
the experimental and theoretical inputs.

not cancel in the binding energy due to the interactions between the two protons, but are reduced
by a factor of two.
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FIG. 11: The left panel shows the FV QED correction to the mass of 4He at rest in a FV at the physical
pion mass. The leading contribution is from its electric charge, and scales as 1/L. The right panel shows
the FV QED correction to the 4He binding energy. The uncertainty bands associated with each order in the
expansion are determined from the uncertainties in the experimental and theoretical inputs.

VI. ANOMALOUS MAGNETIC MOMENT OF THE MUON

Experimental and theoretical determinations of the anomalous magnetic moment of the muon are
providing a stringent test of the Standard Model of particle physics. The current discrepancy
between the theoretical [66, 67] and experimental determinations [68], at the level of 2.9 to 3.6
�, but not 5�, cannot yet be interpreted as a signal of new physics. As upcoming experiments,
Fermilab E989 and J-PARC E34, plan to reduce the experimental uncertainty down to 0.14 ppm,
theoretical calculations of non-perturbative hadronic contributions must be refined in the short
term. LQCD is expected to contribute to improving the theoretical prediction of the standard
model, and several recent e↵orts have been directed at obtaining the hadronic vacuum-polarization
and hadronic light-by-light contributions to the muon g � 2 [69–79]. Theoretical challenges facing
these calculations have been identified and will be addressed during the next few years.
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FIG. 12: The left panel shows the FV QED correction to the mass of 4He at rest in a FV at the physical
pion mass. The leading contribution is from its electric charge, and scales as 1/L. The right panel shows
the FV QED correction to the 4He binding energy. The uncertainty bands associated with each order in the
expansion are determined from the uncertainties in the experimental and theoretical inputs.

VI. ANOMALOUS MAGNETIC MOMENT OF THE MUON

Experimental and theoretical determinations of the anomalous magnetic moment of the muon are
providing a stringent test of the Standard Model of particle physics. The current discrepancy
between the theoretical [66, 67] and experimental determinations [68], at the level of 2.9 to 3.6
�, but not 5�, cannot yet be interpreted as a signal of new physics. As upcoming experiments,
Fermilab E989 and J-PARC E34, plan to reduce the experimental uncertainty down to 0.14 ppm,
theoretical calculations of non-perturbative hadronic contributions must be refined in the short
term. LQCD is expected to contribute to improving the theoretical prediction of the standard
model, and several recent e↵orts have been directed at obtaining the hadronic vacuum-polarization
and hadronic light-by-light contributions to the muon g � 2 [69–79]. Theoretical challenges facing
these calculations have been identified and will be addressed during the next few years.

Here we show that the most naive scheme to obtain the magnetic moment of the muon by
a direct calculation has volume e↵ects that scale as O(↵e/(mµL)), requiring unrealistically large
volumes to achieve the precision required to be sensitive to new physics. A detailed exploration
of the issues related to extracting matrix elements of the electromagnetic current from LQCD
calculations can be found in Ref. [80]. Although it might appear that the leading contribution
to the FV modification of the magnetic moment of the muon in NRQED will arise from one-loop
diagrams involving one insertion of the the magnetic moment operator, such contributions vanish.
In fact, the leading 1/(mµL) FV correction comes from the tree-level insertion of the magnetic-
moment operator multiplied by a factor of E/mµ, where E is the energy of the muon, giving rise
to, at O (↵e),

µ ⌘ gµ � 2

2
=

↵e

2⇡


1 +

⇡c1

mµL
+ O

✓
1

m

2
µL2

◆�
. (21)

The factor of E/mµ arises in matching the NR theory to QED [25], in which each external leg in

the NR theory must be accompanied by a factor of
q

E
mµ

. Since E = mµ + e2

8⇡
c1
L + · · · , it can be

readily seen that the e↵ective tree-level vertex multiplied by this normalization factor results in the
µ given in Eq. (21). This contribution is present in the LO QED contribution to the anomalous
magnetic moment (Schwinger term) when calculated in a cubic FV with PBCs and the photon
zero mode removed.

To better understand the severity of the volume corrections to such a naive calculation, it is
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Figure 2: Mass splittings in channels that are stable under the strong and electromagnetic interactions. Both
these interactions are fully unquenched in our 1+1+1+1 flavor calculation. The horizontal lines are the experi-
mental values and the grey shaded regions represent the experimental error [29]. Our results are shown by red
dots with their uncertainties. The error bars are the squared sums of the statistical and systematic errors. The
results for the �M

N

, �M⌃ and �M
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mass splittings are post-dictions, in the sense that their values are known
experimentally with higher precision than from our calculation. On the other hand, our calculations yields
�M⌅, �M⌅cc splittings and the Coleman-Glashow difference �CG which have either not been measured in
experiment or are measured with less precision than obtained here. This feature is represented by a blue shaded
region around the label.
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There is an interesting di↵erence between the meson and baryon FV modifications. As the
nucleon mass is approximately seven times the pion mass, and twice the kaon mass, the recoil cor-
rections are suppressed compared with those of the mesons. Further, the nucleons are significantly
“softer” than the mesons, as evidenced by their polarizabilities. However, the NLO recoil correc-
tions to the proton mass are of approximately the same size as the N2LO structure contributions,
as seen in Fig. 9.

V. NUCLEI

A small number of LQCD collaborations have been calculating the binding of light nuclei and hy-
pernuclei at unphysical light-quark masses in the isospin limit and without QED [55–64]. However,
it is known that as the atomic number of a nucleus increases, the Coulomb energy increases with
the square of its charge, and significantly reduces the binding of large nuclei. The simplest nucleus
is the deuteron, but as it is weakly bound at the physical light-quark masses, and consequently
unnaturally large, it is likely that it will be easier for LQCD collaborations to compute other light
nuclei, such as 4He, rather than the deuteron.

A NREFT for vector QED shares the features of the NREFTs for scalars and fermions that
are relevant for the current analysis. One di↵erence is in the magnetic moment contribution, and
another is the contribution from the quadrupole interaction. The FV corrections to the deuteron
mass and binding energy, �Bd, are shown in Fig. 10, where the experimentally determined charge
radius, magnetic moment and polarizabilities have been used. Due to the large size of the deuteron,
and its large polarizability, the 1/L expansion converges slowly in modest volumes, and it appears
that L>⇠ 12 fm is required for a reliable determination of the QED FV e↵ects, consistent with
the size of volumes required to extract the binding and S-matrix parameters of the deuteron in
the absence of QED [65]. The QED FV corrections to the deuteron binding energy are seen to be
significantly smaller than its total energy in large volumes, largely because the leading contribution
to the deuteron and to the proton cancel. As the deuteron has spin and parity of J

⇡ = 1+, it also
possesses a quadrupole moment which contributes to the FV QED e↵ects at O �
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through two
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The NREFTs used to study the FV contributions to the mass of the pions in the previous
section also apply to the 4He nucleus, and the FV corrections to the mass of 4He and its binding
energy, �B4He, are shown in Fig. 11. Unlike the deuteron, the leading FV corrections to 4He do
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The intensity frontier

Seek new physics through quantum effects	
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Look for effects where there is no SM contribution	
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Dark matter direct detection	


Neutrino physics	


Charged lepton flavour violation	
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Dark matter direct detection

Search for DM in multiple ways	


Look for astronomical signals of 
annihilation	


Try to produce it at particle 
colliders	


Direct detection: wait for DM 
passing by to hit a nucleus	


Detection rate/bounds depends on	


Dark matter properties/dynamics	


Probability for interaction with 
nucleus: nuclear matrix elements

??
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0.64 ± 0.16 events from ER leakage are expected below
the NR mean, for the search dataset. The spatial
distribution of the events matches that expected from the
ER backgrounds in full detector simulations. We select
the upper bound of 30 phe (S1) for the signal estimation
analysis to avoid additional background from the 5 keV

ee

x-ray from 127Xe.
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FIG. 4. The LUX WIMP signal region. Events in the
118 kg fiducial volume during the 85.3 live-day exposure are
shown. Lines as shown in Fig. 3, with vertical dashed cyan
lines showing the 2-30 phe range used for the signal estimation
analysis.

Confidence intervals on the spin-independent WIMP-
nucleon cross section are set using a profile likelihood
ratio (PLR) test statistic [35], exploiting the separation
of signal and background distributions in four physical
quantities: radius, depth, light (S1), and charge (S2).
The fit is made over the parameter of interest plus three
Gaussian-constrained nuisance parameters which encode
uncertainty in the rates of 127Xe, �-rays from internal
components and the combination of 214Pb and 85Kr.
The distributions, in the observed quantities, of the four
model components are as described above and do not
vary in the fit: with the non-uniform spatial distributions
of �-ray backgrounds and x-ray lines from 127Xe obtained
from energy-deposition simulations [31].

The energy spectrum of WIMP-nucleus recoils is
modeled using a standard isothermal Maxwellian velocity
distribution [36], with v

0

= 220 km/s; v
esc

= 544 km/s;
⇢

0

= 0.3 GeV/c

3; average Earth velocity of 245 km s�1,
and Helm form factor [37, 38]. We conservatively model
no signal below 3.0 keV

nr

(the lowest energy for which
direct NR yield measurements exist [30, 40]). We do
not profile the uncertainties in NR yield, assuming a
model which provides excellent agreement with LUX
data (Fig. 1 and [39]), in addition to being conservative
compared to past works [23]. We also do not account
for uncertainties in astrophysical parameters, which are
beyond the scope of this work. Signal models in S1 and S2

are obtained for each WIMP mass from full simulations.
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FIG. 5. The LUX 90% confidence limit on the spin-
independent elastic WIMP-nucleon cross section (blue),
together with the ±1� variation from repeated trials, where
trials fluctuating below the expected number of events for
zero BG are forced to 2.3 (blue shaded). We also show
Edelweiss II [41] (dark yellow line), CDMS II [42] (green line),
ZEPLIN-III [43] (magenta line) and XENON100 100 live-
day [44] (orange line), and 225 live-day [45] (red line) results.
The inset (same axis units) also shows the regions measured
from annual modulation in CoGeNT [46] (light red, shaded),
along with exclusion limits from low threshold re-analysis
of CDMS II data [47] (upper green line), 95% allowed
region from CDMS II silicon detectors [48] (green shaded)
and centroid (green x), 90% allowed region from CRESST
II [49] (yellow shaded) and DAMA/LIBRA allowed region [50]
interpreted by [51] (grey shaded).

The observed PLR for zero signal is entirely consistent
with its simulated distribution, giving a p-value for the
background-only hypothesis of 0.35. The 90% C. L.
upper limit on the number of expected signal events
ranges, over WIMP masses, from 2.4 to 5.3. A variation
of one standard deviation in detection e�ciency shifts
the limit by an average of only 5%. The systematic
uncertainty in the position of the NR band was estimated
by averaging the di↵erence between the centroids of
simulated and observed AmBe data in log(S2b/S1). This
yielded an uncertainty of 0.044 in the centroid, which
propagates to a maximum uncertainty of 25% in the high
mass limit.
The 90% upper C. L. cross sections for spin-

independent WIMP models are thus shown in Fig. 5
with a minimum cross section of 7.6⇥10�46 cm2 for a
WIMP mass of 33 GeV/c2. This represents a significant
improvement over the sensitivities of earlier searches [42,
43, 45, 46]. The low energy threshold of LUX permits
direct testing of low mass WIMP hypotheses where
there are potential hints of signal [42, 46, 49, 50].
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Dark matter detection: nuclear recoils as signal 
Nuclear matrix elements of exchange current	


µ2e expt: search for charged lepton flavour 
violation via µ→e conversion in field of Al nucleus	
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underlying dynamics	
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Neutrino oscillations and mass hierarchy

Long-baseline neutrino beams: further 
constrain neutrino oscillation parameters 
and determine mass hierarchy

Targets are nuclei (C, Fe, Si, Ar, Ge, Xe, Pb, 
CHx, H2O, steel) 

Future LBNE/O/F requires knowing 
energies/fluxes to high accuracy

Depends on nuclear axial & transition 
form factors and neutrino-nucleus DIS

Current knowledge produces 
significant uncertainty in determination 
of oscillation parameters  
[INT workshop 2013]
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Figure 1: Representation of the energies of the A = 76 isobars. The single-beta decay (β)—green arrows—
between 76Ge and 76Se is energetically forbidden, hence leaving double beta (ββ)—pink arrow—as the
only decay channel. The two mass parabolas exist because of the pairing interaction that lowers the energy
of even Z—even N nuclei with respect to odd Z—odd N nuclei. For odd A nuclei there is a single mass
parabola, and all single-beta transitions are energetically allowed (taken from J. Menendez’s PhD thesis).

nuclei [3], with lifetimes in the range 1018–1022 y. The alternative is the neutrinoless double-
beta decay (0νββ), proposed by Furry [4] after the Majorana theory of the neutrino [5]. The
neutrinoless decay 0νββ can only take place if the neutrino is a massive Majorana particle
and demands an extension of the standard model of the electroweak interactions, because
it violates the lepton number conservation. Therefore, the observation of the double-beta
decay without emission of neutrinos will sign the Majorana character of the neutrino. The
corresponding nuclear reactions are the following:

A
ZXN−→A

Z+2XN−2 + 2e− + 2νe,

A
ZXN−→A

Z+2XN−2 + 2e−.
(1.1)

Currently, there is a number of experiments either taking place or expected for the
near future—see, for example, [6, 7] and Section 7.3.—devoted to detect this process and to
set up firmly the nature of neutrinos. Most stringent limits on the lifetime are of the order of
1025 y. A discussed claim for the existence of 0νββ decay in the isotope 76Ge (see Section 7.1)
declares that the half-life is about 2.2×1025 y [8]. Furthermore, the 0νββ decay is also sensitive
to the absolute scale of the neutrino masses (if the process is mediated by the so-called mass
mechanism), and hence to themass hierarchy (see Section 2). Since the half-life of the decay is
determined, together with the effective Majorana neutrino mass (defined later in Section 2),
by the nuclear matrix elements for the process NME, its knowledge is essential to predict the
most favorable decays and, once detection is achieved, to settle the neutrino mass scale and
hierarchy.

Another process of interest is the resonant double-electron capture which could
have lifetimes competitive with the neutrinoless double-beta decay ones only if there is a
degeneracy of the atomic mass of the initial and final states at the eV level [9]. For the
moment, high-precision mass measurements have discarded all the proposed candidates
(see [10] for a recent update of the subject). As in the neutrinoless double-beta decay,
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Figure 8: Double-beta decay candidates and their Q-values (adapted from [52]). The “magnificent nine”
are highlighted and two background-relevant energy markers are indicated (see text).

Table 4: Relevant parameters and features of the “magnificent nine” double-beta decay candidates.

Double-beta
candidate

Q-value
(MeV)

Phase space
G01(y−1)

Isotopic abundance
(%)

Enrichable by
centrifugation

Indicative cost
normalized to Ge

48Ca 4.27226 (404) 6.05 × 10−14 0.187 No —
76Ge 2.03904 (16) 5.77 × 10−15 7.8 Yes 1
82Se 2.99512 (201) 2.48 × 10−14 9.2 Yes 1
96Zr 3.35037 (289) 5.02 × 10−14 2.8 No —
100Mo 3.03440 (17) 3.89 × 10−14 9.6 Yes 1
116Cd 2.81350 (13) 4.08 × 10−14 7.5 Yes 3
130Te 2.52697 (23) 3.47 × 10−14 33.8 Yes 0.2
136Xe 2.45783 (37) 3.56 × 10−14 8.9 Yes 0.1
150Nd 3.37138 (20) 1.54 × 10−13 5.6 No —

with some gamma background and with the Radon-induced one; the second group (82Se,
100Mo, and 116Cd) is out of the reach of the bulk of the gamma environmental background but
Radon may be a problem; the candidates of the third group (48Ca, 96Zr, and 150Nd) are in the
best position to realize a background-free experiment. As for the phase space, the situation
is depicted in Figure 9. No great differences are observable among the various candidates,
with the significant exceptions of 76Ge, which presents a small value of only∼ 6 × 10−15 y−1

due to its low Q and, on the other side of 150Nd, characterized by a particularly high value of
∼ 1.5 × 10−13 y−1).

As for the second criterion, natural isotopic abundances are reported in Table 4. Most
of the abundances are in the few % range, with two significant exceptions: the positive case
of 130Te that with its 33.8% value can be studied with high sensitivities even with natural
samples; the negative case of 48Ca, well below 1%. Given the considerations exposed in
Section 6.1, an ambitious experiment (aiming at exploring the inverted hierarchy region of
the neutrino mass pattern) needs at least 100 kg of isotope mass. In order to keep the detector
size reasonable (and recalling that the background scales roughly as the total source, and
not isotope, mass), it is clear that isotopic enrichment is a necessary task for almost all high-
sensitivity searches. The generally available enrichment techniques are reported in Table 5.
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Double-beta
candidate

Q-value
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Phase space
G01(y−1)

Isotopic abundance
(%)

Enrichable by
centrifugation

Indicative cost
normalized to Ge

48Ca 4.27226 (404) 6.05 × 10−14 0.187 No —
76Ge 2.03904 (16) 5.77 × 10−15 7.8 Yes 1
82Se 2.99512 (201) 2.48 × 10−14 9.2 Yes 1
96Zr 3.35037 (289) 5.02 × 10−14 2.8 No —
100Mo 3.03440 (17) 3.89 × 10−14 9.6 Yes 1
116Cd 2.81350 (13) 4.08 × 10−14 7.5 Yes 3
130Te 2.52697 (23) 3.47 × 10−14 33.8 Yes 0.2
136Xe 2.45783 (37) 3.56 × 10−14 8.9 Yes 0.1
150Nd 3.37138 (20) 1.54 × 10−13 5.6 No —

with some gamma background and with the Radon-induced one; the second group (82Se,
100Mo, and 116Cd) is out of the reach of the bulk of the gamma environmental background but
Radon may be a problem; the candidates of the third group (48Ca, 96Zr, and 150Nd) are in the
best position to realize a background-free experiment. As for the phase space, the situation
is depicted in Figure 9. No great differences are observable among the various candidates,
with the significant exceptions of 76Ge, which presents a small value of only∼ 6 × 10−15 y−1

due to its low Q and, on the other side of 150Nd, characterized by a particularly high value of
∼ 1.5 × 10−13 y−1).

As for the second criterion, natural isotopic abundances are reported in Table 4. Most
of the abundances are in the few % range, with two significant exceptions: the positive case
of 130Te that with its 33.8% value can be studied with high sensitivities even with natural
samples; the negative case of 48Ca, well below 1%. Given the considerations exposed in
Section 6.1, an ambitious experiment (aiming at exploring the inverted hierarchy region of
the neutrino mass pattern) needs at least 100 kg of isotope mass. In order to keep the detector
size reasonable (and recalling that the background scales roughly as the total source, and
not isotope, mass), it is clear that isotopic enrichment is a necessary task for almost all high-
sensitivity searches. The generally available enrichment techniques are reported in Table 5.
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If neutrinos are massive Majorana 
fermions 0νββ decay is possible

Half-life depends critically on the 
nuclear matrix elements of two 
weak currents!
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and final states. With these considerations, the expression for the half-life of the 0νββ decay
can be written as [14, 15]

(
T
0νββ
1/2 (0+ → 0+)

)−1
= G01

∣∣∣M0νββ
∣∣∣
2
(⟨mν⟩

me

)2

, (3.5)

where ⟨mν⟩, the effective Majorana neutrino mass, was introduced in (2.1), and G01 is a
kinematic factor (known also as phase-space factor)—dependent on the charge, mass, and
available energy of the process, in the following denoted also as Q-value or simply Q. M0νββ

is the NME object of study in this section. As already discussed, the neutrino mass scale
is directly related to the decay rate. The kinematic factor G01 depends on the value of the
coupling constant gA. Therefore, the NMEs obtained with different gA values cannot be
directly compared. If we redefine the NME as:

M
′0νββ =

(
gA
1.25

)2

M0νββ, (3.6)

the new NMEs M
′0νββ’s are directly comparable no matter which was the value of gA

employed in their calculation, since they share a commonG01 factor—the one calculated with
gA = 1.25. In this sense, the translation of M′0νββ’s into half-lives is transparent.

The NME is obtained from the effective transition operator resulting of the product of
the nuclear currents:

Ω
(
q
)
= −hF(q

)
+ hGT(q

)
σnσm − hT(q

)
Sq
nm, (3.7)

where Sq
nm = 3(q̂σnq̂σm) − σnσm is the tensor operator. The functions h(q) can be labeled

according to the current terms from which they come:

hF(q
)
= hF

vv

(
q
)
,

hGT(q
)
= hGT

aa

(
q
)
+ hGT

ap

(
q
)
+ hGT

pp

(
q
)
+ hGT

mm

(
q
)
,

hT(q
)
= hT

ap

(
q
)
+ hT

pp

(
q
)
+ hT

mm

(
q
)
,

(3.8)

whose explicit form can be found in [12].
Till recently, only haa and hvv terms were considered. However, rough estimates of the

value of these terms taking q ≈ 100MeV give haa ≈ hvv ≈ 1, hap ≈ 0.20, hpp ≈ 0.04, and
hmm ≈ 0.02. Therefore, according to the figures, certainly hap cannot be neglected. Since the
Gamow-Teller contribution will be the dominant one, and both the hpp and hmm have the
same sign and opposite to hap, it seems sensible to keep all these terms in the calculation.
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Table 4: Relevant parameters and features of the “magnificent nine” double-beta decay candidates.

Double-beta
candidate

Q-value
(MeV)

Phase space
G01(y−1)

Isotopic abundance
(%)

Enrichable by
centrifugation

Indicative cost
normalized to Ge

48Ca 4.27226 (404) 6.05 × 10−14 0.187 No —
76Ge 2.03904 (16) 5.77 × 10−15 7.8 Yes 1
82Se 2.99512 (201) 2.48 × 10−14 9.2 Yes 1
96Zr 3.35037 (289) 5.02 × 10−14 2.8 No —
100Mo 3.03440 (17) 3.89 × 10−14 9.6 Yes 1
116Cd 2.81350 (13) 4.08 × 10−14 7.5 Yes 3
130Te 2.52697 (23) 3.47 × 10−14 33.8 Yes 0.2
136Xe 2.45783 (37) 3.56 × 10−14 8.9 Yes 0.1
150Nd 3.37138 (20) 1.54 × 10−13 5.6 No —

with some gamma background and with the Radon-induced one; the second group (82Se,
100Mo, and 116Cd) is out of the reach of the bulk of the gamma environmental background but
Radon may be a problem; the candidates of the third group (48Ca, 96Zr, and 150Nd) are in the
best position to realize a background-free experiment. As for the phase space, the situation
is depicted in Figure 9. No great differences are observable among the various candidates,
with the significant exceptions of 76Ge, which presents a small value of only∼ 6 × 10−15 y−1

due to its low Q and, on the other side of 150Nd, characterized by a particularly high value of
∼ 1.5 × 10−13 y−1).

As for the second criterion, natural isotopic abundances are reported in Table 4. Most
of the abundances are in the few % range, with two significant exceptions: the positive case
of 130Te that with its 33.8% value can be studied with high sensitivities even with natural
samples; the negative case of 48Ca, well below 1%. Given the considerations exposed in
Section 6.1, an ambitious experiment (aiming at exploring the inverted hierarchy region of
the neutrino mass pattern) needs at least 100 kg of isotope mass. In order to keep the detector
size reasonable (and recalling that the background scales roughly as the total source, and
not isotope, mass), it is clear that isotopic enrichment is a necessary task for almost all high-
sensitivity searches. The generally available enrichment techniques are reported in Table 5.

Neutrino-less double beta decay 
• Double E-decay only appears when regular E-decay is energetically 

forbidden or hindered by large J difference. 
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0νββ decay nuclear matrix elements

Shell model	


Interacting boson 
model	


Generator coordinate 
method	


QRPA

8 Advances in High Energy Physics

0

1

2

3

4

5

6

7

A = 48 76 82 96 100 116 124 128 130 136 150

UCOM-SRC

M
′(0

ν
)

Figure 2: The neutrinoless double-beta decay; ”state-of-the-art” NMEs: QRPA [30] (red bars) and [21, 22]
(diamonds), ISM [31] (squares), IBM [25] (circles), and GCM [26] (triangles).

the 0ν operator to learn which are the properties of the initial and final nuclei to which it is
more sensitive.

4.1. The Role of the Pair Structure of Wave Functions in the NMEs

The two-body decay operator can be written in the Fock space representation as follows:

M̂(0ν) =
∑

J

⎛

⎝
∑

i,j,k,l

MJ
i,j,k,l

((
a†
i a

†
j

)J
(akal)J

)0
⎞

⎠, (4.2)

where the indices i, j, k, and l run over the single-particle orbits of the spherical nuclear mean
field. Applying the techniques of [34], we can factorize the operators as follows:

M̂(0ν) =
∑

Jπ
P̂ †
Jπ P̂Jπ . (4.3)

The operators P̂Jπ annihilate pairs of neutrons coupled to Jπ in the parent nucleus, and
the operators P̂ †

Jπ substitute them by pairs of protons coupled to the same Jπ . The overlap
of the resulting state with the ground state of the grand daughter nucleus gives the Jπ -
contribution to the NME. The—a priori complicated—internal structure of these exchanged
pairs is dictated by the double-beta decay operators.

In order to explore the structure of the 0νββ two-body transition operators, we have
plotted in Figure 3 the contributions to the 0ν GT matrix element as a function of the Jπ

of the decaying pair in the A = 82 and A = 130 cases. The results are very suggestive,
because the dominant contribution corresponds to the decay of J = 0 pairs, whereas the
contributions of the pairs with J > 0 are either negligible or have opposite sign to the leading
one. This behavior is common to all the cases that we have studied and is also present in
the QRPA calculations, in whose context they had been discussed in [23, 35]. To grasp better
this mechanism, we shall work in a basis of generalized seniority s (s counts the number of

[Giuliani & Poves, Adv High Energy Phys 2012 857016]

Large spread of calculations	


Is the spread representative of the true uncertainty? 



Nuclear uncertainties

•How well do we know nuclear matrix 
elements?	


😢 Stark example of problems:  
Gamow-Teller transitions in nuclei 	


Well measured for large range  
of nuclei (30<A<60) 	


Many nuclear structure calcs 
(QRPA, shell-model,…) – 
spectrum well described	


Matrix elements systematically off 
by 20–30%	


“Correct” by “quenching” axial 
charge in nuclei ...

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

R(GT) Th.

R
(G

T)
 E

xp
.

0.77
0.744

FIG. 1. Comparison of the experimental matrix ele-
ments R(GT ) with the theoretical calculations based on
the “free-nucleon” Gamow-Teller operator. Each transi-
tion is indicated by a point in the x-y plane, with the
theoretical value given by the x coordinate of the point
and the experimental value by the y coordinate.
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FIG. 2. Comparison of the experimental values of
the sums T (GT ) with the correspondig theoretical value
based on the “free-nucleon” Gamow-Teller operator.
Each sum is indicated by a point in the x-y plane, with the
theoretical value given by the x coordinate of the point
and the experimental value by the y coordinate.

TABLE I. Experimental and theoretical M(GT ) matrix elements. The experimental data have been taken from [19]. Iβ + Iϵ

are the branching ratios . All other quantities explained in the text.

Process 2Jπ
n , 2T π

n Q Iβ + Iϵ log ft M(GT ) W
(MeV) (%) Exp. Th.

41Sc(β+)41Ca 7−, 1 6.496 99.963(3) 3.461(7) 2.999 4.083 6.172
42Sc∗(β+)42Ca 12+, 2 3.851 100 4.17(2) 2.497 3.389 11.127
42Ti(β+)42Sc 2+, 0 6.392 55(14) 3.17(12) 2.038 2.736 3.086
43Sc(β+)43Ca 7−, 3 2.221 77.5(7) 5.03(2) 0.677 0.764 6.172

5−, 3 1.848 22.5(7) 4.97(3) 0.726 0.878
44Sc(β+)44Ca 4+

1 , 4 2.497 98.95(4) 5.30(2) 0.392 0.741 6.901
4+
2 , 4 0.998 1.04(4) 5.15(3) 0.466 0.205

4+
3 , 4 0.353 0.010(2) 6.27(8) 0.128 0.295

44Sc∗(β+)44Ca 12+, 4 0.640 1.20(7) 5.88(3) 0.324 0.276 11.127
45Ca(β−)45Sc 7−, 3 0.258 99.9981 5.983(1) 0.226 0.079 13.802
45Ti(β+)45Sc 7−, 3 2.066 99.685(17) 4.591(2) 1.123 1.551 6.172

5−, 3 1.342 0.154(12) 6.24(4) 0.168 0.280
7−, 3 0.654 0.090(10) 5.81(5) 0.276 0.397
9−, 3 0.400 0.054(5) 5.60(4) 0.351 0.712

45V(β+)45Ti 7−, 1 7.133 95.7(15) 3.64(2) 1.801 2.208 6.172
5−, 1 7.093 4.3(15) 5.0(2) 0.701 0.428

46Sc(β−)46Ti 8+, 2 0.357 99.9964(7) 6.200(3) 0.187 0.277 13.093
47Ca(β−)47Sc 7−, 5 1.992 19(10) 8.5(3) 0.012 0.262 16.331

5−, 5 0.695 81(10) 6.04(6) 0.212 0.235
47Sc(β−)47Ti 5−, 3 0.600 31.6(6) 6.10(1) 0.198 0.235 13.802

7−, 3 0.441 68.4(6) 5.28(1) 0.508 0.611

3

[Martinez-Pinedo et al., Phys. Rev. C53, 2602 (1996)]
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The effective gA in the pf-shell
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We have calculated the Gamow-Teller matrix elements of
64 decays of nuclei in the mass range A = 41–50. In all the
cases the valence space of the full pf -shell is used. Agreement
with the experimental results demands the introduction of an
average quenching factor, q = 0.744 ± 0.015, slightly smaller
but statistically compatible with the sd-shell value, thus indi-
cating that the present number is close to the limit for large
A.

PACS number(s): 21.10.Pc, 25.40.Kv, 27.40.+z

The observed Gamow Teller strength appears to be
systematically smaller than what is theoretically ex-
pected on the basis of the model independent “3(N−Z)”
sum rule. Much work has been devoted to the subject
in the last fifteen years [1–4]. The heart of the problem
can be summed up by defining the reduced transition
probability as

B(GT ) =

(
gA

gV

)2

⟨στ ⟩2, ⟨στ ⟩ =
⟨f ||

∑

k σ
k
t
k
±||i⟩√

2Ji + 1
,

(1)

and asking: Is the observed quenching due to a renormal-
ization of the gA coupling constant —originating in non
nucleonic effects— or is it the στ operator that should
be renormalized because of nuclear correlations?

The analysis of some pf -shell nuclei for which very
precise data are available and full 0h̄ω calculations are
possible, strongly suggests that most of the theoretically
expected strength has been observed [5,6] . The quench-
ing factor necessary to bring into agreement the calcu-
lated and measured values is directly related to the am-
plitude of the 0h̄ω model space components in the exact
wave functions. This normalization factor can also be
obtained from (d, p) or (e, e′p) reactions and reflects the

∗gabriel@nuc2.ft.uam.es
†poves@nucphys1.ft.uam.es
‡caurier@crnhp4.in2p3.fr
§zuker@crnhp4.in2p3.fr

reduction in the discontinuity at the Fermi surface in a
normal system. As such, it is a fundamental quantity,
whose evolution with mass number is of interest.

In principle there are two ways of extracting it from
Gamow Teller processes. One is to equate it to the frac-
tion of strength seen in the resonance region in (p, n)
reactions. The alternative is to calculate lifetimes for in-
dividual β decays and show that they correspond to the
experimental values within a constant factor. The latter
procedure is more precise, but demands high quality shell
model calculations that until recently were available only
up to A = 40 [7–9].

Our aim is to extend these analyses to the lower part of
the pf shell. Full 0h̄ω diagonalizations are done using the
antoine code [10] with the effective interaction KB3, a
minimally monopole modified version [11] of the original
Kuo Brown matrix elements [12]. We refer to [13] for
details of the shell model work.

Following ref. [14] we define quenching as follows: for
beta decays populating well-defined isolated states in the
daughter nucleus, the square root of the ratio of the ex-
perimental measured rate to the calculated rate in a full
0h̄ω calculation is called the quenching factor. An av-
erage quenching factor, q, implies an average over many
transitions, and may be incorporated into an effective
axial vector coupling constant:

q =
gA,eff

gA
, (2)

where gA is the free-nucleon value of −1.2599(25) [14].
Following ref. [7] we define

M(GT ) = [(2Ji + 1)B(GT )]1/2 , (3)

so as to have quantities independent of the direction of
the transition. Note here that our reduced matrix ele-
ments follow Racah’s convention [15]. In table I we list
the M(GT ) values and compare them with the exper-
imental results. The table contain all the transitions
known experimentally. We also include the quantum
numbers of the final states, the Q-values, the branch-
ing ratios and the experimental log ft values from which
the B(GT ) values were obtained using

1

T (GT ) ⇠
sX

f

h� · ⌧ ii!f

Points correspond to different nuclei



Nuclear theory at the intensity frontier

Definitive need for precision determinations of nuclear matrix 
elements	


Must be based on the Standard Model	


Must have fully quantified uncertainties	


Timeframe and precision goals set by experiment	


Current state is far from this 	


Nuclear physics is the new flavour physics!	


Develop appropriate tools



Precision nuclear physics

We need to develop the tools for precision predictions 

Exploit effective degrees of freedom	


Establish quantitative control through  
linkages between different methods	


QCD forms a foundation  
determines few body  
interactions & matrix  
elements	


Match existing EFT and  
many body techniques  
onto QCD

33
3

3

QCD

Exact many body:	

GFMC, NCSM,	


lattice EFT

Shell model, 	

coupled cluster, 	


configuration-interaction

Density 
Functional,	

Mean field

Z
N

Si

Xe

Ge

Ar



Nuclear Spectra



QCD for Nuclei

QCD (+EW) describes nuclei 	


Can compute the mass of  
any nucleus ... in principle 	


In practice: a hard problem	


Multiple exponentially  
difficult challenges	


Physics at multiple scales 	


Noise: probabilistic method  
so statistical uncertainty grows  
exponentially with A	


Contraction complexity grows factorially	


Large nuclei are challenging, A=2,3,4 are feasible



QCD for Nuclear Physics

Quarks need to be tied together in all possible ways	


Ncontractions = Nu!Nd!Ns!  
 

!

!

!

!

!

Managed using algorithmic trickery [WD & Savage Doi & Endres, WD & Orginos, 
Günther&Varnhorst]	


Study up to N=72 pion systems, A=5/28 nuclei



Light nuclei

Light hypernuclear spectrum @ 800 MeV
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[NPLQCD Phys.Rev. D87 (2013), 034506 ]

See also talks in previous session



Heavy quark universe	


Combining LQCD and nuclear EFT (pionless EFT)	


For heavy quarks, even spectroscopy requires QCD matching: 
 
 
 
 
 
 
 
 
 

Equally important for matrix elements

[Barnea et al. 1311.4966 to appear in PRL]

LQCD
EFT

nn d 3Heê3H 4He 5Heê5Li 6Li
-200

-150

-100

-50

0

D
E
@Me

V
D

3

3

Tuning 

Prediction 

In a world  
@ mπ = 800 MeV

Validation 



Nuclear Structure



External currents and nuclei



Current-nucleus interaction

Born approximation – interacts with a single 
nucleon  
 

External currents and nuclei

� ⇠ |A hN |J |Ni|2



Current-nucleus interaction

Born approximation – interacts with a single 
nucleon  
 

known from expt/LQCD

External currents and nuclei

which is two orders lower than the contribution from the impulse approximation. This term
is the origin of the enhancement suggested in Ref. [1]. The isoscalar interactions with the
strange and heavier quarks do not contribute to the non-derivative interaction with pions
and, as such, are not expected to be enhanced in WIMP-nucleus interactions. To determine
the WIMP-nucleus interactions quantitatively, nuclear matrix elements of these operators
need to be calculated.

FIG. 1: Some of the diagrams contributing to nuclear �-terms. The left panel shows the leading
order contribution to the single-nucleon �-term in �PT. The middle (pion-exchange) and right
(“D2-terms” contributions from Eq. (7)) panels show contributions to nuclear �-terms at next-to-
leading order in KSW power counting [13–15]. The crossed box corresponds to an insertion of the
light-quark mass matrix.

Ideally, one would simply determine the matrix element of the Lagrange density in Eq. (2)
in the ground state of a given nucleus, at the relevant momentum transfer, without perform-
ing the intermediate matchings in Eq. (3) and in Eq. (5). This would sum the contributions
from the hadronic EFT to all orders in perturbation theory, and provide the necessary ma-
trix elements directly from QCD. While such formidable calculations cannot currently be
accomplished, the forward matrix element of the scalar-isoscalar operator can be determined
in light nuclei, albeit with significant uncertainties, by combining recent lattice QCD cal-
culations of the binding energies with the corresponding experimental values. The mass of
the ground state of a nucleus with Z protons and N neutrons, denoted by |Z,N(gs)i, is
E(gs)

Z,N = E(gs,�)
Z,N + �Z,N , where

�Z,N = hZ,N(gs)| muuu+mddd |Z,N(gs)i (8)

is the nuclear �-term, and E(gs,�)
Z,N is the energy of the nuclear ground state in the limit of

massless up- and down-quarks (assuming that the nucleus is bound in this limit). With
isospin symmetry, mu = md = m, the nuclear �-term becomes

�Z,N = mhZ,N(gs)| uu+ dd |Z,N(gs)i = m
d

dm
E(gs)

Z,N

=
h
1 + O

⇣
m2

⇡

⌘ i m⇡

2

d

dm⇡
E(gs)

Z,N , (9)

where we have used the leading contribution to the Gell-Mann–Oakes–Renner (GMOR)
relation [4, 43],

�2mh0| uu+ dd |0i = m2
⇡f

2
⇡

h
1 + O

⇣
m2

⇡

⌘ i
, (10)

to relate the quark and pion masses. The relation between the pion mass and the average
light-quark mass has been precisely determined with lattice QCD [44, 45]. The linear relation

5
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External currents and nuclei
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Current-nucleus interaction

Born approximation – interacts with a single 
nucleon  
 

Interact non-trivially with multiple nucleons 
 

known from expt/LQCD

External currents and nuclei

unknown/poorly known!
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isospin symmetry, mu = md = m, the nuclear �-term becomes
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which is two orders lower than the contribution from the impulse approximation. This term
is the origin of the enhancement suggested in Ref. [1]. The isoscalar interactions with the
strange and heavier quarks do not contribute to the non-derivative interaction with pions
and, as such, are not expected to be enhanced in WIMP-nucleus interactions. To determine
the WIMP-nucleus interactions quantitatively, nuclear matrix elements of these operators
need to be calculated.

FIG. 1: Some of the diagrams contributing to nuclear �-terms. The left panel shows the leading
order contribution to the single-nucleon �-term in �PT. The middle (pion-exchange) and right
(“D2-terms” contributions from Eq. (7)) panels show contributions to nuclear �-terms at next-to-
leading order in KSW power counting [13–15]. The crossed box corresponds to an insertion of the
light-quark mass matrix.

Ideally, one would simply determine the matrix element of the Lagrange density in Eq. (2)
in the ground state of a given nucleus, at the relevant momentum transfer, without perform-
ing the intermediate matchings in Eq. (3) and in Eq. (5). This would sum the contributions
from the hadronic EFT to all orders in perturbation theory, and provide the necessary ma-
trix elements directly from QCD. While such formidable calculations cannot currently be
accomplished, the forward matrix element of the scalar-isoscalar operator can be determined
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[16, 17]. Using relations between baryons and mesons in QCD with Nc = 2 colours, these results
have also enabled a recent study of the analogues of nuclei for Nc = 2 [18].

From considerations of chiral dynamics, QCD inequalities [19], and from the explicit numerical
explorations mentioned above, it is apparent that interactions in isospin I = n many-⇡+ systems
are repulsive and that there are no bound states for any n. Chiral symmetry guarantees that the
strength of the interactions is perturbatively weak so an expansion in the couplings a, r and ⌘3(µ)
is expected to be reliable provided na/L remains small, as do similar combinations of the other
couplings. Such systems therefore provide an ideal situation for the application of the methods
discussed herein.

III. MATRIX ELEMENTS OF EXTERNAL CURRENTS IN MULTI-BOSON SYSTEMS

The time-ordered perturbation theory methods used to derive the energy shifts in Refs. [11, 12]
order by order in the coupling and large-volume expansion also determine the state vector as an
expansion in couplings (see, for example Ref. [20]). In particular, the n boson state can be expanded
as

|ni(a, r, ⌘3(µ)) = |n(0)i + ⌘|n(1)i + ⌘2|n(2)i + ⌘3|n(3)i + . . . , (3)

where |n(0)i corresponds to the free n-particle system and subsequent terms are induced by per-
turbative interactions amongst the particles in the periodic volume; in the above expression, ⌘ is
representative of any one of the couplings. Knowing the state vector, it is thus a simple matter to
compute the expectation values of currents that are of phenomenological interest. To be general,
we do not assume a particular type of current and consider the form

J =
X

k

↵1h
†
khk +

X

k,Q,p

↵2h
†
Q
2 +k

h†
Q
2 �k

hQ
2 +p hQ

2 �p , (4)

where ↵1 and ↵2 are constants that describe the momentum independent one-boson current and the
two-boson current, respectively. The particular strengths of the di↵erent terms, and the flavour
and spin dependence of the interactions may di↵er for di↵erent fundamental currents, but the
above form is general up to momentum-dependent and higher-body corrections that are suppressed
by additional powers of 1/L in our results. For simplicity, we work in the soft limit where the
current injects no momentum into the system so that the two-hadron current amounts to a simple
reshu✏ing of the boson momenta as indicated.

The full finite volume matrix elements of J involve the various terms in Eq. (3). The calculation
is straightforward (if a little tedious) and the reader is referred to Refs. [11, 12] for more details;
we will only state the result. The matrix elements of J for systems of n pions up to O(L�5) are as
follows:
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Background electromagnetic fields have been used ex-
tensively to calculate electromagnetic properties of single
hadrons, such as the magnetic moments of the lowest-
lying baryons [6, 7, 8, 9, 10, 11, 12, 13, 14] and
electromagnetic polarizabilities of mesons and baryons
[9, 12, 15, 16, 17]. In order that the quark fields, with
electric charges Q

u

= +2
3 and Q

d,s

= � 1
3 for the up-,

down- and strange-quarks, respectively, satisfy spatially-
periodic boundary conditions in the presence of a back-
ground magnetic field, it is well-known [18] that the lat-
tice links, U

µ

(x), associated with the U

Q

(1) gauge field
are of the form

U

µ

(x) = e

i

6⇡Q

q

ñ

L

2 x1�

µ,2 ⇥ e

�i

6⇡Q

q

ñ

L

x2�

µ,1�

x1,L�1
, (1)

for quark of flavour q, where ñ must be an integer. The
uniform magnetic field, B, resulting from these links is

eB =
6⇡ñ

L

2
ẑ , (2)

where e is the magnitude of the electric charge and ẑ is
a unit vector in the x3-direction. In physical units, the
background magnetic fields exploited with this ensemble
of gauge-field configurations are e|B| ⇠ 0.046 |ñ| GeV2.
To optimize the re-use of light-quark propagators in the
production, calculations were performed for U

Q

(1) fields
with ñ = 0, 1,�2,+4. Four field strengths were found
to be su�cient for this initial investigation. With three
degenerate flavors of light quarks, and a traceless electric-
charge matrix, there are no contributions from coupling
of the B field to sea quarks at leading order in the elec-
tric charge. Therefore, the magnetic moments presented
here are complete calculations (there are no missing dis-
connected contributions).

The ground-state energy of a non-relativistic hadron
of mass M , and charge Qe in a uniform magnetic field is

E(B) = M +
|QeB|

2M

� µ · B
� 2⇡�

M0 |B|2 � 2⇡�

M2Tij

B

i

B

j

+ ... , (3)

where the ellipses denote terms that are cubic and higher
in the magnetic field, as well as terms that are 1/M

suppressed [19, 20]. The first contribution in eq. (3) is
the hadron’s rest mass, the second is the energy of the
lowest-lying Landau level, the third is from the interac-
tion of its magnetic moment, µ, and the fourth and fifth
terms are from its scalar and quadrupole magnetic polar-
izabilities, �

M0,M2, respectively (T
ij

is a traceless sym-
metric tensor [21]). The magnetic moment term is only
present for particles with spin, and �

M2 is only present
for j � 1. In order to determine µ using lattice QCD
calculations, two-point correlation functions associated
with the hadron or nucleus of interest in the j

z

= ±j

magnetic sub-states, C

(B)
j

z

(t), can be calculated in the
presence of background fields of the form given in Eq. (1)
with strength B = ẑ · B. The energies of ground-states
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FIG. 1: The correlator ratios R(B) as a function of time
slice for the various states (p, n, d, 3He, and 3H) for ñ =
+1,�2, +4. Fits to the ratios are also shown.

aligned and anti-aligned with the magnetic field, E

B

±j

,
will be split by spin-dependent interactions, and the dif-
ference, �E

(B) = E

B

+j

� E

B

�j

, can be extracted from the
correlation functions that we consider. The component
of �E

(B) that is linear in B determines µ via Eq. (3).
Explicitly, the energy di↵erence is determined from the
large time behaviour of

R(B) =
C

(B)
j

(t) C

(0)
�j

(t)

C

(B)
�j

(t) C

(0)
j

(t)
t!1�! Ze

��E

(B)
t

. (4)

Each term in this ratio is a correlation function with the
quantum numbers of the nuclear state that is being con-
sidered, which we compute using the methods of Ref. [3].
As discussed in Ref. [14], subtracting the contribution
from the correlation functions calculated in the absence
of a magnetic field reduces fluctuations in the ratio, en-
abling a more precise determination of the magnetic mo-
ment. The energy splitting is extracted from a correlated
�

2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-
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to be su�cient for this initial investigation. With three
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charge matrix, there are no contributions from coupling
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suppressed [19, 20]. The first contribution in eq. (3) is
the hadron’s rest mass, the second is the energy of the
lowest-lying Landau level, the third is from the interac-
tion of its magnetic moment, µ, and the fourth and fifth
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metric tensor [21]). The magnetic moment term is only
present for particles with spin, and �
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will be split by spin-dependent interactions, and the dif-
ference, �E
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, can be extracted from the
correlation functions that we consider. The component
of �E

(B) that is linear in B determines µ via Eq. (3).
Explicitly, the energy di↵erence is determined from the
large time behaviour of
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Each term in this ratio is a correlation function with the
quantum numbers of the nuclear state that is being con-
sidered, which we compute using the methods of Ref. [3].
As discussed in Ref. [14], subtracting the contribution
from the correlation functions calculated in the absence
of a magnetic field reduces fluctuations in the ratio, en-
abling a more precise determination of the magnetic mo-
ment. The energy splitting is extracted from a correlated
�

2-minimization of the functional form in Eq. (4) using
a covariance matrix generated with the jackknife proce-

�E(B) ⌘ E(B)
+j � E(B)

�j = �2µ|B| + �|B|3 + . . .
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dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E

(B) = �2µ |B| + � |B|3, where �

is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µ
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= 1.792(19)(37) NM
(nuclear magnetons) and µ
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.

of the magnetic moment using the above form. These
results agree with previous calculations [14] within the
uncertainties. In the more natural units of lattice nu-
clear magnetons (LNM), e
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, where M
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is the mass
of the nucleon at the quark masses of the lattice cal-
culation, the magnetic moments are µ

p

= 3.119(33)(64)
LNM and µ
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= �1.981(05)(18) LNM. These values at
this unphysical pion mass can be compared with those
of nature, µ
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p

= 2.792847356(23) NM and µ

expt
n

=
�1.9130427(05) NM, which are remarkably close to the
lattice results. In fact, when comparing all available
lattice QCD results for the nucleon magnetic moments
in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, g

A

.
In Figure 2, we also show �E

(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µ

d

= 1.218(38)(87)
LNM for the deuteron, µ

3He = �2.29(03)(12) LNM for
3He and µ

3H = 3.56(05)(18) LNM for the triton. These
can be compared with the experimental values of µ
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=
0.8574382308(72) NM, µ
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3He = �2.127625306(25) NM

and µ
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3H = 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
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of these light nuclei are µ

SM
d

= µ

p

+µ

n

, µ

SM
3He = µ

n

(where
the two protons in the 1s-state are spin paired to j

p

= 0
and the neutron is in the 1s-state) and µ

SM
3H = µ

p

(where
the two neutrons in the 1s-state are spin paired to j

n

= 0

|B|

Energy shift vs B

[NPLQCD 1409.3556, PRL to appear]



Nuclear magnetic moments

3

p

n

-0.2

-0.1

0.0

0.1

�
��

(�
)

d

3He

3H

-0.2

-0.1

0.0

0.1

�
��

(�
)

0 1 2 3 4

|�� |
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as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
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tions). The present work is the first QCD calculation of
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= 1.792(19)(37) NM
(nuclear magnetons) and µ
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.
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tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
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is a constant encapsulating higher-order terms in the ex-
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(nuclear magnetons) and µ
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E
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is a constant encapsulating higher-order terms in the ex-
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moments at this pion mass are µ
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= 1.792(19)(37) NM
(nuclear magnetons) and µ
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= �1.138(03)(10) NM, re-
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, g
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E

(B) = �2µ |B| + � |B|3, where �

is a constant encapsulating higher-order terms in the ex-
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moments at this pion mass are µ
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= 1.792(19)(37) NM
(nuclear magnetons) and µ
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= �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
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dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E
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moments at this pion mass are µ

p

= 1.792(19)(37) NM
(nuclear magnetons) and µ

n
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.
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FIG. 4: The di↵erences between the nuclear magnetic mo-
ments and the predictions of the naive shell-model. The
results of the lattice QCD calculation at a pion mass of
m⇡ ⇠ 806 MeV, in units of lattice nuclear magnetons, are
shown as the solid bands. The inner band corresponds to
the statistical uncertainties, while the outer bands correspond
to the statistical and systematic uncertainties combined in
quadrature, including estimates of the uncertainties from lat-
tice spacing and volume. The red dashed lines show the ex-
perimentally measured di↵erences.

and the proton is in the 1s-state). For these simple s-
shell nuclei, the proton and neutron magnetic moments
correspond to the Schmidt limits [22]. In nature, 3He is
one of the very few nuclei that lie outside the Schmidt
limits [23]. In our calculations we also find that 3He
lies outside the Schmidt limits at this heavier pion mass,
with �µ

3He = µ

3He � µ

n

= �0.340(24)(93) LNM (com-
pared to the experimental di↵erence of �µ

expt
3He = �0.215

NM) , and similarly for the triton �µ

3H = µ

3H � µ

p

=
+0.45(04)(16) LNM (compared to the experimental dif-
ference of �µ

expt
3H = +0.186 NM), corresponding to ⇠ 10%

deviations from the naive shell-model predictions. These
quantities are summarized in Figure 4.

At a phenomenological level, it is not di�cult to under-
stand why the magnetic moments scale, to a large degree,
with the nucleon mass. The success of the non-relativistic
quark model (NRQM) in describing the magnetic mo-
ments of the lowest-lying baryons as the sum of contri-
butions from three weakly-bound non-relativistic quarks,
with up- and down-quark masses of M

U,D

⇠ 300 MeV
and strange-quark mass of M

S

⇠ 500 MeV, suggests
that naive scaling with the hadron mass should cap-
ture most of the quark-mass dependence. From the per-
spective of chiral perturbation theory (�PT), the lead-
ing contributions to the nucleon magnetic moments are
from dimension-five operators, with the leading quark-
mass dependence arising from mesons loops that are sup-
pressed in the chiral expansion, and scaling linearly with
the mass of the pion. Consistency of the magnetic mo-
ments calculated in the NRQM and in �PT suggests
that the nucleon mass scales linearly with the pion mass,
which is inconsistent with chiral power counting, but con-

sistent with the results obtained from analysis of lattice
QCD calculations [24]. It should be emphasized that the
magnetic moments of the light nuclei that we study here
are well understood in the context of nuclear chiral ef-
fective field theory, where pions and nucleons are the ef-
fective degrees of freedom, and heavier meson-exchange-
type contributions are included as various contact inter-
actions among nucleons (see, for instance, Ref. [25]).

The present calculations have been performed at a sin-
gle lattice spacing and in one lattice volume, and the lack
of continuum and infinite volume extrapolations intro-
duces systematic uncertainties into our results. Chiral
perturbation theory can be used to estimate the finite
volume (FV) e↵ects in the magnetic moments, using the
sum of the known [26] e↵ects on the constituent nucle-
ons. These contributions are <⇠ 1% in all cases. There
may be additional e↵ects beyond the single particle con-
tributions, however the binding energies of light nuclei
calculated previously in multiple volumes at this quark
mass [4] demonstrate that the current lattice volume is
large enough for such FV e↵ects to be negligible. In
contrast, calculations with multiple lattice spacings have
not been performed at this heavier pion mass, and conse-
quently this systematic uncertainty remains to be quan-
tified. However, electromagnetic contributions to the ac-
tion are perturbatively improved as they are included as a
background field in the link variables. Consequently, the
lattice spacing artifacts are expected to be small, entering
at O(⇤2

QCDa

2) ⇠ 3% for ⇤QCD = 300 MeV. To account
for these e↵ects, we combine the two sources of uncer-
tainty in quadrature and assess an overall multiplicative
systematic uncertainty of 3% on all the extracted mo-
ments. For the nuclei, this is small compared to the other
systematic uncertainties, but for the neutron in particu-
lar, it is the dominant uncertainty.

In conclusion, we have presented the results of lattice
QCD calculations of the magnetic moments of the light-
est nuclei at the flavor SU(3) symmetric point. We find
that, when rescaled by the mass of the nucleon, the mag-
netic moments of the proton, neutron, deuteron, 3He and
triton are remarkably close to their experimental values.
The magnetic moment of 3He is very close to that of a
free neutron, consistent with the two protons in the 1s-
state spin-paired to j

p

= 0 and the valence neutron in the
1s-state. Analogous results are found for the triton, and
the magnetic moment of the deuteron is consistent with
the sum of the neutron and proton magnetic moments.
This work demonstrates for the first time that QCD can
be used to calculate the structure of nuclei from first
principles. Calculations using these techniques at lighter
quark masses and for larger nuclei are ongoing and will
be reported in future work. Perhaps even more impor-
tantly, these results reveal aspects of the nature of nuclei,
not at the physical quark masses, but in a more general
setting where Standard Model parameters are allowed to
vary. In particular, they indicate that the phenomeno-
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Lattice results appear to suggest 
heavy quark nuclei are shell-model 
like!
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FIG. 2: The calculated �E(B) of the proton and neutron
(upper panel) and light nuclei (lower panel) in lattice units
as a function of |ñ|. The shaded regions corresponds to fits
of the form �E(B) = �2µ |B|+� |B|3 and their uncertainties.
The dashed lines correspond to the linear contribution alone.

dure. Fits are performed only over time ranges where
all of the individual correlators in the ratio exhibit sin-
gle exponential behavior and a systematic uncertainty is
assigned from variation of the fitting window. Figure 1
shows the correlator ratios and associated fits for the var-
ious states that we consider: p, n, d, 3He, and 3H, for
ñ = +1,�2,+4.

As mentioned above, the magnetic moments of the pro-
ton and neutron have been previously calculated with lat-
tice QCD methods for a wide range of light-quark masses
(in almost all cases omitting the disconnected contribu-
tions). The present work is the first QCD calculation of
the magnetic moments of nuclei. In Figure 2, we show
the energy splittings of the nucleons and nuclei as a func-
tion of |ñ|, and, motivated by Eq. (3), we fit these to a
function of the form �E

(B) = �2µ |B| + � |B|3, where �

is a constant encapsulating higher-order terms in the ex-
pansion. We find that the proton and neutron magnetic
moments at this pion mass are µ

p

= 1.792(19)(37) NM
(nuclear magnetons) and µ

n

= �1.138(03)(10) NM, re-
spectively, where the first uncertainty is statistical and
the second uncertainty is from systematics associated
with the fits to correlation functions and the extraction
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FIG. 3: The magnetic moments of the proton, neutron,
deuteron, 3He and triton. The results of the lattice QCD cal-
culation at a pion mass of m⇡ ⇠ 806 MeV, in units of lattice
nuclear magnetons, are shown as the solid bands. The inner
bands corresponds to the statistical uncertainties, while the
outer bands correspond to the statistical and systematic un-
certainties combined in quadrature, and include our estimates
of the uncertainties from lattice spacing and volume. The red
dashed lines show the experimentally measured values at the
physical quark masses.

of the magnetic moment using the above form. These
results agree with previous calculations [14] within the
uncertainties. In the more natural units of lattice nu-
clear magnetons (LNM), e

2M

N

, where M

N

is the mass
of the nucleon at the quark masses of the lattice cal-
culation, the magnetic moments are µ

p

= 3.119(33)(64)
LNM and µ

n

= �1.981(05)(18) LNM. These values at
this unphysical pion mass can be compared with those
of nature, µ

expt
p

= 2.792847356(23) NM and µ

expt
n

=
�1.9130427(05) NM, which are remarkably close to the
lattice results. In fact, when comparing all available
lattice QCD results for the nucleon magnetic moments
in units of LNM, the dependence upon the light-quark
masses is surprisingly small, reminiscent of the almost
completely flat pion mass dependence of the nucleon ax-
ial coupling, g

A

.
In Figure 2, we also show �E

(B) as a function of |ñ|
for the deuteron, 3He and the triton (3H). Fitting the
energy splittings with a form analogous to that for the
nucleons gives magnetic moments of µ

d

= 1.218(38)(87)
LNM for the deuteron, µ

3He = �2.29(03)(12) LNM for
3He and µ

3H = 3.56(05)(18) LNM for the triton. These
can be compared with the experimental values of µ

expt
d

=
0.8574382308(72) NM, µ

expt
3He = �2.127625306(25) NM

and µ

expt
3H = 2.978962448(38) NM. The magnetic mo-

ments calculated with lattice QCD, along with their
experimental values, are presented in Figure 3. The
naive shell-model predictions for the magnetic moments
of these light nuclei are µ
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the two protons in the 1s-state are spin paired to j
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Nuclear sigma terms

One possible DM interaction is through scalar exchange 	


!

Accessible via Feynman-Hellman theorem 	


At hadronic/nuclear level 
 

Contributions:

L =
GF

2

X

q

a(q)
S (��)(q q)

Lagrange density in Eq. (2) matches onto

L ! GF ��
✓

1

4
h0|qq|0i Tr

h
aS⌃

† + a†S⌃
i
+

1

4
hN |qq|NiN †NTr

h
aS⌃

† + a†S⌃
i

� 1

4
hN |q⌧ 3q|Ni

⇣
N †NTr

h
aS⌃

† + a†S⌃
i
� 4N †aS,⇠N

⌘
+ ...

◆
(3)

at the chiral symmetry breaking scale ⇤�, which describes the single-hadron matrix elements
and the associated interactions at LO in the chiral expansion. ⌃ is the exponentiated pion
field, and N is the nucleon field,

⌃ = exp

 
2i

f⇡
M

!

, M =

 
⇡0/

p
2 ⇡+

⇡� �⇡0/
p
2

!

, N =

 
p
n

!

, (4)

f⇡ = 132 MeV is the pion decay constant, aS,⇠ =
1
2

⇣
⇠†aS⇠† + ⇠a†S⇠

⌘
with ⇠ =

p
⌃, and the

ellipsis denotes higher-order interactions including those involving more than one nucleon.
Expanding Eq. (3) in the number of pion fields (neglecting the shift in the WIMP mass
induced by the chiral condensate), the LO contributions to the interactions are

L ! GF ��

 

� (a(u)S + a(d)S )

f 2
⇡

h0|qq|0i
✓
1

2
(⇡0)2 + ⇡+⇡�

◆
+

1

2
(a(u)S + a(d)S )hN |qq|NiN †N

+
1

2
(a(u)S � a(d)S )hN |q⌧ 3q|NiN †⌧ 3N + ...

!

. (5)

Matching onto the multi-nucleon interactions is complicated by the fact that contributions
from pion-exchange interactions and from local four-nucleon operators are of the same order
in the chiral expansion, and the coe�cients of the latter are not directly related to multi-
nucleon matrix elements at any order in the chiral expansion. For instance, the four-nucleon
operators involving one insertion of the light-quark mass matrix are of the form [13–15]

LN4,mq = DS,1

⇣
N †N

⌘2
Tr
h
mq⌃

† +m†
q⌃
i
+ DS,2N

†NN †mq,⇠+N

+ DT,1

⇣
N †�aN

⌘2
Tr
h
mq⌃

† +m†
q⌃
i
+ DT,2N

†�aNN †�amq,⇠+N (6)

in the low-energy EFT, where mq,⇠+ = 1
2

⇣
⇠†mq⇠† + ⇠m†

q⇠
⌘
, and �a are the Pauli matrices.

Hence WIMP–two-nucleon interactions are of the form

LN4,� = �GF��
✓
DS,1

⇣
N †N

⌘2
Tr
h
aS⌃

† + a†S⌃
i
+ DS,2N

†NN †aS,⇠N

+DT,1

⇣
N †�aN

⌘2
Tr
h
aS⌃

† + a†S⌃
i
+ DT,2N

†�aNN †�aaS,⇠N
◆

. (7)

The importance of the various contributions to the scalar-isoscalar matrix elements can be
estimated using power counting arguments. The second and third terms in Eq. (5) provide
the leading (order Q0, where Q denotes the small ratio of scales in the e↵ective theory) scalar
interactions between the WIMP and the nucleon that generate the impulse approximation
for WIMP-nucleus interactions (see Fig. 1 (left)). In a nucleus, the first term in Eq. (5) gives
rise to a MEC between two nucleons, as shown in Fig. 1 (middle), that naively contributes
at order 1/Q2 in the chiral expansion due to the non-derivative interaction of the pions,

4

which is two orders lower than the contribution from the impulse approximation. This term
is the origin of the enhancement suggested in Ref. [1]. The isoscalar interactions with the
strange and heavier quarks do not contribute to the non-derivative interaction with pions
and, as such, are not expected to be enhanced in WIMP-nucleus interactions. To determine
the WIMP-nucleus interactions quantitatively, nuclear matrix elements of these operators
need to be calculated.

FIG. 1: Some of the diagrams contributing to nuclear �-terms. The left panel shows the leading
order contribution to the single-nucleon �-term in �PT. The middle (pion-exchange) and right
(“D2-terms” contributions from Eq. (7)) panels show contributions to nuclear �-terms at next-to-
leading order in KSW power counting [13–15]. The crossed box corresponds to an insertion of the
light-quark mass matrix.

Ideally, one would simply determine the matrix element of the Lagrange density in Eq. (2)
in the ground state of a given nucleus, at the relevant momentum transfer, without perform-
ing the intermediate matchings in Eq. (3) and in Eq. (5). This would sum the contributions
from the hadronic EFT to all orders in perturbation theory, and provide the necessary ma-
trix elements directly from QCD. While such formidable calculations cannot currently be
accomplished, the forward matrix element of the scalar-isoscalar operator can be determined
in light nuclei, albeit with significant uncertainties, by combining recent lattice QCD cal-
culations of the binding energies with the corresponding experimental values. The mass of
the ground state of a nucleus with Z protons and N neutrons, denoted by |Z,N(gs)i, is
E(gs)

Z,N = E(gs,�)
Z,N + �Z,N , where

�Z,N = hZ,N(gs)| muuu+mddd |Z,N(gs)i (8)

is the nuclear �-term, and E(gs,�)
Z,N is the energy of the nuclear ground state in the limit of

massless up- and down-quarks (assuming that the nucleus is bound in this limit). With
isospin symmetry, mu = md = m, the nuclear �-term becomes

�Z,N = mhZ,N(gs)| uu+ dd |Z,N(gs)i = m
d

dm
E(gs)

Z,N

=
h
1 + O

⇣
m2

⇡

⌘ i m⇡

2

d

dm⇡
E(gs)

Z,N , (9)

where we have used the leading contribution to the Gell-Mann–Oakes–Renner (GMOR)
relation [4, 43],

�2mh0| uu+ dd |0i = m2
⇡f

2
⇡

h
1 + O

⇣
m2

⇡

⌘ i
, (10)

to relate the quark and pion masses. The relation between the pion mass and the average
light-quark mass has been precisely determined with lattice QCD [44, 45]. The linear relation
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Nuclear sigma terms

Previous work suggested scalar dark matter couplings to nuclei 
have O(50%) uncertainty arising from MECs [Prezeau et al 2003]	


Quark mass dependence of nuclear binding energies bounds 
such contributions 	


!

Lattice calculations + physical point suggest such 
contributions are O(10%) or less for light nuclei (A<4)  
 
 
 
 

TABLE II: Contributions to the nuclear �-terms of the deuteron, 3He and 4He. The binding energy
contributions, �BZ,N , are derived from the nuclear binding energies determined from lattice QCD
calculations, shown in Table I. The quantity hm⇡i is the average pion mass over the interval
used to construct the finite-di↵erence estimate of the nuclear �-term. The single-nucleon �-term
contribution, A�N , is taken from the approximate empirical relation A�N = Aa1m⇡/2, as defined
in the text (with uncertainties determined from the covariance matrix of the two-parameter fit
[57]). The first uncertainty of each quantity is statistical, the second is systematic and the third
(where present) is the additional systematic associated with the relation between the pion mass
and the light-quark mass.
hm⇡i (MeV) Quantity d 3He 4He

325 A�N (MeV) 322(9)(32) 483(13)(48) 644(17)(64)
325 �BZ,N (MeV) �4.08(48)(26)(41) �5.5(1.8)(0.9)(0.6) �6.5(5.3)(3.5)(0.7)
325 ��Z,N �0.0125(15)(08) �0.0113(36)(18) �0.0099(81)(54)
658 A�N (MeV) 652(18)(65) 978(26)(98) 1304(35)(130)
658 �BZ,N (MeV) �9.1(3.7)(4.6)(0.9) �50.8(8.0)(7.0)(5.1) �75(26)(19)(8)
658 ��Z,N �0.0139(56)(70) �0.0515(81)(71) �0.057(20)(14)
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FIG. 4: The nuclear contributions to the deuteron (left panel), 3He (middle panel) and 4He (right
panel) �-terms from nuclear interactions. The inner and outer shaded regions correspond to the
statistical and total (statistical combined with systematic) uncertainties, respectively.

the nuclear �-terms of the deuteron, 3He and 4He are shown in Fig. 5. For each nucleus,
the nuclear interactions modify the �-term by less than 10% of the impulse approximation
contribution for both pion masses considered, and by less than 2% at the lighter pion mass,
as can be seen in Fig. 6.
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FIG. 5: Percentage modifications to the impulse approximation contribution to the deuteron (left
panel), 3He (middle panel) and 4He (right panel) �-terms.
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(two-flavor) nuclear �-term can be written as

�Z,N = A�N + �BZ,N = A�N � m⇡

2

d

dm⇡
BZ,N , (11)

where

�N = mhN | uu + dd |Ni = m
d

dm
MN =

m⇡

2

d

dm⇡
MN (12)

is the nucleon �-term and |Ni is the single-nucleon state. The first term in Eq. (11) is the
noninteracting single-nucleon contribution to the nuclear �-term, while the second term cor-
responds to the corrections due to interactions between the nucleons, including the possibly
enhanced contributions from MECs. It is useful to define the ratio

��Z,N = � 1

A�N

m⇡

2

d

dm⇡
BZ,N (13)

to quantify the deviations from the impulse approximation. In addition to representing de-
viations of nuclear �-terms from the impulse approximation, this quantity also describes the
deviation of the scalar-isoscalar WIMP-nucleus scattering matrix element from the impulse
approximation at zero momentum transfer,

��Z,N =
hZ,N(gs)| uu + dd|Z,N(gs)i

A hN | uu + dd|Ni � 1 . (14)

III. LIGHT NUCLEI FROM LATTICE QCD AND THEIR �-TERMS

Lattice QCD has evolved to the stage where the binding energies of the lightest nuclei and
hypernuclei have been determined at a small number of relatively heavy pion masses in the
limit of isospin symmetry. Further, the mass of the nucleon has been explored extensively
over a large range of light-quark masses, with calculations now being performed at the phys-
ical value of the pion mass. These sets of calculations, along with the experimental values
of the masses of the light nuclei, are su�cient to arrive at a first QCD determination of the
nuclear �-terms for these nuclei at a small number of pion masses. This work provides an es-
timate of the modifications to the impulse approximation for scalar-isoscalar WIMP-nucleus
interactions in light nuclei2. In particular, these results can be used to explore the conjec-
tured enhancement of MEC contributions to these interactions, and to investigate the size of
the uncertainties introduced by the use of the impulse approximation in phenomenological
analyses.

The binding energies of the deuteron, 3He and 4He at pion masses of m⇡ ⇠ 390, 510
and 806 MeV calculated with lattice QCD [36–38, 54, 55] are presented in Table I, along
with their values at the physical point, and are shown in Fig. 2. The binding energies
per nucleon are shown in Fig. 3. The lattice QCD calculations were performed with clover-
improved discretizations of the quark fields. The m⇡ ⇠ 806 MeV calculations were performed

2 The EFT description of the quark-mass dependence of the nuclear forces has been developed in Refs. [45–
48]. For estimates of nuclear � terms, see Refs. [49–53].
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QCD for nuclear physics

Nuclei are under serious study directly from QCD	


Spectroscopy of light nuclei and exotic nuclei (strange, 
charmed, …)	


Nuclear properties/matrix elements	


Prospect of a quantitative connection to QCD  
makes this a very exciting time for nuclear physics	


Critical role in current and upcoming intensity  
frontier experimental program	


Learn many interesting things about nuclear 
physics along the way
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QCD Vacuum   Few-Body       Nuclei Baryon Neutron Star / Supernova 

1st-principle lat calc. 

Standard M
odel 

1st-principle lat calc. 

N
uclear 

Forces Ab-initio nuclear calc. 

Lattice QCD predictions  
play a crucial role 

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/Focus1.jpg


Renaissance in 
Strange World ! 

Exotics w/ charm   Y. Ikeda’s talk 
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Interactions on the Lattice 

• Luscher’s method (& Light nuclei) 
– Phase shift & B.E. from temporal correlation in finite V 
– (Probe interactions in indirect way) 

 

• HAL QCD method  
– “Potential” from spacial (& temporal) correlation 
– (Probe interactions in direct way) 
– Phase shift & B.E by solving Schrodinger eq in infinite V 

 

 
 

 

M.Luscher,  CMP104(1986)177 
                 CMP105(1986)153 
                 NPB354(1991)531 

Ishii-Aoki-Hatsuda, PRL99(2007)022001, PTP123(2010)89 
HAL QCD Coll., PTEP2012(2012)01A105 



Luscher’s formula: Scatterings on the lattice 
• Consider Schrodinger eq at asymptotic region 

 
 

– (periodic) Boundary Condition in finite V                                                  
 constraint on energies of the system 

– Energy E  phase shift (at E) 
 
 
 

 
• Calculate the energy spectrum of NN on (finite V) lattice 

– Temporal correlation in Euclidean time  energy  
 

Large V: 

R L 



• Signal / Noise issue  

The Challenges 



Challenges in multi-baryons on the lattice 

• Signal / Noise estimate 
 
 
 

– pion 
 

– nucleon 
 

 
 
  

Parisi, Lepage(1989) 

(for mass number = A) 
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In usual LQCD calc.,                                 
G.S. saturation is necessary by t  ∞ 



Challenges in multi-baryons on the lattice 

• Signal / Noise estimate 
– S/N gets worse                                                                    

for larger mass number A & light quark mass & 𝒕 → ∞ 
 

 

– Larger spectral density                                                   
 larger t required 

Parisi, Lepage(1989) 

G.S. saturation becomes more and more difficult                  
for larger V & lighter mass 

 
Elastic 

       

 
Inelastic 

NNπ 

NN 

Variational method ? 



Luscher’s formula: Scatterings on the lattice 
• Consider Schrodinger eq at asymptotic region 

 
 

– (periodic) Boundary Condition in finite V                                                  
 constraint on energies of the system 

– Energy E  phase shift (at E) 
 
 
 

 
• Calculate the energy spectrum of NN on (finite V) lattice 

– Temporal correlation in Euclidean time  energy  
 

Large V: 

R L 



• Phase shift: 
– Obtained at only one (or several) energies                               

( we have to repeat the calc w/ different V, etc.) 

• Coupled channel 
– Unknown: 2 phases shifts + 1 mixing parameter (for 2x2)  

Obtained on Lat: 2 energies 
–  “Parametrize” E-dependence 

• Many-body forces 
– Embedded in E in inefficient way 
– 2-body: ~ 1/L3,  3-body: ~1/L6, 4-body: ~1/L9 
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Further Challenges in multi-baryons on Lat 

(for 2-body) 

J. Dudek et al., PRL113(2014)182001 

S. He et al., JHEP07(2005)011 
Hansen-Sharpe, PRD86(2012)016007 

(the situation may be better for bound states) 

Is energy the only quantity from which          
we can extract interactions ? 
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Hadrons to Atomic nuclei from Lattice QCD 
(HAL QCD Collaboration) 

S. Aoki, T. Iritani (YITP) 
B. Charron  (Univ. of Tokyo) 
T. Doi, T.Hatsuda,  Y. Ikeda, V. Krejcirik  (RIKEN) 
F. Etminan  (Univ. of Birjand) 
T. Inoue  (Nihon Univ.) 
N. Ishii, K. Murano (RCNP) 
T. Miyamato, H. Nemura, K. Sasaki, M. Yamada  (Univ. of Tsukuba) 



HAL QCD method for 2-body elastic scatt. 

• Potential is constructed so as to reproduce        
the NN phase shifts (or, S-matrix) 

• Nambu-Bethe-Salpeter (NBS) wave function 
 
 
 
– Wave function  phase shifts 

R L 

M.Luscher, NPB354(1991)531 

CP-PACS Coll., PRD71(2005)094504  

C.-J.Lin et al., NPB619(2001)467 

Ishizuka, Pos LAT2009 (2009) 119 

S.Aoki et al., PRD88(2013)014036 

Aoki-Hatsuda-Ishii PTP123(2010)89 
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“Potential” as a representation of S-matrix  

• Consider the wave function at “interacting region” 
 

 
– U(r,r’): faithful to the phase shift by construction 

• U(r,r’): NOT an observable, but well defined 
• U(r,r’): E-independent, while non-local in general 
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R L Probe interactions in “direct” way 



Proof of Existence of E-independent potential  

• We consider the linear-indep wave functions and define 
 

• We define the non-local potential 
 
 

• The above potential trivially satisfy Schrodinger eq. 

[START] local but E-dep pot.  (L3xL3 dof) 

[GOAL] non-local but E-indep pot.  (L3xL3 dof) 

Intuitive 
understanding 

c.f. Krolikowski-Rzewuski, Nuovo Cimento, 4, 1212 (1956) 



“Potential” as a representation of S-matrix  

• Consider the wave function at “interacting region” 
 

 
– U(r,r’): faithful to the phase shift by construction 

• U(r,r’): NOT an observable, but well defined 
• U(r,r’): E-independent, while non-local in general 

– Phase shifts at all E (below inelastic threshold) obtained                                       
by solving Scrodinger eq in infinite V 

– Non-locality  derivative expansion 
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R L 

LO LO NLO NNLO 

Okubo-Marshak(1958) 

Check on convergence: K.Murano et al., PTP125(2011)1225 

Probe interactions in “direct” way 

Control  the E-dependence of phase shifts 



Taming of S/N issue w/ E-indep potential 
• Original (t-indep) HAL QCD method 

 
 
 
 
 

• New (t-dep) HAL QCD method 
– All equations can be combined in 

20 

G.S. saturation necessary 

Relativistic correction 

G.S. saturation in R(r,t) NOT necessary 



Extract the signal from excited states 
N.Ishii et al. (HAL QCD Coll.) PLB712(2012)437 

E-indep of potential U(r,r’)  (excited) scatt states share the same U(r,r’)                 
They are not contaminations, but signals   

Ground State (G.S.) saturation is NOT necessary !  

 Time-dependent Schrodinger Eq. 

[OLD] 
“contaminations” 
from excited states 

[NEW] “signals”       
from excited states 

NN 

potential 

 
Elastic 

       

 
Inelastic 

NNπ 

NN 

N.B. Inelastic scattering suppression still necessary 



Coupled Channel 

• Asymptotic behavior of NBS wave func 

22 
S.Aoki et al. (HAL Coll.), Proc. Jpn. Acad. Ser. B87(2011) 

Ex.)  A + B  C + D 

where 

(beyond inelastic threshold) 



Coupled Channel 
• T-matrix parametrization by unitarity 

 
 

 
• Asymptotic behavior   

 
 
 

•  Coupled channel potentials can be defined 



Coupled Channel 
• Proof of Existence of E-indep potential 

 
 
 
 
 
 
 
 
 

• Generalization to A+B  C+D+E, etc. possible 
– 2-body relativistic, otherwise non-rela approx. necessary 

24 

Vector of NBS 

Norm 

S.Aoki et al. (HAL Coll.), PRD87(2013)034512 

E-indep pot. 

NBS wave func. 



Extension to multi-particle systems (n>=3) 

• Unitarity of S-matrix 
 
 
 
 

 

 
 
 

S.Aoki et al. (HAL Coll.), PRD88(2013)014036 

Hyper-spherical func in D=3(n-1) dim 

diagonalization 
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Similar formula to 2-body system                     
(w/ diagonalization matrix U which includes dynamics) 

c.f. R.B. Newton (1974) for n = 3 

(non-rela approx.) 



Extension to multi-particle systems (n>=3) 

• NBS wave function 

 
 
 

S.Aoki et al. (HAL Coll.), PRD88(2013)014036 

(non-rela approx.) 
(no bound state in 
 subsystem assumed) c.f. Finite V spectrum, n=3 only, relativistic: Hansen-Sharpe, arXiv:1408.5933 

Lippmann-Schwinger eq. 

Expansion w/ hyper-coordinate 

Similar asymptotic behavior to 2-body system 



Prescription in HAL QCD method 
L

at
tic

e 
Q

C
D

 NBS wave func. Lat Nuclear Force 

Lat potential is faithful to  
phase shift by construction (at asymptotic region) 

Sc
at

te
ri

ng
 E

xp
. Phase shifts 

Analog to … 
Phen. Potential 

27 



A few remarks on the Lattice Potential 
• Potential is NOT an observable and is not unique:                                  

They are, however, phase-shift equivalent potentials. 
– Choosing the pot.  choosing the “scheme” (sink op.)  

• Potential approach has some benefits:  
– Convenient to understand physics 
– Essential to study many-body 

 
 

– Phase shifts at various E obtained                                             
 Coupled channel straightforward 

– Finite V artifact better under control 
– Excited states better under control 
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R R 



Luscher’s method vs. HAL method 

29 
Kurth et al., JHEP1312(2013)015 

I=2 ππ system 
  Best S/N on the lattice 
  G.S. saturation can be achieved in this case 

 

(HAL = “time-dependent” HAL method) 

Beautiful Agreement ! 

HAL 

Luscher 
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• Enormous computational cost for correlators  
– # of Wick contraction (permutation) 

•                                                  for mass number A 
 

– # of color / spinor contractions 
 

– Total cost:  
– 2H   :                  9   x      144  = 1 x 103 

– 3H   :              360   x    1728  = 6 x 105 

– 4He :          32400   x  20736  = 7 x 108 

(color) (spinor) 

c.f. T.Yamazaki et al., 
PRD81(2010)111504 

Challenges in multi-baryons on the lattice (2) 

( can be reduced by 2A by inner-baryon exchange)  

t=t(src) t=t(sink) 



Solution: Unified contraction algorithm 

• Traditional algorithm 
 
 

 
• New algorithm 

– Permutation applies to color/spinor indices at “Coeff” 
 

 

– Permutation DONE beforehand 
• (Wick contraction and color/spinor contractions are unified) 

– Significant improvement 

Permutations       

color/spinor contractions (ξ’) 

Sum over color/spinor unified list 

Permuted Sum 

(x add’l. speedup) 

[impose the same spacial label at source] 

TD, M.Endres, Comput. Phys. Comm.184(2013)117 

   4He 
<1sec 

See also subsequent works: Detmold et al., PRD87(2013)114512 
Gunther et al., PRD87(2013)094513 



• “di-neutron” channel              central force 
• “deuteron” channel                central & tensor force 

33 

(1) NN potential on the lattice   
(positive parity) 

Nf=2+1 clover (PACS-CS), 1/a=2.2GeV, 
L=2.9fm, mπ=0.7GeV, mN=1.6GeV 

Not Bound 

phase shift 

Elab [MeV] 

N.Ishii et al. (HAL QCD Coll.) 
PLB712(2012)437 



Quark mass dependence 
C

entral 
Tensor 

3S1-3D1 channel Central in 1S0 

Lighter mass corresponds to… 

• Longer interaction range 
• Larger Repulsive Core 
• Stronger Tensor Force 
 

 N.Ishii @ Lat2012 



Hyperon Forces 

35 

8 X 8 = 27 + 8s + 1 + 10* + 10 + 8a 
symmetric anti-symmetric 

NN channel 



Repulsive core    
 Pauli principle ! 

SU(3) study a=0.12fm, L=3.9fm, 
m(PS)= 0.47-1.2GeV 

27,10*:              
Same as NN 

8s,10:                                  
strong repulsive core 

1s: deep attractive pocket 
8a: weak repulsive core 

T.Inoue et al. (HAL QCD Coll.), NPA881(2012)28 

(2) BB potentials 

attractive core ! 

M.Oka et al., NPA464(1987)700 

Also seen in SU(2)c , Takahashi et al.,, PRD82(2010)094506 

Meson-baryon, Y.Ikeda et al., arXiv:1111.2663 

Charmonium-N, Kawanai-Sasaki, PRD82(2010)091501 36 



Mπ  [MeV] 

M
K
  [

M
eV

] 
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Coupled channel study is essential 

B.E. 

SU(3) lat 

120MeV 

30MeV 

Physical point 

? 

H-dibaryon (uuddss, I=0,1S0) 

Inoue et al. (HAL QCD Coll.) PRL106(2011)162002 
Beane et al. (NPLQCD Coll.) PRL106(2011)162001 



[K. Sasaki]  

Coupled channel formalism in HAL 
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Frontier in Hadron-Hadron Interactions 
⇒Three-Nucleon Forces (3NF) 

2N 

3N 

Neutron Star 
（Densest system     
in the Universe） 

Short-range repulsive 3NF is required   
Can we understand it from QCD ? 

PSR1913+16 

J1614-2230 

What is 3NF ? 

＋ ＋ 

＋ 
2NF 

3NF: Forces which 
cannot be explained 

by pair-wise 2NF 

◆ B.E. of light nuclei 

◆ EoS of high density matter  

◆ Neutron rich nuclei / Nucleosynthesis 
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Preliminary 

short-range 
repulsive 3NF ! 

T.D. et al. (HAL QCD Coll.) PTP127(2012)723  

Nf=2 clover (CP-PACS), 1/a=1.27GeV, 
L=2.5fm, mπ=1.1GeV, mN=2.1GeV 

(3) 3N-forces (3NF) on the lattice 

+ t-dep method updates etc. 

Triton channel 



Preliminary 

short-range 
repulsive 3NF ! 

T.D. et al. (HAL QCD Coll.) PTP127(2012)723  

Nf=2 clover (CP-PACS), 1/a=1.27GeV, 
L=2.5fm, mπ=0.76-1.1GeV, mN=1.6-2.1GeV How about YNN, YYN, YYY ? 

(3) 3N-forces (3NF) on the lattice 

+ t-dep method updates etc. 

Y dof 

How about other geometries ?  

Triton channel 

YNN(?) 
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• Physical mass point, Infinite V limit, continuum limit 

– Physical mπ crucial for OPEP, chiral extrapolation won’t work 
 
 
 
 

 

 
 

Towards realistic potential 
Sc

at
t.

 le
ng

th
 

 mq 

Phys. point 

 mq 

“Unitary Region” 

We are here 

Y.Kuramashi, 
PTPS122(1996)153 

10PFlops 

K computer 

Mπ>=400MeV 
L=3fm 

Mπ=140+MeV 
L=8fm 



Summary and Prospects 

• HAL QCD method  
– Asymptotic behavior of NBS wave functions 
– Energy-independent potential 

• Avoid S/N issue by ground state saturation (t-dep HAL method) 
• Extended to coupled channel systems, many-body forces 

• Lattice QCD results for NN, YN/YY, NNN, etc. 
– Intriguing physics even at heavy quark masses 

• Toward physical quark mass point: 
 Unified Contraction Algorithm: breakthrough in comput. cost 

  Realistic hadron interactions 
 Nuclear Physics on the Lattice ! 



Aspects of Lattice QCD calculations

of transverse momentum-dependent parton distributions (TMDs)

Michael Engelhardt

New Mexico State University

In collaboration with:
B. Musch, P. Hägler, J. Negele, A. Schäfer
T. Bhattacharya, R. Gupta, B. Yoon
S. Syritsyn, A. Pochinsky, J. R. Green, S. Meinel



Fundamental TMD correlator

˜
Φ

[Γ]
unsubtr.(b, P, S, . . .) ≡

1

2
〈P, S| q̄(0) Γ U [0, . . . , b] q(b) |P, S〉

Φ[Γ](x, kT , P, S, . . .) ≡
d2bT
(2π)2

d(b · P )

(2π)P+ exp (ix(b · P )− ibT · kT )
˜
Φ

[Γ]
unsubtr.(b, P, S, . . .)

˜S(b2, . . .)

∣∣∣∣∣∣∣∣∣∣∣∣∣b+=0

• “Soft factor”
˜S required to subtract divergences of Wilson line U

• ˜S is typically a combination of vacuum expectation values of Wilson line structures

• Here, will consider only ratios in which soft factors cancel

∫ ∫



Gauge link structure motivated by SIDIS
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Gauge link structure:

In matrix element
˜
Φ

[Γ]
unsubtr.(b, P, S, . . .) ≡

1
2〈P, S| q̄(0) Γ U [0, . . . , b] q(b) |P, S〉

Staple-shaped gauge link U [0, ηv, ηv + b, b]

incorporates SIDIS final state effectsl + H(P ) −→ l′ + h(Ph) + X



Gauge link structure motivated by SIDIS

Staple-shaped links incorporate SIDIS final state effects:

• Gauge link roughly follows direction of ejected quark, (close to) light cone

• Effective resummed description of gluon exchanges between ejected quark and remainder of nucleon in
evolving final state

• Beyond tree level: Rapidity divergences suggest taking staple direction slightly off the light cone. Approach
of Aybat, Collins, Qiu, Rogers makes v space-like. Parametrize in terms of Collins-Soper parameter

ζ̂ ≡
P · v
|P ||v|

Light-like staple for ζ̂ →∞. Perturbative evolution equations for large ζ̂ .



Fundamental TMD correlator

˜
Φ

[Γ]
unsubtr.(b, P, S, . . .) ≡

1

2
〈P, S| q̄(0) Γ U [0, ηv, ηv + b, b] q(b) |P, S〉

Φ[Γ](x, kT , P, S, . . .) ≡
d2bT
(2π)2

d(b · P )

(2π)P+ exp (ix(b · P )− ibT · kT )
˜
Φ

[Γ]
unsubtr.(b, P, S, . . .)

˜S(b2, . . .)

∣∣∣∣∣∣∣∣∣∣∣∣∣b+=0

• “Soft factor”
˜S required to subtract divergences of Wilson line U

• ˜S is typically a combination of vacuum expectation values of Wilson line structures

• Here, will consider only ratios in which soft factors cancel

∫ ∫



Decomposition of Φ into TMDs

All leading twist structures:

Φ[γ+] = f1 −



ǫijkiSj

mH
f⊥1T


 odd

Φ[γ+γ5] = Λg1 +
kT · ST

mH
g1T

Φ[iσi+γ5] = Sih1 +
(2kikj − k2

T δij)Sj

2m2
H

h⊥1T +
Λki

mH
h⊥1L +




ǫijkj

mH
h⊥1


 odd



TMD Classification

All leading twist structures:

q →
H U L T
↓

U f1 h⊥1

L g1 h⊥1L

T f⊥1T g1T h1 h⊥1T

↑
Sivers (T-odd)

←− Boer-Mulders
(T-odd)



Decomposition of
˜
Φ into amplitudes

˜
Φ

[Γ]
unsubtr.(b, P, S, ζ̂ , µ) ≡

1

2
〈P, S| q̄(0) Γ U [0, ηv, ηv + b, b] q(b) |P, S〉

Decompose in terms of invariant amplitudes; at leading twist,

1

2P+
˜
Φ

[γ+]
unsubtr. =

˜
A2B + imHǫijbiSj

˜
A12B

1

2P+
˜
Φ

[γ+γ5]
unsubtr. = −Λ

˜
A6B + i[(b · P )Λ−mH(bT · ST )]

˜
A7B

1

2P+
˜
Φ

[iσi+γ5]
unsubtr. = imHǫijbj

˜
A4B − Si

˜
A9B

−imHΛbi
˜
A10B + mH [(b · P )Λ−mH(bT · ST )]bi

˜
A11B

(Decompositions analogous to work by Metz et al. in momentum space)



Fourier-transformed TMDs

f̃(x, b2
T , . . .) ≡ d2kT exp(ibT · kT )f (x, k2

T , . . .)

f̃ (n)(x, b2
T , . . .) ≡ n!


−

2

m2
H

∂
b2
T




n

f̃ (x, b2
T , . . .)

In limit |bT | → 0, recover kT -moments:

f̃ (n)(x, 0, . . .) ≡ d2kT




k2
T

2m2
H




n

f (x, k2
T , . . .) ≡ f (n)(x)

ill-defined for large kT , so will not attempt to extrapolate to bT = 0, but give results at finite |bT |.

In this study, only consider first x-moments (accessible at b · P = 0), rather than scanning range
of b · P :

f [1](k2
T , . . .) ≡ dx f (x, k2

T , . . .)
∫

1

−1

∫

∫

−→ Bessel-weighted asymmetries (Boer, Gamberg, Musch, Prokudin, JHEP 1110 (2011) 021)



Relation between Fourier-transformed TMDs and invariant amplitudes
˜
Ai

Invariant amplitudes directly give selected x-integrated TMDs in Fourier (bT ) space (showing just the ones
relevant for Sivers, Boer-Mulders shifts), up to soft factors:

f̃
[1](0)
1 (b2

T , ζ̂, . . . , ηv · P ) = 2
˜
A2B(−b2

T , 0, ζ̂ , ηv · P )/
˜
S(b2, . . .)

f̃
⊥[1](1)
1T (b2

T , ζ̂, . . . , ηv · P ) = −2
˜
A12B(−b2

T , 0, ζ̂ , ηv · P )/
˜
S(b2, . . .)

h̃
⊥[1](1)
1 (b2

T , ζ̂, . . . , ηv · P ) = 2
˜
A4B(−b2

T , 0, ζ̂ , ηv · P )/
˜
S(b2, . . .)



Generalized shifts

Form ratios in which soft factors, (Γ-independent) multiplicative renormalization factors cancel

Boer-Mulders shift:

〈ky〉UT ≡ mH
h̃
⊥[1](1)
1

f̃
[1](0)
1

=
dx d2kT kyΦ

[γ++sjiσj+γ5](x, kT , P, . . .)

dx d2kT Φ[γ++sjiσj+γ5](x, kT , P, . . .)

∣∣∣∣∣∣∣∣∣∣∣∣sT=(1,0)

Average transverse momentum of quarks polarized in the orthogonal transverse (“T”) direction in an unpolarized
(“U”) hadron; normalized to the number of valence quarks. “Dipole moment” in b2

T = 0 limit, “shift”.

Issue: kT -moments in this ratio singular; generalize to ratio of Fourier-transformed TMDs at nonzero b2
T ,

〈ky〉UT (b2
T , . . .) ≡ mH

h̃
⊥[1](1)
1 (b2

T , . . .)

f̃
[1](0)
1 (b2

T , . . .)

(remember singular bT → 0 limit corresponds to taking kT -moment). “Generalized shift”.

∫ ∫

∫ ∫



Generalized shifts from amplitudes

Now, can also express this in terms of invariant amplitudes:

〈ky〉UT (b2
T , . . .) ≡ mH

h̃
⊥[1](1)
1 (b2

T , . . .)

f̃
[1](0)
1 (b2

T , . . .)
= mH

˜
A4B(−b2

T , 0, ζ̂ , ηv · P )
˜
A2B(−b2

T , 0, ζ̂ , ηv · P )

Analogously, Sivers shift (in a polarized hadron):

〈ky〉TU (b2
T , . . .) = −mH

˜
A12B(−b2

T , 0, ζ̂ , ηv · P )
˜
A2B(−b2

T , 0, ζ̂ , ηv · P )



Lattice setup
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• Evaluate directly
˜
Φ

[Γ]
unsubtr.(b, P, S, ζ̂ , µ)

≡ 1
2〈P, S| q̄(0) Γ U [0, ηv, ηv + b, b] q(b) |P, S〉

• Euclidean time: Place entire operator at one time
slice, i.e., b, ηv purely spatial

• Since generic b, v space-like, no obstacle to boost-
ing system to such a frame!

• Parametrization of correlator in terms of
˜
Ai in-

variants permits direct translation of results back
to original frame; form desired

˜
Ai ratios.

• Use variety of P , b, ηv; here b ⊥ P , b ⊥ v (lowest
x-moment, kinematical choices/constraints)

• Extrapolate η →∞, ζ̂ →∞ numerically.



Challenges

• The limit ζ̂ →∞: Approaching the light cone

• Discretization effects, soft factor cancellation on the lattice in TMD ratios

• Progress toward the physical pion mass



Approaching the light cone (with a pion)



Results: Boer-Mulders shift (pion)

Dependence on staple extent; sequence of panels at different |bT |
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˜
A4B/

˜
A2B

(GeV)

up-quarks
ζ̂ = 1.01
|b| = 0.12 fm
mπ = 518 MeV

η|v| (lattice units)



Results: Boer-Mulders shift (pion)

Dependence on staple extent; sequence of panels at different |bT |
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|b| = 0.24 fm
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η|v| (lattice units)



Results: Boer-Mulders shift (pion)

Dependence on staple extent; sequence of panels at different |bT |

mπ
˜
A4B/

˜
A2B

(GeV)

up-quarks
ζ̂ = 1.01
|b| = 0.36 fm
mπ = 518 MeV

η|v| (lattice units)



Results: Boer-Mulders shift (pion)

Dependence on staple extent; sequence of panels at different |bT |
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˜
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mπ = 518 MeV

η|v| (lattice units)



Results: Boer-Mulders shift (pion)

Dependence of SIDIS limit on |bT |

mπ
˜
A4B/

˜
A2B

(GeV)

up-quarks
mπ = 518 MeV

ζ̂ = 0
ζ̂ = 1.01
ζ̂ = 2.03

|bT | (fm)



Results: Boer-Mulders shift (pion)

Dependence of SIDIS limit on ζ̂

mπ
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˜
A2B

(GeV)

up-quarks
|bT | = 0.36 fm
mπ = 518 MeV

P ∼ (1, 0, 0)
P ∼ (1, 1, 0)
Contribution ˜

A4 only

ζ̂



Results: Boer-Mulders shift (pion)

Dependence of SIDIS limit on ζ̂
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Results: Boer-Mulders shift (pion)

Dependence of SIDIS limit on ζ̂

mπ
˜
A4B/

˜
A2B

(GeV)

up-quarks
|bT | = 0.27 fm
mπ = 518 MeV

P ∼ (1, 0, 0)
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A4 only
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Results: Boer-Mulders shift (pion)

Dependence of SIDIS limit on ζ̂ ; fit function a + b/ζ̂
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Results: Boer-Mulders shift (pion)

Dependence of SIDIS limit on ζ̂ ; fit function a + b/ζ̂
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Results: Boer-Mulders shift (pion)

Extrapolation of SIDIS limit to ζ̂ →∞

Fit function Full BM ratio Contribution
˜
A4 Combined fit RMS deviation of

(GeV) only (GeV) (GeV) combined fit (GeV)

|bT | = 0.36 fm a + b/ζ̂ -0.146(26) -0.141(36) -0.145(25) 0.00755

|bT | = 0.36 fm a + b/ζ̂2 -0.166(16) -0.110(22) -0.148(15) 0.01695

|bT | = 0.34 fm a + b/ζ̂ -0.145(33) -0.112(33) -0.128(29) 0.01466

|bT | = 0.34 fm a + b/ζ̂2 -0.157(19) -0.084(19) -0.121(16) 0.02315

up-quarks
mπ = 518 MeV



Discretization effects:

Comparison of

RBC/UKQCD DWF ensemble (mπ = 297MeV, a = 0.084 fm)

with clover ensemble (mπ = 317MeV, a = 0.114 fm)
produced by K. Orginos and JLab collaborators



Results: Sivers shift

Dependence on staple extent; sequence of panels at different |bT |

SIDIS�� DY

Sivers-Shift, u-d - quarks

Ζ
`
= 0.41,
ÈbT È = 0.12 fm,
mΠ = 297 MeV

-10 -5 0 5 10 ¥-¥
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

ΗÈvÈ Hlattice unitsL

m
N

f� 1T¦
@1
D
H1
L
�

f� 1@1
D
H0
L
HG

eV
L

SIDIS�� DY

Sivers-Shift, u-d - quarks

Ζ
`
= 0.32,
ÈbT È = 0.11 fm,
mΠ = 317 MeV

-10 -5 0 5 10 ¥-¥
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

ΗÈvÈ Hlattice unitsL

m
N

f� 1T¦
@1
D
H1
L
�

f� 1@1
D
H0
L
HG

eV
L



Results: Sivers shift

Dependence on staple extent; sequence of panels at different |bT |
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Results: Sivers shift

Dependence on staple extent; sequence of panels at different |bT |
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Results: Sivers shift

Dependence of SIDIS limit on |bT |
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Results: Sivers shift

Dependence of SIDIS limit on ζ̂
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Results: Boer-Mulders shift

Dependence on staple extent
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Results: Boer-Mulders shift

Dependence of SIDIS limit on |bT |
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Results: Boer-Mulders shift

Dependence of SIDIS limit on ζ̂
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Dependence on the pion mass



Results: Sivers shift

Dependence on staple extent; sequence of panels at different |bT |
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Results: Sivers shift

Dependence on staple extent; sequence of panels at different |bT |
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Results: Sivers shift

Dependence on staple extent; sequence of panels at different |bT |
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Results: Sivers shift

Dependence of SIDIS limit on |bT |
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Results: Sivers shift

Dependence of SIDIS limit on ζ̂
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Results: Boer-Mulders shift

Dependence on staple extent
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Results: Boer-Mulders shift

Dependence of SIDIS limit on |bT |
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Results: Boer-Mulders shift

Dependence of SIDIS limit on ζ̂
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Progressing toward the physical pion mass

Production completed, analysis pending: RBC/UKQCD DWF ensemble at 170 MeV pion mass

2015 production: RBC/UKQCD DWF ensemble at the physical pion mass



Results: Sivers shift summary

Dependence of SIDIS limit on ζ̂

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

 0  0.2  0.4  0.6  0.8

S
iv

e
rs

 S
h

if
t 

(S
ID

IS
, 

u
-d

; 
G

e
V

)

�̂

|bT| ≈ 0.35 fmPreliminary!!

Exp. Estimate
DWF-on-AsqTad; 0.12 fm, 518 MeV
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Experimental value from global fit to HERMES, COMPASS and JLab data,
M. Echevarria, A. Idilbi, Z.-B. Kang and I. Vitev, Phys. Rev. D 89 (2014) 074013



Conclusions and Outlook

• Continued exploration of TMDs using bilocal quark operators with staple-shaped gauge link structures;
exploration of challenges posed by ζ̂ →∞ limit, discretization effects, physical limit.

• To avoid soft factors, multiplicative renormalization constants, considered appropriate ratios of Fourier-
transformed TMDs (“shifts”).

• These observables show no statistically significant variation under the considered changes of action, lattice
spacing and pion mass, except at very short distances.

• Analysis underway on an RBC/UKQCD 170 MeV pion mass ensemble, production on an RBC/UKQCD
ensemble at physical pion mass in preparation.

• Generalization to mixed transverse momentum / transverse position observables (Wigner functions) will give
direct access to quark orbital angular momentum; production underway.



Accessing Bjorken-x dependence

model, �l� � 2 fm
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Relation to Ji Large Momentum Effective Theory (LaMET)

Phenomenology Lattice QCD

Lattice calculation

Collins TMD
factorization

Ji LaMET
spatial soft factor

invariant
amplitudes

TMD ratios



K → πνν̄ decays on the lattice

Xu Feng (Columbia University)

in collaboration with N. H. Christ, A. Portelli and C. T. Sachrajda on
behalf of RBC-UKQCD collaboration

February 6, 2015

Xu Feng (Columbia) K → πνν̄ decays on the lattice February 6, 2015 1 / 23



Phenomenological background
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Three decay modes in K → πνν̄

Top-quark (short-distance) contributions dominate in K → πνν̄

K+ → π+νν̄
I t-quark contribution much larger than c-quark, but λt � λc

I this compensation makes c-quark important in A(K+ → π+ν̄ν)

At : Ac : Au = 68% : 29% : 3% [Cirigliano et.al. Rev. Mod. Phys.]

KL → π0νν̄, CP violating decay

I Im λc � Re λc ⇒ Ac suppressed, Im λu = 0 ⇒ Au = 0

KS → π0νν̄, similar as K+ decay, but too difficult in experiment

Only K+ → π+νν̄ might be interesting for a non-perturbative calculation
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Charm quark contribution, LD or SD dominated?

Ac is about 29%, if LD dominated, then very interesting for us

unfortunately, not likely the case

I Inami & Lim’s function for charm quark contribution

XB(xc) = xc(−1− ln(xc)), XZ (xc) = xc(−3/4− ln(xc)/4), xc =
m2

c

M2
W

I mc � MW ⇒ ln(xc) = −8.28, log term dominated
I in log term, most contribution from SD?

QCD perturbation theory [hep-ph/0603079], charm quark contribution
Pc , LO → NNLO, uncertainty from varying µc 26%→ 9.8%→ 2.4%

Pc = 0.369± 0.036theory ± 0.033mc ± 0.009αs NLO

Pc = 0.375± 0.009theory ± 0.031mc ± 0.009αs NNLO

Charm quark contribution is likely SD dominated
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SM error budget for K+ → π+νν̄

SM branching ratio for K+ → π+νν̄ [Brod, et.al. 1009.0947]

Br[K+ → π+νν̄] = (7.81+0.80
−0.71para ± 0.29theory)× 10−11

parametric error ∼ 10% comes from the input parameters, including

CKM : (|Vcb| : 56%, ρ̄ : 21%, η̄ : 4%) others : 19%

theory error ∼ 4% dominated by LD contribution δPc,u

χPT [hep-ph/0503107] δPc,u = 0.04± 0.02 ⇒ Br enhanced by 6%

6% is comparable to 10%, especially in the future uncertainties in
CKM matrix elements may be reduced

Important to determine LD contribution accurately
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Lattice methodology
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ūu
(π+)(K+)

W

Z

u, c, t

νν̄

ds̄

Z-exchange

ds̄

νν̄

Z

u, c, t

← Q1, Q2

← JZ
µ

∫
d4x 〈π|T [Q1,2(x)J

Z
µ (0)]|K〉

(π+)(K+)
ūu
ds̄

νν̄

WW

u, c, t

ℓ

W -box

ds̄
u, c, t

ℓ

νν̄

↑

O∆S=0

↑

O∆S=1

∫
d4x 〈πνν̄|T [O∆S=1(x)O∆S=0(0)]|K〉

Xu Feng (Columbia) K → πνν̄ decays on the lattice February 6, 2015 7 / 23



Non-local matrix element

We are going to calculate the non-local matrix element

T W ,` =

∫
d4x 〈π+, ν, ν̄|T [

O∆S=1︷ ︸︸ ︷
s̄γα(1− γ5)q × ν̄`γα(1− γ5)`(x)

¯̀γβ(1− γ5)ν` × q̄γβ(1− γ5)d(0)︸ ︷︷ ︸
O∆S=0

]|K+〉
∣∣∣∣
q=u−c

The (anti-)neutrino states are given by

〈νl(pν)|ν̄l(x)|0〉 = ū(pν)e ipνx , 〈ν̄l(pν̄)|νl(0)|0〉 = v(pν̄)e ipν̄0

Separate the hadronic and leptonic parts in TW ,`

T W ,` =

∫
d4x

Hαβ : hadronic part︷ ︸︸ ︷
〈π+|T [s̄γα(1− γ5)q(x) q̄γβ(1− γ5)d(0)] |K+〉

× ū(pν)γα(1− γ5)S`(x , 0)γβ(1− γ5)v(pν̄) e ipνx︸ ︷︷ ︸
ū(pν)Γαβv(pν̄): leptonic part

Xu Feng (Columbia) K → πνν̄ decays on the lattice February 6, 2015 8 / 23



Lorentz structure

For simplicity we may write

T W ,` = Hαβ ū(pν)Γαβv(pν̄) (1)

Due to the chiral property of the spinors ū(pν) and v(pν̄) ⇒

T W ,` = Tµ(pK , pν , pν̄) ū(pν)γµ(1− γ5)v(pν̄)

Massless neutrinos smplifies the structure of Tµ = F `(pK , pν , pν̄)pµK

T W ,` = F `(pK , pν , pν̄) ū(pν)/pK (1− γ5)v(pν̄) (2)

Combining Eq. (1) and (2), we have

Hαβ ū(pν)Γαβv(pν̄) = F `(pK , pν , pν̄)ū(pν)/pK (1− γ5)v(pν̄)

It can be shown that

F `(pK , pν , pν̄) =
Hαβ Tr[Γαβ/pν̄/pK (1− γ5)/pν ]

Tr[/pK (1− γ5)/pν̄/pK (1− γ5)/pν ]
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Short summary of procedures

K+

s

u

ℓ̄

ν ν̄

π+

d

u

Type 1

K+ π+

s

u

u− c

dℓ̄

ν ν̄
Type 2

hadronic Hαβ can be calculated from a 4-point correlation function

leptonic Γαβ involves a lepton propagator, here we use overlap fermion

then form factor F `(pK , pν , pν̄) can be determined

the decay amplitude for the W -box diagrams can be written as

A = G 2
FV

∗
usVud

∑
`=e,µ,τ

F `(pK , pν , pν̄)pµK ū(pν)γµ(1− γ5)v(pν̄)
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Lattice results
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Lattice setup

163 × 32× 16 domain wall fermion on Iwasaki gauge action

mπ = 420 MeV, mK = 540 MeV

a−1 = 1.729 GeV, mc chosen so that mMS
c (2 GeV)=863 MeV

every 10 of 8000 configurations are measured

collinear decay: momentum pK = (0, 0, 0), pπ = (−p,−p,−p),
pν = pν̄ = (p/2, p/2, p/2), p is chosen to satisfy mK = Eπ + Eν + Eν̄
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Minkowski vs Euclidean

Generic feature of non-local matrix element in 2nd order weak interaction

T M = i

∫
dt 〈f |T [O∆S=1(t)O∆S=0(0)]|K 〉

=
∑
ns

〈f |O∆S=1|ns〉〈ns |O∆S=0|K 〉
Ens − Ef + iε

−
∑
n

〈f |O∆S=0|n〉〈n|O∆S=1|K 〉
EK − En + iε

(3)

In Euclidean space

T E =

Tb∑
t=−Ta

〈f |T [O∆S=1(t)O∆S=0(0)]|K 〉

=
∑
ns

〈f |O∆S=1|ns〉〈ns |O∆S=0|K 〉
Ens − Ef

(
1− e(Ef −Ens )Tb

)
−
∑
n

〈f |O∆S=0|n〉〈n|O∆S=1|K 〉
EK − En

(
1− e(EK−En)Ta

)
(4)

Removing exp growing contamination, T E ⇒ T M (see A. Portelli’s talk)
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Double integration

Double integration as shown in KL − KS mass diff (N. Christ’s talk)

tb∑
t1=ta

tb∑
t2=ta

〈f |T [O∆S=1(t1)O∆S=0(t2)]|K 〉 emK t2e−mf t2

=
∑
ns

〈f |O∆S=1|ns〉〈ns |O∆S=0|K 〉
Ens − Ef

(
T − 1− e(Ef −Ens )T

Ens − Ef

)

−
∑
n

〈f |O∆S=0|n〉〈n|O∆S=1|K 〉
EK − En

(
T +

1− e(EK−En)T

EK − En

)
(5)

Here T = tb − ta + 1 is defined as size of the integral window

Remove exp., and fit with a + bT , the slope b is what we want

In this talk, we use the double integration to gain more precision
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Type 1 diagram

K+

s

u

ℓ̄

ν ν̄

π+

d

u
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Type 1 diagram, unintegrated matrix element

-15 -10 -5 0 5 10 15
t∆s=0

 - t∆s=1

-0.08

-0.06

-0.04

-0.02

0

e
µ
τ

type 1, unintegrated matrix element

-15 -10 -5 0 5 10 15
t∆s=0

 - t∆s=1

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01
type 1, zoom up

Only muon exp growing

e mode: no exp growing contamination due to helicity suppression

τ mode: no exp growing contamination since tau is heavy
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Integrated matrix element

6 8 10 12 14 16 18 20
integral window size

-3

-2

-1

0

e
µ
τ

type 1, integrated matrix element

6 8 10 12 14 16 18 20
integral window size

0

0.2

0.4

0.6

0.8
exp growing contamination removed

Right figure: the slope of the curve gives the F `(pK , pν , pν̄)
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F ` for type 1 diagram

F ` lattice model

e 3.244(90)× 10−2 3.352(12)× 10−2

µ 3.506(77)× 10−2 3.511(13)× 10−2

τ −2.871(70)× 10−3 −2.836(10)× 10−3

vacuum state dominance model assuming only single-lepton
contribution in the intermediate state

fK fπū(pν)/pK (1− γ5)
/q

q2 −m2
`
/pπ(1− γ5)v(pν̄)

= fK fπ
2q2

q2 −m2
`

ū(pν)/pK (1− γ5)v(pν̄)

with q = pK − pν = pπ + pν̄

in the above table, model values are given by Z−2
A fK fπ

2q2

q2−m2
`
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Type 2 diagram

K+ π+

s

u

u− c

dℓ̄

ν ν̄
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Type 2 diagram, left: unintegrated, right: integrated

-15 -10 -5 0 5 10 15
t∆s=0

 - t∆s=1

-0.08

-0.06

-0.04

-0.02

0

e
µ
τ

type 2, unintegrated matrix element

6 8 10 12 14 16 18 20
integral window size

-4

-3

-2

-1

0
type 2, integrated matrix element

intermediate state is given by `+ π0, since pion is heavy, we don’t observe
significant exponential growing effects
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SD divergence in type 2 diagram

loop integral for type 2 diagram is log divergent (also in Z. Bai’s case)

in the physical world, the SD divergence is cut off by physical MW

in the lattice calculation it is cut off by an energy scale Λlat ∼ 1
a

correction can be made through A− Alat
SD + Acont

SD =∫
d4x 〈f |T{O1(x)O2(0)}|K 〉 − 〈f |C lat(µ2)OSD |K 〉+ 〈f |C cont(µ2)OSD |K 〉 (6)

C lat(µ2) is determined non-perturbatively using RI/MOM approach

C cont(µ2) can be calculated perturbatively, not yet done
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Preliminary results

type 1 diagram

F ` lattice model

e 3.244(90)× 10−2 3.352(12)× 10−2

µ 3.506(77)× 10−2 3.511(13)× 10−2

τ −2.871(70)× 10−3 −2.836(10)× 10−3

type 2 diagram before subtraction

F ` lattice

e −2.164(31)× 10−1

µ −2.164(31)× 10−1

τ −9.03(14)× 10−2

type 2 diagram after subtraction, using C lat(µ2)

F ` µ2 = (2 GeV)2 µ2 = (3 GeV)2

e −1.400(31)× 10−1 −1.849(31)× 10−1

µ −1.402(31)× 10−1 −1.850(31)× 10−1

τ −4.13(14)× 10−2 −6.68(14)× 10−2
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Conclusion

so far we focus on the discussion of the W -box diagram

in the final result, it should be W -box + Z -exchange

type 1 diagram, single-lepton state dominates the contribution,
excited states very highly suppressed (OZI rule)

type 2 diagram, contribution (before sub.) 6 times larger than type 1,
(after sub.) 4-5 times larger

ChPT [hep-ph/0503107] consider type 1 diagram as O(p2)
contribution and type 2 as O(p4), thus type 2 � type 1

for type 2 diagram, correct cont. SD contribution need to be included

since type 2 diagram involve `+ π0, FV effects need to be esitmated
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Ongoing search for the H-dibaryon in two-flavor
lattice QCD

Anthony Francis∗ Jeremy Green Parikshit Junnarkar
Chuan Miao Thomas Rae Hartmut Wittig

Multi-Hadron and Nonlocal Matrix Elements in Lattice QCD
06.02.2015
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Why the H-dibaryon?
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Quark bag model: A stable dibaryon

I Stable dibaryon with:
I = 0, S = −2, JP = 0+

I Proposed in 1976:
I deep binding → exp. excluded
I shallow binding → possible

I Interesting question for lattice QCD
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Experimental constraints: The ”Nagara”-event

”Nagara”-event at KEK (2001):

I discovery of a 6
ΛΛHe double

hypernucleus

EΛΛ = 6.91± 0.16MeV.

I strong constraint on the existence of
the H-dibaryon, since

mH

!
> 2mΛ − BΛΛ

I i.e. its binding energy EH must be
smaller than EΛΛ

I due to the absence of 6
ΛΛHe→4 He+H
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The lattice perspective

I Shallow binding EH < 7MeV is a challenge for lattice QCD

I But: H is a good stepping stone calculation for lattice multi-hadron
systems and lattice nuclear physics

I Number of Wick contractions required goes like N =
∏Nf

i Nqi !

I The H = udsuds has N = 2!2!2! = 8 Wick contraction terms
I Can be done even by brute force
I Ideal test-bed for advanced contraction algorithms

I No antiquarks in the operator ⇒ No need for all-to-all propagators
(counter example: ππ-systems)

I Rule of thumb: Operators with heavy quarks are less noisy
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The H-dibaryon as a laboratory: ∆∆ from WASA@COSY

I Evidence of a resonance (dibaryon?) in the ∆∆ channel at COSY

I Here we have ∆∆ = uuuuuu with 6! = 720 Wick contraction terms

I Much harder for lattice ⇒ Gain experience with udsuds
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Rcent lattice calculations

I Past lattice efforts have found a bound H-dibaryon at Mπ > Mphys.
π

I It is not clear yet if it is bound or unbound at the physical point

Group Method Nf Nvol Mπ[MeV] BH [MeV]
HALQCD B-B potentials 3 1 1171 49.1(3.4)(5.5)

3 1015 37.2(3.7)(2.4)
1 837 37.8(3.1)(4.1)
1 672 33.6(4.8)(3.5)
1 469 26(4.4)(4.8)

NPLQCD 2pt 3 3 806 74.6(3.3)(3.4)
2+1 4 390 13.2(1.8)(4.0)

1 230 -0.6(8.9)(10.3)

I Our search so far has been focused on Nf = 2 ensembles with
Mπ = 451MeV and Mπ = 1GeV → here only Mπ = 1GeV shown
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Our ongoing search
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Local six-quark interpolating operators

We use six parity-projected quarks to form six-quark interpolating
operators of the form:

[abcdef ] = εijkεlmn(bTi Cγ5P+cj)(eTl Cγ5P+fm)(aTk Cγ5P+dn),

In the case mu = md , two operators can be formed in this way that
couple to the H-dibaryon:

H1 =
1

48
([sudsud ]− [udusds]− [dudsus])

H27 =
1

48
√

3
(3[sudsud ] + [udusds] + [dudsus]) ,

these belong to the singlet and 27-plet irreps of flavour SU(3)f .
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Contractions using a blocking algorithm

An efficient way to contract the six-quark operators into correlation
functions is to use a blocking algorithm:

I Form blocks of three propagators contracted into a color-singlet at
the source

B(α1, ξ
′
1, ξ
′
2, ξ
′
3) = εc1,c2,c3 (Cγ5P+)α2α3Sl(ξ1, ξ

′
1)Sl(ξ2, ξ

′
2)Ss(ξ3, ξ

′
3)

I Then sum over all permutations when contracting at the sink

[sudsud ] = (Cγ5P+)αβ × εc′1,c′2,c′3εc′4,c′5,c′6 (Cγ5P+)α′
2α

′
3
(Cγ5P+)α′

5α
′
6∑

σu,σd ,σs

B(α, ξ′σu(1), ξ
′
σd (2), ξ

′
σs (3))B(β, ξ′σu(4), ξ

′
σd (5), ξ

′
σs (6))
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Boosting the calculation: All-mode averaging

I Computing the propagator is the most costly part of the calculation
I AMA: Reduce the precision of propagator on multiple source

locations ⇒ correct the introduced bias via

O = Ohigh prec.
x0

−Olow prec.
x0

+
1

N∆x

∑
∆x

Olow prec.
x0+∆x

I Depending on the ensemble we gain a factor ∼ 1.5− 2 in speed

Sink Smearing

29.5

Deflation

5.4Contractions

14.4

Inversion

50.7

Sink Smearing

29.5

Deflation

5.4Contractions

14.4

Inversion

14.4

36.3

Truncated Solver
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Results: E1 ensemble

I L = 32, T = 64 at a = 0.063fm

I Mπ = 1GeV and MπL = 10

I Nconf = 168

I One high precision/low precision propagator solves for AMA bias

I Nsrc = 128 with low precision solves

I Double statistics using P+ and P− for the forward/backward
propagating states

I In total this makes:

168× 128× 2 = 43008 measurements

I κs = κud implies no mixing between the singlet and 27-plet irreps

I Multiple sets of smearing ⇒ GEVP for ground state determination
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Results: Effective masses

1.20

1.25

1.30

1.35

1.40

1.45

1.50
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a
m

eff

t/a

medium H1

(N,M) 2× 2 GEVP
2mΛ, medium

2mΛ

2mΛ − 35 MeV
2mΛ − 75 MeV

I At this point: No bound state seen with local six-quark operators
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Results: Extending the basis

This was the status of our study using local six-quark operators, as
presented at Lat’14. Possible issues:

I Insufficient statistics? Finite volume effects?

I Quenched strange quark

But, most importantly,

I we used only 〈qqqqqq(x), q̄q̄q̄q̄q̄q̄(0)〉 operators

Now, we extend our analysis and

I include 〈qqq(x)qqq(y), q̄q̄q̄q̄q̄q̄(0)〉 operators,

I more specifically, we compute the SU(3)f singlet combination:

H1 = − 1√
3

ΛΛ + ΣΣ +
2√
3

ΞN
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Results: Hint of a bound state

1.30
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a
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e
�
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2mΛ
H → H

H → BB

I At this point: Hint of a bound state using the new operators
I Next step, combine both analyses (combined fit? Matrix Prony?)
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Summary
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Summary

Status

I H-dibaryon is an interesting challenge for lattice QCD

I Laboratory system for learning to do e.g. the ∆∆ or nuclear physics

I On our heavy (Mπ = 1GeV) lattice we
I calculated 〈qqqqqq(x), q̄q̄q̄q̄q̄q̄(0)〉 operators
I extended our basis to 〈qqq(x)qqq(y), q̄q̄q̄q̄q̄q̄(0)〉 operators

⇒ Hint of bound state

Outlook

I Combine analyses to determine ground state

I Reduce the mass (again) to Mπ = 451MeV (E5) and further to
Mπ = 270 (F7)
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Lots to do!
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Three particles in a box: 
Mapping the finite-volume 

spectrum to the S-matrix
Maxwell T. Hansen 

!
Institut für Kernphysik and HIM, JG-Universität Mainz 

!
February 5th, 2014

MTH and Stephen R. Sharpe, arXiv:1408.5933, 2014  
(published in PRD) 
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The three-particle quantization condition 
is a necessary first step for using LQCD 

to investigate...

!(782)! ⇡⇡⇡

⇡⇡⇡ ! ⇡⇡⇡

resonances decaying to three or more hadrons

three-body forces

N(1440)! N⇡⇡

NNN ! NNN
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K ! ⇡⇡⇡ D ! K K
⇡⇡⇡⇡

weak decays coupling to three or more hadrons

D ! ⇡⇡
(couples to                )

Need QCD scattering amplitudes to relate 
finite-volume lattice matrix elements to 

physical decay amplitudes
Lellouch, L. & Lüscher, M.  

Commun. Math. Phys. 219, 31-44 (2001)

The three-particle quantization condition 
is a necessary first step for using LQCD 

to investigate...
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Outline
Two particle review	

!
Three particle quantization condition	

!
Relation to scattering amplitude	

!
Conclusion
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Particle content
Single scalar, mass all results for 

identical scalars
Relativistic field theory

(For pions in QCD this is G-parity)

Include all vertices 	

with even number of legs

5

Z2 symmetry

Theory is otherwise arbitrary...

m
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Finite volume

L

L

L

cubic, spatial volume 	

(extent   )

periodic boundary	

conditions

time direction infinite and Minkowski

Take    large enough to ignore e�mL
dropped 

throughout!

Take space to be continuous

lattice spacing set 
to zero

6

~p 2 (2⇡/L)Z3

L

L
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Two particles in a box

iM2!24m

E⇤
0 (L, ~P )

E⇤
1 (L, ~P )

E⇤
2 (L, ~P )

Following Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 (2005)

C

L

(E,

~

P ) ⌘
Z

L

d

4
x e

i(Ex

0�~

P ·~x)h0|T�(x)�†(0)|0i

Require E⇤ < 4m even-particle quantum numbers

Calculate                 to all orders in perturbation theory and 
determine condition of divergence.

CL(E, ~P )
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+

+ · · ·+

�† � �† �iK

iK iK�† �

CL(E, ~P ) = + + · · ·+

1Two particles in a box

iB

iB iB
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+

+ · · ·+

�† � �† �iK

iK iK�† �

CL(E, ~P ) = + + · · ·+

+�† � �† �

1

2

Two particles in a box

iB

iB iB
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+

+ · · ·+

�† � �† �iK

iK iK�† �

CL(E, ~P ) = + + · · ·+

+�† � �† �

++

+ + · · ·

iM

iM iM

A0A0

A0

A

A

A

CL(E, ~P ) = C1(E, ~P )

F F F

F F F

1

2

+ + · · ·iK iK iK

3

Two particles in a box

iB

iB iB

iB iB iB
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+

+ · · ·+

�† � �† �iK

iK iK�† �

CL(E, ~P ) = + + · · ·+

+�† � �† �

++

+ + · · ·

iM

iM iM

A0A0

A0

A

A

A

CL(E, ~P ) = C1(E, ~P )

F F F

F F F

CL(E, ~P ) = C1(E, ~P ) +A0iF
1

1� iM2!2iF
A

1

2

+ + · · ·iK iK iK

3

4

Two particles in a box

iB

iB iB
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Two-particle result
At fixed          , finite-volume spectrum                  	


is all solutions to

�L,P (E) = det[1� iM2!2iF ] = 0

(L, ~P )

diagonal matrix in 
angular momentum space

kinematic 
(related to Lüscher 

Zeta function)

�F ⌘



Max Hansen (UW/FNAL) 13

...is it useful?
At low energies, s-wave dominates

�L,P (E) = det[1� iM2!2iF ] = 0

[Ms
2!2(E

⇤
n)]�1 = �F s(En, ~P , L)

F s(E, ~P , L) ⌘ 1

2


1

L3

X

~k

�
Z

d3k

(2⇡)3

�
1

2!k2!P�k(E � !k � !P�k + i✏)

Two-particle result
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This can also be seen by replacing i-epsilon	

with principal value everywhere in derivation.

F �! Re F

Important for three-particle case

Note also, equation is real

M2!2 �! K2!2

pn cot �s
(pn)� ipn = �16⇡E⇤

n ReF s � ipn

[Ms
2!2(E

⇤
n)]�1 = �F s(En, ~P , L)

Two-particle result
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Now, three particles in a box

L

L

L
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Three particles in a box

iM2!2

Require m < E⇤ < 5m

iM3!3
E⇤

0 (L, ~P )
E⇤

1 (L, ~P )

E⇤
2 (L, ~P )

5m

m

odd-particle quantum numbers

C

L

(E,

~

P ) ⌘
Z

L

d

4
x e

i(Ex

0�~

P ·~x)h0|T�(x)�†(0)|0i

Assume no two-particle bound state
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New skeleton expansion

CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ +

+ · · ·

+

+ +

+

+ · · ·

No! We also need diagrams like

(propagators still fully dressed)

?

( should only contain connected diagrams)
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CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

New skeleton expansion

+

+ +

+ + · · ·

+ · · ·⌘

⌘

Kernel definitions:
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CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

New skeleton expansion

+

+ +

+ + · · ·

+ · · ·⌘

⌘

Kernel definitions:
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CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

New skeleton expansion

+

+ +

+ + · · ·

+ · · ·⌘

⌘

Kernel definitions:
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CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

New skeleton expansion

CL(E, ~P ) = + + + · · ·

Compare to two-particle skeleton expansion
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What is new here?
1. Degrees of freedom are different

â⇤ �! `,m
(E � !k, ~P � ~k)

(!k,~k)
BOOST

two particles three particles

Our result only depends  

on finite-volume.....~k
~k =

2⇡

L
~n

integer vector

two-particle angular 
momentum

two-particle angular 
momentum

+~k



Max Hansen (UW/FNAL) 23

What is new here?
2. Three particle divergences

contains the diagram

Certain external momenta 
put this on-shell has singularities

Three particle observable iM3!3

iM3!3
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What is new here?
2. Three particle divergences

S S S
infinite series 	


built with factors of...................
only on-shell	


amplitudes here

This subtraction emerges naturally in our 	

finite-volume analysis

⌘ iM3!3 �

iM2!2SiM2!2 +

Z
iM2!2SiM2!2SiM2!2 + · · ·

�
Define iMdf,3!3

SiM2!2
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What is new here?
3. Must now worry about sum crossing 

two-particle unitary cusp

k

1

L3

X

~k

depends on k

two particle energy

two-particle 
scattering 
(real part)

�2
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Analytically continue principal value below threshold	

then interpolate to prescription-free subthreshold form

26

What is new here?
3. Must now worry about sum crossing 

two-particle unitary cusp

Polejaeva, K. and Rusetsky,  A.  Eur. Phys. J.  A48 (2012) 67

To remove cusp
i✏ prescription

principal 	

value fPV
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What is new here?
3. Must now worry about sum crossing 

two-particle unitary cusp

standard definition

modification
fPV

To remove cusp
i✏ prescription

principal 	

value fPV



Max Hansen (UW/FNAL) 28

What is new here?
3. Must now worry about sum crossing 

two-particle unitary cusp

+ + + · · ·iM2!2 =

ieK2!2 =
+ + + · · ·

=
PV PV PV

has cusp

has no cusp
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What is new here?
3. Must now worry about sum crossing 

two-particle unitary cusp

We relate these infinite-volume quantities 
to the finite-volume spectrum

iM2!2

iMdf,3!3

iK2!2
iKdf,3!3
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Three-particle result

iF3 ⌘ iF

2!L3


1

3
+

1

1� iML,2!2 iG
iML,2!2 iF

�

iML,2!2 ⌘ iK2!2
1

1� iF iK2!2

CL(E, ~P ) = C1(E, ~P ) +A0
3iF3

1

1� iKdf,3!3 iF3
A3
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Three-particle result

iF3 ⌘ iF

2!L3


1

3
+

1

1� iML,2!2 iG
iML,2!2 iF

�

iML,2!2 ⌘ iK2!2
1

1� iF iK2!2

CL(E, ~P ) = C1(E, ~P ) +A0
3iF3

1

1� iKdf,3!3 iF3
A3

encodes 
switches

�
fPVsum-integral 

difference

sum of all two-particle loops (with summed momenta)
+ + + · · ·
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Three-particle result
CL(E, ~P ) = C1(E, ~P ) +A0

3iF3
1

1� iKdf,3!3 iF3
A3

iF3 ⌘ iF

2!L3


1

3
+

1

1� iML,2!2 iG
iML,2!2 iF

�

iML,2!2 ⌘ iK2!2
1

1� iF iK2!2

all in……………space~k, `, m
row matrices column
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Three-particle result
CL(E, ~P ) = C1(E, ~P ) +A0

3iF3
1

1� iKdf,3!3 iF3
A3

iF3 ⌘ iF

2!L3


1

3
+

1

1� iML,2!2 iG
iML,2!2 iF

�

no poles no poles no poles

diverges whenever            ……..                    diverges CL(E, ~P )

iML,2!2 ⌘ iK2!2
1

1� iF iK2!2

iF3
1

1� iKdf,3!3 iF3
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Three-particle result
At fixed          , finite-volume spectrum                  	


is all solutions to
(L, ~P )

matrix in................ 
space

depends on kinematics 
and two-particle 

scattering

~k, `, m

�L,P (E) = det [1� iKdf,3!3iF3] = 0
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Three-particle result

...is it useful?

truncate in angular momentum 
to reduce to finite matrices

need to explore parametrizations of...................

�L,P (E) = det [1� iKdf,3!3iF3] = 0

iKdf,3!3

need relation between….….…..andiM3!3 iKdf,3!3
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Threshold expansion
At weak coupling, perturbatively study  

finite-volume shift from threshold
E = 3m+O(1/L3)

finite-volume 	

shift

We find…
E = 3m+

12⇡a

mL3


1 +A

a

L
+B

a2

L2

�
+ C1

1

L6
� Kdf,3!3,thresh

48m3L6
+ C2

log(mL)

L6

C1 �
Kdf,3!3,thresh

48m3

A,B,C2 agree unambiguously with earlier work
Beane, S., Detmold, W. & Savage, M.  Phys. Rev. D76 (2007) 074507                 

Tan, S.  Phys. Rev. A78 (2008) 013636

related to non-relativistic contact interaction
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CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

Relating …………to iM3!3iKdf,3!3

First we modify……………to defineCL(E, ~P ) iML,3!3
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CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

Relating …………to iM3!3iKdf,3!3

1. Amputate interpolating fields
First we modify……………to defineCL(E, ~P ) iML,3!3
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CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

Relating …………to iM3!3iKdf,3!3

2. Drop disconnected diagrams
First we modify……………to defineCL(E, ~P ) iML,3!3
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CL(E, ~P ) =+ + + · · ·

+ + + + · · ·

Relating …………to iM3!3iKdf,3!3

+

+

+

+ · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

First we modify……………to defineCL(E, ~P ) iML,3!3

3. Symmetrize

iML,3!3 ⌘ S
⇢

�
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CL(E, ~P ) =+ + + · · ·

+ + + + · · ·

Relating …………to iM3!3iKdf,3!3

+

+

+

+ · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

iML,3!3 ⌘ S
⇢

�

Replacing all loop momentum sums with  
i-epsilon prescription integrals would give 
physical three-to-three scattering amplitude
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Relating …………to iM3!3iKdf,3!3

iF3 ⌘ iF

2!L3


1

3
+

1

1� iML,2!2 iG
iML,2!2 iF

�

⌘ iF

2!L3
LL ⌘ RL

iF

2!L3

iDL ⌘ S


1

1� iML,2!2 iG
iML,2!2 iG iML,2!2[2!L

3]

�

iML,3!3 = iDL + S

LL iKdf,3!3

1

1� iF3 iKdf,3!3
RL

�
We find a simple form for iML,3!3
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Relating …………to iM3!3iKdf,3!3

iML,3!3 = iDL + S

LL iKdf,3!3

1

1� iF3 iKdf,3!3
RL

�

Complete analysis with infinite volume limit

iM3!3 = lim
L!1

����
i✏

iML,3!3

We find a simple form for iML,3!3
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S S S

⌘ iM3!3 �

iM2!2SiM2!2 +

Z
iM2!2SiM2!2SiM2!2 + · · ·

�
iMdf,3!3Recall

iML,3!3 = iDL + S

LL iKdf,3!3

1

1� iF3 iKdf,3!3
RL

�

iDL ⌘ S


1

1� iML,2!2 iG
iML,2!2 iG iML,2!2[2!L

3]

�

It reappears here… iMdf,3!3 ⌘ lim
L!1

����
i✏

[iML,3!3 � iDL]

encodes switches
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Relating …………to iM3!3iKdf,3!3

iML,3!3 = iDL + S

LL iKdf,3!3

1

1� iF3 iKdf,3!3
RL

�

iM3!3 = lim
L!1

����
i✏

iML,3!3

Gives integral equation relating……………to  
!
Completes formal story (for the setup considered!) 
!
Relation only depends on on-shell scattering quantities!

iKdf,3!3 iM3!3
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Summary

L

L

L

Presented work relating  
finite-volume spectrum and three-to-three scattering.

Necessary first step for extracting any decay or scattering 
amplitude with more than two hadrons from Lattice QCD.
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Future work and Applications

L

L

L

Generalize Lellouch-Lüscher method, to extract  
three-particle weak decays

K �! ⇡⇡⇡

Extend mapping to four-particle states

Include non-identical, non-degenerate and spin-half particles



Max Hansen (UW/FNAL) 48

Following two particle case, suppose         .
can be approximated to be isotropic (only depends on     )E⇤

Isotropic approximation

F
3,iso ⌘

X

~k,~p

F
3;k,p

iF3 ⌘ iF

2!L3


1

3
+

1

1� iML,2!2 iG
iML,2!2 iF

�

K
df,3!3

(E⇤
n) = �[F

3,iso(En, ~P ,L)]�1

Kdf,3!3
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Three-particle result
At fixed           the finite-volume spectrum                  is the 

set of solutions to

where

(L, ~P ) E1, E2, · · ·

iGk,p ⌘ 1

2!pL3

iQ(~p⇤)Q⇤(~k⇤)

2!P�p�k(E � !p � !k � !P�p�k)

�L,P (E) = det[1� ieKdf,3!3iF3] = 0

iF3 ⌘
1

2!L3


� (2/3)iF fPV +

1

[iF fPV]�1 � [1� ieK2!2iG]�1ieK2!2

�

iF fPV;k,k0 ⌘ �k,k0
1

2


1

L3

X

~a

�fPV

Z

~a

�
iQ(~a⇤)Q⇤(~a⇤)

2!a2!P�k�a(E � !k � !a � !P�k�a)

with !2
k = ~k2 +m2 q⇤2 = (1/4)[E2 � ~P 2]�m2

and

Q`,m(~k⇤) ⌘
p
4⇡Y`,m(k̂⇤)(k⇤/q⇤)`
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Additional Material Concerning 
Differences Between Two- and Three-

Particle Quantization
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CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·

New skeleton expansion

Here I will only give first parts of derivation.	

!

This is to illustrate certain points, needed to understand the final result.
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C(1)
L =

First Part:  Sum “no-switch” diagrams

call the bottom momentum 	

important finite-volume corrections only arise from               .

C(1)
L ⌘ + + + · · ·+

1

L3

X

~k

1

2!k

⇢ ⇢
+ + + · · ·+

k0 = !k

bottom propagator replaced with............... 1/(2!k)

k
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Next substitute and regroup by F-cuts

+ + + · · ·+
1

L3

X

~k

1

2!k

⇢
+

F

= +

= + + + + · · ·=
= iM2!2

C(1)
L = +

⇢

⇢

1

L3

X

~k

⇢

C(1)
L =

First Part:  Sum “no-switch” diagrams

call the bottom momentum 	

important finite-volume corrections only arise from               .

C(1)
L ⌘ + + + · · ·+

1

L3

X

~k

1

2!k

⇢ ⇢
+ + + · · ·+

k0 = !k

bottom propagator replaced with............... 1/(2!k)

k
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Next substitute and regroup by F-cuts

+ + + · · ·+
1

L3

X

~k

1

2!k

⇢
+

F

= +

= + + + + · · ·=
= iM2!2

C(1)
L = Can this be replaced with an integral? No!+

⇢

⇢

1

L3

X

~k

⇢

C(1)
L =

First Part:  Sum “no-switch” diagrams

call the bottom momentum 	

important finite-volume corrections only arise from               .

C(1)
L ⌘ + + + · · ·+

1

L3

X

~k

1

2!k

⇢ ⇢
+ + + · · ·+

k0 = !k

bottom propagator replaced with............... 1/(2!k)

k
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1

L3

X

~k

f(~k) =

Z

~k
f(~k) +O(e�mL)

 only holds if .......... is an infinitely differentiable function with width............. ⇠ mf(~k)

has a unitary cusp at threshold
(E � !k)

2 � (~P � ~k)2 = 4m2

(analytically continue below threshold, then interpolate to standard subthreshold form)
Polejaeva, K. and Rusetsky,  A.  Eur. Phys. J.  A48 (2012) 67

To remove cusp

+C(1)
1 (~k) ⌘

Main Lesson Number 1: Cusp effects

i✏ prescription
principal  

value
fPV
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+ + + · · ·+
1

L3

X

~k

1

2!k

⇢
+

=

C(1)
L = Can this be replaced with an integral? No!+

⇢

⇢

1

L3

X

~k

⇢

= iM2!2

+ + + · · ·
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+ + + · · ·+
1

L3

X

~k

1

2!k

⇢
+

+ + + · · ·=

C(1)
L = But if we change pole prescription, then we	


can make the replacement
+

⇢

⇢

1

L3

X

~k

⇢

= ieK2!2

F fPV

All three-particle poles now have 
principal-value prescription

PV
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think of this as a new cut, 	

like F it puts neighbors on-shell

A

Deduce
⇥
A

⇤
⌘

iF fPV

2!L3

1

1 + eK2!2F fPV

C(1)
L = eC(1)

1 +
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[finite-volume momentum]x[angular momentum]

~k = ~k0 2 (2⇡/L)Z3

Finite volume residue terms (such as             ) are of the form:	


(row vector)x(matrix)x(column vector), acting on product space

Main Lesson Number 2: Matrix structure

A

For example,       is built from
⇥
A
⇤

think of this as a new cut, 	

like F it puts neighbors on-shell

Deduce
⇥
A

⇤
⌘

iF fPV

2!L3

1

1 + eK2!2F fPV

eK2!2;k0,`0,m0;k,`,m ⌘ �k0,k
eK2!2;`0,m0;`,m(E � !k, ~P � ~k)

F fPV;k0,`0,m0;k,`,m ⌘ �k0,k F fPV;`0,m0;`,m(E � !k, ~P � ~k)

C(1)
L = eC(1)

1 +
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[finite-volume momentum]x[angular momentum]

Finite volume residue terms (such as             ) are of the form:	


(row vector)x(matrix)x(column vector), acting on product space

A

â⇤ �! `,m
(E � !k, ~P � ~k)

(!k,~k)
BOOST

Observe that             parametrizes three particles with fixed~k, `,m (E, ~P )

think of this as a new cut, 	

like F it puts neighbors on-shell

Deduce

Main Lesson Number 2: Matrix structure

⇥
A

⇤
⌘

iF fPV

2!L3

1

1 + eK2!2F fPV

C(1)
L = eC(1)

1 +
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Second part:  Sum “one-switch” diagrams

+ · · ·

+ +

+

C(2)
L =

stands for terms that	

modify endcaps of ......

In this case we have two “spectator-momenta” 	

(momenta that do not appear in two-particle loops)

A A
+ · · ·

`,m

~k

~k0

`0,m0

Between    factors we have first contribution to three-to-three scattering

C(1)
L

A

ieK(2,unsym)
3!3;k0,`0,m0;k,`,m ⌘

C(2)
L = eC(2)

1 +
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~k0
`,m

~k

`0,m0

Certain external moment put the intermediate propagator on-shell

This implies that this diagram, and indeed also the full	

................. has physical singularities above threshold

nothing to do with bound states

Main Lesson Number 3: On-shell divergences

This is a problem because K-matrix is symmetric in external momenta

`0,m0
`,m

But this would demand decomposing a singular function in Y`,m

The decomposition is not valid!

ieK(2,unsym)
3!3;k0,`0,m0;k,`,m ⌘

ieK3!3

ieK3!3;k0,`0,m0;k,`,m

!
�
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Resolution:  Introduce

...................... is finite: 	

Can decompose in harmonics and truncate expansion at low energies

It makes sense to recover singularity-free quantity from finite-
volume spectrum.  

Then add singular terms back in.

S

�

The approach of separating out singularities like this was first suggested 
over 40 years ago (Rubin et al.  PR 146-6 (1966))

represents simple 	

kinematic pole factor

on-shell

ieK(2,unsym)
df,3!3 ⌘ ieK(2,unsym)

3!3 � ieK2!2SieK2!2

ieKdf,3!3
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This pattern of separating out singularities persists to all orders

S S S

Definition arises from analyzing all two-to-two diagrams

is the natural observable to extract from 
the finite-volume spectrum

Define

infinite series built	

with factors of...................

only on-shell	

amplitudes here

ieKdf,3!3 ⌘ ieK3!3 �

ieK2!2SieK2!2 +

Z
ieK2!2SieK2!2SieK2!2 + · · ·

�

SieK2!2

ieKdf,3!3;k0,`0,m0;k,`,m
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Review Lessons

â⇤ �! `,m
(E � !k, ~P � ~k)

(!k,~k)
BOOST

2. In the three particle case, all matrices act on product space
[finite-volume momentum]x[angular momentum]

~k, `,mIn other words, they have indices

needed to describe 
three particles

3. Singularities in....................invalidate decomposition in............. 	

!

Y`,m

Resolution is to introduce

+ + · · ·
 

S S S
This object arises naturally in finite-volume analysis.

1. Need modified principal value to remove cusp effects

ieKdf,3!3 ⌘ ieK3!3�

ieK3!3

ieKdf,3!3
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Intro- and Two-Particle Material



What can we extract from LQCD?
We are trying to evaluate a difficult integral numerically

hT�1 · · ·�ni =
Z
D� eiS �1 · · ·�n



What can we extract from LQCD?
We are trying to evaluate a difficult integral numerically

To do so we have to make three compromises

nonzero lattice spacing

Euclidean time

ReE

ImE

finite volume

hT�1 · · ·�niEuc, latt, fv =

Z NY

i

d�i e
�S �1 · · ·�n



What can we extract from LQCD?
Not possible to directly calculate

h⇡⇡|J |⇡ih⇡⇡|H|Ki

h⇡⇡|⇡⇡i

hK⇡⇡|J |Bi
hK⇡|J |Bi

h⇡⇡⇡|⇡⇡⇡i



What can we extract from LQCD?
Not possible to directly calculate

h⇡⇡|J |⇡ih⇡⇡|H|Ki
multi-particle in- and outstates

h⇡⇡|⇡⇡i

hK⇡⇡|J |Bi
hK⇡|J |Bi

h⇡⇡⇡|⇡⇡⇡i



What can we extract from LQCD?
Not possible to directly calculate

h⇡⇡|J |⇡ih⇡⇡|H|Ki
multi-particle in- and outstates

h⇡⇡|H|Ki = Amputate and put on-shell
h0|⇡̃(p0)⇡̃(k0) H(x) K̃(P )|0i

Requires Minkowski momenta and infinite-volume

Amputate and put on-shell
h⇡⇡|⇡⇡i = h0|⇡̃(p0)⇡̃(k0) ⇡̃(p)⇡̃(k)|0i

h⇡⇡|⇡⇡i

hK⇡⇡|J |Bi
hK⇡|J |Bi

h⇡⇡⇡|⇡⇡⇡i
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In 1991 M. Lüscher found a method to circumvent this issue 
and extract....................scattering from LQCD.

His key insight was to use finite-volume as a tool. 	

!

He gave a mapping between finite-volume spectrum and 
elastic pion scattering amplitude.

Lüscher, M. Nucl. Phys B354, 531-578 (1991)

⇡⇡ ! ⇡⇡

⇡⇡ ! ⇡⇡

L

L

L
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Lüscher’s method has led to a large body of work extracting 
phase shifts from Lattice QCD.

GIVE SOME EXAMPLES HERE

m⇡ = 391MeV

⇡
⇡
!

⇡
⇡

⇢ resonance

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505
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However, there is no general method for extracting 
scattering amplitudes involving more than two hadrons.

As a result LQCD cannot investigate...
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However, there is no general method for extracting 
scattering amplitudes involving more than two hadrons.

As a result LQCD cannot investigate...

!(782)! ⇡⇡⇡

⇡⇡⇡ ! ⇡⇡⇡

resonances which decay into more than two hadrons

three-body forces

N(1440)! N⇡⇡

NNN ! NNN
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However, there is no general method for extracting 
scattering amplitudes involving more than two hadrons.

As a result LQCD cannot investigate...

K ! ⇡⇡⇡ D ! K K
⇡⇡⇡⇡

weak decays coupled to channels containing more 
than two hadrons

D ! ⇡⇡
(couples to                )

Need strong scattering to relate lattice weak 
matrix elements to physical decay amplitudes

Lellouch, L. & Lüscher, M.  
Commun. Math. Phys. 219, 31-44 (2001)
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In recent years important progress has been made towards 
extracting three-particle scattering.

Polejaeva, K. and Rusetsky,  A.  Eur. Phys. J.  A48 (2012) 67
Briceno, R. A. and Davoudi, Z.  Phys. Rev. D87 (2013) 094507

However a relativistic, model-independent method is still 
unknown.

This is the focus of today’s talk.

⇡⇡ ! ⇡⇡
⇡⇡⇡ ! ⇡⇡⇡

L

L

L
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Outline

Detailed set-up	

!
Two particles in a box	

!
Three particles in a box	

!
Conclusion

78
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Particle content
Single scalar, mass m

all results for 
identical scalars

Relativistic field theory

(For pions in QCD this is G-parity)

Include all vertices 	

with even number of legs

79

Z2 symmetry

Theory is otherwise arbitrary...
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Finite volume

L

L

L

cubic, spatial volume 	

(extent   )

periodic boundary	

conditions

time direction infinite and Minkowski

Take    large enough to ignore e�mL
dropped 

throughout!

Take space to be continuous

lattice spacing set 
to zero

80

~p 2 (2⇡/L)Z3

L

L
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L

L

L

81

Finite volume Infinite volume

iMn!m

Discrete energy 
spectrum

Scattering 
amplitudes

E0(L)

E1(L)

E2(L) Determine mapping 
between theories 
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C

L

(E,

~

P ) ⌘
Z

L

d

4
x e

i(Ex

0�~

P ·~x)h0|T�(x)�†(0)|0i

82

Determine relation using finite-volume correlator
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C

L

(E,

~

P ) ⌘
Z

L

d

4
x e

i(Ex

0�~

P ·~x)h0|T�(x)�†(0)|0i

83

Determine relation using finite-volume correlator

interpolating fieldenergy     , momentum

CM energy

E ~P = (2⇡/L)~nP

E⇤2 ⌘ E2 � ~P 2
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C

L

(E,

~

P ) ⌘
Z

L

d

4
x e

i(Ex

0�~

P ·~x)h0|T�(x)�†(0)|0i

84

Determine relation using finite-volume correlator

We calculate                 to all orders in perturbation theory 
and determine condition of divergence.

At fixed          poles in       give finite-volume spectrumL, ~P , CL

CL(E, ~P )

energy     , momentum

CM energy

E ~P = (2⇡/L)~nP

E⇤2 ⌘ E2 � ~P 2
interpolating field
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C

L

(E,

~

P ) ⌘
Z

L

d

4
x e

i(Ex

0�~

P ·~x)h0|T�(x)�†(0)|0i

85

First, two particles in a box

Require E⇤ < 4m even-particle quantum numbers

iM2!24m

E⇤
0 (L, ~P )

E⇤
1 (L, ~P )

E⇤
2 (L, ~P )

Derivation from Kim, Sachrajda and Sharpe. Nucl. Phys. B727, 218-243 
(2005)
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CL(E, ~P ) ⌘ +

+ + + · · ·

�†

�†

�†

�†

�

�

�

�

86

fully dressed 
propagators

infinite set of terms!
no assumed suppression

spatial loop momenta  
are summed

1

L3

X

~k2(2⇡/L)Z3

Z
dk0

2⇡
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CL(E, ~P ) ⌘ +

+ + + · · ·

�†

�†

�†

�†

�

�

�

�

87

fully dressed 
propagators

infinite set of terms!
no assumed suppression

Key observation: 
If particles in summed loops cannot all go on shell, then replace

spatial loop momenta  
are summed

1

L3

X

~k2(2⇡/L)Z3

Z
dk0

2⇡

1

L3

X

~k

�!
Z

d3k

(2⇡)3
difference is order

e�mL
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CL(E, ~P ) ⌘ +

+ + + · · ·

�†

�†

�†

�†

�

�

�

�

88

Since                , only two particles with 
total momentum           can go on-shell

E⇤ < 4m
(E, ~P )

1

L3

X

~k

�!
Z

~k
⌘

Z
d3k

(2⇡)3
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+

+ + + · · ·

�†

�†

�†

�†

�

�

�

�

CL(E, ~P ) = these loops are now 
integrated
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+

+ + + · · ·

�†

�†

�†

�†

�

�

�

�

CL(E, ~P ) = these loops are now 
integrated

iK�† �

+ · · ·�† �+ + + · · ·
�

+

⇢

+

+ · · ·+

�† � �† �iK

iK iK�† �

CL(E, ~P ) =

CL(E, ~P ) =

infinite-volume 
Bethe-Salpeter kernel
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Next we introduce an important identity

1

L3

X

~k

Z

~k

= +�† � �† � �† �

91

+

+ · · ·+

�† � �† �iK

iK iK�† �

CL(E, ~P ) =

contains all	

power-law	

corrections

F
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Next we introduce an important identity
on-shell

1

L3

X

~k

Z

~k

= +�† � �† � �† �

off-shell

92

+

+ · · ·+

�† � �† �iK

iK iK�† �

CL(E, ~P ) =

contains all	

power-law	

corrections

F
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+

+ · · ·+

�† � �† �iK

iK iK�† �
+�† � �† �

93

CL(E, ~P ) =

iK iKiK iK�† � �† � �† � �† �+ + +

F

F

F F F F
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+

+ · · ·+

�† � �† �iK

iK iK�† �
+�† � �† �

94

CL(E, ~P ) =

iK iKiK iK�† � �† � �† � �† �+ + +

Now regroup by number of F cuts

F

F

F F

A0A

CL(E, ~P ) = C1(E, ~P )
⇢ ⇢

+ + · · ·+ � �iK
⇢ ⇢

+ + · · ·�† iK�†

zero F cuts one F cut

F

these infinite-volume 
quantity do not 

appear in final result

F F
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+

+ · · ·+

�† � �† �iK

iK iK�† �
+�† � �† �

95

⇢ ⇢
+ + · · · + · · ·+

iM

A0A iK iK iK

CL(E, ~P ) =

iK iKiK iK�† � �† � �† � �† �+ + +

F

F

F F

CL(E, ~P ) = C1(E, ~P )+

two F cuts

A0A

F F

F F

F

As Promised!	

infinite-volume on-shell two-to-two 

scattering amplitude

Now regroup by number of F cuts
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++

+ + · · ·

iM

iM iM

A0A0

A0

A

A

A

CL(E, ~P ) = C1(E, ~P )

CL(E, ~P ) = C1(E, ~P ) +
1X

n=0

A0iF [iM2!2iF ]nA

F F F

F F F
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++

+ + · · ·

iM

iM iM

A0A0

A0

A

A

A

CL(E, ~P ) = C1(E, ~P )

CL(E, ~P ) = C1(E, ~P ) +
1X

n=0

A0iF [iM2!2iF ]nA

CL(E, ~P ) = C1(E, ~P ) +A0iF
1

1� iM2!2iF
A

no poles no poles
no poles

F F F

F F F

diverges whenever                                  diverges iF
1

1� iM2!2iF
CL(E, ~P )
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+

+ · · ·+

�† � �† �iK

iK iK�† �

CL(E, ~P ) = + + · · ·+

Two-particle review 1
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+

+ · · ·+

�† � �† �iK

iK iK�† �

CL(E, ~P ) = + + · · ·+

+�† � �† �

Two-particle review 1

2
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+

+ · · ·+

�† � �† �iK

iK iK�† �

CL(E, ~P ) = + + · · ·+

+�† � �† �

++

+ + · · ·

iM

iM iM

A0A0

A0

A

A

A

CL(E, ~P ) = C1(E, ~P )

F F F

F F F

Two-particle review 1

2

+ + · · ·iK iK iK

3
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+

+ · · ·+

�† � �† �iK

iK iK�† �

CL(E, ~P ) = + + · · ·+

+�† � �† �

++

+ + · · ·

iM

iM iM

A0A0

A0

A

A

A

CL(E, ~P ) = C1(E, ~P )

F F F

F F F

CL(E, ~P ) = C1(E, ~P ) +A0iF
1

1� iM2!2iF
A

Two-particle review 1

2

+ + · · ·iK iK iK

3

4
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Two-particle result
At fixed          , finite-volume spectrum                  	


is all solutions to

�L,P (E) = det[1� iM2!2iF ] = 0

(L, ~P )

diagonal matrix in 
angular momentum space

kinematic 
(related to Lüscher 

Zeta function)

�F ⌘
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...is it useful?
At low energies, s-wave dominates

�L,P (E) = det[1� iM2!2iF ] = 0

[Ms
2!2(E

⇤
n)]�1 = �F s(En, ~P , L)

F s(E, ~P , L) ⌘ 1

2


1

L3

X

~k

�
Z

d3k

(2⇡)3

�
1

2!k2!P�k(E � !k � !P�k + i✏)

Two-particle result
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This can also be seen by replacing i-epsilon	

with principal value everywhere in derivation.

F �! Re F

Important for three-particle case

Note also, equation is real

M2!2 �! K2!2

pn cot �s
(pn)� ipn = �16⇡E⇤

n ReF s � ipn

[Ms
2!2(E

⇤
n)]�1 = �F s(En, ~P , L)

Two-particle result



L [fm] p⇤ [MeV]

� [degrees]p⇤ [MeV]

n=0

n=1

n=2

n=3

Ms
2!2(E) =

16⇡E

p cot �(p)� ip

pn cot �(pn) = �16⇡E⇤
nReF
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16⇡E
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pn cot �(pn) = �16⇡E⇤
nReF
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nReF
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Ms
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16⇡E

p cot �(p)� ip

pn cot �(pn) = �16⇡E⇤
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L [fm] p⇤ [MeV]

� [degrees]p⇤ [MeV]

n=0

n=1

n=2

n=3

Ms
2!2(E) =

16⇡E

p cot �(p)� ip

pn cot �(pn) = �16⇡E⇤
nReF



GIVE SOME EXAMPLES HERE

m⇡ = 391MeV

⇡
⇡
!

⇡
⇡

⇢ resonance

from Dudek, Edwards, Thomas in Phys.Rev. D87 (2013) 034505

pn cot �J=1(pn) = �16⇡E⇤
n Re F10;10(En, ~P , L)



Scattering of multiple two-particle channels
⇡⇡ ! KK

Make following replacements

0

@
iB⇡⇡!⇡⇡ iB⇡⇡!KK

iBKK!⇡⇡ iBKK!KK

1

A

iK

0

@
iB⇡⇡!⇡⇡ iB⇡⇡!KK

iBKK!⇡⇡ iBKK!KK

1

A
iK1!1 iK1!2

iK2!2iK2!1

⇡K ! ⌘K



Scattering of multiple two-particle channels
⇡⇡ ! KK

One finds

det


1�

✓
iM1!1 iM1!2

iM2!1 iM2!2

◆✓
iF1 0
0 iF2

◆�
= 0

M. Lage, U.-G. Meißner, and A. Rusetsky, Phys.Lett., B681, 439 (2009) 
V. Bernard, M. Lage, U.-G. Meißner, and A. Rusetsky, JHEP, 1101, 019 (2011) 

M. Döring, U.-G. Meißner, E. Oset, and A. Rusetsky, Eur.Phys.J., A47, 139 (2011) 
MTH, S. R. Sharpe, Phys.Rev. D86 (2012) 016007 

R. A. Briceño, Z. Davoudi, Phys.Rev. D88 (2013) 094507 

⇡K ! ⌘K
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Already implemented in LQCD calculation

from Dudek, Edwards, Thomas, Wilson in arXiv:1406:4158 

⇡K ! ⌘K

M(⇡K ! ⌘K) ⇠
p

1� ⌘2



“Multi-Hadron and Nonlocal Matrix Elements in Lattice QCD”
@BNL, 5-6Feb. 2015.

Yoichi Ikeda
(RIKEN, Nishina Center)

Structure of Charmed Tetraquarks 
from LQCD

Sinya Aoki (YITP, Kyoto Univ.)
Takumi Doi, Tetsuo Hatsuda, Yoichi Ikeda, Vojtech Krejcirik (RIKEN)
Takashi Inoue (Nihon Univ.)
Noriyoshi Ishii, Keiko Murano (RCNP, Osaka Univ.)
Hidekatsu Nemura, Kenji Sasaki, 
Masanori Yamada, Takaya Miyamoto (Univ. Tsukuba)

HAL QCD (Hadrons to Atomic nuclei from Lattice QCD)



BaBar Collaboration

Spectrum of charmonium(-like) system

 Quark potential models well describe 
mass spectra below open charm threshold

Godfrey, Isgur, PRD 32 (1985).
Barnes, Godfrey, Swanson, PRD 72 (2005).

 “NEW” charmonium-like (X, Y, Z) states:
➡ not within quark model spectrum
➡ candidates of exotic hadrons

 “Tetraquark” Tcc (ccubardbar) is manifest 4-quark channel
 “Charged” charmonium-like states (ccbar + π+/-) require at least 4 quarks

Our target: tetra-quark channels

 “Other” exotic candidates (expected from quark models):
➡ doubly charmed tetra-quark, but experimentally not observed so far



Key dynamics involving heavy quarks
g / �µ�a

2c ⇠ c̄�µ�a

2
cAa ➡ color magnetic + color electric forces

• Color magnetic interaction : mass splitting

H. J. Lipkin, PLB172, 242 (1986).
V CMI
ij / �

�
~�(i) · ~�(j)

��
~�(i) · ~�(j)

�

MiMj

magnetic interactions << electric interactions
➡ magnetic gluon coupling is suppressed by O(1/mc)

✓ Heavy quark spin symmetry

➡ I=0 [ud]-diquark correlation (good diquark) --> Tcc bound state?

• Color electric interaction : threshold

BESIII Coll., PRL110 (2013). Belle Coll., PRL110 (2013).

• Zc(3900) is near threshold resonance?
• JP = 1+ seems most probable
• DbarD* molecule? ccbar + meson cloud?



Contents

• Introduction

• HAL QCD method to define (coupled-channel) potentials

• Tcc in I(JP)=0,1(1+) channels [DD* single-channel]

• Zc(3900) in I(JP)=1(1+) [πJ/Ψ-ρηc-DbarD* coupled-channel]

• Summary

DbarD* = 3872

πJ/Ψ = 3232

Δ = 640

Zc(3900)DD* = 3872

Tcc (I=0)?



Two identical methods for scattering

Lüscher, NPB354, 531 (1991).

• Lüscher’s finite size formula
interaction energy --> phase shift kcot�(k) =

1

a

�
1

2
rek

2 + · · ·

• Scattering parameters



Kurth et al., JHEP 1312 (2013) 015.
• Guaranteed to be the same

E ~ 45 MeV

E ~ 0 MeV

Ishii, Aoki, Hatsuda, PRL99, 02201 (2007).
Aoki, Hatsuda, Ishii, PPTP123, 89 (2010).

• NBS wave function

• Energy-independent potential

Two identical methods for scattering

Lüscher, NPB354, 531 (1991).

• Lüscher’s finite size formula
interaction energy --> phase shift kcot�(k) =

1

a

�
1

2
rek

2 + · · ·

• Scattering parameters



Kurth et al., JHEP 1312 (2013) 015.
• Guaranteed to be the same

E ~ 45 MeV

E ~ 0 MeV

Ishii, Aoki, Hatsuda, PRL99, 02201 (2007).
Aoki, Hatsuda, Ishii, PPTP123, 89 (2010).

• NBS wave function

• Energy-independent potential

Two identical methods for scattering

Lüscher, NPB354, 531 (1991).

• Lüscher’s finite size formula
interaction energy --> phase shift kcot�(k) =

1

a

�
1

2
rek

2 + · · ·

• Scattering parameters

✓ LQCD potentials can be applied to...
properties of  hadrons & nuclei, construction of EOS, etc.



Resonance from LQCD

T-matrix in formal scattering theory (N/D method)

Interaction part is not determined within scattering theory

➡ interactions faithful to phase shift from LQCD

T�1(
p
s) = V �1 +

1

2⇡

Z 1

s+

ds0
⇢(s0)

s0 � s



Resonance from LQCD

T-matrix in formal scattering theory (N/D method)

Interaction part is not determined within scattering theory

➡ interactions faithful to phase shift from LQCD

T�1(
p
s) = V �1 +

1

2⇡

Z 1

s+

ds0
⇢(s0)

s0 � s

Bound states (physical sheet, 1st)

• binding energy --> T-matrix pole position
• coupling --> residue of pole

Resonance/Virtual states (unphysical sheet, 2nd)

• Analytic continuation of T-matrix
• resonance energy --> T-matrix pole position
• coupling --> (complex) residue of pole?

Im
[p
]

Re[p]

Analyticity of T-matrix is uniquely determined 



“Potentials” in QCD
Hadron 4pt functions & Nambu-Bethe-Salpeter (NBS) wave function 

L

a

~x

⌧

X

X

• Helmholtz eq. of NBS wave func.

• NBS wave func. in QFT ~ wave func. in Q.M.

 (l)

W (~k)
(r) ⇠

ei�l(k)

kr
sin

�
kr + �l(k) � l⇡/2

�

(r2 + (~ka)2) a
W (~k)

(~r) = 0 (|~r| > R)

 

ab(~r, ⌧ ) =
X

~x

h0|�a

1(~x + ~r, ⌧ )�a

2(~x, ⌧ )J b†(⌧ = 0)|0i

=

X

n

Ab
nexp

h
�Wn⌧

ip
Za

1

p
Za

2 
a
n(~r)

• Coupled-channel potentials are energy-independent (non-local in general)

R• Coupled-channel potential matrix (faithful to phase shifts)

Aoki et al. [HAL QCD Coll.], Proc. Jpn. Acad., Ser. B, 87 (2011); PTEP 2012, 01A105 (2012).

⇣
r2 + (~ka)2

⌘
 a

n(~r) = 2µa
X

b

Z
d~r0Uab(~r,~r0) b

n(~r
0)



HAL QCD method
✓ Definition of energy-independent coupled-channel potentials :

Aoki, Hatsuda, Ishii, PTP123, 89 (2010).
 n(~r) = h0|�a

1(~r + ~x)�a
2(~x)|Wn; J

P i
⇣
r2 + (~ka)2

⌘
 a

n(~r) = 2µ
X

b

Z
d~r0Uab(~r,~r0) b

n(~r
0)

✓ Extract energy-independent potential from time-dependent Schrödinger-type eq.
Ishii et al,(HAL QCD), PLB712, 437(2012).

Rab(~r, ⌧ ) ⌘  ab(~r, ⌧ )
e(m

a
1+ma

2)⌧

p
Za

1

p
Za

2

�@⌧ + r2/2µa + @2

⌧/8µ
a + O(�2)

�
Rab(~r, ⌧ ) =

X

c

Z
d~r0�acUac(~r,~r0)Rcb(~r0, ⌧ )

� =
ma

1 � ma
2

ma
1 + ma

2
�ac =

e(m
a
1+ma

2)t

e(m
c
1+mc

2)t

✤ Since energy-independent potential can produce all scattering states, 
single-state saturations in simulations is not required

✓ Velocity expansion:

(LO)U(⇥r,⇥r0) = V (⇥r,r)�(⇥r � ⇥r0) (NLO)
V (~r,r) = VC(~r) + ~L · ~SVLS(~r) + O(r2)

✓ Calculate observable: phase shift, binding energy, pole position, ...



Tcc in I(JP)=0,1(1+)

Asymptotic states : DD* (s-wave)



Lattice QCD Setup

Nf=2+1 full QCD configurations generated by PACS-CS Coll.
PACS-CS Coll., S. Aoki et al., PRD79, 034503, (2009).

• Iwasaki gauge & O(a)-improved Wilson quark actions

• a=0.0907(13) fm  --> L~2.9 fm (32^3 x 64)

Light meson mass [conf.1, conf.2, conf.3] (MeV)
Mπ=699(1), 572(2), 411(2)  [PDG:135 (π0)]
MK=787(1), 714(1), 635(2)  [PDG:498 (K0)]

Tsukuba-type Relativistic Heavy Quark (RHQ) action for charm quark

➡ remove leading cutoff errors O(mc a), O(ΛQCD a), ...
• We are left with O((aΛQCD)2) error (~ a few %)
• We employ RHQ parameters tuned by Namekawa et al.

S. Aoki et al., PTP109, 383 (2003)

Charmed meson mass [conf.1, conf.2, conf.3] (MeV)
Mηc=3024(1), 3005(1), 2988(2)  [PDG:2981]
MJ/Ψ=3142(1), 3118(1), 3097(2)  [PDG:3097]

MD=1999(1), 1946(1), 1902(3)  [PDG:1865 (D0)]
MD*=2159(4), 2099(6), 2048(12)  [PDG:2007 (D*0)]

Y. Namekawa et al., PRD84, 074505 (2011)



S-wave DD* in I=1 : “bad” diquark

• Repulsive s-wave potentials of DD*

• Weak quark mass dependence

• It is unlikely to form bound state even at physical point

Y. Ikeda et al. (HAL QCD), PLB729, 85 (2014).



S-wave DD* in I=0 : “good” diquark

• Attractive S-wave potentials

• Attraction increases, as mq decreases

• Check whether bound Tcc exist or not --> phase shift analysis 

Y. Ikeda et al. (HAL QCD), PLB729, 85 (2014).



• Attraction is not sufficiently strong to generate bound state

• Rapid increase at threshold of DD* phase shift --> effect of virtual state?

S-wave phase shifts : Tcc in I=0

• solve Schrödinger equation --> phase shifts
Y. Ikeda et al. (HAL QCD), PLB729, 85 (2014).

➡ examine pole position



I=0 DD* T-matrix on complex energy plane

• Virtual pole on the DD* unphysical energy plane

➡ threshold cusp of the amplitude

➡ rapid increase of scattering phase shift

• Pole search w/ LQCD potential@mπ=410MeV

Im
[p
]

Re[p]

❖ Analytic continuation



Zc(3900) in IG(JP)=1+(1+)

BESIII Coll., PRL110, 252001, (2013). Belle Coll., PRL110, 252002, (2013).



Lattice QCD setup

Light meson mass (MeV)
Mπ= 411(2)  [PDG:135 (π0)]

Mρ= 895(14)  [PDG:775]

Charmed meson mass (MeV)
Mηc= 2988(2)  [PDG:2981]
MJ/Ψ= 3097(2)  [PDG:3097]

MD= 1902(3)  [PDG:1865 (D0)]
MD*= 2048(12)  [PDG:2007 (D*0)]

✤ S-wave πJ/Ψ - ρηc - DbarD* coupled-channel analysis is performed

✤ Nf=2+1 full QCD configurations (PACS-CS) w/ L=2.9fm
S. Aoki et al. (PACS-CS Coll.), PRD79, 034503, (2009).

✤ Tsukuba-type RHQ action for charm quark
S. Aoki et al., PTP109, 383 (2003)
Y. Namekawa et al., PRD84, 074505 (2011)

✦ Thresholds in IGJP=1+1+ channel

DbarD* = 3872

ππηc = 3256

πΨ’ = 3821

πJ/Ψ = 3232
Physical thresholds

DbarD* = 3951

πJ/Ψ = 3508

ρηc = 3883

LQCD simulation
• MπΨ’ > MDbarD* due to heavy pion mass
• ρ-->ππ decay not allowed in our setup



• VDbarD*-DbarD*

• Vρηc-ρηc

• VπJ/Ψ-πJ/Ψ

Potential matrix (πJ/Ψ - ρηc - DbarD*)

• All diagonal potentials are weak

➡ no bound DbarD*

weak
weak

weak



• Vρηc-ρηc

• VDbarD*-DbarD*

• VπJ/Ψ-ρηc• VπJ/Ψ-πJ/Ψ

Potential matrix (πJ/Ψ - ρηc - DbarD*)

• Weak charm spin-flip potential

➡ heavy quark spin symmetry
(charm quark spin-flip amplitude is suppressed)

HQ spin symmetry

weak

weak



• VDbarD*-DbarD*

• VπJ/Ψ-DbarD*

• Vρηc-DbarD*

• VπJ/Ψ-ρηc

• Vρηc-ρηc

• VπJ/Ψ-πJ/Ψ

Potential matrix (πJ/Ψ - ρηc - DbarD*)

• Strong off-diagonal DbarD* potentials
✓ strong charm-quark-exchange interactions

weak

weak

strong



• VπJ/Ψ-DbarD*

• Vρηc-DbarD*

• VDbarD*-DbarD*

• VπJ/Ψ-ρηc

• Vρηc-ρηc

• VπJ/Ψ-πJ/Ψ

Potential matrix (πJ/Ψ - ρηc - DbarD*)

DbarD*

πJ/Ψ ρηc

strongstrong



• DbarD* invariant mass (mπ=410MeV)

DbarD*

• πJ/Ψ invariant mass (mπ=410MeV)

ρηc

DbarD*

Invariant mass spectra of πJ/Ψ & DbarD*

✓ enhancement near DbarD* threshold due to large πJ/Ψ-DbarD* coupling

• peak in πJ/Ψ invariant mass
• sharp enhancement in DbarD* invariant mass



BESIII Coll., PRL112 (2014).

• e+e- --> π+/- (DbarD*)-/+

• e+e- --> π(πJ/Ψ) @ 4.26GeV

BESIII Coll., PRL110 (2013). Belle Coll., PRL110 (2013).

LQCD results & EXP. results
• πJ/Ψ invariant mass (mπ=410MeV)

DbarD*

• DbarD* invariant mass (mπ=410MeV)

DbarD*

✓ We observe similar line shapes of πJ/Ψ & DbarD* inv. mass



Re[Z] = Wcm - MDbarD*

Im[Z] = Γ/2

Pole of t-matrix

DbarD* threshold

ρηc threshold
πJ/Ψ threshold

Pole search (πJ/Ψ :2nd, ρηc :2nd, DbarD*:2nd)

✓ Pole for Zc(3900) on the most adjacent complex energy plane is found
✓ Origin of enhancement in 2-body invariant mass near DbarD* threshold



Summary

• Zc(3900) in IG(JP)=1+(1+) channel on the lattice@mπ=410MeV

➡ Large channel coupling between πJ/Ψ-DbarD* is a key
➡ Heavy quark spin symmetry is seen in c.c. potentials

‣ Zc(3900) is neither simple DbarD* molecule nor J/Ψ + π-cloud
‣ pole on complex energy plane is found (w/ relatively large width)

✤ Applications of HAL QCD method to tetra-quarks, Tcc & Zc(3900)

see also, S. Prelovsek et al., PRD91, 014504 (2015).

• Tcc search on the lattice@mπ=410--700MeV

➡ Tcc is not bound for mπ>400MeV (Tbb is already bound)
➡ sizable correlation of diquarks is found

‣ I=0 good diquark channel : attractive
‣ I=1 bad diquark channel : repulsive

✤ Physical point simulation is the next step



Backup



• VπJ/Ψ-DbarD*

• Vρηc-DbarD*

• VDbarD*-DbarD*

• VπJ/Ψ-ρηc

• Vρηc-ρηc

• VπJ/Ψ-πJ/Ψ

Potential matrix (πJ/Ψ - ρηc - DbarD*)

• Strong off-diagonal DbarD* potentials

➡ VDbarD*-πJ/Ψ ~ VDbarD*-ρηc >> VπJ/Ψ-ρηc

✓ heavy quark spin symmetry

✓ strong charm-quark-exchange interactions



2-body invariant mass spectra
• DbarD* invariant mass (mπ=410MeV)

DbarD*

• πJ/Ψ invariant mass (mπ=410MeV)

ρηc

DbarD*

off-diagonal potentials Vij=0 off-diagonal potentials Vij=0

DbarD*



Backup



Tcc bound state

g / �µ�a

2c ⇠ c̄�µ�a

2
cAa = color magnetic + color electric forces

• Color magnetic interaction (CMI) : hadron mass splitting

hviji = �h
�
~�(i) · ~�(j)

��
~�(i) · ~�(j)

�
i

<vij> C=1 C=8 C=3 C=6bar

S=0 -16 2 -8 4

S=1 16/3 -2/3 8/3 -4/3

‣ C=3, S=0 (I=0) : -8
‣ C=6bar, S=1 (I=0) : -4/3
‣ C=3, S=1 (I=1) : 8/3
‣ C=6bar, S=0 (I=1) : 4

attractive

repulsive

• Color-spin matrix elements :

Q Q0

q̄q̄• CMI proportional to 1/Mi : strongly attractive ubardbar-diquark pair

➡ Possibility of bound TQQ’

V CMI
ij / �

�
~�(i) · ~�(j)

��
~�(i) · ~�(j)

�

MiMj

H. J. Lipkin, PLB172, 242 (1986).



Zc(3900) : experimental observations (I)
BESIII Coll., PRL110, 252001, (2013). Belle Coll., PRL110, 252002, (2013).

• Zc(3900) is observed in π±J/Ψ invariant mass

• Zc(3900) is charged state --> at least 4-quark?

• Isospin of Zc(3900) must be IG=1+

• M ~ 3900, Γ ~ 60 MeV from BW line shape

• Peak confirmed by CLEO Coll.

Dbar*D* = 4017

DbarD* = 3872

πJ/Ψ = 3232

Δ = 640

Δ = 145 Zc(3900)



Zc(3900) : experimental observations (II)

BESIII Coll., PRL112, 022001, (2014).

• What about JP?
    : e+e- --> π+/- (DbarD*)-/+  [π+/- Zc(3900)-/+]

JP of Zc(3900)-/+

• 0- : P-wave (Jz=1)--> sin2θπ
• 0+ : forbidden due to parity cons.
• 1- : P-wave --> 1+cos2θπ
• 1+ : S/D-wave --> flat dist.

• What about coupling?

Partial width of Zc(3900)-/+

�(Zc(3900) ! D̄D⇤)

�(Zc(3900) ! ⇡J/ )
' 6.2

Zc(3900)-/+ by BESIII analysis

• IGJP=1+1+

• large coupling to DbarD*
 --> consistent with small width
• just above DbarD* threshold

S-wave DbarD* molecule???



Zc(3900) : models

• Tetraquark picture : diquark-antidiquark model

➡ diquark mass is unknown (fixed to reproduce X(3872))

Maiani et al., PRD71 (2005).

✓ M=3882 MeV, JP=1+ (S-wave DbarD* channel)

Maiani et al., PRD87 (2013).
�Model(Zc(3882) ! D̄D⇤)

�Model(Zc(3882) ! ⇡J/ )
=

4(MeV)

29(MeV)

• Molecule picture :

M.B. Voloshin, PRD87 (2013) 9, 091501.• πJ/Ψ + π-cloud

Wang et al., PRL111 (2013).• Zc(3900) pole + DbarD* cloud :
➡ Y(4260) is assumed to be bound 
state of DD1(2420)



Zc(3900) : models for decay process

• No Zc(3900) pole : initial-state pion exchange mechanism

Wang et al., PRL111 (2013).• Zc(3900) pole + DbarD* cloud :
➡ Y(4260) is assumed to be bound 
state of DD1(2420)

Chen-Liu-Matsuki, PRD88 (2013).



tomomi@quark.phy.bnl.gov

1

Perturbative matching for quasi-PDFs 
between continuum and lattice

Tomomi Ishikawa  (RBRC)

Multi-Hadron and Nonlocal Matrix Elements in Lattice QCD 
RIKEN BNL Research Center Workshop 

February 5-6, 2015 at Brookhaven National Laboratory

Collaborators:

Jianwei Qiu (BNL)


Shinsuke Yoshida (RIKEN/BNL)

mailto:tomomi@quark.phy.bnl.gov


‣ normal-PDFs 

‣ quasi-PDFs

-       may not be infinite. 
- Time-independent. It is computable on the lattice.

2

-                              : light-cone coordinate 
- Time-dependent.        It cannot be calculated on the lattice directly.

normal-PDFs v.s. quasi-PDFs

eq(x̃, µ, P
z

) =

Z
d�z

2⇡
e�ix̃Pz�zhN (P

z

)| eO(�z)|N (P
z

)i,

q(x, µ) =

Z
d⇠�

2⇡
e�ixP

+
⇠

�
hN (P )|O(⇠�)|N (P )i,

O(⇠�) =  (⇠�)�+U+(⇠
�, 0) (0)

eO(�z) =  (�z)�zUz(�z, 0) (0)

⇠± = (t± z)/
p
2

[Ji (2013)]

Pz



‣ Non-local matrix element

3

Lattice quasi-PDFs, so far

Matching between continuum and lattice has not been implemented.

Hadron structure Christian Wiese
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Figure 4: Real part of the matrix element for the first two momenta with 1000 measurements.

4. Results from Nf = 2+1+1 ensemble

After these initial tests we continued with a larger ETMC production ensemble [10]. We de-
cided to use the stochastic method because, although both methods yield equal results, the stochas-
tic method is more flexible concerning the study of larger momenta. The matrix elements are com-
puted on a 323× 64 lattice with Nf = 2+ 1+ 1 flavors of maximally twisted mass fermions. This
ensemble has β = 1.95, which corresponds to a lattice spacing of a ≈ 0.078 fm and the twisted
mass parameter µ = 0.0055, which is a pion mass of mPS ≈ 373 MeV. All the results presented are
computed with a source-sink separation of 10a. With our current statistics of Ncon f = 1000 we are
able to extract the matrix element for the first two momenta. We display the result in Fig. 4. Note
that the value for ∆z= 0, which can be identified with the local vector current at Q2 = 0, has to be
renormalized with ZV , which is for this ensemble ZV = 0.627(4) [11]. After renormalization the
condition Fu−d1 (Q2 = 0) = 1 (see e.g. [12]) is fulfilled within errors.

5. Conclusion and outlook

We have investigated a new method for the computation of quasi parton distributions and have
shown that using a stochastic estimator for the all-to-all propagator is a well-suited method for the
computation of the necessary matrix elements. Smearing is shown not to improve the statistical
uncertainty and was thus dropped.

Given the first results obtained using 1000 measurements, we are currently increasing statis-
tics, which can reach up to 30 000 measurements.

6

2

features resembling the experimental data, particularly
in the unpolarized and polarized sea. This demonstrates
the feasibility of the approach and will motivate lattice-
QCD studies with improved systematics in the future.

For the quark distributions, the starting point is the
momentum-dependent nonlocal static correlation

q̃(x, µ, P
z

) =

Z
dz

4⇡
e�izk⇥

D
~P
���  ̄(z)�

z

eig
R z
0

Az(z
0
)dz

0
 (0)

���~P
E
, (1)

where x = k/P
z

, µ is the renormalization scale, ~P is
the momentum of the nucleon moving in the z-direction.
When the nucleon momentum approaches infinity, the
quasi-distribution becomes the physical parton distribu-
tion when ultraviolet (UV) divergences are ignored. At
finite momentum and taking into account renormaliza-
tion, one has the factorization theorem [9]

q̃(x, µ, P
z

) =

Z
dy

|y|Z
✓
x

y
,
µ

P
z

◆
q(y, µ)

+O
 
⇤2

QCD

P 2

z

,
M2

N

P 2

z

!
+ . . . . (2)

where the Z function is a perturbation series in ↵
s

de-
pending on the UV regularization for q̃(x, µ, P

z

). Z
has been calculated to one-loop order in the transverse-
momentum cut-o↵ scheme.

In this study, we use clover valence fermions on an
ensemble of 243 ⇥ 64 gauge configurations with lattice
spacing a ⇡ 0.12 fm, box size L ⇡ 3 fm and pion
mass M

⇡

⇡ 310 MeV with N
f

= 2 + 1 + 1 flavors of
highly improved staggered quarks (HISQ) generated by
MILC Collaboration [10] and apply hypercubic (HYP)
smearing [11] to the gauge links. HYP smearing has
been shown to significantly improve the discretization ef-
fects on operators and shift their corresponding renor-
malizations toward their tree-level values (near unity for
quark bilinear operators) [12]. We calculate the quasi-
distributions with long straight gauge-link products be-
tween the quark and antiquark in the inserted current,

q̃
lat

(x, µ, P
z

) =

Z
dz

4⇡
e�izkh(z, µ, P

z

),

h(z, µ, P
z

) =
D
~P
���  ̄(z)�

z

 
Y

n

U
z

(nẑ)

!
 (0)

���~P
E
, (3)

where U
µ

is a discrete gauge link in the µ direction.
We generate the results using 1383 measurements

(among 461 lattice configurations). The extracted ma-
trix elements for various z for our lattice setup are shown
in Fig. 1 with P

z

(in units of 2⇡/L) 1 (red), 2 (green), 3
(cyan). The statistical error becomes noticeably bigger
as the nucleon momentum becomes larger, as typically
seen in lattice hadron calculations. We Fourier transform

FIG. 1. The real (top) and imaginary (bottom) parts of the
nonlocal isovector matrix element h of Eq. 3 computed on a
lattice with the nucleon momentum Pz (in units of 2⇡/L) =
1 (red triangles), 2 (green squares), 3 (cyan diamonds).

the z coordinate into momentum k to obtain the quasi-
distribution q̃

lat

(x, µ, P
z

). Since the matrix element goes
to zero within the error bar beyond about 12 (in units of
a), our range is su�cient for the present calculation.

Unlike the physical distributions, the quasi-
distributions do not vanish for x > +1 and x < �1, and
have a strong dependence on the nucleon momentum
P
z

. Thus, considerable analytical as well as numerical
work is needed to convert from q̃

lat

(x, µ, P
z

) to q(x, µ).
Here we accomplish this in several steps: First, we
make the matching correction Z using the one-loop
result from cut-o↵ regularization. Although a proper
renormalization factor has to be calculated using the
specific lattices and fermions used in our simulations,
it is not yet presently available. The Z factor from the
cut-o↵ scheme is correct to the leading log, but not
for the numerical constant. This is a compromise that
we make at the moment and will be rectified in the
future. Next, we correct for the nucleon mass e↵ects,
which interestingly can be done to all orders in M2

N

/P 2

z

.
The final ⇤2

QCD

/P 2

z

correction is done through 1/P 2

z

extrapolation.

To take into account the matching corrections, we use

the Z
⇣
⇠ = x

y

, µ

Pz

⌘
factor from the di↵erence between

Eqs. 4 and 10 (Eqs. 20 and 22) of Ref. [9] for the unpolar-
ized (polarized) distribution. The factorization formula
relates q̃(x, µ, P

z

) of di↵erent µ and P
z

. Thus, we evolve
q̃(x, µ, P

z

) from a finite to infinite P
z

in similar fash-

hN (Pz)|O(�z)|N (Pz)i

[Lin (2014)]
[Wiese (2014)]



Matching overview

- Matching in continuum Minkowski space has been done. 

- Minkowski and Euclidean space should be equivalent in quasi-PDF.

4

quasi-PDF

normal-PDF

quasi-PDF

quasi-PDF

continuum

lattice

Minkowski

Euclidean

[Ji (2013), Xiong et. al. (2013), Ma and Qiu (2014)]

This talk



‣ Matching in momentum space 

‣ Matching in coordinate space

- z-component of the momentum is restricted to be        . 
- Loop-momentum becomes 3-dimensional.

5

Momentum space v.s. Coordinate space

eq(x̃, µ, P
z

) =

Z
d�z

2⇡
e�ix̃Pz�zhN (P

z

)| eO(�z)|N (P
z

)i,

eO(�z) =  (�z)�zUz(�z, 0) (0)

Pz

eq
cont

(x̃, µ, Pz) eqlatt(x̃, a�1
, Pz)

eO
cont

(�z) eOlatt(�z)

- There is no restriction on momenta.



‣ momentum space ‣ coordinate space

- z-component of the 
momentum is restricted to 
be        . 
- Loop-momentum 
becomes 3-dimensional.

6

Momentum space v.s. Coordinate space

- No restriction on 
momentum. 
- Loop-momentum is 
4-dimensional.

Shinsuke Yoshida 
is working on this.

This talk

xPz xPz

(x� 1)Pz

kz + Pz

kz
PzPz

Pz

xPz

�

✓
x� kz

Pz

◆



‣ Axial gauge
- It looks convenient, because  

- No free lunch, because gluon propagators introduce 
complication. 

- Spurious pole exists. Pole prescription is required in many 
cases.

7

Covariant gauge v.s. Axial gauge
eO(�z) =  (�z)�zUz(�z, 0) (0)

Uz(�z, 0) = 1

Gµ⌫(k) =
1

k2

✓
�µ⌫ � �µ,zk⌫ + kµ�⌫,z

kz
+

kµk⌫
k2z

◆
.

q(�z) q(0) q(�z) q(0)

Az(x) = 0

kz �! 0



‣ Tree, one-gluon, two-gluon (at one-loop level)

8

Feynman rules in covariant gauge
eO(�z) =  (�z)�zUz(�z, 0) (0)

O
(0)
�z (p, k) = �z�(p� k)e�ipz�z

O
(1)
�z (p, k) = ig�z

e�ipz�z � e�ikz�z

i(p� k)z

O
(2)
�z (p, k, l) = �g2�z�(p� k)e�ipz�z

✓
1� eilz�z

l2z
� �z

ilz

◆

There is no pole.

O
(0)
�z

O
(1)
�z O

(2)
�z

p p pk k k

p� k l
l
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Diagrams at 1-loop

pp

p p

k

p p

k

p p

kk

k � p

p p

k

k + p

p p p p

k

k � p k � p

k

(only in lattice)

��0(p)e
�iPz�z ��1(p)e

�iPz�z ��2e
�iPz�z

⌃RS(p) ⌃TP(p)

hP |O(�z)|P i0 = e�iPz�z



‣ Momentum dependence
- The difference of momentum dependence between continuum 
and lattice is related to UV-divergences in loop integral.

10

Momentum dependent v.s. independent
hP | eO(�z)|P i

cont

= Z(�z, P )hP | eO(�z)|P i
latt

p p

kk

k � p

When the loop-integral involves UV-log divergence at most,
Z ⇡/a

�⇡/a
dk

⇥
f latt(k, p+�p)� f latt(k, p)

⇤
| {z }

no UV�divergence

���!
a!0

Z 1

�1
dk

⇥
f cont(k, p+�p)� f cont(k, p)

⇤

p p p p

k

k � p k � p

k

Common momentum dependence between continuum and lattice.

?

Z
dkf(k, p)



‣ Momentum dependence
-         has UV-linear divergence, but external momentum is not 
involved in the loop integral.

11

Momentum dependent v.s. independent

hP | eO(�z)|P i
cont

= Z(�z, P )hP | eO(�z)|P i
latt

common. 
vanished  
in the matching.

same as on the lattice

��2 = �g2CF

Z

k

1

k2

✓
1� eikz�z

k2z
� �z

ikz

◆

��2

p p

k
continuum

hP | eO(�z)|P i
cont

hP | eO(�z)|P i
0

= 1 + g2A
cont

(�z) + g2B(�z, P )

hP | eO(�z)|P ilatt
hP | eO(�z)|P i0

= 1 + g2Alatt(�z) + g2B(�z, P )

X

Common momentum dependence between continuum and lattice.
��1(p = 0)��0(p = 0)

tree-level

e�iPz�z



‣ Divergence structure (P=0)

- Local case (            ) can be safely reproduced. 
- Linear divergence from the tad-pole like diagram. 
- UV(    ) and IR(   ) regulators are introduced in                   direction.
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1-loop in continuum

=
1

8⇡2

�
Ei(�k?)� (2 + k?)e

�k?
�����

µ|�z|

�|�z|
���!
�z!0

1

8⇡2
ln

µ

�

=
1

4⇡2

�
ln(k?)� Ei(�k?) + e�k?

�����
µ|�z|

�|�z|
���!
�z!0

0

=
1

4⇡2
(ln(k?)� Ei(�k?)� k?)

����
µ|�z|

�|�z|
���!
�z!0

0

�z ! 0

µ �

-10 -5 0
x

10-6
10-5
10-4
10-3
10-2
10-1
100

−E
i(x
)

Ei(x) = �
Z 1

�x

dt

e

�t

t

: exponential integral

��0

��1

��2

Linear divergence

?= (t, x, y)

�Ei(x)



‣ 1-loop correction

- The extra term includes a spurious pole. 
- The spurious pole needs a prescription to be dealt with: 

- Do not use axial gauge to avoid the pole prescription ambiguity.
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Back to the Axial gauge

��+
@⌃(p)

@ 6p

����
p=0

= +g2CF

Z

k

1

k4

✓
1� 4k2z

k2
e�ikz�z

◆

�g2CF

Z

k

1

k2

✓
1� eikz�z

k2z
� �z

ikz

◆
+ g2CF

Z

k

1

k2
�z

ikz

same as Feynman gauge extra part

Z

k

1

k2
1

kz
=

Z

k?

1

k2?

Z

kz

1

kz
.

1

kz
�! 1

2

✓
1

kz � i✏
+

1

kz + i✏

◆



‣ 1-loop matching coefficients
- UV cut-off is set to be             . 
- Naive fermion is used.                          
( not practical, but OK.)
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1-loop matching

��
cont

� ��
latt

⌘ g2

16⇡2

CF �z��

-10 -5 0 5 10
δz/a

-4

-3

-2

-1

0

1

δγ
0

-10 -5 0 5 10
δz/a

-15

-10

-5

0

δγ
1

µ = a�1

��0

��1

��0

��1



‣ 1-loop matching coefficients

-10 -5 0 5 10
δz/a

0
10
20
30
40
50
60
70
80

δγ
2

- There is a mismatch in 
linear divergence between 
continuum and lattice. 
- The linear divergence 
should be subtracted, 
otherwise the continuum limit 
cannot be taken.
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1-loop matching

��
cont

� ��
latt

⌘ g2

16⇡2

CF �z��

-10 -5 0 5 10
δz/a

-0.4

-0.3

-0.2

-0.1

0

δγ
2 (s

ub
tra

ct
ed

)

linear 
divergence

after subtraction

��2

��2

��2(subt)



‣ 1-loop matching coefficients 

‣ Comments
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1-loop matching

��
cont

� ��
latt

⌘ g2

16⇡2

CF �z��

-10 -5 0 5 10
δz/a

-15

-10

-5

0
δγ

0+δ
γ 1+δ

γ 2 (s
ub

tra
ct

ed
) total

Wave function part is not included.  
(It is the same as usual local 
operator case.)

- MF-improvement should be used in the actual matching factor. 
- Other lattice actions and link smearings can be easily implemented. 
- In the Large Momentum Effective Theory (Ji’s context),                    
non-perturbative subtraction of the linear divergence would be 
required, once               correction is included.                           
(Mixing with lower dimensional operators cannot be treated 
perturbatively.)

O(1/P 2
z )



‣ 1-loop perturbative matching factor of quasi-PDFs between 
continuum and lattice is discussed. 

‣ Matching method in coordinate space is applied in this talk. 

‣ When axial gauge is used, there is a prescription ambiguity to deal 
with a spurious pole. 

‣ External momentum dependence is common between continuum 
and lattice, which results in momentum independent matching 
factor. 

‣ Linear divergent behavior can be seen. This linear divergent 
should be subtracted, otherwise continuum limit cannot be taken. 

‣ We are preparing numerical simulations of the quasi-PDFs.
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Summary and outlook



N. Ishizuka , K.I. Ishikawa, A. Ukawa, T. Yoshie
at  BNL  2015/02/05

             decay amplitudes
   from improved Wilson fermion

K ! ⇡⇡

We present our results of                   decay amplitudes K ! ⇡⇡
for both                   and         .�I = 1/2 3/2

Decay process  : K(0) ! ⇡(0)⇡(0)

● improved Wilson fermionNf = 2 + 1

1

m⇡ = 280MeV ( mK ⇠ 2⇥m⇡ )

a = 0.091 fm , La = 2.91fm



1.  Introduction
Long-standing problems of the Lattice QCD
in the neutral K meson system  :  

Understanding  ● �I = 1/2 rule
● Calculation of   ✏0/✏ from SM. Precise verification of SM .

Possibility of the beyond SM.

We need calculates two decay amplitudes :
AI = hK|H|⇡⇡; Ii ( I = 0, 2 )

issues : 
(1) relation between the amplitude on the lattice ( Euclid ) 
                            and that in the continuum ( Minkowski ).

: solved by   Lellouch and Lüscher
Lellouch and Lüscher, Math.Phys.219(2001)31.

(2) large fluctuation from the dis-connected diagram.

Calculations has been unsuccessful for a long time.
2



The calculation of the amplitudes is also possible with Wilson fermion, 
 if we subtract the lower dimensional operator with a renormalization condition :  

( i, j = 1, 2, · · · 10 )

↵j = h0|Qj |Ki/h0|P |Ki

Calculation cost :   Wilson fermion  <<  Domain wall fermion
Statistical improvement is expected by using Wilson fermion. 3

First calculation of the K decay amplitudes decay for                   : �I = 1/2

● LAT2011 [ arXiv:1110.2143 ]m⇡ = 330MeV , La = 2.7 fm

RBC-UKQCD
 Domain wall fermion ,

●

a = 0.114 fmNf = 2 + 1

PRD84(2011)114503m⇡ = 422MeV , La = 1.8 fm

For the Wilson fermion, operator renormalization  for parity odd part of               op. :�S = 1

QMS
i (µ) =

X

j

Zij(µ)Q
Lat
j

( from CPS symmetry )

P does not give finite contributions in the continuum.
This is not true for the Wilson fermion. 

Q
Lat
j = Qj � ↵jP , P = s̄�5d

Zij(µ) : same form as for the chiral sym. preserved case



Parameter
improved Wilson fermion + Iwasaki gauge actionNf = 2 + 1

323 ⇥ 64 , a = 0.091 fm , La = 2.91fm

( mK � 2 ·m⇡ = 28.3MeV )mK ⇠ 2⇥m⇡

Configurations :

PACS-CS ( original ) :    2,000 MD step
New  :  10,000 MD step

# of conf. = 480 ( every 25 MD step ) 

4

K(0) ! ⇡(0)⇡(0)Decay process  : 

2.  Method

Our preliminary results 
have been presented at Lat2013 and Lat2014.

arXiv:1311.0958, arXiv:1410.8237.

m⇡ = 275.7(15)MeV , mK = 579.8(13)MeV



( : used with Coulomb gauge fixing at time slice of the wall sources )

( : periodic BC. in time )

Time correlation function

5

WK(t) , W I
⇡⇡(t) : Wall source for K and ⇡⇡ with the iso-spoin I

Qi = Qi � ↵iP

GI(Qi)(t) =
1

T

T�1X

�=0

h0|WK(tK + �)Qi(t+ �)W I
⇡⇡(t⇡ + �) |0i

Note our convention : K0 = �s̄�5d

↵i = h0|Qi|Ki/h0|P |Ki

P = s̄�5d

tK = 24 , t⇡ = 0 , t = run



Calculation of quark loop at weak operators

Quark contractions : 

type3 type4

type1 type2

⇡

⇡K

Calculation of Quark loop : 

Stochastic method
+ Hopping parameter expansion technique ( HPE )
+ Truncated solver method ( TSM )

6( G.S.Bali et.al,  Comp.Phys.Comm. 181(2010)1570. )



Hopping parameter expansion technique ( HPE )
Wilson fermion : 

SW =  ̄W  =  ̄ (M �D) =  ̄M(1�D) 

(D )(x) = 

X

µ

⇥
(1� �µ)Uµ(x) (x+ µ) + (1 + �µ)U

†
µ(x� µ) (x� µ)

⇤

Quark propagator : 

Quark loop  :

�
D = M�1D

�

Calculation of the quark loop by the stochastic method

7

= M�1 +DM�1 +D
2
M�1 +D

3
M�1 +D

4
W�1

Q(x, x) =
h
M

�1 +DM

�1 +D

2
M

�1 +D

3
M

�1 +D

4
W

�1
i
(x, x)

=
h
M

�1 +D

2
M

�1 +D

4
W

�1
i
(x, x)

( for any k )

( for k = 4 )

(M )(x) = [ 1� CSW (� · F (x))/2 ] (x)

Q = W�1 = (1�D)�1M�1 =
1X

n=0

D
n
M�1 =

k�1X

n=0

D
n
M�1 +D

k
W�1

Q(x, t;x, t) =
1

NR

NRX

i=1

⇠⇤i (x, t)Si(x, t)
✓

�3(x� y) = lim
NR!1

1

NR

NRX

i=1

⇠⇤i (x, t) ⇠i(y, t)

◆

Si(x, t) =
X

y

h
M�1 +D

2
M�1 +D

4
W�1

i
(x, t;y, t) ⇠i(y, t)



Truncated solver method ( TSM )

NR = 1

NT = 5

tor. < 10

�14

tor. < 1.2⇥ 10

�6

8

( tor. = |WW�1 � ⇠|/|⇠| )

ST
i (x, t) : with W�1

calculated with a loose stopping condition

Si(x, t) =
X

y

h
M�1 +D

2
M�1 +D

4
W�1

i
(x, t;y, t) ⇠i(y, t)

Q(x, t;x, t) =
1

NR

NRX

i=1

⇠⇤i (x, t)
⇥
Si(x, t)� ST

i (x, t)
⇤
+

1

NT

NT+NRX

i=NR+1

⇠⇤i (x, t)S
T
i (x, t)



2.  Results
Effect of TSM 

-1.5 x 1011

-1.0 x 1011

-5.0 x 1010

0.0

5.0 x 1010

1.0 x 1011

1.5 x 1011

0 1 2 3 4 5 6 7

SUB_T4_Q2I0_09

-1.0 x 1010

-5.0 x 109

0.0

5.0 x 109

1.0 x 1010

0 1 2 3 4 5 6 7

SUB_T3_Q2I0_09

type-3 type-4

GI=0(Q2) at t = 9

9

x = 0 :

x = 1 :

for i = 1

for i = 1

x = 2 · · · 6 :
for i = 2 · · · 6

x = 7 :

Q(x, t;x, t) = ⇠⇤i (x, t)Si(x, t)

Q(x, t;x, t) = ⇠⇤i (x, t)S
T
i (x, t)

Q(x, t;x, t) = ⇠⇤i (x, t)S
T
i (x, t)

( NR = 1 , NT = 5 )

Q(x, t;x, t) =
1

NR

NRX

i=1

⇠⇤i (x, t)
⇥
Si(x, t)� ST

i (x, t)
⇤

Si(x, t) =
X

y

h
M�1 +D

2
M�1 +D

4
W�1

i
(x, t;y, t) ⇠i(y, t)

+
1

NT

NT+NRX

i=NR+1

⇠⇤i (x, t)S
T
i (x, t)

Q(x, t;x, t) =
1

6

6X

i=1

⇠⇤i (x, t)S
T
i (x, t)



-8.0 x 1010

-6.0 x 1010

-4.0 x 1010

-2.0 x 1010

0.0

2.0 x 1010

0 1 2 3 4 5 6 7

SUB_T3_Q6I0_09

-6.0 x 1011

-4.0 x 1011

-2.0 x 1011

0.0

2.0 x 1011

4.0 x 1011

6.0 x 1011

0 1 2 3 4 5 6 7

SUB_T4_Q6I0_09

type-3 type-4

We use x=7 for calculations of the decay amplitudes.
The correction terms are negligible.

GI=0(Q6) at t = 9

10

x = 0 :

x = 1 :

for i = 1

for i = 1

x = 2 · · · 6 :
for i = 2 · · · 6

x = 7 :

Q(x, t;x, t) = ⇠⇤i (x, t)Si(x, t)

Q(x, t;x, t) = ⇠⇤i (x, t)S
T
i (x, t)

Q(x, t;x, t) = ⇠⇤i (x, t)S
T
i (x, t)

Q(x, t;x, t) =
1

6

6X

i=1

⇠⇤i (x, t)S
T
i (x, t)
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from type-3 and type-4
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w TSM

GI=0(Q2)

TSM reduces the statistical error

( tK = 24 , t⇡ = 0 , Q(t) : run )
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Qj

↵j · P
Qj = Qj � ↵jP



GI=0(Q2)
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( tK = 24 , t⇡ = 0 , Q(t) : run )
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Total

14Large cancelation between type-1 and type-2.

( tK = 24 , t⇡ = 0 , Q(t) : run )
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I = 0
I = 2

2⇥m⇡
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π

π

π

π

D C

R V

Time correlation function of ⇡⇡ ! ⇡⇡

EI=2
⇡⇡ = 0.2567(14)

EI=0
⇡⇡ = 0.2499(83)

t = [9, 32]

t = [9, 12]

N I=2
⇡⇡ = h0|W I=2

⇡⇡ |⇡⇡; I = 2i = 1.5852(85)⇥ 1010

N I=0
⇡⇡ = h0|W I=0

⇡⇡ |⇡⇡; I = 0i = 1.552(42)⇥ 1010

( from LW )

( from WW )

( from LW )

( from WW ) 15

2⇥m⇡ = 0.2535(14)

G(t) = AI ·
�
e�EI

⇡⇡t + e�ET
⇡⇡(T�t)

�
+ CI

CI
: around-the-world e↵ect



Extraction of the amplitudes

for tK � t � t⇡

Effective amplitude : 

( tK = 24 , t⇡ = 0 , t : run )

16

( for our convention of 
)

( from K and        correlation function)⇡⇡

NK = h0|WK |Ki

N I
⇡⇡ = h0|W I

⇡⇡|⇡⇡; Ii

EI
⇡⇡ : energy of |⇡⇡; Ii

M I(Qi)(t) = GI(Qi)(t) · F I
LL/(NKN I

⇡⇡) · emK(tK�t)+EI
⇡⇡(t�t⇡) ⇥ (�1)

M I(Qi) = hK|Qi |⇡⇡; Ii K0 = �s̄�5d

(F I
LL)

2 = hK|Ki · h⇡⇡; I|⇡⇡; Ii/V 2

for I=0    stat. of SC. phase is not enough.

for I=2 
�I(p) = a · p+O(p3)

the factor is estimated, neglecting the cubic term of

F I=2
LL /F free

LL = 0.9254(64)

Lellouch - Lüscher factor : EI
⇡⇡ = 2

p
p2 +m2

⇡

q = pL/(2⇡)

tan�(q) = �⇡3/2q/Z00(1 : q2)

Z00(s : q
2) =

1p
4⇡

X

n2Z3

(n2 � q2)�s

"

the factor for non-interacting case is used.

= (4⇡)

✓
(EI

⇡⇡)
2mK

p3

◆✓
p
@�I(p)

@p
+ q

@�(q)

@q

◆



Effective amplitudes
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tK = 22
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tK = 26
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M I=2(Q1) M I=2(Q7) M I=2(Q8)

M I=0(Q2) M I=0(Q6)

M I=0(Q2) = 3.55(1.43)⇥ 10�2 M I=0(Q6) = �1.96(1.06)⇥ 10�1

M I=2(Q1) = 2.256(35)⇥ 10�3 M I=2(Q7) = 9.85(11)⇥ 10�2 M I=2(Q8) = 3.242(37)⇥ 10�1

The around-the-world  effect for two pion state
can be avoided for the time range t=[9,12].

( tK = 22, 24, 26 , t⇡ = 0 , Q(t) : run )



Physical decay amplitudes 

From the lattice to the continuum :

( i, j = 1, 2, · · · 10 )

with perturbative renormalization factor (1 loop ).
Y. Taniguchi, JHEP04(2012)143.

Coefficient function :

matching point :

G. Bychalla, A.J.Buras, M.E. Lautenbacher, RMP 68(1996)125. 

Physical decay amplitudes :

18

µ = 1/a

( also                  to estimate higher order effect )µ = ⇡/a

QMS
i (µ) =

X

j

Zij(µ)Q
Lat
j

AI = hK|H|⇡⇡; Ii =
X

ij

Ci(µ)Zij(µ)M
I(Qj)

H =
X

i

Ci(µ)Q
MS
i (µ) =

GFp
2
V ⇤
udVus

X

i

(zi(µ) + ⌧yi(µ))Q
MS
i (µ)

M I
(Qi) : matrix element on the lattice
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Physical decay amplitudes 

m⇡ (MeV)

ReA0/ReA2

ReA0 (⇥10�8 GeV)

ReA2 (⇥10�8 GeV)

ImA0 (⇥10�12 GeV)

ImA2 (⇥10�12 GeV)

Re(✏0/✏) (⇥10�3)

280

2.426(38)

60(36)

25(15)

�1.14(13)

�67(56)

µ = 1/a µ = ⇡/a

2.460(38)

56(32)

23(13)

�52(48)

RBC-UKQCD Exp

140

33.2(2)

1.479(4)

22.45(6)

1.66(23)

  Enhancement of                  process is seen. �I = 1/2●

● Further improvement of statistics is necessary for         .✏0/✏

 Matching point dependence is very large for             . ● ImA2

422

4.911(31)

�25(22)

330

2.668(14)

�33(15)

( used |✏EXP| = 2.22⇥ 10�3 )

a (fm) 0.091 0.114 0.114

�0.6509(34)�0.7457(83) �0.5502(40)

0.8(25) 0.9(25) 2.0(17) 2.7(26)

31.1(45) 38.0(82)

12.0(17) 7.7(17)

●

They used a different two-pion operator from ours
and set the fitting range closer to the operator.

Stat. error of our  A0 is much larger than those of RBC-UKQCD at m⇡ = 330MeV
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effective mass of ⇡⇡ ! ⇡⇡ (I = 0)

E = 0.3922(126)

Methods for calculation of K to ππ Decay Qi Liu

t

δ δ
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∆
δ

Figure 3: Separating the two pion sources in the time direction. The left panel shows the setup for the π−π
scattering calculation, and the right panel shows the setup for the k→ ππ decay calculation.
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Figure 4: Effectivemass plot for the two pions in the isospin zero channel. The left one uses π−π separation
0, and the right one uses 4. The energy calculated from these two setups is 0.3922(126) and 0.3639(55)
respectively.

factor of 5, and introducing a separation between the two pion sources by 4 makes the signal much
better.

Once we calculate the correlation functions, we do a single parameter fit to find the weak
matrix elements,

〈OK(0)Qi(top)Oππ(∆,∆+δ )〉
NππNKe−Eππ∆

=M1/2,lat
i e−(mK−Eππ)t (5.1)

where the kaon energy and π − π energy are fitted from the kaon and ππ correlation functions.
Results for operator Q2 which makes a major contribution to Re(A0) and the operator Q6 which
makes a major contribution to Im(A0) are shown in figure 5. A summary of the final results obtained
by combing NPR and Wilson coefficients are shown in table 5. This calculation is performed on
138 configurations.

In summary, we performed a full first principle calculation for both A2 and A0 in a 2.7 fm box,
with a 660 MeV kaon decaying to two 330 MeV pions. The agreement of the results with and
without disconnected graphs indicats that the diconnected graphs may not play a crucial role in this
particular decay process. A ratio of 12.0(1.7) for Re(A0) to Re(A2) suggests already a dramatic
∆I = 1/2 rule effect. The direct CP violation measure Re(ε ′/ε) is calculated to be 2.0(1.7)×10−3

6
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Figure 3: Separating the two pion sources in the time direction. The left panel shows the setup for the π−π
scattering calculation, and the right panel shows the setup for the k→ ππ decay calculation.
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factor of 5, and introducing a separation between the two pion sources by 4 makes the signal much
better.

Once we calculate the correlation functions, we do a single parameter fit to find the weak
matrix elements,

〈OK(0)Qi(top)Oππ(∆,∆+δ )〉
NππNKe−Eππ∆

=M1/2,lat
i e−(mK−Eππ)t (5.1)

where the kaon energy and π − π energy are fitted from the kaon and ππ correlation functions.
Results for operator Q2 which makes a major contribution to Re(A0) and the operator Q6 which
makes a major contribution to Im(A0) are shown in figure 5. A summary of the final results obtained
by combing NPR and Wilson coefficients are shown in table 5. This calculation is performed on
138 configurations.

In summary, we performed a full first principle calculation for both A2 and A0 in a 2.7 fm box,
with a 660 MeV kaon decaying to two 330 MeV pions. The agreement of the results with and
without disconnected graphs indicats that the diconnected graphs may not play a crucial role in this
particular decay process. A ratio of 12.0(1.7) for Re(A0) to Re(A2) suggests already a dramatic
∆I = 1/2 rule effect. The direct CP violation measure Re(ε ′/ε) is calculated to be 2.0(1.7)×10−3

6

� = 0 � = 4

m⇡ = 330MeV

20
Error is reduced by taking non-zero     .�

Reason ? 

E = 0.3639(55)

Methods for calculation of K to ππ Decay Qi Liu
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Figure 3: Separating the two pion sources in the time direction. The left panel shows the setup for the π−π
scattering calculation, and the right panel shows the setup for the k→ ππ decay calculation.
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factor of 5, and introducing a separation between the two pion sources by 4 makes the signal much
better.

Once we calculate the correlation functions, we do a single parameter fit to find the weak
matrix elements,

〈OK(0)Qi(top)Oππ(∆,∆+δ )〉
NππNKe−Eππ∆

=M1/2,lat
i e−(mK−Eππ)t (5.1)

where the kaon energy and π − π energy are fitted from the kaon and ππ correlation functions.
Results for operator Q2 which makes a major contribution to Re(A0) and the operator Q6 which
makes a major contribution to Im(A0) are shown in figure 5. A summary of the final results obtained
by combing NPR and Wilson coefficients are shown in table 5. This calculation is performed on
138 configurations.

In summary, we performed a full first principle calculation for both A2 and A0 in a 2.7 fm box,
with a 660 MeV kaon decaying to two 330 MeV pions. The agreement of the results with and
without disconnected graphs indicats that the diconnected graphs may not play a crucial role in this
particular decay process. A ratio of 12.0(1.7) for Re(A0) to Re(A2) suggests already a dramatic
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µ = 1/a

Tables

TABLE I: Decay amplitude for the ∆I = 3/2 process. The second column gives the bare matrix

elements M I=2
i for Qi in the lattice unit. The other columns are their contribution to A2 ( A2(i)

in (98) ) for q∗ = 1/a and π/a.

q∗ = 1/a q∗ = π/a

i M I
i ReA2 (GeV) ImeA2 (GeV) ReA2 (GeV) ImeA2 (GeV)

1 2.256(35) × 10−3 −1.887(29) × 10−08 0 −1.452(23) × 10−08 0

2 = M I=2
1 4.330(68) × 10−08 0 3.920(61) × 10−08 0

7 9.85(11) × 10−2 1.053(12) × 10−10 2.772(32) × 10−13 3.172(36) × 10−10 2.100(24) × 10−13

8 3.242(37) × 10−1 −2.722(31) × 10−10 −1.670(19) × 10−12 −4.124(47) × 10−10 −1.156(13) × 10−12

9 = 3/2 ·M I=2
1 −1.140(18) × 10−12 3.762(59) × 10−13 3.739(58) × 10−12 3.409(53) × 10−13

10 = 3/2 ·M I=2
1 3.771(59) × 10−10 −1.756(27) × 10−13 4.372(68) × 10−10 −1.409(22) × 10−13

Total - 2.426(38) × 10−08 −1.192(14) × 10−12 2.460(38) × 10−08 −7.457(83) × 10−13

TABLE II: Decay amplitude for the ∆I = 1/2 process. The second column gives the bare matrix
elements M I=0

i for Qi in the lattice unit. The other columns are their contribution to A0 ( A0(i)

in (98) ) for q∗ = 1/a and π/a.

q∗ = 1/a q∗ = π/a

i M I
i ReA0 (GeV) ImeA0 (GeV) ReA0 (GeV) ImeA0 (GeV)

1 5(13) × 10−3 −4(11) × 10−08 0 −3.1(85) × 10−08 0

2 3.6(14) × 10−2 6.8(28) × 10−07 0 6.2(25) × 10−07 0

3 7.2(37) × 10−2 −1.25(65) × 10−08 −2.5(13) × 10−11 −1.7(87) × 10−08 −2.1(11) × 10−11

4 1.06(40) × 10−1 5.3(20) × 10−08 6.6(25) × 10−11 6.2(24) × 10−08 6.1(23) × 10−11

5 −1.0(43) × 10−2 1.5(59) × 10−09 1.7(68) × 10−12 1.9(74) × 10−09 1.8(71) × 10−12

6 −2.0(11) × 10−1 −8.4(46) × 10−08 −1.03(56) × 10−10 −7.7(42) × 10−08 −8.8(48) × 10−11

7 2.42(18) × 10−1 2.58(19) × 10−10 6.81(50) × 10−13 7.79(57) × 10−10 5.16(38) × 10−13

8 7.46(54) × 10−1 −6.26(45) × 10−10 −3.84(28) × 10−12 −9.48(68) × 10−10 −2.66(19) × 10−12

9 −3.0(14) × 10−2 1.02(48) × 10−11 −3.4(16) × 10−12 −3.4(16) × 10−11 −3.1(14) × 10−12

10 0.0(12) × 10−2 0.0(14) × 10−11 −0.1(64) × 10−13 0.0(16) × 10−11 −0.1(52) × 10−13

Total - 6.0(36) × 10−07 −6.7(56) × 10−11 5.6(32) × 10−07 −5.2(48) × 10−11
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for the process                                at K(0) ! ⇡(0)⇡(0)

● improved Wilson fermion withNf = 2 + 1

● Calculation of quark loop by
Stochastic method with HPE and TSM

We found :

We calculate                 decay amplitudes K ! ⇡⇡

For        ,Q2 the contribution of type-4 ( OZI-suppression diag. )  is large.
type-4  ~  type-1

TSM is an efficient method.

Further improvement of statistics is necessary for         .✏0/✏

Non-perturbative renormalization factor is needed.

ReA0/ReA2 = 25± 15

Non-perturbative subtraction of the lower dimensional operator .

m⇡ = 280MeV ( mK ⇠ 2⇥m⇡ )

( : Wilson fermion ? )

Improvement of the K and ππ  operator is necessary.

  Enhancement of                  process is seen. �I = 1/2

●

●

●

●

● Stat. error of our  A0 is much larger than those of RBC-UKQCD. 
Improvement of the K and ππ  operator is necessary.

 Matching point dependence is very large for             . ● ImA2



Back-up

Note our convention : K0 = �s̄�5d

and the spinor indices are contracted within each pair of
parentheses. The subscript L denotes left, so that, e.g.,
ð !sidiÞLð !ujujÞL ¼ ½ !si!"ð1% !5Þdi&½ !uj!"ð1% !5Þuj&. The

"I ¼ 3=2 components of the operators Q1, Q2, Q9, and

Q10 are all proportional toQ
3=2
ð27;1Þ. From all our simulations,

we confirm that the contribution from the EWP operators
to ReA2 is about 1%; e.g., for physical kinematics, we find
ReA2 ¼ ð1:381' 0:046' 0:258Þ ( 10%8 GeV to which
the EWP operators contribute %0:0171( 10%8 GeV
[4,5] (the physical value is ReA2¼1:479ð4Þ(10%8GeV).
We therefore neglect the EWP operators in the following

discussion. Chiral symmetry implies that Q3=2
ð27;1Þ does not

mix with the EWP operators, so that ReA2 is proportional
to its lattice matrix element; the constant of proportionality
is the product of the Wilson coefficient, the renormaliza-
tion constant, finite-volume effects, and kinematical
factors (see Ref. [5] for a detailed discussion, including
an explicit demonstration that the mixing is indeed negli-
gible in the DWF simulation).

Fierz transformations allow the K ! ## correlation

function of Q3=2
ð27;1Þ to be reduced to the sum of the two

contractions illustrated in Fig. 1, labeled by s1 and s2 . The
two contractions are identical except for the way that the
color indices are summed. A2 is proportional to the matrix
element extracted from the sums1 þs2 . The main message
of this Letter is our observation from all three simulations
that s1 and s2 have opposite signs and are comparable in
size. This is illustrated in Fig. 2 for the results at physical
kinematics from Refs. [4,5], where we plot s1, %s2 , and
s1 þs2 as functions of t. We extract A2 by fitting s1 þs2 in
the interval t 2 ½5; 19&, where there is a significant cancel-
ation between the two terms. A similar, although not quite
so pronounced cancelation occurs at threshold for physical
masses and for the heavier masses studied in Refs. [3,10];
see Fig. 3, for example.

We stress that it is only the correlation function s1 þs2

which has a time behavior corresponding to Eð##Þ2 .
Because the calculation is performed in a finite volume,
Eð##Þ2 ! Eð##Þ0 and s1 and s2 individually have an isospin

0 component. If Eð##Þ2 ¼ mK, then s1 þs2 is independent

of t away from the kaon and two-pion sources, and this is
what we observe, particularly in Fig. 2, where the energies
are most precisely matched.

It has been argued that the factorization hypothesis [14]
works reasonably well in reproducing the experimental
value of A2 (see, e.g., Sec. VIII-4 in Ref. [15]). In this
approach, the gluonic interactions between the quarks
combining into different pions are neglected and A2 is
related to the decay constant f# and the K‘3 form factor
close to zero-momentum transfer. On the basis of color
counting, one might therefore expect that s2 ’ 1=3s1 ,
whereas, for physical kinematics, we find s2 ’ %0:7s1
and that nevertheless s1 þs2 leads to the correct result for
A2. Thus, the expectation based on the factorization
hypothesis proves to be unreliable here.
Following the discovery that s1 and s2 have opposite

signs, we examined separately the two contributions to
the matrix element h !K0jð!sdÞLð!sdÞLjK0i, which contains
the nonperturbative QCD effects in neutral kaon mixing
[11]. The two contributions correspond to Wick contrac-
tions in which the two quark fields in the K0 interpolating

FIG. 1. The two contractions contributing to ReA2. They are
distinguished by the color summation (i and j denote color). s
denotes the strange quark and L that the currents are left handed.

FIG. 2 (color online). Contractions s1 , %s2 , and s1 þs2 as
functions of t from the simulation at physical kinematics and
with " ¼ 24.

FIG. 3 (color online). Contractions s1, %s2 , and s1 þs2 as
functions of t from the simulation at threshold with m# ’
330 MeV and " ¼ 20.
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Muon Anomalous Magnetic Moment
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Schwinger's Term

Figure 2. The headstone of Julian Schwinger at Mt Auburn Cemetery in Cambridge, MA.



BNL E821 (0.54 ppm) and Standard Model Prediction

Value�Error Reference
Experiment (0.54 ppm) 116592089� 63 E821, The g¡ 2 Collab. 2006
Standard Model 116591828� 50 arXiv:1311.2198
Di�erence (Exp¡ SM) 261� 78

HVP LO 6949� 43 Hagiwara et al. 2011
Hadronic Light by Light 105� 26 Glasgow Consensus, 2007

Table 1. Standard model theory and experiment comparison [in units 10¡11]

q = p
′ − p, µ

p p
′

q = p
′ − p, µ

p p
′

Figure 3. (L) Vaccum polarization diagram. (R) Light by light diagram.

There is 3.3� deviation!



Future Fermilab E989 (0.14 ppm)

Figure 4. The 50-foot-wide Muon g-2 electromagnet being driven north on I-355 between Lemont
and Downers Grove, Illinois, shortly after midnight on Thursday, July 25, 2013. Credit: Fermilab.

Almost 4 times more accurate then the previous experiment.



Connected Light by Light Diagram on Lattice

� In this talk, we focus on the calculation of connected light by light amplitude on lattice.

� This subject is started by T. Blum, S. Chowdhury, M. Hayakawa, T. Izubuchi more than
5 years ago. Phys. Rev. Lett. 114, 012001 (2015).
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Figure 5. Light by Light diagrams. There are 4 other possible permutations.
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Lattice QED Schwinger Term as an Example

We would like to do a standard Euclidean-space lattice calculation with a muon source and
sink, well separated in Euclidean time.

xsrc xsnk

xop, µ

x
′
, ν

′
x, ν

Figure 6. Schwinger term diagram.

M�
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X
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� G�� 0(x; x
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Naively, the sum would requireO(Volume2) computation, which is not a�ordable. We discuss
two strategies:

� Calculate the sum stochastically.

� Fast Fourier Transformation.

Both approaches make the problem O(Volume).



Lattice QED Schwinger Term - Stochastic Photon

Evaluate the photon propagator with N stochastic sample.
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Figure 7. Schwinger term diagram calculated with stochastic photon.



Lattice QED Schwinger Term - Exact Photon
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1
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Evaluate the expression in brackets with Fast Fourier Transformation.
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Figure 8. Schwinger term diagram calculated with exact photon.



Lattice QED Schwinger Term - Finite Volume
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Figure 9. Finite volume e�ects on F2. The data points are obtained using exact photon method.

� The solid line represents the continuum result in in�nite volume and momentum transfer
q=2�/L. The dashed line represents the continuum result in L3 volume and momentum
transfer q=2�/L.

� Lattice sizes are 323�128, 243�96, 163�64 with Ls=8 and tsnk¡ top= top¡ tsrc=T /4.
� Muon mass is m�= 106MeV. a is the lattice spacing.



Lattice QED Schwinger Term - Discretization Errors
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Figure 10. Discretization errors on F2. The data points are obtained using exact photon method.

� m�L= 6.4 and lattice sizes are 323� 128, 243� 96, 163� 64, 123� 48 with Ls=8 and
tsnk¡ top= top¡ tsrc=T /4.

� q=2�/L is the momentum of the external photon.

� The line is 2nd order polynomial obtained by �tting the results from lattice calculations.

� Muon mass is m�= 106MeV. a is the lattice spacing. An a4 term is visible.
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Stochastic Photon Light by Light
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Figure 11. Light by Light diagrams calculated with one exact photon and two stochastic photon.
There are 4 other possible permutations.

� M = 12 stochastic photon �elds for both A and B.

� S= 18 random wall sources for the external local current.

Computation Cost

� 2�S�M times inversion for the quark loop.

� 8�M2 times inversion for muon line.

� Statistics is roughly proportional to S �M2.

� Cost grows as O(Volume) not O(Volume2).



Stochastic Photon Light by Light - Evaluation Formula
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Stochastic Photon Light by Light - QED Cost Comparison

� QED test: Replace quark loop by muon loop.

Lattice Size tsep m�a
F2�Err
(�/�)3

N �S �M2 confs
Var

p

(�/�)3

163� 64 32 0.2 0.2228� 0.0046 548� 18� 122 5.5
163� 64 32 0.2 0.1962� 0.0368 1024� 18� 12 5.0

163� 64 (point src) 32 0.2 0.232� 0.033 1508� 12� 62 28.4
163� 64 32 0.1 0.1666� 0.0069 88� 18� 122 3.3

163� 64 (p1=0) 32 0.1 0.2278� 0.0265 285� 36� 242 64.4

Figure 12. M stands for the number of stochastic A or B �elds, S stands for the number of random
wall sources that we use to calculate the external current. The calculation is repeated N times.
Var

p
= Err � N �S �M2

p
stands for the projected variance deduced from to the statistical

uncertainty of the averaged result and the total number of samples.

� Average over di�erent combinations of A, B electromagnetic �eld helps reducing the
statistical errors.

� Random wall source at the location of the external current works very well.

� Using symmetric kinematics signi�cantly reduces the statistical error as both the initial
and the �nal state are the lowest energy state possible. For muon, we use anti-periodic
boundary condition in z direction and set the momenta of initial and �nal state to be
��/L.



Stochastic Photon Light by Light - QED Excited States
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Figure 13. Excited e�ects on F2.

� We have good control of the excited state e�ects.

� The simulations were done in L3 volume and momentum transfer q=2�/L.

� Muon mass is m�= 106MeV. a is the lattice spacing.



Stochastic Photon Light by Light - QED Finite Volume
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Figure 14. Finite volume e�ect on F2.

� Lattice sizes are 163� 64, 83� 32 with Ls=8 and tsnk¡ top= top¡ tsrc=T /4.

� The simulations were done in L3 volume and momentum transfer q=2�/L.

� Muon mass is m�= 106MeV. a is the lattice spacing.



Stochastic Photon Light by Light - QCD Model Value

Model Subtraction
F2�Err
(�/�)3

0.08� 0.02 0.29� 0.06

Table 2. Hadronic Light by Light Estimates, values were also shown in section 2.

� Model: Glasgow Consensus, 2007

� Subtraction: Using the experimental g ¡ 2 value, E821, The g ¡ 2 Collab. 2006 and
subtract the theoretical values of other contributions.

� First lattice attempt: T. Blum, S. Chowdhury, M. Hayakawa, T. Izubuchi, Phys. Rev.
Lett. 114, 012001 (2015).



Stochastic Photon Light by Light - QCD Excited E�ects
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Figure 15. Excited e�ects on F2. 163 � 32 lattice, with a¡1 = 1.747GeV, m� = 424MeV, mK =

613MeV, m�= 332MeV.
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Point Source Photon Light by Light - Comparison
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Figure 16. Excited e�ects on F2. 163 � 32 lattice, with a¡1 = 1.747GeV, m� = 424MeV, m� =

332MeV. Here we compare the new point source method with the old stochastic photon method.



Point Source Photon Light by Light - Formula

xsrc xsnky
′
, σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky
′
, σ

′
x
′
, ρ

′ z
′
, ν

′

xop, µ

z, ν

y, σ x, ρ

Figure 17. Light by Light diagrams. There are 4 other possible permutations.
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Point Source Photon Light by Light - Formula
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Figure 18. Light by Light diagrams. There are 4 other possible permutations.
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Point Source Photon Light by Light - Features

xsrc xsnky
′
, σ

′
z
′
, ν

′ x
′
, ρ

′

xop, µ

z, ν

y, σ x, ρ

xsrc xsnky
′
, σ

′
x
′
, ρ

′ z
′
, ν

′

xop, µ

z, ν

y, σ x, ρ

Figure 19. Light by Light diagrams. There are 4 other possible permutations.

� M2 statistics: We use two point source propagators to calculate the QCD four point
function. We can calculateM point source propagators and calculate the QCD four point
function with M(M ¡ 1)/2 combinations.

� Importance sampling: We use importance sampling when choosing the M points. So we
calculate the region that contribute to the noise the most with the highest frequency but
lowest weight.

� Exact short distance: We can calculate all the short distance part of the sum without
using the Monte Carlo technique.

� Conserved current: In order to make the loop integral converge, the external photon need
to couple to conserved current, while all the three internal photons may couple to local
currents.



Point Source Photon Light by Light - Value Distribution 16I

-2

-1

0

1

2

3

4

0 5 10 15 20 25

F
2
(q

2
)/
(α

/π
)3

r

QCD 16I

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 5 10 15 20 25

F
2
(q

2
)/
(α

/π
)3

ceil(r)

QCD 16I

Figure 20. 163� 32 lattice, with a¡1= 1.747GeV, m�= 424MeV, m�= 332MeV.



Point Source Photon Light by Light - Value Distribution 32ID
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Figure 21. 323� 64 lattice, with a¡1= 1.371GeV, m�= 171MeV, m�= 134MeV.
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Current Status and Outlook

Label size 2�

m�L
m�/GeV #qcdtraj tsep

F2�Err
(�/�)3

Cost
BG/Q rack days

16I 163� 32 2.07 0.423 8 16 0.1248� 0.0047 0.31
24I 243� 64 1.38 0.423 5 32 0.2436� 0.0181 0.85
24I-L 243� 64 1.74 0.333 5 32 0.1676� 0.0091 0.85
32ID 323� 64 2.00 0.171 47 32 0.0693� 0.0218 10

Table 3. Central values and errors. a¡1 = 1.747GeV. Muon mass and pion mass ratio is �xed at
physical value. #prop is the number of propagator calculated for the loop.

� We plan to follow this with a calculation with a physical pion mass and a 6fm volume
with either a= 0.18fm or a= 0.12fm depending on the computer time needed.

� Possible strategies for the calculation of all disconnected diagrams are being developed
and we hope to begin numerical experiments this year.



Thank You

Thank You!



  

Progress towards an ab initio, 
Standard Model calculation of 
direct CP-violation in K decays

Christopher Kelly
(RBC & UKQCD Collaboration)

Multi-Hadron and Nonlocal Matrix Elements in Lattice 
QCD Workshop, Friday February 6th 2015



  

Baryogenesis

● The Universe is matter dominated, but why?
● Most likely explanation is existence of baryogenesis mechanism.
● Sackarov conditions (1967): ● B-number violation

● Non-thermal interactions               
(e.g. during a phase transition)

● C and CP violation.

● Amount of CP-violation in Standard Model far too small to account 
for observed value.

● Most BSM theories introduce additional direct CP-violation but a 
precise SM value does not yet exist which could be compared to 
experiment.



  

              Decays

● Direct CP-violation first observed in K π→ π decays.

● Two types of decay:

with 
amplitude
with 
amplitude

●     is highly sensitive to BSM sources of CPV.

● Strong interactions very important – origin of the ΔI=1/2 
rule: preference to decay to I=0 final state.

● Direct CP-violation:

where

and      are ππ scattering phase shifts.  

[arXiv:1212.1474]



  

Lattice determination

Lellouch-Luscher 
factor relates 
finite to inf. vol.

MSbar perturbative 
Wilson coeffs for 
Weak effective 
theory

MSbar renormalization 
matrix using NPR and 
perturbative matching 
at high scale

10 Weak effective 
four-quark operators  
    (7 independent)

This imaginary part is responsible for the CP-violation! 
(everything else is pure-real)



  

ΔI=3/2 Calculation



  

● Original physical measurement [Phys.Rev.Lett. 108 (2012) 141601]

20% sys error dominated by 15% discretization error

● Calculation has now been repeated on RBC & UKQCD 
483x96 and 643x128 Mobius DWF ensembles with (5 fm)3 volumes  
and  a=0.114 fm, a=0.084 fm.

● Make full use of eigCG and AMA to translate over all timeslices. 
Obtain 0.7-0.9% stat errors on all bare matrix elements!



  

● New results published Monday: [arXiv:1502.00263]

● Systematic error completely 
dominated by perturbative 
error on NPR and Wilson 
coefficients.

● Future considerations:
● Higher order PT calculation 

of NPR and Wilson coeffs.
● Step-scaling NPR to higher 

energy scale.

10%, 12% total errors on Re, Im!



  

ΔI=1/2 Calculation



  

● A0 is significantly more difficult than A2 for two reasons: 

● ππ has same quantum numbers as vacuum, hence there are 
disconnected diagrams of the form:

● These are extremely noisy and dominate stat error. 
● We use A2A method with O(1000) exact low modes and 

stochastic high modes with spin, color and flavor dilution.
● Disconnected diagram evaluated for all lattice sites for 

maximum statistical resolution. 

1) Disconnected diagrams



  

2) Obtaining Physical Kinematics
● Physical decay is energy conserving but lattice ground-state 

comprises two stationary pions (after explicit vacuum subtraction 
for I=0):                          2 Eπ << mK

● Avoid multi-exponential fits by modifying spatial BCs to remove 
stationary pion state. 

                   
● Must measure K0 π→ 0π0  and K0 π→ +π- with I=0 final state. 

Boundary conditions must therefore:

                  ➔ Conserve isospin such that I=0 state can be isolated.
➔ Give momentum to both charged and neutral pions.

● In I=2 calculation we used twisted BCs applied to the d-quark, but 
this satisfies neither of the above conditions.

● Instead, we use G-parity BCs:

● As a boundary condition: Discretized lattice momenta

Moving ground-state



  

Demonstration 

● 163x32 DWF+Iwasaki a-1 = 1.73(3) GeV with 420 MeV pion test 
configurations with GPBC in 0,1,2 directions.

pion dispersion reln.

stationary pion

stationary kaon state



  

Direct comparison of ΔI=3/2 amplitudes between GPBC and
twisted BCs, both in 3 directions, on 163 ensembles

kaon source

pipi source
(tsep = 4)



  

Preliminary Results



  

Physical Ensemble

● To-date generated 988 configs (~688 thermalized).
● Utilizing USQCD 512-node BG/Q machine.

pheno curves

est. I=0 pipi energy 
GPBC 3 dirs

kaon mass

● For 323x64 a-1 ~1.38 GeV 
DWF+IDSDR β=1.75 close 
match with GPBC in 3 dirn.

● 4.6 fm3 box.
● Measure (161 confs):

LL formula
Eπ=274.7(14) MeV
 
mπ~143.2(11) MeV

mK=490.2(24) MeV

Eππ(I=0) = 534(34) MeV

Eππ(I=2) = 572(3) MeV

pipi energy



  

Effective Energies

  pipi I=0pipi I=2

pion 2-pt kaon 2-pt



  

● Measure with K-pipi separations of 10,12 and 14.
● Currently measured 161 configurations.
● Error is completely dominated by disconnected diagrams.

[Dominant contribution to Re(A0)] [Dominant contribution to Im(A0)]

● Currently obtain 35% errors on Im(A0) and                                                 
30% on Re(A0).

● Re(A0) can be precisely determined in expt, so only Im(A0) is 
important.

● Currently obtain stat error on ε' approx 2x experimental error if we 
use Re(A0) from expt.

slight slope is due to small 
difference between kaon 
and pipi energies



  

Systematic Errors

Two main sources of sys error:

● Discretization effects (~15%)

● Wilson coefficients (unknown)

● Unlike A2, charm effects possibly play a significant role.

● Our calculation is performed in the 3-flavor effective theory 
where the charm has been integrated out perturbatively.

● Charm is light so it is not clear how reliable this is.
● Ultimately we will need to perform a full 4-flavor dynamical 

calculation.
● To estimate error we are looking into a direct comparison of a 

3-flavor threshold calculation and a 4-flavor calculation on the 
same lattice (partially-quenched charm).

● We currently measure using only one coarse lattice spacing.
● Future calculations will need to be performed on multiple 

lattice spacings, like A2 analysis. 



  

Conclusions



  

Conclusions and Outlook

● We have now measured A2 with 2-3% stat error and 10% 
systematic.

● Sys. error is dominated by perturbative matching to MSbar and 
can be reduced by higher-order calculation or step-scaling to 
higher energies.

● A0 calculation has begun using a single coarse lattice but with 
physical kinematics.

● Preliminary results from 161 meas give 35% stat errors on 
Im(A0) and error on ε' about 2x expt. if we use Re(A0) from expt.

● Sys. errors dominated by discretization effects and use of 3-
flavor Wilson coeffs. Future calculations will need to be 
performed using multiple 4-flavor dynamical ensembles.



  



  

Subtraction term consistent with 0

Significant effect on stat
error

Subtraction essential for 
signal to be obtained



  

● At quark level: 

● Gauge invariance requires gauge field to obey charge 
conjugation (complex conjugate) boundary conditions.

● New ensembles needed (true for all modifications of 
BCs due to disconnected diagrams).

● For stationary kaon eigenstates we must introduce a 
fictional partner to the strange quark; s'

● Must take root of s/s' determinant to remove it from 
action; introduces non-locality that vanishes 
exponentially in L.

G-parity BCs

where

in our conventions

is G-parity even



  

Implementation

● Dirac operator applied simultaneously to two fermion 
fields that mix at the global lattice boundary.

● Naively expect factor of 2 in cost due to two flavors. 
However fields are intrinsically two-flavor; use of M†M in 
HMC to ensure positive-definite matrix requires square-
root of light determinant (fourth-root for s/s')      

● Standard double-precision multi-shift solver is quite slow 
due to linear algebra overheads coupled with finite BG/Q 
memory bandwidth.

● Developed optimized mixed-precision multi-shift inverter 
for RHMC in BFM/Bagel to optimize memory 
bandwidth usage on BG/Q.

● Alternative solution might be to use TWQCD's single-
flavor action to avoid RHMC for light quarks.

RHMC needed throughout



  

Summary of code changes
● HMC and basic measurement code written in CPS, with 
modified BFM/Bagel solvers for BG/Q.

● Complex conjugate BCs on gauge fields required changes to 
virtually all aspects of the codebase: 

● Gauge fixing algorithms
● Plaquette and rectangle, plus 

staples.
● Momentum field CC BCs, gauge 

force.
● Memory layout reordering code.
● Modified CPS+BFM/Bagel Dirac 

ops: Shamir DWF, Mobius DWF, 
twisted mass (for DSDR).

● Fermion forces.
● Eigenvalue algorithms: Ritz, 

Lanczos.
● CPS propagator code.
● Standard measurements: two-

point correlators, B_K, Wilson 
flow, residual mass.

● Multi-shift optimization



  

B
K
 unaffected by BCs; s' handled correctly



  

Ensemble Generation
● Ensemble generated on USQCD 512-node BGQ machine at BNL.
➔ ~660 configurations to date.
➔ Approx 400 thermalized.
➔ 6.8 hours per configuration.
➔ 89% Metropolis acceptance (88% theor.)

Dashed line: reduced quark mass
Red line: measurements begin (286)

plaq

psibar-psi

pseudoscalar density



  

● Must measure                  and                  with I=0 
final state. Boundary conditions must therefore:

                  

¢I=1/2 Decay

➔ Conserve isospin such that I=0 state can 
be isolated.

➔ Give momentum to both charged and 
neutral pions.

● Conventional application of twisted BCs to the d-quark 
breaks both of these.

● Instead, we use G-parity:

● As a boundary condition:

Discretized lattice momenta

Moving ground-state



  

Baryogenesis

● The Universe is matter dominated, but why?
● Most likely explanation is existence of baryogenesis mechanism.
● Sackarov conditions (1967): ● B-number violation

● Non-thermal interactions        
(e.g. during a phase transition)

● C and CP violation.
● Why C and CP? Because C-breaking 

but allows

CP-violation prevents this.

● Amount of CP-violation in Standard Model far too small to account for 
observed value.

● Most BSM theories introduce additional direct CP-violation but a precise 
SM value does not yet exist which could be compared to experiment.
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Outline

1 Motivation & Methods
Motivation
Lattices used
Heavy quarks with the Fermilab method

2 Positive parity Ds mesons
D(∗)K scattering and D∗

s0(2317), Ds1(2460)

3 Positive parity Bs mesons
B(∗)K scattering and JP = 0+, 1+ Bs mesons

4 Conclusions & outlook
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Motivation: Experimental Ds spectrum

Established states:
Ds (JP = 0−) and D∗

s (1−)
D∗

s0(2317) (0+), Ds1(2460) (1+), Ds1(2536) (1+), D∗
s2(2573) (2+)

More recent discoveries:
D∗

s1(2700) seen by BaBar, Belle, LHCb (1−)
D∗

sJ(2860) seen by BaBar
LHCb overlapping 1− and 3− states
D∗

sJ(3040) seen by BaBar (1+?,2−?)
questionable D∗

sJ(2632) seen by SELEX (1−?)

j = 1
2 doublet almost mass-degenerate with non-strange states

Some models suggest a tetraquark/molecular interpretations for
controversial states
(Most) lattice studies using single hadron (cs̄) interpolators get too
large or badly determined masses
Large mπ: D∗

s0(2317) below DK threshold;
Small mπ: D∗

s0(2317) ≈ DK threshold
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A previous attempt . . .
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Mohler and Woloshyn, PRD 84 054503, 2011

DK threshold turned out to be unphysical
Even with light sea-quark masses the lowest states with
JP = 0+,1+ remained unphysical
Including the DK threshold explicitly might be vital
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Technicalities: Lattices used

ID N3
L × NT Nf a[fm] L[fm] #configs mπ[MeV] mK [MeV]

(1) 163 × 32 2 0.1239(13) 1.98 280/279 266(3)(3) 552(2)(6)
(2) 323 × 64 2+1 0.0907(13) 2.90 196 156(7)(2) 504(1)(7)

Ensemble (1) has 2 flavors of nHYP-smeared quarks
Gauge ensemble from Hasenfratz et al. PRD 78 054511 (2008)

Hasenfratz et al. PRD 78 014515 (2008)

Ensemble (2) has 2+1 flavors of Wilson-Clover quarks

PACS-CS, Aoki et al. PRD 79 034503 (2009)

On the small volume we use distillation
On the larger volume we use stochastic distillation

Peardon et al. PRD 80, 054506 (2009);

Morningstar et al. PRD 83, 114505 (2011)
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Heavy quarks using the Fermilab method

El-Khadra et al., PRD 55,3933

We tune κ for the spin averaged kinetic mass (Mηc + 3MJ/Ψ)/4 to
assume its physical value
General form for the dispersion relation

Bernard et al. PRD83:034503,2011

E(p) = M1 +
p2

2M2
− a3W4

6

∑
i

p4
i −

(p2)2

8M3
4

+ . . .

We compare results from three different fit strategies
Energy splittings are expected to be close to physical
For MeV values of masses

M = ∆M + Msa,phys
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Testing our tuning: charm and light

Ensemble (1) Ensemble (2) Experiment
mπ 266(3)(3) 156(7)(2) 139.5702(4)
mK 552(1)(6) 504(1)(7) 493.677(16)
mφ 1015.8(1.8)(10.7) 1018.4(2.8)(14.6) 1019.455(20)
mηs 732.3(0.9)(7.7) 692.9(0.5)(9.9) 688.5(2.2)*

mJ/Ψ −mηc 107.9(0.3)(1.1) 107.1(0.2)(1.5) 113.2(0.7)
mD∗s −mDs 120.4(0.6)(1.3) 142.1(0.7)(2.0) 143.8(0.4)
mD∗ −mD 129.4(1.8)(1.4) 148.4(5.2)(2.1) 140.66(10)
2mD −mc̄c 890.9(3.3)(9.3) 882.0(6.5)(12.6) 882.4(0.3)
2MDs

−mc̄c 1065.5(1.4)(11.2) 1060.7(1.1)(15.2) 1084.8(0.6)
mDs −mD 96.6(0.9)(1.0) 94.0(4.6)(1.3) 98.87(29)

A single ensemble: Discrepancies due to discretization and
unphysical light-quark masses expected
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Low-lying charmonium spectrum
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DM, S. Prelovsek, R. M. Woloshyn, PRD 87 034501 (2013);

Serves as further confirmation of our heavy-quark approach
Data from 1 ensemble; Errors statistical + scale setting
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Revisiting the D∗s0(2317) and Ds1(2460)

Use almost physical light quarks
Work with a partially quenched strange quark

Use φ meson and ηs to set strange quark mass
We obtain κs = 0.13666

Improve charm quark tuning used for Fermilab charm
Use Landau link for csw,c = 1

u3
0

Empirically this reduces discretization effects

Explicitly include DK interpolators into the basis
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Contractions
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Handled efficiently within the distillation method

Peardon et al. PRD 80, 054506 (2009)
Morningstar et al. PRD 83, 114505 (2011)
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Energy levels for Ds with JP = 0+

DM, Lang, Leskovec, Prelovsek, Woloshyn, PRL 111 222001 (2013)
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With the combined basis we obtain a much better quality of the
ground state plateau
The variational method yields two low-lying levels and fits are
unambiguous
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Possible interpretations

(1) A sub-threshold state stable under the strong interaction
We call this “bound state scenario”
This is irrespective of the nature of the state
One expects a negative scattering length in this case

See Sasaki and Yamazaki, PRD 74 114507 (2006) for details.
(2) A resonance in a channel with attractive interaction

The lowest state corresponds to the scattering level shifted below
threshold in finite volume
The additional level would indicate a QCD resonance
One expects a positive scattering length in this case

This is the situation for the D∗
0 (2400)

DM, Prelovsek, Woloshyn, PRD 87 034501 (2013).
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Using Lüscher’s formula

We can test the plausibility of these scenarios using Lüscher’s
formula and an effective range approximation

M. Lüscher Commun. Math. Phys. 105 (1986) 153; Nucl. Phys. B 354
(1991) 531; Nucl. Phys. B 364 (1991) 237.

K−1 = p cot δ(p) =
2√
πL

Z00(1; q2) ,

≈ 1
a0

+
1
2

r0p2 ,

Results for ensembles (1) and (2)

a0 = −0.756± 0.025fm r0 = 0.056± 0.031fm (1)
a0 = −1.33± 0.20fm r0 = 0.27± 0.17fm (2)
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Results for the scattering length a0

DM, Lang, Leskovec, Prelovsek, Woloshyn, PRL 111 222001 (2013)
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We compare to the predictions from an indirect calculation
Liu et al. PRD 87 014508 (2013).

Our determination robustly leads to negative values.
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Infinite volume bound states vs. experiment

(Infinite volume)bound state: T-matrix pole for cot δ(i |pb|) = i
Using our a0 and r0 we can determine the binding momentum and
calculate the corresponding Energy level
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Extending our calculation to the Ds1(2460)

Assume the heavy quark limit is a good approximation
→ Ds1(2536) decays only in D-wave
we extract just a naive energy level
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Results in T +
1

set aD∗K
0 rD∗K

0 (apB)2 amB mK + mD∗ − mB mB − 1
4 (mDs + 3mD∗

s
)

[fm] [fm] [MeV] [MeV]
Ensemble (1)

-0.665(25) -0.106(37) -0.0301(15) 1.3511(35) 93.2(4.7)(1.0) 404.6(4.5)(4.2)
Ensemble (2)
set 1 -1.15(19) 0.13(22) -0.0071(22) 1.0336(60) 43.2(13.8)(0.6) 408(13)(5.8)
set 2 -1.11(11) 0.10(10) -0.0073(16) 1.0331(41) 44.2(9.9)(0.6) 407.0(8.8)(5.8)
Experiment

44.7 383

set mDs1(2536)− 1
4 (mDs +3mD∗

s
) mDs1(2536)−mK−mD∗

[MeV] [MeV]
Ensemble (1)

444(12) -53(12)
Ensemble (2)
set 1 507(10) 56(11)
set 2 501(8) 50(8)
Experiment

459 31
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Resulting Ds P-wave spectrum
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Remaining discrepancies of the size of discretization uncertainties
Many improvements possible
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Bs states from experiment

Two p-wave states known from experiment:
Bs1(5830) with M = 5828.7(4) MeV
B∗

s2(5840) with M = 5839.96(20) MeV and Γ = 1.6(5) MeV
Discovered in two body decays into K−B+ at CDF/D0 and also
seen by LHCb
Remaining B∗

s0 and Bs1 states not measured
LHCb is working on this
Could be seen in electromagnetic transitions, transitions with a
single π0 or transitions through a virtual σ with σ → 2π.

Bardeen, Eichten, Hill, PRD 68 054024 (2003)

What can we say?
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Predictions for Bs states (models or model+EFT)

0+ 1+

Covariant (U)ChPT 5726(28) 5778(26)
NLO UHMChPT 5696(20)(30) 5742(20)(30)
LO UChPT 5725(39) 5778(7)
LO χ-SU(3) 5643 5690
Bardeen, Eichten, Hill 5718(35) 5765(35)
rel. quark model 1 5804 5842
rel. quark model 2 5833 5865
rel. quark model 3 5830 5858

For references see arXiv:1501.01646

Relevant thresholds at ≈5773 MeV and ≈5819 MeV
Unitarized ChPT variants: dynamically generated states below
threshold
Quark model predictions: above threshold
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Previous lattice results

NRQCD b quarks and staggered light quarks
States predicted slightly below the B(∗)K thresholds:

MB∗s0
= 5752(16)(5)(25) MBs1 = 5806(15)(5)(25)

Gregory et al. PRD 83 014506 (2011)

Static-light mesons with the transition amplitude method

McNeile, Michael, Thompson, PRD 70 054501 (2004)

Static-light mesons plus interpolation between static light states
and experiment Ds states

Green et al. PRD 69 094505 (2004)

Static-light states on quenched and 2 flavor lattices
Burch et al. PRD 79 014504 (2009)
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Testing our tuning: charm and beauty

Ensemble (1) Ensemble (2) Experiment
mJ/Ψ − mηc 107.9(0.3)(1.1) 107.1(0.2)(1.5) 113.2(0.7)
mD∗

s − mDs 120.4(0.6)(1.3) 142.1(0.7)(2.0) 143.8(0.4)
mD∗ − mD 129.4(1.8)(1.4) 148.4(5.2)(2.1) 140.66(10)
2mD − mc̄c 890.9(3.3)(9.3) 882.0(6.5)(12.6) 882.4(0.3)
2MDs

− mc̄c 1065.5(1.4)(11.2) 1060.7(1.1)(15.2) 1084.8(0.6)
mDs − mD 96.6(0.9)(1.0) 94.0(4.6)(1.3) 98.87(29)
mB∗ − mB - 46.8(7.0)(0.7) 45.78(35)

mBs∗ − mBs - 47.1(1.5)(0.7) 48.7+2.3
−2.1

mBs − mB - 81.5(4.1)(1.2) 87.35(23)
mY − mηb - 44.2(0.3)(0.6) 62.3(3.2)
2mB − mb̄b - 1190(11)(17) 1182.7(1.0)
2mBs

− mb̄b - 1353(2)(19) 1361.7(3.4)
2mBc − mηb − mηc - 169.4(0.4)(2.4) 167.3(4.9)

Errors statistical and scale setting only
Bottom quark slightly to light

Daniel Mohler (Fermilab) Positive parity heavy-light mesons BNL, February 2015 22 / 27



B∗so and Bs1: Results

aBK
0 = −0.85(10) fm

rBK
0 = 0.03(15) fm

MBs0 = 5.711(13) GeV

aB∗K
0 = −0.97(16) fm

rB∗K
0 = 0.28(15) fm

MBs0 = 5.750(17) GeV

Energy from the difference to the B(∗)K threshold
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A further sanity check

Discretization errors expected to be smaller than for Ds
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= 5.831(9)(6) GeV

MBs2 = 5.853(11)(6) GeV

Uncertainties just statistics and scale setting
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B∗so and Bs1: Systematic uncertainties

source of uncertainty expected size [MeV]
heavy-quark discretization 12

finite volume effects 8
unphysical Kaon, isospin & EM 11

b-quark tuning 3
dispersion relation 2

spin-average (experiment) 2
scale uncertainty 1

3 pt vs. 2 pt linear fit 2
total 19

discretiation effects from HQET power counting also considering
mass mismatches

Oktay, Kronfeld Phys.Rev. D78 014504 (2008)

Finite volume from difference between the energy level and the
pole
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Comparing to models

0+ 1+

Covariant (U)ChPT 5726(28) 5778(26)
NLO UHMChPT 5696(20)(30) 5742(20)(30)
LO UChPT 5725(39) 5778(7)
LO χ-SU(3) 5643 5690
Bardeen, Eichten, Hill 5718(35) 5765(35)
rel. quark model 5804 5842
rel. quark model 5833 5865
rel. quark model 5830 5858
HPQCD 2010 5752(16)(5)(25) 5806(15)(5)(25)
this work 5713(11)(19) 5750(17)(19)
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Conclusions & outlook

Determining the the QCD spectrum close to thresholds has just
begun
Meson and baryon states close to threshold(s) can be attacked
Coupled channel results encouraging (see David Wilson)
Many improvements to what I presented possible (stay tuned)
LHCb, BelleII and PANDA will gather a lot of data
→ I would like them to compare to QCD, not models!
Extracting resonance parameters from lattice scattering phase
shifts will need (some degree) of modeling, just like in experiment.

Thank you!
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Backup slides

. . .
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Composition of eigenstates
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Beware: Ambiguity in the normalization (eliminated by ratios)
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❖ Rare kaons decays                       and                   are flavour 
changing neutral current processes (FCNC)

❖ They are heavily suppressed in the Standard Model and sensitive 
to New Physics

❖ Each type of process contains 3 decays:       ,        and

❖                   will be discussed in the next talk (X. Feng)

❖                            : long-distance dominated

❖                              : feature indirect/direct CP-violation interference



❖ Euclidean formulation

❖ Ultraviolet & infrared behaviour

❖ Preliminary lattice results

❖ Summary & perspectives



Euclidean formulation



Minkowski amplitude

5



Minkowski amplitude

5

EM current (weak contribution negligible)



Minkowski amplitude

5

EM current (weak contribution negligible)

Effective               weak Hamiltonian



Minkowski amplitude

5

Spectral representation:

EM current (weak contribution negligible)

Effective               weak Hamiltonian
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pion and kaon interpolating operators

For                            :
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Quark Wick contractions
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`

`

`

s

K ⇡

u, c

`

`s

K ⇡

`

`

u, c

s
K ⇡

`

`s

`

K ⇡

W: “Wing”C: “Connected”

E: “Eye” S: “Saucer”

Names: E. Goode



Quark Wick contractions
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`

`

`

s

u, d, s, c

K ⇡

Jb
µ

`
Jb
µ

`

`

`

s

K ⇡

s
Jb
µ

s

`

`

`

K ⇡

`
Jb
µ

`
`

`s

K ⇡

`
Jb
µ

`

` `

s

K ⇡



Quark Wick contractions

9

d

u, ds

u, c u, d

K ⇡
Jb
µ

d

u, d

u, c

s

u, d

K ⇡
Jb
µ

Neutral case additional diagrams:
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Euclidean spectral representation

10

Integrated correlator on a finite time interval                 :

❖ growing exponential for

❖ need to be removed to obtain the Minkowski amplitude

❖ generated by 1, 2 and 3-pion intermediate states
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Removing the single-pion divergence

1. Reconstruct the divergent single-pion term by 
computing       and         matrix elements for  
and                transitions

2. One can show that the physical amplitude is invariant 
under                                   ,       can be tuned to cancel 
the               matrix element

11
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Two-pion intermediate states

12

k

`

k � `

q

p

µ

No two-pion intermediate state

After integrating   , only two independent momenta.



Removing the 3-pion divergence

❖ One needs                    matrix elements

13



Removing the 3-pion divergence

❖ One needs                    matrix elements

❖ On the lattice: unknown and probably very challenging

13



Removing the 3-pion divergence

❖ One needs                    matrix elements

❖ On the lattice: unknown and probably very challenging

❖ [arXiv:1408.5933] proposed a theory for the quantisation 
of 3-pion states in a finite volume  
(cf. also S. Sharpe’s talk yesterday)

13



Removing the 3-pion divergence

❖ One needs                    matrix elements

❖ On the lattice: unknown and probably very challenging

❖ [arXiv:1408.5933] proposed a theory for the quantisation 
of 3-pion states in a finite volume  
(cf. also S. Sharpe’s talk yesterday)

❖ Only a problem for pion masses less than ~165 MeV

13



Ultraviolet & infrared behaviour



Individual operator renormalisation

❖ The vector current is conserved and does not need 
renormalisation
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Individual operator renormalisation

❖ The vector current is conserved and does not need 
renormalisation

❖ The renormalisation of the weak hamiltonian is also 
know and is much more simple with chiral fermions  
(cf. e.g. [Z. Bai, et al. PRL, 113(1), p. 112003, 2014]).

15
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Short distance operator product

16

UV divergences may appear in loops between       and          :

with 

u, cu, c

P
µ �µJµ,ij

J⌫

Same divergence structure than HVP
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Short distance operator product

17

OPE with lattice regularisation:

❖ vector case: WI lower dimensions by 2: mass 
independent logarithmic divergence

❖ GIM subtraction cancels mass independent divergences 

dim 2 dim -2 irrelevant
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Finite-size effects
❖ Cuts in diagram: power-law finite volume effects  

(cf. e.g. S. Sharpe’s talk yesterday)

❖ Possible with 3-pion on-shell intermediate states:  
 
 
 
 

❖ All other finite-size effects: exponentially suppressed

18
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Preliminary lattice results
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Lattice setup

20

❖ DWF action,                 lattice with spacing ~0.12 fm

❖                    ,                              and

❖                                             ,

❖ only W and C connected diagrams

❖ gauge fixed wall sources, sequential current insertion

0 5 2314 28

integration range



2-point function fit
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EM current matrix element
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Weak Hamiltonian matrix element
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Rare kaon decay correlation function
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Rare kaon decay correlation function
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Summary

28

❖ We know how to define the di-lepton rare kaon decay matrix element in 
Euclidean space-time

❖ Intermediate states with energy less than the kaon one have to be 
subtracted: possibly 1,2 or 3-pion states

❖ Two methods for the single-pion state

❖ No 2-pion intermediate state

❖ Short-distance behaviour completely regulated by GIM mechanism and 
gauge-invariance

❖ If no on-shell 3-pion intermediate state: exponentially suppressed finite-
size effects

❖ Preliminary lattice calculations agree with theory
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Outlook

29

❖ Try different kinematics, time positions

❖ How to include efficiently S, E and disconnected 
diagrams?

❖ Aim at lighter quark masses

❖ How to deal with the 3-pion intermediate state at the 
physical point?



Thank you!



Extract collinear parton distributions 
from  

lattice QCD calculations 

Jianwei Qiu 
Brookhaven National Laboratory 

Stony Brook University 

Based on work done with  
 Tomomi Ishikawa, Yan-Qing Ma, Shinsuke Yoshida, … 

        arXiv:1404.6860, 1412.2688, …   

RBRC workshop on “Multi-hadron and nonlocal matrix elements  
in lattice QCD”  

Brookhaven National Lab, Upton, NY, February 5-6, 2015 



Outline 

q Why Parton distribution functions (PDFs)? 

q PDFs from lattice QCD calculations 

q Our proposal – QCD collinear factorization 

q Case study – Extract PDFs from quasi PDFs 

q Summary and outlook 

No PDFs, no predictions for Higgs production x-sections, … 



QCD factorization:  PDFs 

q  One hadron: 

Hard-part 
Probe 

Parton-distribution 
Structure 

Power corrections 
Approximation 

`+ h(p) ! `0 +X

DIS
totσ : ⊗

1 O
QR
⎛ ⎞
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QCD factorization:  PDFs 

q  One hadron: 

Hard-part 
Probe 

Parton-distribution 
Structure 

Power corrections 
Approximation 

`+ h(p) ! `0 +X

q  Two hadrons: 

DY
totσ : ⊗

1 O
QR
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠

s 

h(p) + h0(p0) ! V (�⇤, Z0, ...) +X

Predictive power:   
       Universal Parton Distributions 

DIS
totσ : ⊗

1 O
QR
⎛ ⎞

+ ⎜ ⎟
⎝ ⎠



Operator definition of  PDFs 

q Quark distribution (spin-averaged): 

q Cut-vertex notation: 

PDFs are not direct physical observables, such as cross sections! 
But, well-defined in QCD and process independent! 

+ UVCT 

 � � · n
2P · n �

✓
x� k · n

P · n

◆
d

4
k

(2⇡)4

+ UVCT 



Operator definition of  PDFs 

q Quark distribution (spin-averaged): 

q Cut-vertex notation: 

q  Independent of  hadron momentum  P 

q Parton interpretation emerges in  n.A = 0  gauge 

PDFs are not direct physical observables, such as cross sections! 
But, well-defined in QCD and process independent! 

+ UVCT 

 � � · n
2P · n �

✓
x� k · n

P · n

◆
d

4
k

(2⇡)4

+ UVCT 

q Simplest of  all parton correlation functions of  the hadron 



Global QCD analyses – a successful story 

q World data with “Q” > 2 GeV 
    + Factorization: 

@f(x, µ2)

@ lnµ2
= ⌃f 0

Pff 0(x/x0)⌦ f

0(x0
, µ

2)

F2(xB , Q
2) = ⌃fCf (xB/x, µ

2
/Q

2)⌦ f(x, µ2)

d�

dydp

2
T

= ⌃ff 0
f(x)⌦ d�̂ff 0

dydp

2
T
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0(x0)

+ DGLAP  Evolution: 

DIS: 

H-H: 
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@ lnµ2
= ⌃f 0
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0(x0
, µ
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2
/Q
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d�

dydp

2
T

= ⌃ff 0
f(x)⌦ d�̂ff 0

dydp

2
T

⌦ f

0(x0)

+ DGLAP  Evolution: 

DIS: 

H-H: 



Uncertainties of  PDFs 

“non-singlet” 
sector 

“singlet” 
sector 



Partonic luminosities 

q - qbar g - g 



PDFs at large x 

q  Testing ground for hadron structure at x è1:  

d/u ! 1/2
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PDFs at large x 

q  Testing ground for hadron structure at x è1:  

d/u ! 1/2

d/u ! 0

d/u ! 1/5

d/u !
4µ2

n/µ
2
p � 1

4� µ2
n/µ

2
p

⇡ 0.42

²    

²    

²    

²    

SU(6) Spin-flavor 
symmetry 

Scalar diquark 
dominance 

pQCD power 
counting 

Local quark-hadron 
duality 

²    �u/u ! 2/3

�d/d ! �1/3

²    �u/u ! 1

�d/d ! �1/3

²    �u/u ! 1

�d/d ! 1

²    �u/u ! 1

�d/d ! 1

Can lattice QCD help? 
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Lattice QCD 

q  The main non-perturbative approach to solve QCD 

q Hadron mass spectrum: 

Predict the spectrum  
with limited inputs 

²  Lattice “time” is Euclidean:   

² No direct implementation of  physical time 

q An intrinsically Euclidean approach: 

Cannot calculate PDFs directly, whose operators  
are time-dependent 

⌧ = i t



PDFs from lattice QCD 

q Moments of  PDFs – matrix elements of  local operators 

hxn(µ2)iq ⌘
Z 1

0
dx x

n
q(x, µ2)

q Works, but, hard and limited moments: 

hx3iqhx2iq

Dolgov et al., hep-lat/0201021                        Gockeler et al.,  hep-ph/0410187	

Limited moments – hard to get the full x-dependent distributions! 



From quasi-PDFs to PDFs (Ji’s idea) 

Ji, arXiv:1305.1539	

q  “Quasi” quark distribution (spin-averaged): 

q  Features: 

q̃(x, µ2
, P

z

) =

Z 1

x

dy

y

Z

✓
x

y

,

µ

P

z

◆
q(y, µ2) +O

✓
⇤2

P

2
z

,

M

2

P

2
z

◆
q Proposed matching: 

•  Size of  O(1/Pz
2) terms 

•  UV renormalization of  power divergence, and potential operator mixing, … 

q̃(x, µ

2
, P

z

) ⌘
Z

d⇠

z

4⇡

e

�ixPz⇠z hP | (⇠
z

)�

z

exp

(
�ig

Z
⇠z

0
d⌘

z

A

z

(⌘

z

)

)
 (0)|P i+UVCT(µ

2
)

Ji, arXiv:1305. 1539	

•  Quark fields separated along the z-direction – not boost invariant! 

•  Perturbatively UV power divergent:                      with             - renormalizable?       
 
•  Quasi-PDFs  !  Normal PDFs   when Pz !∞  

•  Quasi-PDFs could be calculated using standard lattice method 

/ (µ/Pz)
n n > 0



Our observation 

q QCD factorization of  single-hadron cross section: 

²  PDFs are UV and IR finite, but, absorb perturbative CO divergence! 

�
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Power 
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Matrix elements 

² With a large momentum transfer, PDFs completely cover all leading power 
CO divergence of  single hadron matrix elements 
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q QCD factorization of  single-hadron cross section: 

²  PDFs are UV and IR finite, but, absorb perturbative CO divergence! 

�

DIS(x,Q2;
p
s) /
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X

f

Cf (x, Q
2

µ

2
,

p
s)⌦ fi(x, µ

2) +O


1

Q

2

�

Momentum 
transfer 

PDFs CO Factorization 

Collision 
energy  

Perturbative 
coefficients 

Power 
corrections 

Single hadron 
Matrix elements 

² With a large momentum transfer, PDFs completely cover all leading power 
CO divergence of  single hadron matrix elements 

are the same for both Minkowski and Euclidean time  

q Collinear divergences are from the region when kT è0: 
Leading power perturbative CO divergences of  single hadron matrix 

elements are logarithmic,                             , and  /
Z

dk2T /k
2
T



Our ideas 

q  Lattice QCD can calculate “single” hadron matrix elements: 

With an Euclidean time 

h0| O( , , A) |0i = 1

Z

Z
DAD D eiS( , ,A)O( , , A)

X

P 0

|P 0ihP 0|
X

P

|P ihP | hPz|O( , , A)|Pzi

² Operators made of  conserved currents – Physical – No need for UVCT   

² Operators lead to perturbative UV divergence – Renormalizable!   

quasi-PDFs e�(x̃, Pz;µ
2
) ⌘ F.T. of hPz|O( , , A)(�z)|Pzi+UVCT(µ

2
)

Need a large scale,        , e.g., the offshellness of  the current(s) µ2

Ma and Qiu,  
arXiv:1404.6860 
           1412.2688	

E



Our ideas 

q  Lattice QCD can calculate “single” hadron matrix elements: 

With an Euclidean time 

h0| O( , , A) |0i = 1

Z

Z
DAD D eiS( , ,A)O( , , A)

X

P 0

|P 0ihP 0|
X

P

|P ihP | hPz|O( , , A)|Pzi

² Operators made of  conserved currents – Physical – No need for UVCT   

² Operators lead to perturbative UV divergence – Renormalizable!   

quasi-PDFs e�(x̃, Pz;µ
2
) ⌘ F.T. of hPz|O( , , A)(�z)|Pzi+UVCT(µ

2
)

Need a large scale,        , e.g., the offshellness of  the current(s) µ2

q Collinear factorization: 

e�(x̃, Pz;µ
2) = ⌃f

Z 1

0

dx

x

Cf
✓
x̃

x

,

µ̄

2

µ

2
,↵s;Pz

◆
f(x, µ̄2) +O


1

µ

↵

�
Normal PDFs 

²  Perturbatively,                          and                 have the same CO divergence e�(x̃, Pz;µ
2) f(x, µ̄2)

² Matching coefficients,       ,  are IR safe and perturbatively calculable  Cf

Ma and Qiu,  
arXiv:1404.6860 
           1412.2688	

E

E

E



Extract PDFs from lattice “cross sections” 

q  Lattice “cross section”: 

“Collision energy”                                 “rapidity” x̃ ⇠ “y”Pz ⇠ “
p
s”

“Hard momentum transfer” 1/a ⇠ µ̃ ⇠ “Q”

q CO Factorization – IR safe matching coefficients: 

²  It is calculable in lattice QCD with an Euclidean time, “E” 

²  It is infrared (IR) safe, calculated in lattice perturbation theory 

²  All CO divergences of  its continuum limit (            ) can be factorized 
into the normal PDFs with perturbatively calculable hard coefficients  

a ! 0

²  Its continuum limit is UV renormalizable 

q UV renormalization: 
² No UVCT needed if                        is made of  conserved currents O( , , A)

²  The quasi-PDFs are not made of  conserved currents – UVCT needed 

e�Lat
E (x̃, 1/a, Pz) / F.T. of hPz|O( , , A)|Pzi+UVCT

(1/a)

QCD Global  
analysis of   
lattice data 



Differences between Ji’s approach and ours 

q  For the quasi-PDFs: 

q̃(x, µ2
, P

z

) =

Z 1

x

dy

y

Z

✓
x

y

,

µ

P

z

◆
q(y, µ2) +O

✓
⇤2

P

2
z

,

M

2

P

2
z

◆
Ji, arXiv:1305.1539 
                 1404.6680	

²  Ji’s approach – high Pz effective field theory: 

² Our approach – QCD collinear factorization: Ma and Qiu,  
arXiv:1404.6860 
           1412.2688	
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Differences between Ji’s approach and ours 

q  For the quasi-PDFs: 

q̃(x, µ2
, P

z

) =

Z 1

x

dy

y

Z

✓
x

y

,

µ

P

z

◆
q(y, µ2) +O

✓
⇤2

P

2
z

,

M

2

P

2
z

◆

q Beyond quasi-PDFs: 

Ji, arXiv:1305.1539 
                 1404.6680	

²  Ji’s approach – high Pz effective field theory: 

² Our approach – QCD collinear factorization: Ma and Qiu,  
arXiv:1404.6860 
           1412.2688	
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✓
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1
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�

Lattice “cross-sections” – lattice calculable single hadron matrix elements  

UV and IR safe with a large momentum transfer, CO factorized into PDFs 



Case study – factorization of  quasi-PDFs 

q  The “Quasi-quark” distribution, as an example:   

²  Feynman diagram representation: 

q̃(x̃, µ̃

2
, P

z

) =

Z
dy

z

4⇡

e

ix̃Pzyz hP | (y
z

)�

z

exp

⇢
�ig

Z
yz

0
dy

0
z

A

z

(y

0
z

)

�
 (0)|P i

k k

P P

 � �z

2Pz
�

✓
x̃� kz

Pz

◆

⌃cut

P 2 ⇠ 0

Pz ⇠ “
p
s ” ⇠ µ̃/x̃

Ma and Qiu,  
arXiv:1404.6860 
           1412.2688	

Sufficiently large 



Case study – factorization of  quasi-PDFs 

q  The “Quasi-quark” distribution, as an example:   

²  Feynman diagram representation: 

q̃(x̃, µ̃

2
, P

z

) =

Z
dy

z

4⇡

e

ix̃Pzyz hP | (y
z

)�

z

exp

⇢
�ig

Z
yz

0
dy

0
z

A

z

(y

0
z

)

�
 (0)|P i

²  Like PDFs, it is IR finite 

k k

P P

 � �z

2Pz
�

✓
x̃� kz

Pz

◆

⌃cut

P 2 ⇠ 0

Pz ⇠ “
p
s ” ⇠ µ̃/x̃

Ma and Qiu,  
arXiv:1404.6860 
           1412.2688	

²  Like PDFs, it is UV divergent, but, worse (linear UV divergence) 

Potential trouble!  - mixing with the Log UV of  PDFs? 

²  Like PDFs, it is CO divergent – factorizes CO divergence into PDFs 

Show to all orders in perturbation theory 

Sufficiently large 



All order QCD factorization of  CO divergence 

² Only process dependence: 

Mueller, PRD 1974	

q                     2PI kernels C0, K0 :

q Generalized ladder decomposition in a physical gauge  

n ·A = A+ = 0

²  2PI are finite in a physical gauge for fixed k and p: 

Ellis, Georgi, Machacek, Politzer, Ross, 1978, 1979	

Ma and Qiu, arXiv:1404.6860	



All order QCD factorization of  CO divergence 

q  2PI kernels – Diagrams: 

q Renormalized kernel - parton PDF: 

K ⌘
Z

d

4
ki �

✓
xi �

k

+

p

+

◆
Tr


� · n
2p · n K0

� · p
2

�
+UVCT

Logarithmic

q Ordering in virtuality: P 2 ⌧ k2 . µ̃2

Cut-vertex for normal quark distribution 
Logarithmic UV and CO divergence 

+ power suppressed 

– Leading power in  
1

µ̃



All order QCD factorization of  CO divergence 

q Projection operator for CO divergence:  

bPK Pick up the logarithmic CO divergence of   K 

q  Factorization of  CO divergence:  

CO divergence free All CO divergence of   
quasi-quark distribution 

Normal Quark 
distribution 

s

f̃q/P



UV finite? 

All order QCD factorization of  CO divergence 

q Projection operator for CO divergence:  

bPK Pick up the logarithmic CO divergence of   K 

q  Factorization of  CO divergence:  

CO divergence free All CO divergence of   
quasi-quark distribution 

Normal Quark 
distribution 

s

f̃q/P



UV renormalization 

q UV divergences (difference in gauge link):   
Ma and Qiu, arXiv:1404.6860, …	

q Renormalization:   "
C0

1

1� (1� P̂)K

#

ren

⌘ C0
1

1� (1� P̂)K
+UVCTs

1

2
�z

1

2
� · p /

⇥
�0 � �z

⇤

n2
z = �1

Dotsenko and Vergeles NPB, (1980) 

²  Power divergence:  Diagram (a) – independent of  ξz  

Removed by “mass” renormalization of  a test particle – the gauge link 

In coordinate space: 
ξz 

Independence! 

²  Left-over log divergence: 

Dimensional regularization – ξz independence of  1/ε – finite CTs 

²  Log(ξz) – term:  Artifact of  dimensional regularization 



One-loop example:  quark !quark 

q Expand the factorization formula:   

q Gauge choice:   

n2
z = �1with 

Ma and Qiu, arXiv:1404.6860	

q  Feynman diagrams:   

Same diagrams for both 
 
                  and 
 
But, in different gauge 

f̃q/q fq/q

nz ·A = 0 for

˜fq/q n ·A = 0 for fq/q

Gluon propagator: 

d̃↵�(l) = �g↵� +
l↵n�

z + n↵
z l

�

lz
� n2

z l
↵l�

l2z



One-loop “quasi-quark” distribution in a quark 

q Real + virtual contribution:   

q Cancelation of  CO divergence:   

Only the first term is CO divergent for  0 < y < 1, which is the same 
as the divergence of  the normal quark distribution – necessary!  

Ma and Qiu, arXiv:1404.6860	

⇥

where 



One-loop “quasi-quark” distribution in a quark 

q Real + virtual contribution:   

q Cancelation of  CO divergence:   

Only the first term is CO divergent for  0 < y < 1, which is the same 
as the divergence of  the normal quark distribution – necessary!  

Ma and Qiu, arXiv:1404.6860	

⇥

where 

Here, a UV cutoff  is used – other scheme is discussed in the paper 

q UV renormalization:   

Different treatment for the upper limit of           integration  - “scheme” l2?



One-loop coefficient functions 
Ma and Qiu, arXiv:1404.6860	

q MS scheme for                  :  fq/q(x, µ
2)

q Generalized “+” description:   

where 

For a testing function 
h(t)

q Explicit verification of  the factorization at one-loop:   
Coefficient functions for all partonic channels are IR safe and finite! 

C(1)
i/j(t, µ̃

2, µ, Pz) with i, j = q, q̄, g

t = x̃/x



From Lattice quasi-PDFs to PDFs 

q BNL – RBRC efforts: 

f̃

Latt.
i/h (x̃,

1

a

, Pz)E

One-loop 
Perturbative 

Matching 

Tomomi’s talk 

Same 

f̃

Cont.
j/h (x̃, µ2

, Pz)M

f̃

Cont.
j/h (x̃, µ2

, Pz)E

fi/h(x, µ̄
2)M

One-loop 
Perturbative 

Matching 

This talk 



From Lattice quasi-PDFs to PDFs 

q BNL – RBRC efforts: 

f̃

Latt.
i/h (x̃,

1

a

, Pz)E

One-loop 
Perturbative 

Matching 

Tomomi’s talk 

Same 

f̃

Cont.
j/h (x̃, µ2

, Pz)M

f̃

Cont.
j/h (x̃, µ2

, Pz)E

fi/h(x, µ̄
2)M

One-loop 
Perturbative 

Matching 

This talk 

Direct 
Matching 

in 
progress 

q  To do list: 

²  Matching with more realistic lattice fermion (no principle difficulty) 

²  Lattice numerical simulations of  the quasi-PDFs 

²  First physics project:  d(x)/u(x) at large x 



Summary and outlook 

q  “lattice cross sections” = single hadron matrix elements  
       calculable in Lattice QCD and factorizable in QCD 

q Conservation of  difficulties – complementarity: 
         High energy scattering experiments  

      – less sensitive to large x parton distribution/correlation 
    “Lattice factorizable cross sections” 
      – more suited for large x PDFs, and more: PDFs of  meson?    

q  Lattice QCD can calculate PDFs, but, more works are needed!  

Thank you! 

q Extract PDFs by global analysis of  data on “Lattice cross 
sections”.  Same should work for other distributions  

Key difference from Ji’s idea: 
Expansion in 1/μ instead of  that in 1/Pz 





Nucleon’s internal structure 

q  Our understanding of  the nucleon evolves 

Nucleon is a strongly interacting, relativistic bound state 
of  quarks and gluons 

1970s 1980s/2000s Now 

q QCD bound states: 

²  Neither quarks nor gluons appear in isolation! 
²  Understanding such systems completely is still beyond the 

capability of  the best minds in the world 

q  The great intellectual challenge: 

Probe nucleon structure without “seeing” quarks and gluons? 



PDFs from lattice QCD 

q How to get x-dependent PDFs with a limited moments? 

Cannot distinguish valence quark contribution from sea quarks 

²  Assume a smooth functional form with some parameters 
²  Fix the parameters with the lattice calculated moments 

xq(x) = a x

b(1� x)c(1 + ✏

p
x+ � x)

W. Dermold et al., Eur.Phys.J.direct C3  
(2001) 1-15	



“Quasi-PDFs” have no parton interpretation 

q Normal PDFs conserve parton momentum:   

M =
X

q

Z 1

0
dx xfq(x) +

Z 1

0
dx xfq̄(x)

�
+

Z 1

0
dx xfg(x)

=
X

q

Z 1

�1
dx xfq(x) +

1

2

Z 1

�1
dx xfg(x)

=

1

2(P+
)

2
hP |T++

(0)|P i = constant

Energy-momentum 
tensor 

Tµ⌫

q  “Quasi-PDFs” do not conserve “parton” momentum:   

fM =
X

q

Z 1

0
d̃x x̃f̃q(x̃) +

Z 1

0
d̃x x̃f̃q̄(x̃)

�
+

Z 1

0
d̃x x̃f̃g(x̃)

=
X

q

Z 1

�1
d̃x x̃f̃q(x̃) +

1

2

Z 1

�1
d̃x x̃f̃g(x̃)

=

1

2(Pz)
2
hP | [T zz

(0)� gzz(...)] |P i 6= constant

Note: “Quasi-PDFs” are not boost invariant 



The first try 
Ji, arXiv:1305. 1539	Lin et al., arXiv:1402.1462	
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1. Introduction

N.Carrasco, V.Lubicz, G.Martinelli, CTS, N.Tantalo, C.Tarantino, M.Testa

(arXiv:1502.00257)

Electromagnetic corrections to hadronic masses are now being calculated.
For a review see A.Portelli at Lattice 2014.

The results of (some) weak matrix elements obtained from lattice QCD are now
being quoted with O(1%) precision e.g. FLAG Collaboration, arXiv:1310.8555

fπ fK fD fDs fB fBs

130.2(1.4) 156.3(0.8) 209.2(3.3) 248.6(2.7) 190.5(4.2) 227.7(4.5)

(results given in MeV)

We therefore need to start considering electromagnetic (and other isospin
breaking) effects if we are to use these results to extract CKM matrix elements at
a similar precision.

For illustration, we consider fπ but the discussion is general. we do not use ChPT.
For a ChPT based discussion of fπ, see J.Gasser & G.R.S.Zarnauskas, arXiv:1008.3479

At O(α0)

Γ(π+ → `+ν`) =
G2

F |Vud|2f 2
π

8π
mπ m2

`

(
1− m2

`

m2
π

)2
.
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Infrared Divergences

At O(α) infrared divergences are present and we have to consider

Γ(π+ → `+ν`(γ)) = Γ(π+ → `+ν`) + Γ(π+ → `+ν`γ)

≡ Γ0 + Γ1 ,

where the suffix denotes the number of photons in the final state.

Each of the two terms on the rhs is infrared divergent, the divergences cancel in
the sum.

The cancelation of infrared divergences between contributions with virtual and
real photons is an old and well understood issue.

F.Bloch and A.Nordsieck, PR 52 (1937) 54

The question for our community is how best to combine this understanding with
lattice calculations of non-perturbative hadronic effects.

This is a generic problem if em corrections are to be included in the evaluation of
a decay process.

Chris Sachrajda MNME, 6th February 2015 3



Lattice computations of Γ(π+ → `+ν`(γ)) at O(α)

In principle, particularly as techniques and resources improve in the future, it may
be better to compute Γ1 nonperturbatively over a larger range of photon energies.

At present we do not propose to compute Γ1 nonperturbatively. Rather we
consider only photons which are sufficiently soft for the point-like (pt)
approximation to be valid.

A cut-off ∆E of O(10 - 20 MeV) appears to be appropriate both
experimentally and theoretically.

F.Ambrosino et al., KLOE collaboration, hep-ex/0509045; arXiv:0907.3594

We now write

Γ0 + Γ1(∆E) = lim
V→∞

(Γ0 − Γpt
0 ) + lim

V→∞
(Γpt

0 + Γ1(∆E)) .

The second term on the rhs can be calculated in perturbation theory. It is
infrared convergent, but does contain a term proportional to log ∆E.
The first term is also free of infrared divergences.
Γ0 is calculated nonperturbatively and Γpt

0 in perturbation theory. The
subtraction in the first term is performed for each momentum and then the
sum over momenta is performed (see below).

Chris Sachrajda MNME, 6th February 2015 4



Outline of Talk

Γ0 + Γ1(∆E) = lim
V→∞

(Γ0 − Γpt
0 ) + lim

V→∞
(Γpt

0 + Γ1(∆E)) .

1 Introduction

2 What is GF at O(α)?

3 Proposed calculation of Γ0 − Γpt
0

4 Calculation of Γpt
0 + Γ1(∆E)

5 Estimates of structure dependent contributions to Γ1(∆E)

6 Summary and Conclusions

Chris Sachrajda MNME, 6th February 2015 5



2. What is GF at O(α)?

1 The results for the widths are expressed in terms of GF, the Fermi constant
(GF = 1.16632(2)× 10−5 GeV−2). This is obtained from the muon lifetime:

1
τµ

=
G2

Fm5
µ

192π3

[
1− 8m2

e

m2
µ

] [
1 +

α

2π

(
25
4
− π2

)]
.

S.M.Berman, PR 112 (1958) 267; T.Kinoshita and A.Sirlin, PR 113 (1959) 1652

This expression can be viewed as the definition of GF. Many EW corrections
are absorbed into the definition of GF; the explicit O(α) corrections come
from the following diagrams in the effective theory:

µ e

ν̄e

νµ

µ e

ν̄e

νµ

µ e

ν̄e

νµ

together with the diagrams with a real photon.
These diagrams are evaluated in the W-regularisation in which the photon
propagator is modified by: A.Sirlin, PRD 22 (1980) 971

1
k2 →

M2
W

M2
W − k2

1
k2 .

(
1
k2 =

1
k2 −M2

W
+

M2
W

M2
W − k2

1
k2

)
Chris Sachrajda MNME, 6th February 2015 6



W-regularization (cont)

The γ −W box diagram:

W
µ e

ν̄e

νµ

µ e

ν̄e

νµ

As an example providing some evidence & intuition that the W-regularization is
useful consider the γ −W box diagram.

In the standard model (left-hand diagram) it contains both the γ and W
propagators.

In the effective theory this is preserved with the W-regularization where the
photon propagator is proportional to

1
k2

1
k2 −M2

W

and the two diagrams are equal up to terms of O(q2/M2
W), where q is the

momentum of the e and νe.

Chris Sachrajda MNME, 6th February 2015 7



3. Proposed calculation of Γ0 − Γpt
0

Most (but not all) of the EW corrections which are absorbed in GF are common to
other processes (including pion decay)⇒ factor in the amplitude of
(1 + 3α/4π(1 + 2Q̄) log MZ/MW), where Q̄ = 1

2 (Qu + Qd) = 1/6.
A.Sirlin, NP B196 (1982) 83; E.Braaten & C.S.Li, PRD 42 (1990) 3888

We therefore need to calculate the pion-decay diagrams in the effective theory
with

Heff =
GF√

2
V∗ud

(
1 +

α

π
log

MZ

MW

)
(d̄Lγ

µuL)(ν̄`, L γµ`L)

in the W-regularization.
Thus for example, with the Wilson action for both the gluons and fermions:

OW−reg
1 =

(
1 +

α

4π

(
2 log a2M2

W − 15.539
))

Obare
1 +

α

4π

(
0.536 Obare

2

+1.607 Obare
3 − 3.214 Obare

4 − 0.804 Obare
5

)
,

where

O1 = (d̄γµ(1− γ5)u) (ν̄`γµ(1− γ5)`) O2 = (d̄γµ(1 + γ5)u) (ν̄`γµ(1− γ5)`)

O3 = (d̄(1− γ5)u) (ν̄`(1 + γ5)`) O4 = (d̄(1 + γ5)u) (ν̄`(1 + γ5)`)

O5 = (d̄σµν(1 + γ5)u) (ν̄`σµν(1 + γ5)`) .
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Proposed calculation of Γ0 − Γpt
0 (Cont)

Consider now the evaluation of Γ0.

νℓ

ℓ+u

d

π+

(a)

νℓ

ℓ+u

d

π+

(b)

νℓ

ℓ+u

d

π+

(c)

The correlation function for this set of diagrams is of the form:

C1(t) = −1
2

∫
d 3~x d 4x1 d 4x2 〈0|T

{
JνW(0) jµ(x1)jµ(x2)φ

†(~x,−t)
}
| 0〉 ∆(x1, x2) ,

where jµ(x) =
∑

f Qf f̄ (x)γµf (x), JW is the weak current, φ is an interpolating
operator for the pion and ∆ is the photon propagator.
Combining C1 with the lowest order correlator:

C0(t) + C1(t) ' e−mπ t

2mπ
Zφ 〈 0 |JνW(0) |π+〉 ,

where now O(α) terms are included.

e−mπ t ' e−m0
π t (1− δmπ t) and Zφ is obtained from the two-point function.
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Proposed calculation of Γ0 − Γpt
0 (Cont)

νℓ

ℓ+u

d

π+

(e)

νℓ

ℓ+u

d

π+

(f)

C̄1(t)αβ = −
∫

d 3~x d 4x1 d 4x2 〈0|T
{

JνW(0) jµ(x1)φ
†(~x,−t)

}
| 0〉 ∆(x1, x2)

×
(
γν(1− γ5)S(0, x2)γµ

)
αβ

eE` t2 e−i~p`·~x2

' Zφ0
e−m0

π t

2m0
π

(M̄1)αβ

Corresponding contribution to the amplitude is ūα(pν`)(M̄1)αβvβ(p`).
Diagrams (e) and (f) are not simply generalisations of the evaluation of fπ.
The lepton’s wave function renormalisation cancels in the difference Γ0 − Γpt

0 .
We have to be able to isolate the finite-volume ground state (pion).
The Minkowski↔ Euclidean continuation can be performed (the time integrations
are convergent).

Chris Sachrajda MNME, 6th February 2015 10



Convergence of the t2 integration

x2

kl

kγ

pℓ

For every term in the ~kγ integration, ωγ + ωl > El so the t2 behaviour,
exp[−(ωk + ωl − El)t2] is convergent.
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There are also disconnected diagrams to be evaluated.

νℓ

ℓ+u

d

π+

q

(a)

νℓ

ℓ+u

d

π+

q

(b)

νℓ

ℓ+u

d

π+

q

(c)

νℓ

ℓ+u

d

π+

q

(d)

νℓ

ℓ+u

d

π+

q1 q2

(e)
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4. Calculation of Γpt = Γpt
0 + Γpt

1

The total width, Γpt was calculated in 1958/9 using a Pauli-Villars regulator for the
UV divergences and mγ for the infrared divergences.

S.Berman, PR 112 (1958) 267, T.Kinoshita, PRL 2 (1959) 477

This is a useful check on our perturbative calculation.

In the perturbative calculation we use the following Lagrangian for the interaction
of a point-like pion with the leptons:

Lπ-`-ν` = i GFfπV∗ud {(∂µ − ieAµ)π}
{
ψ̄ν`

1 + γ5

2
γµψ`

}
+ H.C. .

The corresponding Feynman rules are:

π+

ℓ+

νℓ

= −iGFfπV
∗
ud p

µ
π

1+γ5

2
γµ

π+

ℓ+

νℓ

γ∗

= ieGFfπV
∗
ud g

µν 1+γ5

2
γµ

Chris Sachrajda MNME, 6th February 2015 13



Diagrams to be evaluated

and

(a) (b) (c)

(d) (e) (f)
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4. Calculation of Γpt = Γpt
0 + Γpt

1 (cont)

We find, for Eγ < ∆E

Γpt(∆E) = Γtree
0 ×

(
1 +

α

4π

{
3 log

(
m2
π

M2
W

)
+ log

(
r2
`

)
− 4 log(r2

E) +
2− 10r2

`

1− r2
`

log(r2
`)

−2
1 + r2

`

1− r2
`

log(r2
E) log(r2

`)− 4
1 + r2

`

1− r2
`

Li2(1− r2
`)− 3

+
[3 + r2

E − 6r2
` + 4rE(−1 + r2

`)

(1− r2
`)

2
log(1− rE) +

rE(4− rE − 4r2
`)

(1− r2
`)

2
log(r2

`)

− rE(−22 + 3rE + 28r2
`)

2(1− r2
`)

2
− 4

1 + r2
`

1− r2
`

Li2(rE)
] })

,

where rE = 2∆E/mπ and r` = m`/mπ.

We believe that this is a new result.
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4. Calculation of Γpt = Γpt
0 + Γpt

1 (cont)

The total rate is readily computed by setting rE to its maximum value, namely
rE = 1− r2

`, giving

Γpt = Γtree
0 ×

{
1 +

α

4π

(
3 log

(
m2
π

M2
W

)
− 8 log(1− r2

`)−
3r4
`

(1− r2
`)

2
log(r2

`)

−8
1 + r2

`

1− r2
`

Li2(1− r2
`) +

13− 19r2
`

2(1− r2
`)

+
6− 14r2

` − 4(1 + r2
`) log(1− r2

`)

1− r2
`

log(r2
`)

)}
.

This result agrees with the well known results in literature providing an important
check of our calculation.
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4. Calculation of Γpt = Γpt
0 + Γpt

1 (cont)

It is of course possible instead to impose a cut-off on the energy of the final-state
lepton, requiring it to be close to its maximum value Emax

` = mπ
2 (1 + r2

`).

We also give, up to O(∆E`), the distribution for Γpt(∆E`) defined as

Γpt(∆E`) =

∫ Emax
`

Emax
`
−∆E`

dE′`
dΓpt

dE′`
,

where 0 ≤ ∆E` ≤ (mπ − m`)2/(2mπ);

Γpt(∆E`) = Γtree
0 ×

{
1 +

α

4π

[
3 log

(
m2
π

M2
W

)
+ 8 log

(
1− r2

`

)
− 7

+ log
(

r2
`

) 3− 7r2
` + 8∆E` + 4

(
1 + r2

`

)
log
(
1− r2

`

)
1− r2

`

+ log (2∆E`)
(
−8− 4

1 + r2
`

1− r2
`

log
(

r2
`

))]}
.

Summary: The perturbative calculation of Γpt
0 + Γ1(∆E) is done.

Chris Sachrajda MNME, 6th February 2015 17



5. Estimates of structure dependent contributions to Γ1(∆E)

For sufficiently small ∆E the structure dependent contributions to Γ1 can be
neglected.

How big might they be for experimentally accessible values of ∆E?
To estimate this for fπ and fK we use Chiral Perturbation Theory.

J.Bijnens, G.Ecker and J.Gasser, hep-ph/9209261,
J.Bijnens, G.Colangelo, G.Ecker and J.Gasser, hep-ph/9411311.

V. Cirigliano and I. Rosell, arXiv:0707.3439 [hep-ph]],
L. Ametller, J. Bijnens, A. Bramon and F. Cornet, hep-ph/9302219.

We define

RA
1 (∆E) =

ΓA
1 (∆E)

Γα,pt
0 + Γpt

1 (∆E)
, A = {SD,INT} ,

where SD and INT refer to the structure dependent and interference (between SD
and pt) contributions respectively.

Note that the notation I am using here differs from that in the paper.
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5. Estimates of structure dependent contributions to Γ1(∆E) (cont)

Start with a decomposition in terms of Lorenz invariant form factors of the
hadronic matrix element

Hµν(k, pπ) =

∫
d4x eikx T〈0|jµ(x)JνW(0)|π(pπ)〉

and separate the contribution corresponding to the approximation of a point-like
pion Hµν

pt , from the structure dependent part Hµν
SD ,

Hµν = Hµν
SD + Hµν

pt .

Hµν
pt is simply given by

Hµν
pt = fπ

[
gµν − (2pπ − k)µ(pπ − k)ν

(pπ − k)2 − m2
π

]
.

The structure dependent component can be parametrised by four independent
invariant form factors which we define as

Hµν
SD = H1

[
k2gµν − kµkν

]
+ H2

{[
(k · pπ − k2)kµ − k2(pπ − k)µ

]
(pπ − k)ν

}
−i

FV

mπ
εµναβkαpπβ +

FA

mπ

[
(k · pπ − k2)gµν − (pπ − k)µkν

]
.

Chris Sachrajda MNME, 6th February 2015 19



5. Estimates of structure dependent contributions to Γ1(∆E) (cont)

For the decay into a real photon, only FV and FA contribute.

At O(p4) in chiral perturbation theory,

FV =
mP

4π2fπ
and FA =

8mP

fπ
(Lr

9 + Lr
10) ,

where P = π or K and Lr
9, Lr

10 are Gasser-Leutwyler coefficients.

The numerical values of these constants have been taken from the review by
M.Bychkov and G.D’Ambrosio in the PDG. FV and FA are 0.0254 and 0.0119 for
the pion and 0.096 and 0.042 for the Kaon (for the pion these values of the form
factors, obtained from direct measurements, can be found in the supplement to
the PDG.)
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5. Estimates of structure dependent contributions to Γ1(∆E) (cont)

Pion
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-0.014

-0.012

-0.010

-0.008

-0.006

-0.004

-0.002

0.000
R1@Π® eΝHΓLD

INT

SD

5 10 15 20 25 30
DEHMeVL

-4. ´ 10-7

-2. ´ 10-7

0
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Kaon
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5. Estimates of structure dependent contributions to Γ1(∆E) (cont)

For heavy-light mesons we don’t have such ChPT calculations.

For the B-meson in particular we have another small scale < ΛQCD,
mB∗ − mB ' 45 MeV so that we may expect that we will have to go to smaller ∆E
in order to be able to neglect SD effects.

Calculations based on the extreme approximation of single pole dominance
suggest that this is likely to be the case.

D. Becirevic, B. Haas and E. Kou, arXiv:0907.1845 [hep-ph]

To be investigated further!
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6. Summary and Conclusions

Lattice calculations of some physical quantities are approaching O(1%) precision
⇒ we need to include isospin-breaking effects, including electromagnetic effects,
to make the tests of the SM even more stringent.
For decay widths and scattering cross sections including em effects introduces
infrared divergences.
In this work we propose a method for dealing with these divergences, illustrating
the procedure by a detailed study of the leptonic (and semileptonic) decays of
pseudoscalar mesons.
Although challenging, the method is within reach of present simulations and we
will now implement the procedure in an actual numerical computation.

Power-like FV corrections, O(1/(LΛQCD)n), to be evaluated.
O(ααs) matching factors to be studied.

In the future one can envisage relaxing the condition ∆E � ΛQCD, including the
emission of real photons with energies which do resolve the structure of the initial
hadron. Such calculations can be performed in Euclidean space under the same
conditions as above, i.e. providing that there is a mass gap.

The natural extension of the present proposal is to subtract and add Γpt
1 (∆E)

to determine Γ1(∆E)− Γpt
1 (∆E), so that our calculation of Γpt

0 + Γpt
1 (∆E) will

still be useful.

Chris Sachrajda MNME, 6th February 2015 23
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The fundamental issue
• Lattice simulations are done in finite volumes	


• Experiments are not
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• Lattice simulations are done in finite volumes	


• Experiments are not
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How do we connect these?
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• Lattice QCD can calculate energy levels of multiple 
particle systems in a box	


• How are these related to scattering amplitudes?

4

iMn!m

Discrete energy 
spectrum

Scattering 
amplitudes

E0(L)

E1(L)

E2(L)

The fundamental issue

?
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When is spectrum related to scattering amplitudes?

L<2R	

No “outside” region.	


Spectrum NOT related to scatt. amps.	

Depends on finite-density properties

L

R (interaction 	

range)

 [Lüscher]

✔✘

L

L>2R	

There is an “outside” region.	


Spectrum IS related to scatt. amps.	

up to corrections proportional to

e�M⇡L
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Systems considered today

Theoretically understood;	

numerical implementations mature	


!
!

What about including QED?

Formalism under development	

!
!

How implement numerically?

Quantization conditions

[Beane, Davoudi]

[Hansen][Mohler, Wilson]

[Doi]
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Systems considered today

Theoretically understood;	

!

numerical implementations expanding

EM, weak

Transition amplitudes

[Agadjanov, Briceño]

[Ishizuka, Kelly, Shultz]
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Outline
•Motivation	


•Theoretical status	


•Key theoretical ingredients	


•2-particle quantization condition	


•Future directions & challenges

8
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Studying resonances
• Most hadrons are resonances	


• Resonances are not asymptotic states; show up in behavior of scatt. amplitudes	


• FV methods determine scattering amplitudes indirectly

9

ρ resonance in	

ππ phase shift

[Dudek et al., 2013]

m⇡ = 391MeV
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Studying resonances
• Most hadrons are resonances	


• Resonances are not asymptotic states; show up in behavior of scatt. amplitudes	


• FV methods aim to determine scattering amplitudes indirectly

10

• Many resonances have three particle decay channels	


!(782)! ⇡⇡⇡ N(1440)! N⇡⇡K⇤ �! K⇡⇡
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Studying resonances
• Most hadrons are resonances	


• Resonances are not asymptotic states; show up in behavior of scatt. amplitudes	


• FV methods aim to determine scattering amplitudes indirectly

11

• Many resonances have three particle decay channels	


!(782)! ⇡⇡⇡ N(1440)! N⇡⇡K⇤ �! K⇡⇡

• Most resonances have multiple decay channels	


a0(980) �! ⌘⇡,KK f0(980) �! ⇡⇡,KK
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Determining interactions

• For nuclear physics need NN and NNN interactions	


• Input for effective field theory treatments of larger nuclei & nuclear matter

12

• Meson interactions needed for understanding pion & 
kaon condensates	


• ππ, KK, πππ, πKK, etc. 
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Calculating decay amplitudes

• Weak decay amplitudes allow tests of SM	


• K→ππ, πππ	


• D→ππ, KK, ηη, 4π, ….	


• B→Kπ (+ l+ l- )	


• …	


• EM transition amplitudes probe hadron structure

13

⇢ �! ⇡�⇤ N�⇤ �! � �! N⇡
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Theoretical status

14
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Status for 2 particles
• Long understood in NRQM [Huang & Yang 57, ....]	


• Quantization formula in QFT for energies below inelastic threshold converted 
into NRQM problem and solved by [Lüscher 86 & 91]	


• Solution generalized to arbitrary total momentum P, multiple (2 body) channels, 
general BCs and arbitrary spins [Rummukainen & Gottlieb 85; Kim, Sachrajda & SS 
05; Bernard, Lage, Meißner & Rusetsky 08; Hansen & SS 12; Briceño & Davoudi 12; 
… ]	


• Relation between finite volume 1→2 weak amplitude (e.g. K→ππ) and infinite 
volume decay amplitude determined [Lellouch & Lüscher 00]	


• LL formula generalized to general P, to multiple (2 body) channels, and to arbitrary 
currents and general BCs (e.g. γ*π→ρ→ππ, γ*N→Δ→πN, γD→NN)         
[Kim, Sachrajda & SS 05; Christ, Kim & Yamazaki 05; Meyer 12; Hansen & SS 12; 
Briceño & Davoudi 12; Agadjanov, Bernard, Meißner & Rusetsky 14; Briceño, 
Hansen & Walker-Loud 14; … ]	


• Leading order QED effects on quantization condition determined [Beane & Savage 
14]

15
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Status for 3 particles

• [Beane, Detmold & Savage 07 and Tan 08] derived threshold expansion for n 
particles in NRQM, and argued it applied also in QFT	


• [Polejaeva & Rusetsky 12] showed in NREFT that 3 body spectrum 
determined by infinite-volume scattering amplitudes, using integral equation	


• [Briceño & Davoudi 12] used a dimer approach in NREFT, with s-wave 
interactions only, to determine relation between spectrum and a finite volume 
quantity, itself related to infinite-volume amplitudes by an integral equation	


• [Hansen & SS 14, 15] derived quantization condition in (fairly) general, 
relativistic QFT relating spectrum and M2 and 3-body scattering quantity Kdf,3; 
relation between Kdf,3 & M3 via integral equations now known	


• [Meißner, Rios & Rusetsky 14] determined volume dependence of 3-body 
bound state in unitary limit

16
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Some key theoretical 
ingredients

17

Following method of [Kim, Sachrajda & SS 05]
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Set-up

18

• Work in continuum (assume that LQCD                                                   
can control discretization errors)	


!

• Cubic box of size L with periodic BC,                                                         
and infinite (Minkowski) time	


• Spatial loops are sums: 	


• Easily extend to other BC (e.g. twisted)	


!

• Consider general QFT with arbitrary vertices

1
L3

P
~k

~k = 2⇡
L ~n

L

L

L
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Methodology

19

• Calculate (for some P=2πnP/L)

• Poles in CL occur at energies of finite-volume spectrum	


• For 2 & 3 particle states, σ ~ π2 & π3, respectively

Full propagators	

Normalized to unit residue at pole

Infinite-volume	

vertices

Boxes indicated summation	

over finite-volume momenta

• Use all-orders diagrammatic expansion, e.g. 

CM energy is	

E*=√(E2-P2)
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Key step 1

• Replace loop sums with integrals where possible	


• Drop exponentially suppressed terms (~e-ML,  e-(ML)^2, etc.) while keeping power-law dependence

20
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Key step 1

• Replace loop sums with integrals where possible	


• Drop exponentially suppressed terms (~e-ML,  e-(ML)^2, etc.) while keeping power-law dependence

20

Exp. suppressed if g(k) is smooth	

and scale of derivatives of g is ~1/M
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Key step 2
• Use “sum=integral + [sum-integral]” if integrand has pole, with [KSS]

21

• Example
Focus on this loop

k

P-k

P = (E, ~P )

q* is relative momentum	

of pair on left in CM

f & g evaluated for ON-SHELL momenta	

Depend only on direction in CM

Kinematic function

0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
)

g is right-hand part 	

of integrand

f is left-hand part 	

of integrand

+ exp. suppressed



/40S. Sharpe, “Finite volume quantization conditions” 2/5/2015, Riken BNL workshop

Key step 2
• Use “sum=integral + [sum-integral]” where integrand has pole, with [KSS]

22

0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
)

• Decomposed into spherical harmonics, F becomes
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Key step 2
• Use “sum=integral + [sum-integral]” where integrand has pole, with [KSS]

23

0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
)

• Diagrammatically

off-shell on-shell

1

L3

X

~k

Z

~k

finite-volume	

residue
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Variant of key step 2
• For generalization to 3 particles use (modified) PV prescription instead of iε

24

0

@
Z

dk0
2⇥

1

L3

X

�k

�
Z

d4k

(2⇥)4

1

A f(k)
1

k2 �m2
j + i�

1

(P � k)2 �m2
j + i�

g(k)

=

Z
d�q⇤d�q⇤0 f

⇤
j (q̂

⇤)Fjj(q
⇤, q⇤

0
)g⇤j (q̂

⇤0
)

• Key properties of FPV : real and no unitary cusp at threshold [see Max’s talk]	


gPV

gPV
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Key step 3

• Identify potential singularities:  can use time-ordered PT (i.e. do k0 integrals)	


• Example

25

��†
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Key step 3
• 2 out of 6 time orderings:

26

�

�

�†

�†

1’

2’

3’

4’

2

1
1

2
3

4 5

6

!j =
q
~k2j +M2On-shell energy

1 1 1 1P
j=1,6 !jE�!0

1�!0
2�!0

3�!0
4 E�!1�!2�!3�!4E�!1�!2
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Key step 3
• 2 out of 6 time orderings:

26

�

�

�†

�†

1’

2’

3’

4’

2

1
1

2
3

4 5

6

1 1 1 1P
j=1,6 !j

• If restrict 0 < E*< 4M then only 2-particle “cuts” have singularities, and these 
occur only when both particles go on-shell

E�!0
1�!0

2�!0
3�!0

4 E�!1�!2�!3�!4E�!1�!2
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Combining key steps 1-3
• For each diagram, determine which momenta must be summed, and which can 

be integrated	


• In our example, find:

27

��†

Can integrate

Must sum momenta	

passing through box
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Combining key steps 1-3
• For each diagram, determine which momenta must be summed, and which can 

be integrated	


• In our example, find:

27

��†

Can integrate

Must sum momenta	

passing through box

• Then repeatedly use sum=integral + “sum-integral” to simplify 



/40S. Sharpe, “Finite volume quantization conditions” 2/5/2015, Riken BNL workshop

2-particle quantization 
condition

28

Following method of [Kim, Sachrajda & SS 05]
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+

+ + + · · ·

�†

�†

�†

�†

�

�

�

�

CL(E, ~P ) = these loops are now 
integrated

• Apply previous analysis to 2-particle correlator (0 < E* < 4M)

• Collect terms into infinite-volume Bethe-Salpeter kernels

�† �

+ · · ·�† �+ + + · · ·
�

+

⇢

CL(E, ~P ) = iB
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• Apply previous analysis to 2-particle correlator

• Collect terms into infinite-volume Bethe-Salpeter kernels

�† �

+ · · ·�† �+ + + · · ·
�

+

⇢

CL(E, ~P ) =

+

+ · · ·+

�† � �† �

�† �

CL(E, ~P ) =

• Leading to

iB

iB

iB

iB
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+

+ · · ·+

�† � �† �

�† �
+�† � �† �

CL(E, ~P ) =

�† � �† � �† � �† �+ + +

F

F F F F

• Next use sum identity

A0A

CL(E, ~P ) = C1(E, ~P )
⇢ ⇢

+ + · · ·+ � �

⇢ ⇢
+ + · · ·�†�†

zero F cuts one F cut

F

matrix elements: 

• And regroup according to number of  “F cuts”

iB iB

iB

iB iBiB iB

iB iB + ...
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⇢ ⇢
+ + · · · + · · ·+

iM

A0A

CL(E, ~P ) = C1(E, ~P )+

two F 
cuts

A0A

F F

F

the infinite-volume, on-shell 2→2 
scattering amplitude

• And keep regrouping  according to number of  “F cuts”

32

+

+ · · ·+

�† � �† �

�† �
+�† � �† �

CL(E, ~P ) =

�† � �† � �† � �† �+ + +

F

F F F F

• Next use sum identity

iB iB

iB

iB iBiB iB

iB iB iB
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⇢ ⇢
+ + · · · + · · ·+ A0A

CL(E, ~P ) = C1(E, ~P )+ A0A

F F

F

the infinite-volume, on-shell 	

2→2 K-matrix 

• Alternate form if use PV-tilde prescription:

+

+ · · ·+

�† � �† �

�† �
+�† � �† �

CL(E, ~P ) =

�† � �† � �† � �† �+ + +

F

F F F F

• Next use sum identity

iB iB

iB

iB iBiB iB

iB iB iB

gPV

gPVgPV

iK

gPV gPV

gPVgPV

gPV
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• Final result:

++

+ + · · ·

iM

iM iM

A0A0

A0

A

A

A

CL(E, ~P ) = C1(E, ~P )

CL(E, ~P ) = C1(E, ~P ) +
1X

n=0

A0iF [iM2!2iF ]nA

F F F

F F F

•  

• Correlator is expressed in terms of infinite-volume, physical quantities and 
kinematic functions encoding the finite-volume effects
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•                                diverges whenever                                      diverges

•  

35

• Final result:

++

+ + · · ·

iM

iM iM

A0A0

A0

A

A

A

CL(E, ~P ) = C1(E, ~P )

CL(E, ~P ) = C1(E, ~P ) +
1X

n=0

A0iF [iM2!2iF ]nA

F F F

F F F

CL(E, ~P ) = C1(E, ~P ) +A0iF
1

1� iM2!2iF
A

no poles,	

only cuts

•  

no poles,	

only cuts

matrices in l,m space

iF
1

1� iM2!2iF
CL(E, ~P )
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2-particle quantization condition

• At fixed L & P, the finite-volume spectrum E1, E2, ... is given by solutions to

36

CL(E, ~P ) = C1(E, ~P ) +A0iF
1

1� iM2!2iF
A

• M is diagonal in l,m:	


• F is off-diagonal, since the box violates rotation symmetry	


• To make useful, truncate by assuming that M vanishes above lmax	


• For example, if lmax=0, obtain

iM2!2;`0,m0;`,m / �`,`0�m,m0

iM2!2;00;00(E
⇤
n) = [iF00;00(En, ~P ,L)]�1

Generalization of s-wave Lüscher equation to moving frame [Rummukainen & Gottlieb]

�L,~P (E) = det
⇥
(iF )�1 � iM2!2

⇤
= 0
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Equivalent K-matrix form

• At fixed L & P, the finite-volume spectrum E1, E2, ... is given by solutions to

37

• K2 is diagonal in l,m	


• FPV is off-diagonal, since the box violates rotation symmetry	


• To make useful, truncate by assuming that K2 vanishes above lmax	


• For example, if lmax=0, obtain

iK2;00;00(E
⇤
n) =

h
iFgPV ;00;00(En, ~P ,L)

i�1

CL(E, ~P ) = C1(E, ~P ) +A0iFfPV
1

1+K2FgPV
A

�L,~P (E) = det
⇥
(FgPV )

�1 +K2

⇤
= 0
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Future directions &  
challenges

38
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Many challenges remain!
• Extend 1→2 work to include arbitrary spin particles (so can use for N)	


• First step in NREFT taken for γ*N→Δ→πN [Agadjanov et al. 14]	


• Develop general formalism for 2→2 transitions (e.g. resonance form factors)	


• Fully develop 3 body formalism	


• Allow two particle sub channels to be resonant	


• Extend to non-identical particles, particles with spin	


• Generalize LL factors to 1→3 decay amplitudes (e.g. for K→πππ)	


• …. 	


• Develop models of amplitudes so that new results can be implemented in 
simulations (e.g. following Kπ, Kη coupled channel analysis of [Dudek, 
Edwards, Thomas & Wilson 14])	


39
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Many challenges remain!

•  Onwards to 4 particles?!?

40
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Thank you! 
Questions?

41
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Backup Slides

42
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3-particle correlator

43

Full propagator

Infinite-volume	

vertices

Boxes indicate summation	

over finite-volume momenta

�†
3

�3

CL(E, ~P ) = + + + · · ·

+

+

+

+

+ · · ·

+ + + · · ·

+ · · ·

+ · · ·

+

+ +

+

+ · · ·
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Excited meson radiative 
transition matrix elements 
using distillation 
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Framing The Problem

HSC, Phys.Rev. D80 (2009) 054506

〈n; p′λ′|jμ|m; pλ〉
jμ =

∑
q

eqψ̄qγ
μψq

Vector Current  
Matrix Elements

what do we want? what do we have?

0 1 2 3 4 5 6 7 8 9 10

r/as

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ψ
(r

)

N=64
N=32
N=8

Distillation 

Large Basis of Interpolators

Variational Method

C(t)V = C(t0)V Λ

Optimized Operators

Ω†
n ∼ viO†

i

spectroscopy OJλ ∼ ψ̄Γa
←→
D b

←→
D c · · ·ψ × CG(a, b, c → Jλ)

2



Spectroscopy
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JJDudek, Phys.Rev. D84 (2011) 074023

3



Spectroscopy

C(t) = 〈0|O(t)O†(0)|0〉

=
∑
n

e−Ent

2En
|〈0|O(0)|n〉|2

Two Point Function
What if |〈0|O(0)|n〉|2

is small (zero) ?

Isolate a single state

O

C(t)

t

O

C(t)v(n) = λn(t)C(t0)v
(n)

Diagonalize
the matrix

Build a basis of operators

Use a matrix of correlators

OJλ ∼ ψ̄Γa
←→
D b

←→
D c · · ·ψ × CG(a, b, c → Jλ)

Solution:

4



Projected Ops
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Matrix Elements

jμ =
∑
q

eqψ̄qγ
μψq

Cμ
nm = 〈0|Ωn(t)j

μ(tγ)Ω
†
m(0)|0〉

=
∑
n′m′

〈n′|jμ|m′〉e−En′ (t−tγ)e−Em′ tγ

× 〈0|Ωn(0)|n′〉
2En′

〈m′|Ω†
m(0)|0〉

2Em′

Matrix elements ‘hide’ in 3-pt functions

sum over  
everything 

need to isolate
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Matrix Elements

jμ =
∑
q

eqψ̄qγ
μψq

Cμ
nm = 〈0|Ωn(t)j

μ(tγ)Ω
†
m(0)|0〉

=
∑
n′m′

〈n′|jμ|m′〉e−En′ (t−tγ)e−Em′ tγ

× 〈0|Ωn(0)|n′〉
2En′

〈m′|Ω†
m(0)|0〉

2Em′

Matrix elements ‘hide’ in 3-pt functions

sum over  
everything 

need to isolate

“diagonalize” 
the sum? 
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Cμ
n,m(δt, tγ) = 〈0|Ωn(δt)j

μ(tγ)Ω
†
m(0)|0〉

Optimized  
Operators 

 1.0

 1.1
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 0  5  10  15  20  25  30

 0.2  0.6  1.0

 0

3-pt Functions
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The Linear System

Optimized Operators 
‘relax’ quickly pollution term

Matrix Element Decompositions

Cμ
n,m(δt, tγ) ∼ e−En(δt−tγ)

2En

e−Emtγ

2Em
〈n|jμ|m〉 + f(δt, tγ)

Form Factor
Kinematic Factor

〈n|jμ|m〉 =
∑
k

Kμ
k (n,m)Fk(Q

2)=

Some Examples

〈π, p′|jμ|π, p〉 = (p′ + p)μFπ(Q
2)

〈π, p′|jμ|ρ, pλ〉 = 2

mρ +mπ
εμνσηp′νpσεη(p, λ)Fρπ(Q

2)
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Signal Isolation

How well does it work?

Ω†
π ∼

∑
i

v
(π)
i O†

i

Cμ
nm = 〈0|Ωn(t)j

μ(tγ)Ω
†
m(0)|0〉

=
∑
n′m′

〈n′|jμ|m′〉e−En′ (t−tγ)e−Em′ tγ

× 〈0|Ωn(0)|n′〉
2En′

〈m′|Ω†
m(0)|0〉

2Em′
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Time Dependence
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A Lattice Artifact

π → πγ
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1

4
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The Calculation
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Pion Form-factor

〈r2〉 = −6
d

dQ2
F (Q2)|Q2=0

FVMD
π (Q2) =

m2
ρ

m2
ρ +Q2
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Rho Form-factors

ρ → ργ

〈ρ, p′λ′|jμ|ρ, pλ〉 = − (p′ + p)με∗α(p
′λ′)εα(pλ)G1(Q

2)

+ [εμ(pλ)ε∗α(p
′λ′)pα + εμ∗(p′λ′)εα(pλ)p′α]G2(Q

2)

− (p′ + p)με∗α(p
′λ′)pαεβ(pλ)p′β

G3(Q
2)

2m2
ρ

linear combinations of  
multipoles
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Rho Form-factors

ρ → ργ

Form Factor
Kinematic Factor

〈n|jμ|m〉 =
∑
k

Kμ
k (n,m)Fk(Q

2)

solved simultaneously 〈ρ, p′λ′|jμ|ρ, pλ〉 = − (p′ + p)με∗α(p
′λ′)εα(pλ)G1(Q

2)

+ [εμ(pλ)ε∗α(p
′λ′)pα + εμ∗(p′λ′)εα(pλ)p′α]G2(Q

2)

− (p′ + p)με∗α(p
′λ′)pαεβ(pλ)p′β

G3(Q
2)

2m2
ρ

linear combinations of  
multipoles

=
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Transitions

〈ρ; p′λ|jμ|π; p〉 = 2F (Q2)

mρ +mπ
εμνησp′νpηε

∗
σ(p

′, λ)
ρ → πγ
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The ‘Illegal Stuff ’
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Something New
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nm = 〈0|Ωn(t)j

μ(tγ)Ω
†
m(0)|0〉

=
∑
n′m′

〈n′|jμ|m′〉e−En′ (t−tγ)e−Em′ tγ

× 〈0|Ωn(0)|n′〉
2En′

〈m′|Ω†
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2Em′
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A Look ‘Under the Hood’
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〈ρ; p′λ|jμ|π; p〉 = 2F (Q2)

mρ +mπ
εμνησp′νpηε

∗
σ(p

′, λ)
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The Future
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the formalism

moved beyond  
ground states

explored  
systematics 

seen real  
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what have we done?

unstable to stable 
transition

explore more of  
the spectrum 

In the works

charm,  
tetraquarks, 
baryons?

other directions
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Correlator Construction



Clover Action

SC ≡ ata
3
s

∑
x

ψ̄(x)

[
m0 + νt /D

W
t + νs

∑
i

/D
W
s − as

2

(
ct
∑
i

σ4iF4i − cs
∑
i<i′

σii′Fii′

)]
ψ(x)

SC = ψ̄
←−
Ω

[
m+ /∇]−→

Ωψ

−→
Ω = 1 + atΩmm+ atΩt

−→
/∇t + asΩs

∑
i

−→
/∇i

Ṽ μ = ψ̄
←−
Ωγμ−→Ωψ

Tree Level

V0 = ψ̄γ0ψ − 1

4
asνs(1 − 1

ξ
)∂kψ̄σ0kψ

Vk = ψ̄γkψ − 1

4
at (1 − ξ) ∂0ψ̄σ0kψ

Add irrelevant operators

Redefine QED fields

Phys. Rev. D 64, 034509



Renormalization
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Rotational Symmetry
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Cμ
nm = 〈0|Ωn(t)j

μ(tγ)Ω
†
m(0)|0〉

=
∑
n′m′

〈n′|jμ|m′〉e−En′ (t−tγ)e−Em′ tγ

× 〈0|Ωn(0)|n′〉
2En′

〈m′|Ω†
m(0)|0〉

2Em′



Resonances in coupled-channel 
scattering from lattice QCD

David Wilson

Old Dominion University

Based on work in collaboration with J.J. Dudek, R.G. Edwards and C.E. Thomas. 

Multi-Hadron and Nonlocal Matrix Elements in Lattice QCD
Brookhaven National Laboratory

5-6 February 2015.
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Resonances from QCD

J. J. Dudek, R. G. Edwards and C. E. Thomas
Phys. Rev. D 87, 034505
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Coupled-channel scattering from lattice QCD
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Coupled-channel scattering

JP=0+ κ(700), K0
✶(1430), ...

JP=1- K✶(892), ...
JP=2+ K2

✶(1430), ...

• The ρ meson is a nice starting point but what about other states?

• Most physical resonances couple to multiple channels.

• To understand the physical spectrum, applying coupled-channel methods will be essential.

• We consider here πK, where ηK can also contribute in I=1/2.

• The physical amplitudes have resonances in several partial waves:

Coupled-channel scattering from lattice QCD



David Wilson 4

Coupled-channel scattering

Coupled-channel scattering from lattice QCD

⇡[000]K[000]

⇡[001]K[001]

⌘[001]K[001]

⌘[000]K[000]

⌘[011]K[011]

⇡[011]K[011]

0.16

0.20

0.24

0.28

 16  20  24

Main ingredients to obtain the finite volume spectra:

• Anisotropic lattices - finer temporal spacing.

• Distillation.

• A large basis of  qq-like constructions.

• Pairs of  optimised meson operators.

• Variational method to obtain the spectrum.
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Coupled-channel scattering

Coupled-channel scattering from lattice QCD

⇡[000]K[000]

⇡[001]K[001]

⌘[001]K[001]

⌘[000]K[000]

⌘[011]K[011]

⇡[011]K[011]

Main ingredients to obtain the finite volume spectra:

• Anisotropic lattices - finer temporal spacing.

• Distillation.

• A large basis of  qq-like constructions.

• Pairs of  optimised meson operators.

• Variational method to obtain the spectrum.
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Many contributors:
Lüscher

Gottlieb & Rummukainen
Christ, Kim, & Yamazaki

Kim, Sachrajda & Sharpe
He, Feng & Liu

Bernard, Lage, Meissner, and Rusetsky
Leskovec & Prelovsek

Briceño & Davoudi
Hansen & Sharpe

Gockeler et al
Guo, Dudek, Edwards & Szczepaniak

Briceño, Davoudi, Luu
+ ...

det
h
�ij�``0�nn0 + i⇢it

(`)
ij

⇣
�``0�nn0 + iM

~d,⇤
ij, `n, `0n0

⌘i
= 0

Coupled-channel scattering from lattice QCD

Coupled-channel extensions of  Lüscher’s method
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Channels: 
eg πK, ηK

Angular momentum

phase space

scattering t-matrix

finite volume object - contains
generalised Lüscher Zeta functions

momentum boost vector

lattice irrep

Sij = �ij + 2i (⇢i⇢j)
1
2 tij

⇢i =
2k(cm)

i

Ecm

M ⇠
1

�

X

spins

(CGs)
X

~r

r`Y`m(~̂r)

r2 - q2

Symmetry of  the volume mixes partial waves - M mixes partial waves.
t-matrix is diagonal in partial waves, but can couple scattering channels: πK→ηK 

det
h
�ij�``0�nn0 + i⇢it

(`)
ij

⇣
�``0�nn0 + iM

~d,⇤
ij, `n, `0n0

⌘i
= 0

Coupled-channel extensions of  Lüscher’s method

Coupled-channel scattering from lattice QCD
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t-matrix is diagonal in partial waves, but can couple scattering channels: πK→ηK 
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Channels: 
eg πK, ηK

Angular momentum

phase space

scattering t-matrix

finite volume object - contains
generalised Lüscher Zeta functions

momentum boost vector

lattice irrep

Sij = �ij + 2i (⇢i⇢j)
1
2 tij

⇢i =
2k(cm)

i

Ecm

M ⇠
1

�

X

spins

(CGs)
X

~r

r`Y`m(~̂r)

r2 - q2

det
h
�ij�``0�nn0 + i⇢it

(`)
ij

⇣
�``0�nn0 + iM

~d,⇤
ij, `n, `0n0

⌘i
= 0

Coupled-channel scattering from lattice QCD
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Resonances from QCD

J. J. Dudek, R. G. Edwards and C. E. Thomas
Phys. Rev. D 87, 034505

π

π

π

π

⇠
1

⇢(s)

s
1
2 �(s)

m2
R - s- is

1
2 �(s)

�(s) =
g2
R

6⇡

k3cm
E2
cm

Coupled-channel scattering from lattice QCD
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Extensions of
Lüscher’s 
method 

Finite volume energy levels Scattering Amplitudes

David Wilson 10

Coupled-channel scattering

Coupled-channel scattering from lattice QCD

det
h
�ij�``0�nn0 + i⇢it

(`)
ij

⇣
�``0�nn0 + iM

~d,⇤
ij, `n, `0n0

⌘i
= 0

Problem: Three or more unknowns for each energy level, eg:
(...and even more with higher partial waves)

tij =

8
<

:

⌘e2i�i-1
2i⇢i

(i = j)
p

1-⌘2 ei(�i+�j)

2
p
⇢i ⇢j

(i 6= j)

2x2 complex matrix (or more) but only one equation.
No direct relation from energy levels to amplitudes

⌘(Ecm), �1(Ecm), �2(Ecm)

?
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• K-matrix contains everything not constrained by unitarity

Sij = �ij + 2i (⇢i⇢j)
1
2 tij

[S†S]ij = �ij

! Im[t-1]ij = -⇢i�ij

• K must be real for real s. One option for two channel scattering:

K =
1

m2 - s


g2
⇡K g⇡K g⌘K

g⇡K g⌘K g2
⌘K

�
+


�⇡K,⇡K �⇡K,⌘K

�⇡K,⌘K �⌘K,⌘K

�

• m, g, γ are real free parameters. Simple to add more - more poles, or a polynomial in s.

• Simple to generalise to scattering with non-zero angular momentum.

• Can improve model by adding extra physically motivated properties - eg: Chew-Mandelstam phase space.

t-1
ij (s) = K-1

ij (s)- i�ij⇢i(s)

Solution: Parameterise t-matrix, constrain parameters using many energy levels
E.g.: K-matrix (it’s essential that we preserve unitarity)

Coupled channel scattering

Coupled-channel scattering from lattice QCD



⇡[000]K[000]
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⇡[011]K[011]
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0.28

 16  20  24
David Wilson 12

Coupled-channel scattering
• Describe t-matrix using K-matrix in S-wave only →  obtain model spectra.

• Minimise a χ2 to obtain the best agreement between the K-matrix and lattice energies.

K =
1

m2 - s


g2
⇡K g⇡K g⌘K

g⇡K g⌘K g2
⌘K

�
+


�⇡K,⇡K �⇡K,⌘K

�⇡K,⌘K �⌘K,⌘K

�
.

Coupled-channel scattering from lattice QCD

�2/N
dof

=
6.40

15- 6
= 0.71
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Coupled-channel scattering
• Describe t-matrix using K-matrix in S-wave only →  obtain model spectra.

• Minimise a χ2 to obtain the best agreement between the K-matrix and lattice energies.

K =
1

m2 - s


g2
⇡K g⇡K g⌘K

g⇡K g⌘K g2
⌘K

�
+


�⇡K,⇡K �⇡K,⌘K

�⇡K,⌘K �⌘K,⌘K

�
.

Coupled-channel scattering from lattice QCD

�2/N
dof

=
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15- 6
= 0.71
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• Broad resonance in S-wave πK.

• ηK coupling is small.

• 3 subthreshold points, naturally included 
in an energy-level fit.

David Wilson 14

S-wave amplitudes

tij =

8
<

:

⌘e2i�i-1
2i⇢i

(i = j)
p

1-⌘2 ei(�i+�j)

2
p
⇢i ⇢j

(i 6= j)

Coupled-channel scattering from lattice QCD
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m = (0.2466± 0.0020± 0.0009) · a-1

t

2

6666664

1 0.35 -0.38 0.17 0.27 -0.19
1 -0.05 -0.16 0.85 0.08

1 0.26 -0.11 0.64
1 0.10 0.25

1 0.05
1

3

7777775

g⇡K = (0.165± 0.006± 0.002) · a-1

t

g⌘K = (0.033± 0.010± 0.003) · a-1

t

�⇡K,⇡K = 0.184± 0.054± 0.030
�⇡K,⌘K = -0.52± 0.20± 0.06
�⌘K,⌘K = -0.37± 0.07± 0.05

�2/N
dof

= 6.40

15-6

= 0.71 .
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More energy levels

Coupled-channel scattering from lattice QCD
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• Many more energy levels from irreps 
where the mesons are moving with 
respect to the lattice.

• Less symmetry. More mixing of  partial 
waves. 

• Requires simultaneous knowledge.
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}

}

⇠ JP = 1�

⇠ JP = 2+

• Overlaps ~ guide to resonant content

• Shifted πK-like and ηK-like states

• JP=1- state near to πK threshold, JP=2+ 
state, extra JP=0+.

• Considerable partial-wave mixing.                         
[011] A1 contains JP=0+, 1, 2, ...

Zn
i = hn| O†

i |0i

⇠ JP
= 0

+

+ interactions

! Mostly ⇡KMostly ⌘K  
i
n
t
e
r
a
c
t
i
n
g
⌘
K
’
s
+

s
i
n
g
l
e
p
a
r
t
i
c
l
e
o
v
e
r
l
a
p
s

interacting ⇡K’s +

single particle overlaps

interacting ⇡K’s +

single particle overlaps

Coupled-channel scattering from lattice QCD
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P-wave near-threshold state
Elastic scattering just above πK threshold, no ηK to consider.
The irreps with P-wave overlap:
T1-, [001] A1, [001] E2, [011] A1, [011] B1,2, [111] A1, [111] E2, [002] A1 
all have an “extra” level near πK threshold.

Fitting the energy levels using an elastic Breit-Wigner in πK:

Coupled-channel scattering from lattice QCD
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P-wave near-threshold state
Elastic scattering just above πK threshold, no ηK to consider.
The irreps with P-wave overlap:
T1-, [001] A1, [001] E2, [011] A1, [011] B1,2, [111] A1, [111] E2, [002] A1 
all have an “extra” level near πK threshold.

Fitting the energy levels using an elastic Breit-Wigner in πK:

In t there is a pole on 
the real axis just below 
πK threshold:

Bound state in JP=1-

k3 cot �1 = (m2
R - s)

6⇡s
1
2

g2
R

Coupled-channel scattering from lattice QCD

�(s) =
g2
R

6⇡

k3cm
E2
cm

t =
1

⇢(s)

s
1
2 �(s)

m2
R - s- is

1
2 �(s)

 0

 -0.5

 0.5

 1.0

 -1.0

 0.162  0.164  0.166  0.168

⇡K
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S+P-waves from 80 energy levels

Coupled-channel scattering from lattice QCD

-30

 0

 30

 60

 90

 120

 150

 180

0.16 0.18 0.20 0.22 0.24 0.26 0.28
24
20
16

0.7

0.8

0.9

1.0 0.16 0.18 0.20 0.22 0.24 0.26 0.28

-10

 0

 10

 20

 30

0.16 0.18 0.20 0.22 0.24

0.7

0.8

0.9

1.0 0.16 0.18 0.20 0.22 0.24

24
20
16

• Simple K-matrix parameterisations in S and P wave.

• Separate fits and global fits yield consistent results.

• D-wave is negligible in this region.

�2/N
dof

= 49.1
61-6 = 0.89 �2/N

dof

= 15.0
19-4 = 1.00
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Parameterisation variation

Coupled-channel scattering from lattice QCD
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• Simple K-matrix parameterisations in S and P wave.

• Separate fits and global fits yield consistent results.

• D-wave is negligible in this region.
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Narrow D-wave resonance

• Many other energy levels 
containing scattering amplitude 
information.

• Using only irreps with J=2 and 
higher (E+, T2+, [100]B1,2) we find 
a narrow resonance:

• Fit to energies. Discrete points 
obtained in η→1 limit.

• In J≥1 scattering the lowest 
threshold is ππK at atEcm=0.235.

• Ideally requires 3-body formalism. 
Although not strictly rigorous, we 
can apply the 2→2 formalism 
anyway. 

�2/N
dof

= 1.31

Coupled-channel scattering from lattice QCD
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Poles
Multi-sheeted complex plane due to square-root branch cuts at each threshold, 
in single channel case for now:

kcm = ±1

2

�
E2
cm - 4m2

� 1
2

kcmEcm

Bound state

Coupled-channel scattering from lattice QCD
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Multi-sheeted complex plane due to square-root branch cuts at each threshold, 
in single channel case for now:

kcm = ±1

2

�
E2
cm - 4m2

� 1
2

kcmEcm

Bound state
Resonance

Coupled-channel scattering from lattice QCD

Poles
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Multi-sheeted complex plane due to square-root branch cuts at each threshold, 
in single channel case for now:

kcm = ±1

2

�
E2
cm - 4m2

� 1
2

kcmEcm

Bound state
Resonance

Virtual Bound state

Coupled-channel scattering from lattice QCD

Poles
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S-matrix poles

Actual situation: Unequal masses and an extra pair of  sheets due to ηK scattering

➞ Poles and residues on multiple sheets. kcm = ±1

2

✓
E2
cm - 2

�
m2

1 +m2
2

�
+

(m2
1 -m2

2)
2

E2
cm

◆ 1
2

Coupled-channel scattering from lattice QCD
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S-matrix poles

Actual situation: Unequal masses and an extra pair of  sheets due to ηK scattering
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S-matrix poles

Actual situation: Unequal masses and an extra pair of  sheets due to ηK scattering
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S-matrix poles

Actual situation: Unequal masses and an extra pair of  sheets due to ηK scattering
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Summary

David Wilson Coupled-channel scattering from lattice QCD
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• Coupled-channel scattering amplitudes can be obtained from QCD using lattice methods.

• Using extensions of  Lüscher’s method, we were able to connect finite volume energy levels to 
infinite volume scattering amplitudes.

• There are many exciting possibilities for future calculations using similar methods:

Strongly coupled systems like the a0(980) and f0(980) are under investigation.

Investigations into πγ ➞ ππ and similar processes are underway.

Channels involving charm quarks are also under investigation by European collaborators.

• Further in the future: πN ➞ πN, γN➞ πN. Multiparticle scattering, exotics.
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• 4He and 3He channels

• NN channels
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Introduction

Binding force

{
protons and neutrons → nuclei

quarks and gluons → protons and neutrons

both from fundamental strong interaction of quark and gluon

well known in experiment

Spectrum of nuclei
success of Shell model: Jensen and Mayer (1949)

degrees of freedom of protons and neutrons

Spectrum of proton and neutron (nucleons)
success of non-perturbative calculation of QCD

such as lattice QCD
degrees of freedom of quarks and gluons

Motivation: Understand property of nuclei from (lattice) QCD

quarks and gluons→
Shell model︷ ︸︸ ︷

protons and neutrons→ nucleiquarks and gluons→ protons and neutrons︸ ︷︷ ︸
lattice QCD

→ nuclei
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Introduction

Binding force

{
protons and neutrons → nuclei

quarks and gluons → protons and neutrons

both from fundamental strong interaction of quark and gluon

well known in experiment

Spectrum of nuclei
success of Shell model: Jensen and Mayer (1949)

degrees of freedom of protons and neutrons

Spectrum of proton and neutron (nucleons)
success of non-perturbative calculation of QCD

such as lattice QCD
degrees of freedom of quarks and gluons

goal: quantitatively understand property of nuclei from QCD

quarks and gluons→
Shell model︷ ︸︸ ︷

protons and neutrons→ nucleiquarks and gluons→ protons and neutrons→ nuclei︸ ︷︷ ︸
lattice QCD
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Ultimate goal of lattice QCD

http://www.jicfus.jp/jp/promotion/pr/mj/2014-1/

quantitatively understand property of nuclei

from first principle of strong interaction
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Introduction

Motivation :

Understand property of nuclei from QCD

If we can study nuclei from QCD, we may be able to

1. reproduce spectrum of nuclei

2. predict property of nuclei hard to calculate or observe

such as neutron rich nuclei

So far not so many works for multi-baryon bound states.

Before studying such difficult problems, we should study

→ Can we reproduce known binding energy in light nuclei?

4



Multi-baryon bound state from lattice QCD
Not observed before ’09 (except H-dibaryon ’88 Iwasaki et al.)

1. 4He and 3He

’10 PACS-CS Nf = 0 mπ = 0.8 GeV PRD81:111504(R)(2010)

’12 HALQCD Nf = 3 mπ = 0.47 GeV, mπ > 1 GeV 4He

’12 NPLQCD Nf = 3 mπ = 0.81 GeV

’12 TY et al. Nf = 2+ 1 mπ = 0.51 GeV PRD86:074514(2012)

2. H dibaryon in ΛΛ channel (S=−2, I=0)

’11 NPLQCD Nf = 2+ 1 mπ = 0.39 GeV

’11 HALQCD Nf = 3 mπ = 0.67–1.02 GeV

’11 Luo et al. Nf = 0 mπ = 0.5–1.3 GeV

’12 NPLQCD Nf = 3 mπ = 0.81 GeV

3. NN

’11 PACS-CS Nf = 0 mπ = 0.8 GeV PRD84:054506(2011)

’12 NPLQCD Nf = 2+ 1 mπ = 0.39 GeV (Possibility)

’12 NPLQCD Nf = 3 mπ = 0.81 GeV

’12 TY et al. Nf = 2+ 1 mπ = 0.51 GeV PRD86:074514(2012)
Other states: ΞΞ, ’12 NPLQCD; spin-2 NΩ, 16O and 40Ca, ’14 HALQCD

Purpose: Extend our works to Nf = 2+ 1 QCD with smaller mπ

5



Exploratory study of three- and four-nucleon systems
PACS-CS Collaboration, PRD81:111504(R)(2010)

Identification of bound state from volume dependence of ∆E

0 2e-05 4e-05 6e-05 8e-05
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L
[GeV]   

3
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∆E4He = 27.7(7.8)(5.5) MeV ∆E3He = 18.2(3.5)(2.9) MeV

1. Observe bound state in both channels

2. Same order of ∆E to experiment

Several systematic errors included, e.g., Nf = 0, mπ = 0.8 GeV
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Multi-baryon bound state from lattice QCD
Not calculated before ’09 (except H-dibaryon ’88 Iwasaki et al.)

1. 4He and 3He

’10 PACS-CS Nf = 0 mπ = 0.8 GeV PRD81:111504(R)(2010)

’12 HALQCD Nf = 3 mπ = 0.47 GeV, mπ > 1 GeV 4He

’12 NPLQCD Nf = 3 mπ = 0.81 GeV

’12 TY et al. Nf = 2+ 1 mπ = 0.51 GeV PRD86:074514(2012)

2. H dibaryon in ΛΛ channel (S=−2, I=0)

’11 NPLQCD Nf = 2+ 1 mπ = 0.39 GeV

’11 HALQCD Nf = 3 mπ = 0.67–1.02 GeV

’11 Luo et al. Nf = 0 mπ = 0.5–1.3 GeV

’12 NPLQCD Nf = 3 mπ = 0.81 GeV

3. NN

’11 PACS-CS Nf = 0 mπ = 0.8 GeV PRD84:054506(2011)

’12 NPLQCD Nf = 2+ 1 mπ = 0.39 GeV (Possibility)

’12 NPLQCD Nf = 3 mπ = 0.81 GeV

’12 TY et al. Nf = 2+ 1 mπ = 0.51 GeV PRD86:074514(2012)
Other states: ΞΞ, ’12 NPLQCD; spin-2 NΩ, 16O and 40Ca, ’14 HALQCD

Extend our works to Nf = 2+ 1 QCD with smaller mπ
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Problems of multi-nucleon bound state

Traditional method for example 4He channel
⟨0|O4He(t)O

†
4He

(0)|0⟩ =
∑
n
⟨0|O4He|n⟩⟨n|O

†
4He
|0⟩e−Ent −−−→

t≫1
A0 e

−E0t

Difficulties for multi-nucleon calculation

1. Statistical error
Statistical error ∝ exp

(
NN

[
mN −

3

2
mπ

]
t

)
→ heavy quark mass mπ = 0.5 GeV + large # of measurements

2. Calculation cost
Wick contraction for 4He = p2n2 = (udu)2(dud)2: 518400

proton = p = (udu): 2

Most severe problem before ’09: (every t)×Nmeas ∼ O(106)

3. Identification of bound state on finite volume
Finite volume effect of attractive scattering state

∆EL = E0 −NNmN = O(L−3) < 0↔ binding energy
→ Volume dependence

of ∆E = E0 −NNmN
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Problems of multi-nucleon bound state

Traditional method for example 4He channel
⟨0|O4He(t)O

†
4He

(0)|0⟩ =
∑
n
⟨0|O4He|n⟩⟨n|O

†
4He
|0⟩e−Ent −−−→

t≫1
A0 e

−E0t

Difficulties for multi-nucleon calculation

1. Statistical error
Statistical error ∝ exp

(
NN

[
mN −

3

2
mπ

]
t

)
→ heavy quark mass mπ = 0.5 GeV + large # of measurements

2. Calculation cost
Wick contraction for 4He = p2n2 = (udu)2(dud)2: 518400

proton = p = (udu): 2

Most severe problem before ’09: (every t)×Nmeas ∼ O(106)

3. Identification of bound state on finite volume
Finite volume effect of attractive scattering state

∆EL = E0 −NNmN = O(L−3) < 0↔ binding energy
→ Volume dependence

of ∆E = E0 −NNmN
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Problems of multi-nucleon bound state

Traditional method for example 4He channel
⟨0|O4He(t)O

†
4He

(0)|0⟩ =
∑
n
⟨0|O4He|n⟩⟨n|O

†
4He
|0⟩e−Ent −−−→

t≫1
A0 e

−E0t

Difficulties for multi-nucleon calculation

1. Statistical error
Statistical error ∝ exp

(
NN

[
mN −

3

2
mπ

]
t

)
→ heavy quark mπ = 0.8–0.3 GeV + large # of measurements

2. Calculation cost PACS-CS PRD81:111504(R)(2010)

Wick contraction for 4He = p2n2 = (udu)2(dud)2: 518400 → 1107
→ reduction using p(n)↔ p(n) p↔ n, u(d)↔ u(d) in p(n)
Multi-meson: ’10 Detmold and Savage

Multi-baryon: ’12 Doi and Endres; Detmold and Orginos; ’13 Günther et al.

3. Identification of bound state on finite volume
attractive scattering state ∆EL = E0 −NNmN = O(L−3) < 0

’86,’91 Lüscher, ’07 Beane et al.

→ Volume dependence of ∆EL →∆E∞ ̸= 0→ bound state
Spectral weight: ’04 Mathur et al., Anti-PBC ’05 Ishii et al.
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Problems of multi-nucleon bound state

Traditional method for example 4He channel
⟨0|O4He(t)O

†
4He

(0)|0⟩ =
∑
n
⟨0|O4He|n⟩⟨n|O

†
4He
|0⟩e−Ent −−−→

t≫1
A0 e

−E0t

Difficulties for multi-nucleon calculation

1. Statistical error
Statistical error ∝ exp

(
NN

[
mN −

3

2
mπ

]
t

)
Most severe problem

2. Calculation cost
Wick contraction for 4He = p2n2 = (udu)2(dud)2: 518400

proton = p = (udu): 2

Used to be most severe problem

3. Identification of bound state on finite volume
Finite volume effect of attractive scattering state

∆EL = E0 −NNmN = O(L−3) < 0↔ binding energy
→ Volume dependence

of ∆E = E0 −NNmN
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Simulation parameters

Nf = 2+ 1 QCD

Iwasaki gauge action at β = 1.90
a−1 = 2.194 GeV with mΩ = 1.6725 GeV ’10 PACS-CS

non-perturbative O(a)-improved Wilson fermion action
mπ = 0.51 GeV and mN = 1.32 GeV PRD86:074514(2012)

mπ = 0.30 GeV and mN = 1.05 GeV arXiv:150X.XXXX

ms ∼ physical strange quark mass

4He, 3He, NN(3S1 and 1S0)
mπ = 0.5 GeV mπ = 0.3 GeV R

L L [fm] Nconf Nmeas Nconf Nmeas
32 2.9 200 192
40 3.6 200 192
48 4.3 200 192 400 1152 12
64 5.8 190 256 160 1536 5

R = (Nconf ·Nmeas)0.3GeV/(Nconf ·Nmeas)0.5GeV

Computational resources

PACS-CS, T2K-Tsukuba, HA-PACS, COMA at Univ. of Tsukuba

T2K-Tokyo and FX10 at Univ. of Tokyo, and K at AICS
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Results
Effective mass of nucleon on L = 5.8 fm

Effective mN = log

(
CN(t)

CN(t+1)

)

mπ = 0.5 GeV mπ = 0.3 GeV

0 4 8 12 16 20
t
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0.6
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0.61

m
N

0 4 8 12 16 20
t

0.474

0.476

0.478

0.48

0.482

0.484 m
N

• Good plateau t ∼> 7

• Statistical error < 0.2%
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∆EL = E0 −NNmN in 4He and 3He channels

at mπ = 0.5 GeV on L = 5.8 fm

TY et al., PRD86:074514(2012)

∆EL = log

(
R4He(t)

R4He(t+1)

)
with R4He(t) =

C4He(t)

(CN(t))4
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• Larger error in 4He channel

• Statistical error under control in t < 12

• Negative ∆EL in both channels
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4He and 3He channels ∆EL = E0 −NNmN at mπ = 0.5 GeV

TY et al., PRD86:074514(2012)

Identification of bound state from volume dependence of ∆E
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• ∆EL < 0 and mild volume dependence

• Infinite volume extrapolation with ∆EL = −∆Ebind + C/L3
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4He and 3He channels ∆EL = E0 −NNmN at mπ = 0.5 GeV

TY et al., PRD86:074514(2012)

Identification of bound state from volume dependence of ∆E
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∆E4He = 43(12)(8) MeV ∆E3He = 20.3(4.0)(2.0) MeV

Observe bound state in both channels
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∆EL in 2-nucleon channels at mπ = 0.5 GeV on L = 5.8 fm

TY et al., PRD86:074514(2012)

∆EL = log

(
RNN(t)

RNN(t+1)

)
with RNN(t) =

CNN(t)

(CN(t))2
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• Statistical error under control in t ≤ 12

• Smaller error than 4He and 3He channels

• Negative ∆EL in both channels
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NN (3S1 and 1S0) channels ∆EL = E0 − 2mN at mπ = 0.5 GeV

TY et al., PRD86:074514(2012)

Identification of bound state from volume dependence of ∆E
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• Negative ∆EL

• Infinite volume extrapolation of ∆EL ’04 Beane et al., ’06 Sasaki & TY

∆EL = −
γ2

mN

{
1+

Cγ

γL

′∑
n⃗

exp(−γL
√
n⃗2)√

n⃗2

}
, ∆Ebind =

γ2

mN

based on Lüscher’s finite volume formula
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NN (3S1 and 1S0) channels ∆EL = E0 − 2mN at mπ = 0.5 GeV

TY et al., PRD86:074514(2012)

Identification of bound state from volume dependence of ∆E
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Bound state in both channels ← different from experiment

∆E3S1
= 11.5(1.1)(0.6) MeV ∆E1S0

= 7.4(1.3)(0.6) MeV
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Preliminary results at mπ = 0.3GeV with two volumes
TY et al., arXiv:150X.XXXX
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Comparison of 3He and 4He nuclei with preliminary results

PACS-CS, PRD81:111504(R)(2010); TY et al., PRD86:074514(2012); NPLQCD, PRD87:034506(2013)
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L3 →∞ results only

Light nuclei likely formed in 0.3 GeV ≤ mπ ≤ 0.8 GeV

Same order of ∆E to experiments
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Comparison of 3He and 4He nuclei with preliminary results

PACS-CS, PRD81:111504(R)(2010); TY et al., PRD86:074514(2012); NPLQCD, PRD87:034506(2013)
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L3 →∞ results only

Light nuclei likely formed in 0.3 GeV ≤ mπ ≤ 0.8 GeV

Same order of ∆E to experiments → relatively easier than NN

large |∆E| makes less V dependence at physical mπ

touchstone of quantitative understanding of nuclei from lattice QCD

Investigations of mπ dependence → mπ = 0.14 GeV on L ∼ 8 fm
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Comparison of NN channels with preliminary results
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Volume dependence of ∆EL in recent works
inconsistent with experiment due to larger mπ

Investigations of mπ dependence → mπ = 0.14 GeV on L ∼ 8 fm
Expected finite volume effect
3S1: ∆Eexp = 2.2 MeV

∆EL = −
(
∆Eexp +O(exp(−L

√
mN |∆Eexp|))

)
∼ −4 MeV

1S0: aexp0 = 23.7 fm

∆EL = −4πaexp0
mNL3 +O(1 ∼ −2 MeV
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Comparison of NN channels with preliminary results
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L3 →∞: existence of bound states in 3S1 and 1S0
inconsistent with experiment due to larger mπ

Investigations of mπ dependence → mπ = 0.14 GeV on L ∼ 8 fm

Expected finite volume effect
3S1: ∆Eexp = 2.2 MeV

∆EL = −
(
∆Eexp +O(exp(−L

√
mN |∆Eexp|))

)
∼ −4 MeV

1S0: aexp0 = 23.7 fm

∆EL = −4πaexp0
mNL3 +O(1/L4) ∼ −2 MeV
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Comparison of NN channels with preliminary results
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L3 →∞: existence of bound states in 3S1 and 1S0
inconsistent with experiment due to larger mπ

Investigations of mπ dependence → mπ = 0.14 GeV on L ∼ 8 fm

Large finite volume effect expected even on L ∼ 8 fm ’86 Lüscher, ’04 Beane
3S1: ∆Eexp = 2.2 MeV

∆EL = −
(
∆Eexp +O(exp(−L

√
mN∆Eexp))

)
∼ −4 MeV

1S0: aexp0 = 23.7 fm

∆EL = −4πaexp0
mNL3 +O(1/L4) ∼ −2 MeV
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Summary

Nf = 2+ 1 lattice QCD at mπ = 0.5 and 0.3 GeV

• Volume dependence of ∆E

∆E ̸= 0 of 0th state in infinite volume limit

→ bound state in 4He, 3He, 3S1 and 1S0
at mπ = 0.5 and 0.3 GeV

• ∆E larger than experiment and small mπ dependence

• Bound state in 1S0 not observed in experiment

Deep bound state in Nf = 3 at mπ = 0.8 GeV (’12 NPLQCD)

• No bound state in HALQCD method

Need further investigations e.g. quark mass dependence

Nf = 2+ 1 mπ ∼ 0.14 GeV on L ∼ 8 fm calculation is ongoing.
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Very preliminary results of ∆E = E0 −NNmN

at mπ ∼ 0.14 GeV on L ∼ 8 fm
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Back up



Uncertainty of Lüscher’s method

TY et al. and NPLQCD
Lüscher’s method ∼ ∆E of 0th state and L3 →∞

→ same as traditional method to obtain hadron mass

current study: smeared quark field + CNN(t)/(CN(t))2 in large t
∆E(t) from + to − → plateau → large statistical fluctuation

TY et al., Nf = 2+ 1 mπ = 0.5 GeV NPLQCD, Nf = 3 mπ = 0.8 GeV
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PRD86:074514(2012) PRD87:034506(2013)

• 0th state energy from variational method
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Uncertainty of Lüscher’s method

TY et al. and NPLQCD

Lüscher’s method ∼ ∆E of 0th state and L3 →∞
→ same as traditional method to obtain hadron mass

• 0th state energy from variational method
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• 2.9σ difference of ∆E at mπ = 0.8 GeV (Nf = 0 and Nf = 3)

• Investigation of mπ dependence

Bound state in 1S0 vanishes at physical mπ?
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3. Preliminary results
Effective nucleon mass at L = 5.8 fm

mN = log

(
CN(t)

CN(t+1)

)
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3. Preliminary results
Effective energy in 4He and 3He channels at L = 5.8 fm

E0 = log
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3. Preliminary results
Effective energy in NN channels at L = 5.8 fm

E0 = log

(
CNN(t)

CNN(t+1)

)
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Effective mass @ mπ = 0.3GeV
Preliminary result of Nf = 2+ 1 TY et al.
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effective ∆EL @ mπ = 0.3GeV on L = 48
Preliminary result of Nf = 2+ 1 TY et al.
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Current status of NN channels
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Expectation of large quark mass dependence
radii from form factors F1 and F2 Constantinou, Lat14 plenary

A3. Dirac & Pauli radii
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⋆ Estimation of radii strongly depends on small Q2

⋆ Need access for momenta close to zero⇒

⋆ larger volumes
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Expectation of large quark mass dependence
rms radii from form factors F1 and F2 ’09 RBC+UKQCD
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