

Report No. BNL-107824-2014

The U.S./IAEA Workshop on Software

Sustainability for Safeguards Instrumentation:

Report to the Office of Nonproliferation and International

Security (NA-241)

Susan E. Pepper1, Chris A. Pickett2, Al Queirolo1, Katherine M. Bachner1,
and Louise G. Worrall2

1 Brookhaven National Laboratory
2 Oak Ridge National Laboratory

April 2015

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under

Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the

manuscript for publication acknowledges that the United States Government retains a non-exclusive,

paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript,

or allow others to do so, for United States Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their

employees, nor any of their contractors, subcontractors, or their employees, makes any warranty,

express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any

third party’s use or the results of such use of any information, apparatus, product, or process disclosed,

or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

Government or any agency thereof or its contractors or subcontractors. The views and opinions of

authors expressed herein do not necessarily state or reflect those of the United States Government or

any agency thereof.

Table of Contents

1. Introduction .. 1

2. Workshop Objectives .. 2

3. Software Sustainability Challenges and Solutions .. 2

3.1 Sustainability Practices ... 2

3.2 Intellectual Property ... 3

3.3 Development .. 4

3.4 Legacy Code .. 7

3.5 Maintenance ... 8

3.6 Knowledge Management/Transfer/Retention ... 9

3.7 Funding.. 10

4. Software Sustainability Workshop Recommendations .. 10

Appendices:

Appendix 1: Standard Software Anatomy .. A-1

Appendix 2: List of Software Acronyms and Abbreviations ... B-1

Appendix 3: Case Studies ... C-1

Case Study 1: IP and Access to Source Code ... C-1

Case Study 2: Support Program Process ... C-5

Case Study 3: Joint Development Partnerships (CRISP) ... C-9

Case Study 4: Vendor Supplied Codes .. C-13

Case Study 5: IMCA Software – Portable Nondestructive Analysis C-16

Case Study 6: Development, Support, and Maintenance of INCC – Portable

Nondestructive Analysis .. C-20

Case Study 7: Universal NDA Data Acquisition Platform and DCView Software –

Portable Nondestructive Analysis .. C-24

Case Study 8: Instrumentation Software Development – Labview as a Platform for

Maintaining Software .. C-30

Case Study 9: Open Source Software .. C-34

Appendix 4: Workshop Working Paper... D-1

Appendix 5: Report to the Workshop Participants .. E-1

Introduction

1 | P a g e

US/IAEA Workshop on Software Sustainability for Safeguards Instrumentation

Report to the DOE NNSA Office of International Nuclear Safeguards (NA-241)

1. Introduction

The U.S Department of Energy (DOE) National Nuclear Security Administration (NNSA) Next
Generation Safeguards Initiative (NGSI) and the International Atomic Energy Agency (IAEA)
convened a workshop on Software Sustainability for Safeguards Instrumentation in Vienna,
Austria, May 6-8, 2014. Safeguards instrumentation software must be sustained in a changing
environment to ensure existing instruments can continue to perform as designed, with
improved security. The approaches to the development and maintenance of instrument
software used in the past may not be the best model for the future and, therefore, the
organizers’ goal was to investigate these past approaches and to determine an optimal path
forward.

The purpose of this report is to provide input for the DOE NNSA Office of International Nuclear
Safeguards (NA-241) and other stakeholders that can be utilized when making decisions related
to the development and maintenance of software used in the implementation of international
nuclear safeguards. For example, this guidance can be used when determining whether to fund
the development, upgrade, or replacement of a particular software product. The report
identifies the challenges related to sustaining software, and makes recommendations for
addressing these challenges, supported by summaries and detailed notes from the workshop
discussions. In addition the authors provide a set of recommendations for institutionalizing
software sustainability practices in the safeguards community.

The term “software sustainability” was defined for this workshop as ensuring that safeguards
instrument software and algorithm functionality can be maintained efficiently throughout the
instrument lifecycle, without interruption and providing the ability to continue to improve that
software as needs arise.

A working paper was prepared by the workshop organizers as a read ahead document for the
workshop participants. The working paper is included here in Appendix 3. A report to the
workshop participants was prepared and distributed in August 2014. The report is included
here as Appendix 4 and is archived under accession number BNL-105966-2014.

Workshop Objectives

2 | P a g e

2. Workshop Objectives

The United States and the IAEA convened the workshop on Software Sustainability for
Safeguards Instrumentation to identify strategies for improved software development and
maintenance practices for IAEA safeguards instrumentation software. The organizers
assembled a cross-section of diverse safeguards instrumentation software stakeholders,
including users, developers, vendors, and sponsors, to identify strategies for ensuring that
critical safeguards instrumentation software products continue to be available for use by the
IAEA and the international safeguards community as required, that relevant software is
sustainable, and that software functionality does not degrade over time.

3. Software Sustainability Challenges and Solutions

During the workshop, the participants were presented with information from a variety of
experts and then divided into three facilitated breakout sessions. In the breakout sessions the
participants discussed nine case studies that were developed by the workshop organizers to
promote discussion of safeguards software challenges and to elicit suggestions for improving
practices for safeguards instrumentation software development and management. Each
breakout session had two facilitators and a note taker. The participants identified a number of
problems faced by the individuals, groups, and entities that develop, use, and maintain
safeguards instrumentation software. The major challenges and frequently proposed solutions
are discussed below. Combined results of the breakout sessions are documented in Appendix
3.

3.1 Sustainability Practices

Challenges: While sustainability culture was not specifically discussed, there were many
comments from the participants regarding the lack of standard institutional practices that are
necessary for software sustainability. Knowledge management, chain of custody, and software
stewardship practices are all examples of sustainability practices that are absent, and are all
areas in which the IAEA and other stakeholders can improve the status quo moving forward.
The lack of a software inventory, established and/or effectively distributed standards and
requirements, and lifecycle planning are all indications of weak institutional commitment1,
contributing to poor sustainability practices.

Solutions: All projects should be initiated and led by a user champion who is responsible for the
particular code. Code-focused user groups should be established to socialize the code and
share best practices. Knowledge management practices should be incorporated to ensure that

1
 “Institutional commitment” means that the IAEA is committed to a project as an organization and that the project

will survive a reorganization or the reassignment or departure of a staff member who is the project’s champion.

Sustainability Practices

3 | P a g e

no code is upgraded or significantly modified without widely disseminating the necessary
knowledge to other stakeholders. The IAEA, the vendor community, and Member State Support
Programs (MSSPs) should support each other by setting standards for software development,
sharing them with each other, and adhering to them. Professional societies can play a role in
forming groups of users or other stakeholders who are interested in sustaining software.
Software sustainability should become an institutional priority for the organizations that
depend on the software. The first step in understanding the requirements for sustaining
software for any program or community is identifying the existing software. The participants
urged the IAEA to conduct a software audit for this purpose.

3.2 Intellectual Property

Challenges: There is intellectual property (IP) associated with almost all safeguards software.
The algorithms that are used to perform data analysis via physics calculations and other
scientific functions are associated with achievements that are patented or otherwise protected
by the national laboratory or company where the method was first put into practice. In many
cases, the programming style has resulted in algorithms being embedded in software in such a
way that the software is deemed proprietary in its entirety. As a result, the software may have
licensing fees and other requirements that restrict its use and prevent the IAEA from obtaining
access to the source code.

Solutions: The workshop participants suggested modular software development that separates
the algorithms (the proprietary parts of the software) from the graphical user interface,
security, communications, and other nonproprietary components of the software. This would
make it easier for the IAEA to obtain access to elements of the software for simple bug fixes
and upgrades, and ultimately result in software that is easier to sustain.

A suggestion for working with proprietary code is the “black box,” or wrapper, approach.2 A
wrapper enables a user to embed proprietary code and interact with it through an interface.
This would allow use of software with defined inputs and outputs and prevent competitors
from obtaining knowledge of the proprietary aspects of the code. These approaches require a
sophisticated set of tests to ensure the code operates as declared, but precedents exist or are
being evaluated by the arms control community (i.e., information barrier concepts). Further
investigation of this approach should be considered by the IAEA to fully understand its
potential.

The IAEA wants to have an in-house capability to make minor software modifications that do
not warrant the time and expense associated with a typical MSSP task.3 As a cost and time

2
 This is the approach being used by Los Alamos National Laboratory in 2014-2015 in updating the INCC code.

3
 If the IAEA had significant in-house capability for modifying software, they would have to establish a version

control management system, assume responsibility for maintenance of their versions of the code, and assume the
risks associated with “forks.”

Intellectual Property

4 | P a g e

savings measure, the MSSPs should investigate the IP contained in safeguards instrumentation
software to understand who owns it and consider ways (i.e., nondisclosure agreements) to
make source code available to the IAEA without compromising the IP. For new software, IP
issues should be addressed prior to the start of development and planning for them should
become a software sustainability practice.

There was significant discussion about the potential of open source software. Open source
software might give the IAEA access to source code, but it would introduce other challenges
such as version control, quality assurance, and security. A proof of principle open source
software development project should be conducted to demonstrate the effectiveness of this
approach for the IAEA. As part of the project, a cost benefit analysis should be conducted and
the cost of ownership of open source software should be assessed. A well-managed open
source software product could be used as a benchmark. Specific standards for open source
development would be required. The open source community could be engaged to promote
collaboration for the development and maintenance of safeguards instrumentation software.

The participants also discussed the advantages and disadvantages of using LabVIEW for
instrumentation software; while there was no strong endorsement of LabVIEW, some
participants recommended a study to assess its benefits and identify the projects for which
LabVIEW might be useful and where it may be inappropriate.

3.3 Development

Challenges: The workshop participants cited lack of standardization and poor requirements and
poor project management as concerns related to the development of safeguards
instrumentation software. Lack of IAEA standards for software development can result in the
developers not understanding or misinterpreting the IAEA’s requirements, the IAEA receiving
software products that are written in different programing languages and that produce
incompatible data streams, and software that cannot be maintained effectively over the full
lifecycle of the software. Software that is written in obscure software languages can be difficult
to sustain. Poor project management can result in lack of lifecycle planning, miscommunication
between stakeholders, delayed delivery of or incomplete software products, cost overruns, and
products that do not meet the IAEA’s needs.

Lack of interaction and/or communication between developers and other stakeholders was also
identified as a weakness. The IAEA is often treated as a third party and their input may not be
valued. Moreover, stakeholders tend to work independently and not share their work.

One case study prompted the participants to explore the efficacy of software development by
the MSSPs (see Appendix 3, Case Study 2). When an MSSP contracts directly with the vendor, it
can be difficult for the IAEA to interact directly with the vendor and participate effectively as
the end user. The vendor may not understand the importance of working with the IAEA since its
legal obligation is to the MSSP. MSSPs sometimes consider their contribution complete upon

Development

5 | P a g e

delivery of the software and do not make provisions for the software over its lifecycle. National
laboratories are research and development entities and are not for profit organizations; those
that develop software do not benefit substantially from software sales and are only incentivized
to provide technical support if a sponsor will fund their work.

Another case study highlighted the specific issues related to working with small software
developers (see Appendix 3, Case Study 7). The primary risk is the loss of the main or sole
software developer due to change in work status, illness or death. An independent developer is
also more likely to make nonstandard architectural choices. It would be difficult for another
developer to assume responsibility for or understand products resulting from such
development.

Solutions: The workshop participants recommended that the IAEA develop software standards
and advertise them widely. RAINSTORM, an IAEA standard for remote monitoring interfaces, is
a good model for standards but also demonstrates the difficulty that the IAEA has in
promulgating its needs and requirements. It was a startling discovery that the majority of U.S.
vendor participants interviewed prior to the workshop had not heard of or been made aware of
RAINSTORM. The IAEA should use formal requests to MSSPs, or SP-1s, as one means of
distributing its requirements; MSSPs should not begin a project if requirements are not
provided. Software features, such as user interfaces, can be standardized to avoid duplicative
programming effort and to reduce the need for training. Developers should be required to use
mainstream programming languages. IAEA standards and requirements should be updated
periodically to ensure they reflect the state of the art and new measurement approaches.

With respect to project management, there should be IAEA management approval of, an IAEA
champion for, and active IAEA involvement in all projects undertaken on its behalf, including
tasks performed by the MSSPs and projects in which the IAEA is a party to the contract. Direct
IAEA involvement is necessary to ensure that IAEA standards and requirements are addressed,
that the IAEA is involved in all related decision making, including change control, and that
changes in the IAEA’s planning are taken into consideration.

With regard to MSSP contributions, each MSSP should consider and develop a policy regarding
the development of instrumentation software. The policy should require establishing a lifecycle
plan that is reviewed and updated periodically, periodic reviews of the software to determine if
software updates are necessary, inclusion of the IAEA in the software reviews, and notifying
other MSSPs of the results of software reviews. The periodicity of reviews will vary between
codes based on the application and level of use of the code. MSSPs should agree with the IAEA
in advance of development who will be responsible for maintenance and upkeep of the code, as
well as who retains IP rights at the end of development. The policy should address the
participation of national laboratories in software development projects to help decision makers
understand the ramifications of subcontracting with a national laboratory versus a commercial

Development

6 | P a g e

entity. 4

A project plan, schedule and budget should be prepared and all changes should be approved by
a change control board. There should be periodic project reviews during the software
development to review progress and to reevaluate the need for the software. Project reviews
are not intended to be excuses to change requirements or increase the scope of the
development, but they are important opportunities to review the status of the project.
Shortened development schedules will reduce the possibility of schedule slippages or changes
in the environment that would necessitate changing direction or terminating a project and for
communication between project participants. Final deliverables should undergo acceptance
testing by the IAEA. There should be an institutional commitment to software sustainability
that can survive the rotation of the sustainability champions. In addition, the establishment of
success metrics would be useful in managing future projects.

A phased approach5 to software development can help to mitigate some challenges such as
project delays or the delivery of a product that does not meet the IAEA’s needs. Good planning
is necessary to ensure that resources are available to complete the project as specified and that
the state of the art of software development and associated technical fields are mature enough
and understood sufficiently to reach the desired result. Limiting the scope of the software to
bare essentials can help to minimize the development schedule. Breaking the scope down into
manageable modules will assist in planning and enable developers to successfully complete
parts of the project that can then be implemented by users while later modules are under
development. Both approaches can increase the likelihood of success and minimize the
chances of cost overruns and schedule delays.

An important part of the overall project management is the development of a software lifecycle
plan, which is discussed below, under Maintenance. The choices made in the development
phase will have profound effects on the maintenance phase of software development.
Likewise, the effort invested in developing high quality software (such as planning and project
management) will reduce the effort required for maintenance. The lifecycle plan can help to
understand those tradeoffs at the beginning of a project.

The workshop participants identified opportunities to learn from internal and external
experience. The CRISP joint development and RAINSTORM initiatives should be documented

4
 For example, national laboratories may be more stable than companies, need consistent funding streams, and

can sustain software that is not commercially viable; companies own software and have an incentive to sustain it if
there is a market for it.
5
 A phased approach, such as the waterfall model, is a sequential process in which software is developed in phases

and one phase is completed before the next begins. The common phases are Conception, Analysis, Design,
Construction, Testing, Production/Implementation, and Maintenance. Agile programming is another model that
utilizes cross functional teams to work on the various phases concurrently and provide input to each other. Critics
of the waterfall model say that one phase cannot be fully complete before another begins because additional
information is learned throughout the process. For the purposes of this paper, the phased approach refers to the
Production/Implementation phase, which can be broken down further into manageable steps that result in
preliminary products prior to completion of the entire code.

Development

7 | P a g e

and monitored as they mature so that experience can be used in future projects. Participants
thought that the CRISP project is the result of a unique opportunity for two entities with similar
needs to collaborate and that it demonstrates the importance of communication with
stakeholders and related communities. The participants recommended that the IAEA develop
success metrics for CRISP, evaluate the project’s success, and document the lessons learned.
Similarly, the participants recommended documenting lessons learned from the
implementation of RAINSTORM and benchmarking the advantages and disadvantages of these
approaches.

The participants recognized that there are unique challenges associated with small companies,
but they can be overcome with proper project management techniques, such as using software
escrows. A modular, phased approach with frequent reviews will ensure that the developer
understands the requirements and the IAEA has sufficient opportunities to provide input.
When working with small companies, it is important to practice due diligence with respect to
the contractor, for the IAEA to be involved at a technical level, and to have a contract that
outlines the responsibilities, scope, and requirements. Long term support for maintenance and
upgrades by a small company developer may be cost prohibitive, but must still be planned and
provided. The participants recommended that the IP be held by a stakeholder other than the
developer, such as in an escrow, to ensure that the code remains available to users. The IAEA
and MSSPs may consider establishing requirements for the selection of vendors for IAEA
instrumentation software projects to ensure appropriate quality standards are met and risks
are reduced and to avoid disreputable or incapable vendors.

Other scientific communities are likely to have experience dealing with software sustainability
issues from which the IAEA and the MSSPs can learn. The authors suggest that the 2016 MSSP
Coordinators’ meeting be used as an opportunity to discuss and address MSSPs’ roles in
software development.

3.4 Legacy Code

Legacy codes are codes that have been in service for an extended period of time and whose
users have difficulty finding experts who can provide support.

Challenges: Legacy codes can be difficult to maintain due to loss of institutional knowledge
that results from attrition of personnel and obsolescence of software interfaces. Output from
legacy codes may not be compatible with newer software interfaces. Outdated programming
languages, syntax, and algorithms are also major challenges that must be overcome.

Solutions: The formation of user groups, periodic workshops, and other efforts that support
socializing the codes will help to establish a larger community of knowledgeable individuals.
Incompatible output can and has in many cases been addressed by using file format converters,
but a more sustainable approach would be to establish and promulgate data file standards to
the developer community. There is no known guidance, other than this report, that informs the

Legacy Code

8 | P a g e

international safeguards community on the decision making process related to sustaining,
retiring, or replacing legacy codes.

Periodically during the lifecycle of software, decisions must be made by individual stakeholders
or groups to update, overhaul, retire, and/or replace software. User groups can help to make
necessary updates or perform overhauls during the useful life of a software product. Updates
can be made to make the software compatible with newer hardware. The decision to retire
software can be made by individual users but will affect the entire community by reducing the
number of users and, by association, resources that can be applied to the legacy code.

3.5 Maintenance

For the purposes of this report, maintenance is defined to include all activity from
implementation through retirement of a software product, including upgrades.

Challenges: Safeguards instrumentation software has a long lifecycle that can span multiple
generations of hardware. The maintenance period can be 20+ years. Software that is not
properly maintained becomes a burden to its users due to incompatibility with newer
hardware, pervasive bugs, inefficient routines, and out-of-date algorithms. Software
developers and subject matter experts (SMEs) are often reassigned following implementation
and are not available for the maintenance phase. Safeguards instrumentation software usually
does not have a warranty that protects the IAEA by requiring the developer to fix coding errors
or provide technical support.

Solutions: As a preliminary step the IAEA should prepare an inventory of codes and associated
data such as its programming language, developer, primary purpose, safeguards purpose, years
in service, users and level of use, IP situation/considerations, and cognizant personnel/groups.
The inventory should be updated routinely. A system for prioritizing the codes, from the IAEA’s
perspective, would also be useful. This will enable the IAEA and MSSPs to make decisions
regarding the allocation of resources for maintenance, keeping software in use, determining
when to remove a code from service, and assessing whether a code should be rewritten or
replaced. The workshop participants stressed the importance of lifecycle planning for
successful maintenance of safeguards instrumentation software. A lifecycle plan should be
prepared for software prior to the beginning of development as a project management tool
that can be used to determine if adequate resources will be available for the lifecycle of the
software. As a minimum, the lifecycle plan should include an estimate of financial and human
resources required for development, a cost benefit analysis, an assessment of the project risks,
implementation and maintenance, user requirements, standards, configuration control,
stakeholder roles and responsibilities, intellectual property management, and code
obsolescence/retirement, as well as the long-term availability of hardware on which to run the
software. This type of practice is commonplace in commercial industry. Investigation into
industry practices for software lifecycle planning should therefore be conducted to provide
guidance to future project teams.

Maintenance

9 | P a g e

A key concern regarding maintenance is the availability of software and SMEs to support the
software during its lifecycle. The workshop participants recommended the development of
standards for documentation and the formation of user groups as a means for ensuring the
availability of human resources during the software lifecycle. Good documentation will enable
a new programmer to understand the work of the original programmer and transition
responsibility for a code. User groups (including representation of all software stakeholders)
will increase the number of individuals and companies aware of safeguards software products,
help to keep software alive by promoting interaction between current and future users, and
provide a forum for discussion of software that has become difficult to maintain. Proper
software archiving, such as in an escrow, can protect the users if the developer is no longer
available.

MSSPs can assist the IAEA by considering cost effective options for the maintenance of
software. Two options suggested by the participants are factory support contracts with
vendors to provide quick response assistance and the placement of a cost free expert in the
Department of Safeguards to take responsibility for one or more codes. Both the IAEA and the
MSSPs should negotiate warranties in development contracts to cover the initial period of code
implementation.

3.6 Knowledge Management/Transfer/Retention (AKA the "bus factor")

Challenges: IAEA safeguards instrumentation software is specialized, has a small user and
developer community, and remains in service for many years. Often times, funding is not
continuous throughout the lifecycle of the software to support ongoing maintenance.
Availability of resources not only impacts sustainability from a maintenance standpoint, but
also impacts the continuity of knowledge. Effective knowledge management can be difficult
because funding gaps can cause a loss of personnel and institutional knowledge. If human
resources are not continuously funded, the experts will be reassigned and may not be available
when needed. If knowledge is not transferred to the next generation or the next responsible
individual, development and maintenance can be disrupted or become impossible. As a result,
it may be difficult to sustain the software product.

Solutions: As mentioned under Maintenance, Section 3.5, the participants endorsed the
creation of user groups to increase and support the pool of knowledgeable users and
developers, to promote the exchange of information between stakeholders, to share
information about codes, to increase knowledge of codes, and to encourage cross training,
introducing developers to software to which they haven’t yet contributed, and succession
planning. A user group can become an archive, using its members to store information as to
how the code was developed, maintained, improved, and used and how problems were solved
over the lifecycle of the software.

The software development can be kept active by ensuring continued funding. Otherwise a
dedicated community of users must take ownership of the code to sustain it. Continuing
funding over the long term is difficult and in many ways unrealistic due to competition for

Knowledge Management/Transfer/Retention

10 | P a g e

funding. Extending the development time, using a phased approach at a lower annual funding
level, may be attractive due to a lower annual investment, but could discourage completion due
to sponsor fatigue. However, a phased approach has the benefit that some modules will be in
service while development continues and required updates to the early phase products can be
addressed in parallel with the development of the later phase modules, and lessons learned in
the early phases can be applied to later activities. Code that is well-structured and documented
can more easily be passed from one generation of users and developers to another. Software
and the embedded algorithms should be documented in a clear and consistent manner.
Documentation standards, such as those used by industry for software operation manuals, and
the use of technical editors were also recommended during the workshop.

3.7 Funding

Challenges: Maintenance of commercial codes is funded in part by vendors, but the extent of
their investment is constrained by the market. A vendor will not invest in software beyond its
ability to sell it. Commercial entities will not maintain IAEA software versions that do not have
commercial viability. In order to be commercially viable, the costs of sustaining a code must be
exceeded by sales. Because of the small community of safeguards practitioners and users of
associated software, safeguards software would have to be priced unreasonably high to cover
lifecycle costs. As a result, software is priced at a level that is acceptable to users and the IAEA
has to rely on internal or MSSP resources for maintenance, modifications and upgrades.
National laboratories participating in software development depend on government
sponsorship for their work.

Solutions: The workshop participants encouraged the development of sustainability plans for
critical safeguards software. Understanding that funding is limited, the code audit can inform
sponsors and vendors as to which codes have the highest priority and longevity. A software
center, such as the Radiation Safety Information Computational Center (RSICC),6 can manage
licenses by leveraging contributions from multiple sponsors and by charging user fees, thus
maintaining a funding base for code maintenance.

4. Software Sustainability Workshop Recommendations

Based on the summary of challenges and potential solutions in Section 3, above, and the
compiled notes from the facilitated workshop discussions documented in Appendix 3, the
workshop organizers identified the following points as the primary recommendations of the
participants and important elements of a roadmap for software sustainability.

A. There was universal agreement from the attendees of the workshop that developing an

inventory of codes is an important first step that the IAEA should complete. This inventory

should include, but not be limited to, the following:

6
 For more information on RSICC, visit https://rsicc.ornl.gov.

https://rsicc.ornl.gov/

Software Sustainability Workshop Recommendations

11 | P a g e

a. The name of the code, the version used by the IAEA, what the code does, and an

estimate of how long it will be used

b. A list of all other versions of the code that may exist (including their specific

purpose)

c. The instrumentation that the code is used with

d. The time elapsed since the last update

e. System requirements for the code

f. Types of data generated by the code

g. Other software/systems that use data from the code

h. Indicate if code is used to look at archived data (do older versions of the code need

to be preserved for this functionality?)

i. Sustainability needs (current and future updates) for the code

j. Relative priority level

k. Owner(s) of related intellectual property

B. There was consensus that the IAEA should develop lifecycle plans for all codes that must be

sustained. These lifecycle plans must be maintained and updated annually for the entire life

of each code. The plans should be detailed and inclusive of all desired and required

features such that the plans become the basis for contracting with vendors and/or MSSPs.

The IAEA should have a champion for each of these lifecycle plans. Some of the things that

should be included in each plan are: the types of hardware that should be supported, file

formats, security requirements, data structures, communication needs, data used by the

code that comes from other sources, etc. The lifecycle plan should also contain a timeline

that includes plans for full version re-writes and archiving old codes.

C. The workshop attendees agreed that sustaining pertinent codes requires investment.

Making periodic investments over the lifecycle of the software was considered the most

effective use of resources. Some options that could be considered for obtaining resource

commitments for software sustainability are:

a. Incorporate software lifecycle plans into MSSP requests (SP-1s). The requests

include a portion of the timeline detailed in the lifecycle plan. The SP-1 would

require regular communication between the IAEA and the developers (similar to the

practice that to date has worked very well with the OLEM project) and monitor

progress.

i. Program managers may want to seek ways to leverage code development

and refurbishment costs with other sponsors (domestic safeguards, other

non-proliferation, vendors, MSSPs, etc.)

b. IAEA establishes multi-year contracts with vendors and the IAEA assigns a SME to

monitor each contract.

Software Sustainability Workshop Recommendations

12 | P a g e

i. Contract should specify lifecycle element(s) to be worked and should realize

the risks associated with the future availability of the vendor.

ii. Contracts must be actively managed by the IAEA

D. An important theme from the workshop was the use of software that contains IP. The IAEA
and others are frustrated by the lack of access to this source code . The United States could
assist the IAEA and itself by investigating the extent to which IP hinders the IAEA in applying
and maintaining software, the added effort and cost caused by the private ownership of the
IP, and how the IP might be managed differently to the IAEA’s and international safeguards
community’s benefit.

E. User groups were identified as a solution to several of the challenges voiced by the
participants. The organizers believe that sufficient enthusiasm exists in the community for
user groups that no or minimal financial sponsorship would be necessary. The Institute for
Nuclear Materials Management (INMM) and European Safeguards Research and
Development Agency (ESARDA) have working groups that address technical safeguards
issues. Since these particular user groups are involved with measurements and
instrumentation, they represent an ideal forum for reporting bugs and developing wish lists
of desired features that could be incorporated into future code requirements. Either of
these organizations could form a working group on software sustainability or include the
topic of software sustainability in one of their existing working groups, such as the
Nondestructive Assay Working Group.

Appendix 1: Standard Software Anatomy

A-1 | P a g e

Appendix 1: Standard Software Anatomy

The following definitions of software components are taken from Wikipedia.

Algorithm

In mathematics and computer science, an algorithm is a step-by-step procedure for
calculations. Algorithms are used for calculation, data processing, and automated reasoning.
An algorithm is an effective method expressed as a finite list of well-defined instructions for
calculating a function. Starting from an initial state and initial input, the instruction describe a
computation that, when executed, proceeds through a finite number of well-defined successive
states, eventually producing output and terminating at a final ending state. Some algorithms,
known as randomized algorithms, incorporate random input.7

Data Acquisition

Data acquisition is the process of sampling signals that measure real world physical conditions
and converting the resulting samples into digital numeric values that can be manipulated by a
computer. Data acquisition systems (abbreviated with the acronym DAS or DAQ) typically
convert analog waveforms into digital values for processing. The components of data
acquisition systems include:

 Sensors that convert physical parameters to electrical signals

 Signal conditioning circuitry to convert sensor signals into a form that can be converted
to digital values

 Analog-to-digital converters, which convert conditioned sensor signals to digital values
Data acquisition applications are controlled by software programs developed using various
general purpose programming languages such as BASIC, C, Fortran, Java, Lisp, and Pascal.

There are also open-source software packages providing all the necessary tools to acquire data
from different hardware equipment. Those packages are usually custom fit, but more general
DAQ packages like the Maximum Integrated Data Acquisition System can be tailored.8

Data Analysis

Analysis of data is a process of inspecting, cleaning, transforming, and modeling data with the
goal of discovering useful information, suggesting conclusions, and supporting decision making.
Data analysis has multiple facets and approaches, encompassing diverse techniques under a
variety of names, in different business, science, and social science domains.

7
 http://en.wikipedia.org/wiki/Algorithm

8
 http://en.wikipedia.org/wiki/Data_acquisition

Appendix 1: Standard Software Anatomy

A-2 | P a g e

Data mining is a particular data analysis technique that focuses on modeling and knowledge
discover for predictive rather than purely descriptive purposes. Business intelligence covers
data analysis that relies heavily on aggregation, focusing on business information. In statistical
applications, some experts divide data analysis into descriptive statistics, exploratory data
analysis (EDA), and confirmatory data analysis (CDA). EDA focuses on discovering new features
in the data and CDA on confirming or falsifying existing hypotheses. Predictive analytics focuses
on application of statistical or structural models for predictive forecasting or classification,
while text analytics applies statistical, linguistic, and structural techniques to extract and classify
information from textual sources, a species of unstructured data.9

Escrow, Source Code Escrow

Source code escrow is the deposit of software source code with a third party escrow agent.
Escrow is typically requested by a party licensing software (the licensee), to ensure
maintenance of the software. The software source code is released to the licensee if the
licensor files for bankruptcy or otherwise fails to maintain and update the software as promised
in the software license agreement.

As the continued operation and maintenance of custom software is critical to many
organizations, they usually desire to make sure that it continues to be sustained even if the
licensor becomes unable to sustain it, such as because of bankruptcy. Obtaining a copy of the
up-to-date source code allows a user to take responsibility for sustaining the software. The
licensor, however, will often be unwilling to provide access to the source code, as the source
code represents one of their most closely guarded trade secrets. Source code escrow can
resolve this conflict by allowing access to the source code only when the maintenance of the
software cannot otherwise be assured, as defined in contractually agree-upon conditions.10

Firmware

In electronic systems and computing, firmware is the combination of persistent memory and
program code and data stored in it. Typical examples of devices containing firmware are
embedded systems (such as traffic lights, consumer appliances, and digital watches),
computers, computer peripherals, mobile phones, and digital cameras. The firmware contained
in these devices provides the control program for the device. Firmware is held in non-volatile
memory devices such as ROM, EPROM, or flash memory. Changing the firmware of a device
may rarely or never be done during its economic lifetime; some firmware memory devices are
permanently installed and cannot be changed after manufacture. Common reasons for
updating firmware include fixing bugs or adding features to the device. This may require ROM
integrated circuits to be physically replaced, or flash memory to be reprogrammed through a
special procedure.11

9
 http://en.wikipedia.org/wiki/Data_analysis

10
 http://en.wikipedia.org/wiki/Source_code_escrow

11
 http://en.wikipedia.org/wiki/Firmware

Appendix 1: Standard Software Anatomy

A-3 | P a g e

Fork

In software engineering, a project fork is a separate and distinct piece of software that is
created when developers use existing source code as a foundation upon which to begin
independent development. Forks are software branches and usually represent a split in the
developer and user communities. Free and open source software may be forked without
permission from the original developer without violating copyright law.12

Graphical User Interface

A Graphical User Interface (GUI) is a type of interface that allows users to interact with
electronic devices through graphical icons and visual indicators such as secondary notation, as
opposed to text-based interfaces, typed command labels, or text navigation. GUIs were
introduced in reaction to the perceived steep learning curve of command-line interfaces, which
require commands to be typed on the keyboard. The actions in a GUI are usually performed
through direct manipulation of the graphical elements.13

Hardware

Computer hardware is the collection of physical elements that constitutes a computer system.
Computer hardware refers to the physical parts or components of a computer, such as the
monitor, mouse, keyboard, computer data storage, hard drive disk, system unit (graphic cards,
sound cards, memory, motherboard, and chips), all of which are physical objects that can be
touched.14

Input/Output

In computing, input/output (I/O) is the communication between an information processing
system and the outside world. Inputs are the signals or data received by the system and
outputs are the signals or data sent from it. I/O devices are used to communicate with a
computer. For instance, a keyboard or mouse is an input device for a computer, while monitors
and printers are output devices. Devices for communication between computers, such as
modems and network cards, typically perform both input and output operations.

Note that the designation of a device as either input or output depends on perspective. Mice
and keyboards take physical movements that the user outputs and convert them into input
signals that a computer can understand; the output from these devices is the computer’s input.
Similarly, printers and monitors take signals that a computer outputs as input, and they convert
these signals into a representation that human users can understand. From the human
perspective, the process of reading or seeing these representations is receiving input; this type

12

 http://en.wikipedia.org/wiki/Fork_(software_development)
13

 http://en.wikipedia.org/wiki/Graphical_user_interface
14

 http://en.wikipedia.org/wiki/Computer_hardware

Appendix 1: Standard Software Anatomy

A-4 | P a g e

of interaction between computers and humans is studied in the field of human-computer
interaction.

In computer architecture, the combination of the CPU and main memory, to which the CPU can
read or write directly using individual instructions, is considered the brain of a computer. Any
transfer of information to or from the CPU/memory combo, for example by reading data from a
disk drive, is considered I/O. The CPU and its supporting circuitry may provide memory-
mapped I/O that is used in low-level computer programming, such as in the implementation of
device drivers, or may provide access to I/O channels. An I/O algorithm is one designed to
exploit locality and perform efficiently when exchanging data with a secondary storage device,
such as a disk drive.15

Middleware

Middleware is computer software that provides services to software applications beyond those
available from the operating system. It can be described as “software glue.” Middleware
makes it easier for software developers to perform communication and input/output, so they
can focus on the specific purpose of their application. Middleware is the software that
connects software components or enterprise applications. Middleware is the software layer
that lies between the operating system and the applications on each side of a distributed
computer network. Typically, it supports complex, distributed business software applications.

Middleware is the infrastructure that facilitates creation of business applications, and provides
core services like concurrency, transactions, threading, messaging, and the SCA framework for
service-oriented architecture (SOA) applications. It also provides security and enables high
availability functionality to an enterprise.16

Open Source Software

Open source software is computer software with its source code made available with a license
in which the copyright holder provides the rights to study, change, and distribute the software
to anyone and for any purpose. Open source software is often developed in a public,
collaborative manner. 17

Software

Computer software, also known as software, computer programs or code, is the non-tangible
component of computers. It represents the set of programs that govern the operation of a
computer system and provide desired functionality. Software contrasts with computer
hardware, which is the physical component of computers. Computer hardware and software

15

 http://en.wikipedia.org/wiki/Input/output
16

 http://en.wikipedia.org/wiki/Middleware
17

 http://en.wikipedia.org/wiki/Open-source_software

Appendix 1: Standard Software Anatomy

A-5 | P a g e

require each other and neither can be realistically used without the other. Software includes all
computer programs regardless of their architecture; for example, executable files, libraries and
scripts are computer software. Software consists of clearly defined instructions that upon
execution, instruct hardware to perform the tasks for which it is designed. Software is stored in
computer memory.

At the lowest level, executable code consists of machine language instructions specific to an
individual processor – typically a central processing unit. A machine language consists of
groups of binary values signifying processor instructions that change the state of the computer
from its preceding state. Instructions may change data in storage, which is not visible to the
user, or change data on the screen, which would be visible to the user. The processor carries
out the instructions in the order they are provided.

Software is usually written in high-level programming languages that are easier and more
efficient for humans to use than machine language. High-level languages are compiled or
interpreted into machine language object code. Software may also be written in a low-level
assembly language, essentially, a vaguely mnemonic representation language using a natural
language alphabet. Assembly language is converted into object code via an assembler.18

Software (or Hardware) Specification

A software (or hardware) specification is an explicit set of requirements to be satisfied by the
software (or hardware). The specification differs from the user requirements document in that
it may dictate how the requirements are met (e.g., what software language will be used, what
data structure will be used, and what communications protocol will be used) and it should be
based on the user requirements document.

User Requirements Document

The user requirements document (URD) is a document that specifies what the user expects the
software to be able to do (e.g., the software will be used to calculate uranium enrichment and
will be used remotely). The URD can be used as a guide to planning cost, timetables,
milestones, and testing. The explicit nature of the URD allows stakeholders to make sure that
all necessary features are included. Often a URD includes priority ranking for each
requirement.19

Wrapper

A wrapper function is a subroutine in a software library or a computer program whose main
purpose is to call a second subroutine or a system call with little or no additional computation.

18

 http://en.wikipedia.org/wiki/Software
19

 http://en.wikipedia.org/wiki/User_requirements_document

Appendix 1: Standard Software Anatomy

A-6 | P a g e

They can be used to make writing computer programs easier.20 Wrapper libraries consist of a
thin layer of code that translates a library’s existing interface into a compatible interface to
refine a poorly designed or complicated interface, to allow incompatible code to work together,
and to enable cross language and/or runtime interoperability.21

20

 http://en.wikipedia.org/wiki/Wrapper_function
21

 http://en.wikipedia.org/wiki/Wrapper_library

Appendix 2: List of Software Acronyms and Abbreviations

B-1 | P a g e

Appendix 2: List of Software Acronyms and Abbreviations

AA Authorization Archive

ABACC Brazilian-Argentine Agency for Accounting and Control of Nuclear

Materials

ACD Auxiliary Communication Device

ACIV Automatic Cobra Image Verifier

ACVD Advanced Cerenkov Viewing Device

ADAM

AISOCS

Autonomous Data Acquisition Module

Advance In-Situ Object Counting System

ALIP All-in-One Portable Surveillance System

ALIS All-in-One Surveillance System

AMSR Advanced Multiplicity Shift Register

ANL Argonne National Laboratory

ANM Alternate Nuclear Materials

AOI Areas of Interest

AWCC Active Well Coincidence Counter

BNL Brookhaven National Laboratory

BWR Boiling Water Reactor

CANDU Canadian Deuterium Uranium Reactor

CCTV Closed Circuit Television

CDM Core Discharge Monitor

CZT Cadmium Zinc Telluride Detector (CdZnTe)

CFE Cost-Free Expert

CEMO

CHEM

Continuous Enrichment Monitor

Cascade Header Enrichment Monitor

Appendix 2: List of Software Acronyms and Abbreviations

B-2 | P a g e

CIOSP Common Inspection Onsite Software Package

CIR Computerized Inspection Report

 Cobra Fiber Optic General Purpose Seal

CoK Continuity of Knowledge

COLLECT Multi Instrument Collect – data gathering computer

COM Component Object Modules

C/S Containment/Surveillance

CRISP Central RADAR Inspection Support Package (now called iRAP)

CSSP Canadian Safeguards Support Program

CTBT Comprehensive Nuclear Test Ban Treaty

CTBTO Comprehensive Test Ban Treaty Organization

CVD Cerenkov Viewing Device

DA Destructive Analysis

DARC Data Analysis and Review Component

DCC Data Collection Computer

DCM 14 Digital Camera Module

DCVD Digital Cerenkov Viewing Device

DDG-SG Deputy Director General of Safeguards

DIS Digital Imaging Surveillance

DG Director General

DIPS Data Input Processing System

DIQ Design Information Questionnaire

DIV

DLL

Design Information Verification

Dynamic Link Library

DLM Dynamic Linear Modeling

DMOS Digital Multi-camera Optical Surveillance

Appendix 2: List of Software Acronyms and Abbreviations

B-3 | P a g e

DOE U.S. Department of Energy

DOS U.S. Department of State

DRS Data Review Station

DSC Data Storage Component

DSOS Digital Single Channel Optical Surveillance System

DU Depleted Uranium

DVD Digital Video Display

DVR Digital Video Recorder

DVT Design Verification Test

EC European Community

ECC Equipment Coordination Committee

EMIS Equipment Management Information System

EOSS Electro-Optical Sealing System

EPROM Electronically-programmable read only memory

EQUIS EQuipment Utilization Information System

ESP Electronic Sensor Platform

Euratom European Union’s nuclear regulatory and verification agency, akin to

the IAEA for the European Union

FC

FDET

Fission Chamber

Fork Detector (Irradiated fuel measuring system)

FDMS Fork detector measurement software

FORTRAN Computer programming language – obsolete

FPGA Field Programmable Gate Array

FRAM Fixed-Energy, Response Function Analysis with Multiple Efficiency

FTIR Fourier-Transform InfraRed

FY Fiscal Year

Appendix 2: List of Software Acronyms and Abbreviations

B-4 | P a g e

GARS General Advanced Review Software (for surveillance)

GBUV Gamma Burn Up Verifier

GDP Gaseous Diffusion Plant

GEMINI Surveillance System developed by Aquila

GENIE 2000 Spectroscopy software developed by Canberra

GIS Geographical Information System

GRAND Gamma ray and neutron detector

GUI Graphical user interface

HDIS HAWK-SG based Digital Imaging Surveillance System

HEU High Enriched Uranium

HKED Hybrid K-Edge Densitometry

HLNCC High-Level Neutron Coincidence Counter

HM-5 Hand Held Assay Probe

HMAC Hashed Message Authentication Code

HMMS Hulls Monitor and Measurement System

HPGe High purity germanium detector

HPSOP High Priority Safeguards and Other Projects

HRGS

HSGM

High Resolution Gamma Spectroscopy

High Sensitivity Gamma Monitor

I2SIP Standard – IAEA Integrated Safeguards Instrumentation Programme

I3S Integrated Inspector Information System

IAEA International Atomic Energy Agency

ICAS Introductory Course on Agency Safeguards

ICR Inventory Change Report

ICT Isotopic Correlation Techniques

ICVD Improved Cerenkov Viewing Device

Appendix 2: List of Software Acronyms and Abbreviations

B-5 | P a g e

IFSM International Spent Fuel Management Program

IFSS Inspector Field Support System

IHVS Integrated Head End Verification System

IIV Interim Inventory Verification

ILON Intelligent Local Operating Node

IMCA Inspector Multi channel Analyzer

IMCF Integrated Monitoring System for the Chernobyl Conditioning Facility

IMI Instructor Manual for Instrumentation

IMS Integrated Monitoring System

INCC IAEA Neutron Coincidence Counting Software

INFCE International Nuclear Fuel Cycle

INFCIRC Information Circular IAEA Publication Nomenclature

INMM Institute of Nuclear Material Management

INVS Inventory Small Sample Counter

ION-1 ION-1 Detector for Spent Fuel NDA

IP Intellectual Property; Internet Protocol

IPCAS Improved Plutonium Canister Assay System

IPI Lead Assessor

IPIV

IPSec

Initial Physical Inventory Verification

Internet Protocol Security

IRIS

iRAP

Integrated Reprocessing Information System

Integrated Review and Analysis Package

IRMP International Remote Monitoring Project

IRP IAEA Safeguards Information System Reengineering Project (now

called MoSaIc)

IRS Integrated Review Software

Appendix 2: List of Software Acronyms and Abbreviations

B-6 | P a g e

ISEM Integrated Safeguards Evaluation Methodology

ISIS IAEA Safeguards Information System (now being called MoSaIc)

ISO International Organization for Standardization

ISOCS In Situ Object Counting Systems

ISO 9000 Quality Management standards

ISPO International Safeguards Project Office, Brookhaven National

Laboratory

ISPSG Information Security Policy Steering Group

ISVS Input Storage Verification System

IT

ITV

Information Technology

International Target Values

JAEA

JNFL

Japan Atomic Energy Agency

Japan Nuclear Fuel Limited

JPO Junior Professional Officer

JRC European Community Joint Research Center

JRMS Joyo Remote Monitoring System

JSGO Japan Safeguards Office

JSR-12/14/15 Jomar family of Shift Registers

KAMS K Area Material Storage

KEDG K-Edge Densitometry

KG Knowledge Generation

KM Knowledge Management

KMP Key Measurement Points

LALIF Laser Ablation-Induced Fluorescence

LAN Local Area Network

LANL Los Alamos National Laboratory

Appendix 2: List of Software Acronyms and Abbreviations

B-7 | P a g e

LEU

LIBS

Low Enriched Uranium

Laser-induced Breakdown Spectroscopy

LMMM List Mode Multiplicity Module

LNMC Large Neutron Multiplicity Counter

LOF Locations Outside Facility

LON Local Operating Network

LWR Light Water Reactor

MARS Video review system designed/developed by Aquila

MCA Multi Channel Analyzer

MCM Management Coordination Meeting

MCNP Monte Carlo Neutron Program?

MGA Multiple Group Analysis (Plutonium)

MGAU Multi-Group Analysis for Uranium

MIC Multi-Instrument Collect Program

MiniGRAND Miniature Gamma Ray and Neutron Detector

MINI-STAR Mini Surveillance and Recording System

MIPS MIVS Image Processing System

MIVS Modular Integrated Video System (analog surveillance)

MMCT Mobil Monitoring Container Transport System (Chernobyl)

MMS

MoSaIc

Material Monitoring System

Modernization of Safeguards Information Technology

MOU Memorandum of Understanding

MOX Mixed Oxide Fuel

MPC&A Material protection control & Accounting

MS Microsoft

MS Mass Spectrometer (used for destructive analysis)

Appendix 2: List of Software Acronyms and Abbreviations

B-8 | P a g e

MSCS MOX Storage Containment and Surveillance System

MS-DOS Microsoft Disc Operating System

MSSP Member State Support Program

MUF Material Unaccounted For

MUF-D Material Unaccounted For – Operator-Inspector Difference

MUX Multi-camera multiplexed closed circuit television

NaI

NaIGEM

NaI Detector

NaI Gamma Enrichment Measurements

NCC Neutron Coincidence Counter

NDA Nondestructive Analysis or Assay; Nondisclosure Agreement

NDAMS Nondestructive Assay Monitoring System

NDAR NDA Review

NGAM NDA electronics package developed by Bot Engineering

NGSS Next Generation Surveillance System

NI National Instruments

NIM Nuclear Instrument Module

NMAS Nuclear Material Accounting System

NNSA U.S. National Nuclear Security Administration

NPP Nuclear Power Plant

NPT Nuclear Non-Proliferation Treaty

NPS Neutron Pulse Simulator

NRC U.S. Nuclear Regulatory Commission

NRTA Near Real Time Accountancy

ODA Operator Data Authenticator

OIOS

OLEM

IAEA Office of Internal Oversight Services

On-Line Enrichment Monitor

Appendix 2: List of Software Acronyms and Abbreviations

B-9 | P a g e

OPD Operator Provided Declarations

PAC IAEA Procurement Authorization Committee

PC Personal Computer

PCAS

PCSA

Plutonium Canister Assay System

Protection, Containment, Surveillance, and Authentication

PDI Person Days of Inspection

PIL Physical Inventory Listing

PIMS Plutonium Inventory Management System

PIT Physical Inventory Taking

PIV Physical Inventory Verification

PKI Public Key Infrastructure

PMA Portable Mini MCA

PMCA

PNCL

Portable Mini MCA

Passive Neutron Coincidence Collar

POTAS Program of Technical Assistance to IAEA Safeguards (USSP)

PPAS Program Performance Assessment System

PrNDA Portable Nondestructive Analysis instrumentation

PRST Portable Radiation Search Tool

PSMC Plutonium Scrap Multiplicity Counter

PTH Protection Technology Hanford

PTR-32 Pulse Train Recorder

PWCC Passive Well Coincidence Counter

PWR Pressurized Water Reactor

QA Quality Assurance

QC Quality Control

QCVS Quality Control Verification Software

Appendix 2: List of Software Acronyms and Abbreviations

B-10 | P a g e

RADAR

RadReview

Remote Acquisition of Data and Review (Euratom)

Radiation Review Software – for review of data collected using

unattended monitoring systems

RAINSTORM SGTS standard software interface for remote monitoring.

RDBMS Relational Database Management System

RDC R&D Needs Committee

RECOVER Remote Continuous Verification

REXX Specialized command language developed by IBM

RFID

RHMS

Radiofrequency Identification

Rokkasho Hulls Measurement System

RMS Remote Monitoring System

RMSA Remotely Monitored Sealing Array

RMT

RR

Remote Monitoring Team

Research Reactor; Radiation Review

RRCA Research Reactors and Critical Assemblies

RRF Research Reactor Fork

RRP Rokkasho Reprocessing Plant

RSICC Radiation Safety Information Computational Center

SAGSI Standing Advisory Group on Safeguards Implementation

SAL Safeguards Analytical Laboratory (IAEA)

SANS Computer Security Training Institute

SAR Synthetic Aperture Radar

SARP Safeguards Accounting and Reports Program

SBMF Solution Blending Flow Monitoring System

SCU System Control Units

SDIS Server Based Digital Image Surveillance

Appendix 2: List of Software Acronyms and Abbreviations

B-11 | P a g e

SEI CMM Software Engineering Institute's Capability Maturity Model

SEU Single Event Upset

SF Spent Fuel

SFAT Spent Fuel Attribute Tester

SG IAEA Department of Safeguards or safeguards

SGCP IAEA Division of Safeguards Concept and Planning

SGIM IAEA Division of Safeguards Information Management

SGIS IAEA Office of Safeguards Information Systems

SGOx IAEA Divisions of Operations (Inspectors)

SGOA Operations A (Japan, South Korea, Australia, , DPRK)

SGOB Operations B (North and South America, India, Iran)

SGOC Operations C (Europe, Russia)

SGTS IAEA Division of Scientific and Technical Services

SIAL Satellite Imagery Analysis Laboratory

SIAU Satellite Imagery Analysis Unit

SIDS Safeguards Instrumentation Documentation System

SIMS Secondary Ion Mass Spectrometry

SIR Safeguards Implementation Report

SM Safeguards Manual

SME Subject Matter Expert

SMIS Safeguards Management Information System

SMMS Solution Monitoring Measurement System

SMS Safeguards Manual for Support

SNF Spent Nuclear Fuel

SNM Special Nuclear Material

SNRI Short Notice Random Inspections

Appendix 2: List of Software Acronyms and Abbreviations

B-12 | P a g e

SOH State of Health

SP-1 Support Program Form 1 – used as the official mechanisms for

requests to Member State Support Programs

SPCT Support Program Coordination Team

SPI Software Process Improvement

SPRICS Support Program Information Communication System

SQ Significant Quantity

SQL Structured Query Language

SQP Small Quantities Protocol

S/r Shift Register

SRD Shipper-Receiver Differences

SSTS Subgroup on Safeguards Technical Support (responsible for U.S.

Support Program activities)

SGTS IAEA Division of Safeguards Scientific and Technical Support

SSAC State Systems of Accounting and Control of Nuclear Material

SSEP Safeguards Software Engineering Process

STR Safeguards Technical Report

SURS Surveillance Review Subsystem

TANCS Tank level measurement software code

TARGA Plutonium Isotopic Analysis Software

TCVS Temporary Canister Verification System

TID Tamper Indicating Devices

TLDS Thermoluminescent Dosimeter

TRFS Two-Way Radio-Frequency Seal

TRO Toronto Regional Office

TSVS Temporary Storage Verification System

UFBR Universal FBR Assembly Counter

Appendix 2: List of Software Acronyms and Abbreviations

B-13 | P a g e

UDIS Updated Digital Image Surveillance

UIMS Ultrasonically Interrogated Metal Seal

ULTG Ultrasonic Thickness Gauge

UMS Unattended Monitoring System

UNAP Universal NDA Data Acquisition Platform

UNARM UNattended And Remote Monitoring

UNCL Uranium Neutron Coincidence Counter

URM Unattended Remote Monitoring

URMS Unattended Remote Monitoring System

U/S Ultrasonic - method of verification

USA

USB

USSB

United States of America

Universal Serial Bus

Ultrasonic Sealing Bolt

USSP United States Support Program

USVC United States Voluntary Contribution

UWCC Underwater Coincidence Counter

VACOSS Variably Coding Seal System – electronic seal that was modified for

remote monitoring

VCAS Vitrification Canister Assay System

VDIS Digital Video Surveillance System

VHF Very High Frequency

VHS Video Home System

VI Virtual Instrument

VIC Vienna International Center

VIFM VXI Irradiated Fuel Monitor

VIFM Collect Data collection software for VIFM

Appendix 2: List of Software Acronyms and Abbreviations

B-14 | P a g e

VIFM Review Data review software for VIFM

VLTM Volume Measurement System for Calibration Measurements

VPN Virtual Private Network

VWCC Vitrified Waste Coincidence Counter

VXI VMEbus eXtensions for Instrumentation

WCAS Waste Crate Assay System (A or B)

WCSS Wall Containment System

Appendix 3: Case Studies

C-1 | P a g e

Appendix 3: Case Studies

Case Studies – Summaries of Discussions from Working Groups

Case Study 1: IP and Access to Source Code

Theme: Intellectual Property and Access to Source Codes

Problem Statement:

The IAEA has numerous software products that they have used for many years to collect and
analyze data that were obtained from safeguards inspections. Many of the analysis codes have
been in existence for more than 15 years and the code base is quite outdated. It is essential
that the Agency be able to maintain and sustain these codes, so they can continue to collect
and analyze new data and revisit data acquired from past inspections. These products are
generally proprietary, meaning the Agency has no right to see or modify the source code. The
code consists of hardware-specific calls to devices that are not always commercially available;
there is no easy path to making the codes work with newer technologies, such as operating
systems, hardware, etc., without access to the source code. Additionally, the process of
maintaining these codes with “middle-ware” solutions is not cost efficient or sustainable.
Middle-ware solutions include software and hardware options that are designed to maintain
data formats and communications with older systems.

Summary of Breakout Group Discussions:

Most software currently in use by the IAEA was written by an outside entity that has control
over the source code. This prevents the IAEA from making any changes in house. In addition,
the codes and data file formats are not standardized. Much of the software and
instrumentation used by the IAEA was originally developed for domestic and commercial
applications in a timeframe when resources were available (via leveraging from domestic
programs and other resources) to support IAEA needs. The participants endorsed lifecycle
planning, developing an inventory of software, software escrow, regular maintenance, and the
adoption of standard requirements. To provide the IAEA some access to the source code, the
participants suggested separating the proprietary and nonproprietary parts of the code; there
should be no concern about giving the IAEA access to the nonproprietary parts and the
proprietary parts can be maintained by the IP holder.

Problems

 Output from older codes may not be compatible with the IAEA interface

o No clearly defined interfaces

o No modification of legacy interfaces

Appendix 3: Case Studies

C-2 | P a g e

 It is inefficient to have numerous software packages with different file formats

 The IAEA safeguards instrumentation market is small

o It is too small to make demands on the industry

 Must be a business case for commercial providers to make and support

software changes

o Compatibility issues

 It is not always possible for the IAEA to make upgrades

o Lack of access to source code

o Programmers are no longer available

o Some changes can only be implemented as patches and/or workarounds.

o Commercial vendor not able to change software – code copyrighted by a

national laboratory

 Open source and patched approaches typically result in too many competing versions of

the same code (‘forking’)

Proposed Solutions:

 Use a file format converter to provide standard data streams

 Enable IAEA to develop software internally

o This has financial and human resources implications and may require non-

disclosure agreements with instrument suppliers

 Develop and maintain an inventory and status of all software; the listing should include:

vendor, current hardware supported, users, pertinent algorithms utilized, and any

variations or modified versions of the code.

 Use standard data formats for common data (e.g., dates)

 Standardize the input and output formats such that they are platform independent

 Conduct regular preventative maintenance of software

 Form user groups and/or topical sessions at conferences that discuss current and

emerging needs for pertinent codes. This helps support sustainability planning.

 Use and develop platform independent software (expensive)

 Place software in escrow for archival purposes

 Lifecycle Planning

o Plan for obsolescence of software

o Maintenance may be required for 20+ years

o Keep development active; keep the code alive

 Plan for funding needed to maintain software

Appendix 3: Case Studies

C-3 | P a g e

 Leverage support from other stakeholders/users of codes (each

pays a share)

 Develop an appropriate set of test cases to validate the code when it is

modified

 Encourage continued testing against the environment and operating

system

 Add new features as needed

 Plan and analyze new work

 Maintain understanding of code

o Minimize dependencies on developers and software

 Modular coding methods

 Improve documentation and distribute to larger community

o Algorithms have a longer lifetime than software and can be “reused”

 Establish software requirements

o Minimum requirements for algorithms and interfaces should be documented

o Requirements should be distributed to Member State Support Programs and

other stakeholders

 SP-1s should include requirements

o Requirements can be advertised on the Internet

o Must keep up with hardware and the state-of-the-art

o Set standards, such as RAINSTORM, U.S. Department of Homeland Security

systems

o Remain flexible

o Establish acceptance criteria for externally developed software

 Analysis codes

o Separate proprietary and non-proprietary parts and make the non-proprietary

components available for vendors to use

o Put proprietary components in a “black box” and enable use with defined

inputs/outputs. If the system continues to support those I/O, the software will

function correctly through all upgrades.

 Middle-ware

o Minimize the need for middle-ware (on a case-by-case basis). This can be

accomplished by the IAEA establishing and promulgating standards for data and

data file formats.

 Case Studies

o Study examples of successful instrumentation software for lessons learned and

best practices

 MCNP

Appendix 3: Case Studies

C-4 | P a g e

 RAINSTORM

 CRISP

Appendix 3: Case Studies

C-5 | P a g e

Case Study 2: Support Program Process

Theme: Building IAEA Self-Sufficiency & Sharing Source Code

Problem Statement:

Over the years the IAEA has utilized many software packages supplied to them from Member
State Support Programs (MSSPs). These packages have proven to be useful and highly
beneficial to the Agency, and it has become dependent upon them to accomplish its missions.
However, the IAEA does not own the intellectual property (IP) or have access to the source
code for these programs. This makes it difficult to implement needed updates or timely
modifications (to support new commercially available operating systems, hardware, data
formats, etc.). The Agency is often dependent on the MSSPs to make needed changes to
software. The MSSP process can be slow and, therefore, inefficient for making minor software
changes.

For this case study we will analyze the U.S. Support Program (USSP) process for modifying and
updating software owned by non-IAEA entities (such as national laboratories or companies).

The USSP process is described below:

1. The IAEA generates a request describing the needed work
2. The request is transmitted to the USSP, which forwards it to a national laboratory or

contractor for bid
3. The bid is provided to and reviewed by the USSP and IAEA representatives, and if

accepted, is sent to the U.S. government for approval of funding
4. The U.S. government approves it or requests modification/discussion
5. If the funding is approved, a contract or other agreement is placed with the source code

owner
6. The work starts
7. The code modification is completed and sent to the Agency for testing
8. If the modified code does not work properly, the source code owner and/or team may

be sent to Vienna to work with the Agency to troubleshoot the problem
9. The code is eventually fixed and implemented

Additional time is required for IAEA in-house preparation, which includes review and approval
of the request before it is submitted to the USSP for consideration. In the best case scenario
for this process, funding may reach the source code owner within six months. Sometimes the
process takes much longer. The availability of money and amount of time associated with this
process significantly impacts the ability of the IAEA’s Division of Safeguards Technical and
Scientific Services to respond to its internal and external customers.

Appendix 3: Case Studies

C-6 | P a g e

Summary of Breakout Group Discussions:

The MSSPs provide valuable support to the IAEA, but the process is sometimes too slow and
bureaucratic to be fully effective. The IAEA can be left out of the communication between the
MSSP and the contractor. The participants suggested establishing a separate process for small
software projects, such as bug fixes. All software projects should include a lifecycle plan but
MSSP projects do not usually include them. The participants suggested umbrella tasks and
other options for expediting support to the IAEA. They also endorsed the formation of a
working group on software sustainability. Effective and efficient software support would be a
good topic for discussion at the 2016 MSSP Coordinators’ Meeting or the 2015 INMM Annual
Meeting in connection with establishing a working group.

Advantages of working with MSSPs:

 Provides access to national laboratory talent, expertise, and capabilities

Problems associated with the MSSP model:

 The MSSP process

o Slower than working directly with a vendor

 Inserts an unnecessary “middle man”

 Sometimes requires iteration

o Complicated

o Costly

o Bureaucratic

o Barrier to small tasks - may be too formalized for minor software changes that

can be done quickly

o Inadequate communication

 IAEA can be left out of the communication between MSSP and contractor

 IAEA does not always clearly communicate requirements

o Contracts are not set up to address the life cycle of the software

 Maintenance is not built into the process

 Continuity of knowledge for lifecycle support is not addressed

 Do not address contributions from third-party

 MSSPs are more maintenance-oriented than development-oriented

 Funding budgeted for maintenance, testing, and documentation at the beginning of a

project can get redirected for other activities when cost overruns are encountered

during development

Appendix 3: Case Studies

C-7 | P a g e

 Human resource may only be one deep and the right people may not be available when

needed.

 Requirements

o Requirements may change after the process has started

o IAEA does not always clearly communicate requirements, especially in SP-1s

Proposed Solutions:

 Distinguish between small and big fixes

o Establish appropriate mechanisms to address each

 Lifecycle Planning

o Development partners should understand that the maintenance can cost more

than development

o Establish a plan for lifecycle support

 Option: MSSPs offering to assist the IAEA accept all lifecycle costs

 Option: IAEA supports maintenance through regular budget

 Option: MSSP sponsors a CFE to support maintenance (could be an

ongoing, long-term requirement)

 Option: Look for ways to leverage support from other

programs/partnerships that use these codes and could benefit from

similar changes

o Include lifecycle plan in the SP-1 request.

 Example: Use of short-term consultancy on the order of once a quarter

for 2 or 3 weeks

 SP-1 request should support periodic direct communication with end

users

 Longer SP -1 contracts should be considered to better provide timely life-

cycle support

 Sustainable programming methodologies should be required for the

development of new codes

o Include CFE/consultant support as part of the lifecycle plan in the beginning of a

project.

 Task models:

o Umbrella tasks can be used to expedite the request process

o Establish a task with pre-approved funding to respond to short notice, small

effort software maintenance needs

Appendix 3: Case Studies

C-8 | P a g e

 Use RAINSTORM as an example of a software standard. (IAEA should establish software

standards and requirements for all requested instrumentation).

 Maintenance Options

o IAEA contracts directly with the vendor

o An MSSP contracts with the vendor on behalf of the IAEA

o Have an umbrella task for software maintenance to expedite the request process

o Industry sets aside funding (who funds is not important) and agrees in advance

as to how the funds will be used

o Identify contractors and place contracts for software maintenance in advance

o Following delivery, IAEA assumes responsibility for all software maintenance and

sustainability (would require access to source code)

 Form a standing working group/team to focus on particular sets of codes (i.e., codes

used for NDA, codes used for surveillance, etc. (best practice)

o Would help to resolve the issue of having qualified human resources by

encouraging cross training and succession planning.

o May include multiple support programs.

 Increase awareness of the importance of software maintenance. A few separate models

for setting resources aside for maintaining SW. Use of several contractors to be

responsible for maintaining specific software. This is discretionary budget for multiple

SW packages and contingency. One model is to have a specific contract with the vendor

to maintain their SW.

 Improve project management within the MSSPs

 The IAEA and MSSPs should discuss the request process to see if there are changes that

can be made to increase efficiency (agenda item for the 2015 USSP Biennial Review

Meeting or the 2016 MSSP Coordinators’ Meeting or interim discussion at 2015 INMM

Annual Meeting)

Appendix 3: Case Studies

C-9 | P a g e

Case Study 3: Joint Development Partnerships (CRISP)

Theme: Building IAEA Self-Sufficiency & Sharing Source Code

Situation Analysis:

This case study explores the Central RADAR22 Inspection Support Package (CRISP) as a joint-
development partnership between the IAEA and Euratom.

The IAEA currently uses a wide variety of containment, surveillance and nondestructive assay
(NDA) equipment to monitor facilities under safeguards. These instruments were developed
over a long period of time, and each was developed largely independently of the others. The
data streams from each instrument are very similar in content, but they are stored in different
file formats, imported and displayed by various software tools, and analyzed using methods
developed by independent developers. The development, training, installation, and
maintenance costs associated with such a broad range of independent software products are
high and continue to grow. Developing and maintaining training for the inspectors is
complicated and costly. Inspecting data from a given facility may require training and
utilization of three or more software products. Given these considerations, the IAEA initiated a
project with the following goals:

 Provide a single, common interface to inspectors for data review and analysis

 Give the IAEA ownership of and access to the software source code

 Create a simple and generic interface so that future development can be specified more
clearly and easily added to the software as semi-independent software modules

Many technical alternatives were considered in coming to a conclusion about the path forward
for such review software. Existing products were analysed with respect to proprietary
disposition, maintainability, and inclusion of needed features and overall cost of development.
The conclusion of this technical comparison was that the Euratom CRISP product offered the
most viable path forward in developing an all-in-one software solution. CRISP was, therefore,
selected for a joint-development effort between the IAEA and Euratom for the following
reasons:

 Euratom began CRISP independently and has invested significant time and resources
developing the product that the IAEA can now leverage

 Euratom is amenable to sharing this code and entering into an agreement by which the
IAEA and Euratom can develop common functionality, thus reducing risk to either party
to undertake future development tasks.

 Significant cost savings can be realized through this option because the product is non-
commercial

 Intellectual property rights would be granted to the IAEA, allowing small changes in the
code to be done quickly and at little to no cost

22

 Remote Acquisition of Data & Review

Appendix 3: Case Studies

C-10 | P a g e

 The current product already contains much of the required functionality required by
IAEA inspectors

 Newly developed equipment that is used by both agencies will need analysis software,
and by entering in a partnership to develop this code, both agencies can save time and
money during software development and then have a common product used by
inspectorates of both agencies.

Summary of Breakout Group Discussions:

The IAEA’s joint development of CRISP with Euratom was seen to be a good initiative. The two
organizations have a common goal and can leverage each other’s contributions to obtain the
product. The IAEA will have access to the CRISP source code and, therefore, will be able to
maintain it in house. Some participants questioned what would happen if one party abandons
the projects and whether it is reasonable that this model could be repeated in other projects.
The participants suggested that the partners use a change control board to assess all changes to
the project and its requirements and noted some best practices for successful partnerships.

Benefits of Joint Development Partnerships:

 IAEA benefits from basis developed by Euratom

 Cooperation towards a common goal though the organizations are different and have

different goals

o Mutual benefits

o Introduces new ideas

o Leverages resources

o Versatility

o Increased number of programmers familiar with the code

 Design

o Flexible with interfaces; modular approach; expandable

o Extendable functionality (& works on different platforms)

o Process based software

o Transparency with interfaces; communication is defined

 Can be considered a “win-win” for partners

 Source code is shared

 Allows for quicker bug fixes than would be supported through MSSPs or IAEA-only

development because there are two organizations using the product, more individuals

interested in the fix, and more resources as a team that can be directed to fix the bugs

Appendix 3: Case Studies

C-11 | P a g e

Problems associate with Joint Development Partnerships:

 If one party walks away, the remaining party would be responsible for the entire project

o How do you manage value transfer? (who gets what and what does it cost?)

o Both are owners of “enhanced version”

o Conversely, there is pressure for the IAEA not to leave the project even if it is not

fully meeting the their needs

 Partnership

o Bureaucracy increases

o Development is slower due to negotiated process

 Legal considerations, e.g., it may be unclear who, IAEA or Euratom owns the code, and

this can lead to future disputes over ownership

 Transitions/implementation with commercial software

 Limited modularity that results in elements of the code not being compatible with other

codes or applicable for other uses in the future

 Regression analysis cannot extend to modules provided by other vendors, e.g., third

party algorithms

 Security concerns, e.g., who, Euratom or IAEA, has final control over code security

 Because the IAEA joined an ongoing Euratom project, they did not investigate the

commercial market and take advantage of potential economies that could have been

realized

 Not a viable model for commercial software or for multiple MSSPs

 Not a suitable process for small tasks

 Partners may not be available for future support

 This case was the only example to date of a successful partnership

 Slower development timeline than a commercial development

 So far, this is a data set of one; the community should see if this model can be repeated.

 The community needs more experience with partnerships.

 This is not a viable option for commercial software.

Recommendations:

 Use a change control board to evaluate all changes to the project plan (best practice)

o Avoids conflicting goals

o Addresses cost impact

o Allows customization through modularization, e.g., encryption was a higher

priority for the IAEA, so it was added as a module.

 Partnership

Appendix 3: Case Studies

C-12 | P a g e

o Keep frameworks high enough level to not conflict with different goals of

organizations

o Partners should apply configuration management in the same way

o Partners participate in the evaluation of vendor bids for contractor selection

o Resources and risk are shared

 Should continue to consider partnership relationships for mutually beneficial activities

 Identify success criteria, evaluate success, and document lessons learned.

 Conduct a lessons learned review of the CRISP project

Appendix 3: Case Studies

C-13 | P a g e

Case Study 4: Vendor Supplied Codes

Theme: Best Practices for Sustaining Software & Ways to Implement Sustainable Practices for
New Software Developments

Problem Statement:

Over the years the IAEA has obtained and become dependent on software developed and
supplied by vendors. The IAEA has had many positive experiences with software development
vendors. In general, vendors are very responsive to the problems and needs of the IAEA. In
these cases, vendors provide the requested software changes that address the needs of the
Agency. However, in other cases, the Agency has experienced problems with these commercial
developments that are similar to those experienced with national laboratories (see Case Study
2 on the support program process). Problems can arise with vendor-supplied software when
the vendor maintains the intellectual property and working knowledge for the firmware and/or
software and the IAEA requires modifications. Sometimes the IAEA cannot get the service it
needs because the vendor (often a small company) is unavailable or concentrating its effort on
new developments/products or software solutions for larger customers than the IAEA. In other
cases, the IAEA’s version of the code that the vendor supplied and the IAEA previously certified
is no longer available due to a discontinuation or a new development implemented for other
customers.

Summary of Breakout Group Discussions:

One breakout group addressed this case study. The group discussed the need for and
practicality of warranties and maintenance contracts. During the lifetime of software, the
embedded algorithms may need to be updated. Sustainability required good software
practices, including documentation, and a plan for maintenance. Software developers in both
the public and private sectors get reassigned when development ends; maintenance and
periodic modifications are not sufficient for them to remain dedicated to a software project.
Placing software in escrow will protect the client from default of the contractor and can ensure
access to the code if the company goes out of business. The MSSPs’ role and responsibilities in
the software lifecycle should be better defined.

Advantages of vendor supplied codes:

 The IAEA benefits from vendor testing

 Large companies can host many skilled developers and attract the best developers

Problems associated with vendor supplied codes:

 Need for a warranty/maintenance contract needs negotiation

o National Laboratories do not provide warranties

Appendix 3: Case Studies

C-14 | P a g e

o Vendors do provide warranties

o Unknowns are not covered by warranties

o Warranties have expiration dates but support requirements do not

o Maintenance contracts can be expensive

o Requirements creep can significantly delay the completion of a project

o Vendor support/development is based on business cases which may differ from

the needs of some users

 Control of Software

o Data

 The IAEA would have to accept the data structure and the size of data

sets as designed by the vendor and may find that it is not convenient to

their business.

 The size of data streams may result in problems (e.g., incompatibility,

warehousing issues) that the IAEA cannot correct internally

o Algorithms may require modification due to advances in science and engineering

 The IAEA may be dependent on the vendor to change to the code

o The IAEA version of code may no longer be available from or maintained by the

vendor

 Poorly documented software cannot be maintained or modified effectively

 IAEA needs to be more proactive with upgrades

o There should be a long term plan for software maintenance

 Human Resource (HR) issues with vendors

o When Bus Factor = 1, maintenance can be delayed or impossible

o Staff members leave to do other work

o Staff members can be assigned to other work

o Many of the companies supporting the agency are relatively small and may

merge or go out of business resulting in lost capabilities or staff.

o Member State Support Programs

 When project ends, experts are reassigned to other projects

 There is no product evolution without an active task

Proposed Solutions:

 Development contracts should include a warranty or provide for a follow on factory

support contract to assist the IAEA when problems arise

o Vendors may need incentives to agree to such provisions

 Place source code in escrow

o Protects against default

Appendix 3: Case Studies

C-15 | P a g e

o Could ensure access to code if company ceases to exist or cannot provide

support

 If the desired code cannot be shared, consider an alternative

o Cascade Header Enrichment Monitor – success story23

 IAEA and MSSPs should better define the support program role in terms of sustaining

technologies

23

 According to Peter Santi, Los Alamos National Laboratory, the Cascade Header Enrichment Monitor software
source code was given to the IAEA in 2008 or 2009. The IAEA has successfully managed the software and modified
it for use in safeguards implementation in Japan.

Appendix 3: Case Studies

C-16 | P a g e

Case Study 5: IMCA Software – Portable Nondestructive Analysis

Theme: Legacy Codes

Problem Statement:

The IAEA also has a need to sustain so-called “legacy codes.” This term refers to older codes
that may have been written in the best choice of programming language or the most up to date
coding structure at the time of development, but are not necessarily consistent with modern
software approaches and modern methods. An example of a legacy code is presented in this
case study.

The InSpector Multiple Channel Analyzer-2000 (IMCA) software represents a specialized code
for inspectors to acquire, analyze, and report measurement results obtained with the help of
the portable IMCA-2000. The software was developed by Canberra Industries (circa 1995-1998).
In the course of its extensive use by the IAEA, it has undergone numerous upgrades, which
resulted in the current version, V.2.0C+. For several reasons, the software was maintained and
upgraded cooperatively by Canberra with contributions from Agency staff. Nevertheless, over
the years, the ability to use a substantial part of its original functionality has eroded due to, in
particular, the emergence of more modern applications not available in the IMCA tool box (e.g.,
evaluation of low resolution gamma spectrometry spectra with NaIGEM), and the deployment
of LaBr detectors and associated data reduction tools developed internally (LABRod, LabPel
applications). IMCA has become increasingly difficult to maintain. At present, the IMCA
software needs major redevelopment, mainly for the following reasons:

1. The software was programmed using the specialized command language, REXX, which was

developed by IBM. The REXX execution engine is not fully compatible with modern
operating systems, and therefore, it requires major modernization. In this situation, a
complete redevelopment of the IMCA software based on a modern programming language,
preferably with a built-in multi-platform compatibility, may be required.

2. Some of the methods originally implemented in the IMCA, such as the two-region method
for the U-235 enrichment determination, have become obsolete and are no longer used by
the Agency. These were replaced by more accurate methodologies, such as NaIGEM,
LabRod, LabPel, LabGEM, developed both internally and externally, and implemented as
stand-alone software programs. Lack of built-in capability in the IMCA for easy
incorporation of new analysis procedures and algorithms does not allow implementation of
these programs with IMCA. Thus, a re-design of the IMCA software is required to make it
more open for the implementation of new measurement approaches and customizable and
adaptable to specific measurement needs.

Appendix 3: Case Studies

C-17 | P a g e

Summary of Breakout Group Discussions:

IMCA was presented to the breakout groups as an example of a legacy code that is written in a
nonstandard programming language and whose application has diminished over the years. IAEA
knowledge of the code has deteriorated. The participants suggested rewriting the code since
the maintenance of the existing IMCA is becoming increasingly costly and difficult. One option
is to remove the engine and put it in a wrapper; in this way the user interface can be
modernized, additional functionality can be build upon the existing code, and the code can be
integrated with other, incompatible codes. The IAEA must contribute to MSSP software
development by clearly defining their organizational needs and priorities, providing
requirements, setting standards, and actively participating. Lifecycle planning will result in
proactive decision making. The participants endorsed the use of cost benefit analysis as a
means to determine which codes should be maintained, updated, replaced, or abandoned.

Advantages of IMCA software:

 IMCA is freely available and compatible with many other products

 The REXX code has been adaptable to Windows upgrades

 The REXX source code is available to users

Problems associated with IMCA software and other legacy software:

 IMCA

o Written in an obsolete, specialized command language REXX

 REXX is a rarely used language with a very small market

o It is not maintained adequately

o There is no lifecycle plan

o It no longer addresses the original application

o Many of its functionalities are no longer needed

 There is inadequate support to rewrite all legacy codes

 Scripting for data passage is tedious

o Only one person in IAEA knows how

o A better platform is needed (integration is problem, not function)

 REXX software is not supported by IBM

o IAEA never requested an upgrade to modern software language

o There is no ongoing support contract

 The IAEA has too many programs that do similar things and compete for maintenance

resources

 Replacing (rewriting) IMCA will result in loss of trust in a well-vetted safeguards

measurement process

Appendix 3: Case Studies

C-18 | P a g e

 Libraries of routines called by the software evolve over time and can conflict with the

original intention and subsequent usage

 Maintaining legacy codes becomes more expensive with time

o Some codes should be allowed die. Some may not be needed and the cost of re-

development may be cheaper long-term than maintaining some codes.

Proposed Solutions:

 Remove the IMCA engine and put it in a wrapper

o The function of IMCA is sound, but its algorithms should be integrated with

newer tools

 Best practices for software development

o Use a modular, plug & play structure (I/O, data acquisition, analysis)

 Modularity would allow for separate modules that could be owned by

different vendors and could be modified/maintained independently from

each other

 This would involve rewriting the code, not revising it

o The requirements should be well defined and articulated.

 IAEA and vendor(s) should conduct a joint requirement analysis; MSSP(s)

could provide funding

 Better identify the problem – problem analysis, what is needed, what are

gaps?

o Use GENIE 2000 programmable libraries

o Do not use a specialized proprietary code/scripting language for software

development

 Choose a language that will be around forever, like C or derivative

thereof, rather than the latest modern code

 Choose a compiler that will be around forever

 Set standards to prolong life, or set a lifetime for code (e.g., 10 years)

o Conduct joint design reviews as the project progresses

 MSSPs and IAEA should conduct Cost Benefit Analyses:

o The IAEA should provide official recognition of need, such as documentation in

the Development and Implementation Support Programme or an SP-1 or a letter

request to MSSPs, not just a recommendation from individuals

o Need should be presented in the context of a larger plan for software

maintenance

o An upgrade project should only be undertaken if it still serves a purpose for the

Agency

Appendix 3: Case Studies

C-19 | P a g e

o A cost benefit analysis should be performed to determine which legacy codes

should be rewritten and which should not

 Approach to Windows applications is different than approach to Unix programs. The End

User will drive approach.24

 Consider alternatives

o The IAEA should work to minimize the use of equipment and instruments that

rely on commercial operating systems. Instruments and systems can be built

today that are not dependent on specific OS versions.

o The IAEA could change its procedure such that they can reduce the software and

instruments in their inventory

 Compile an NDA inventory and roadmap for the software needed by the IAEA

 Outsourced vs. internal resources

o Obtain quotes from both (and consider lifecycle costs)

o Need a dedicated in-house team composed of 50% permanent and 50%

temporary staff

 Project Management

o IAEA needs to sit in the ‘driver seat;’ problem ownership

o Lifecycle planning

o Maintenance contracts are essential

24

 Windows applications tend to be self-contained and execute an entire analysis process whereas Unix
applications tend to perform a single step in a sequence of data processing steps. Regardless, developers should
avoid using features that may not be supported in the future, should use a standard language, and should know
how the data will be used next and format it in a compatible format.

Appendix 3: Case Studies

C-20 | P a g e

Case Study 6: Development, Support, and Maintenance of INCC – Portable Nondestructive
Analysis

Theme: Sustaining Legacy Software and Knowledge Management

Problem Statement:

INCC (IAEA Neutron Coincidence Counting) software is a general purpose neutron coincidence
counting program that runs on Microsoft Windows-based computers. It is used for
nondestructive passive and active neutron verification applications in unattended and attended
modes. It can interpret the pulse counts from shift register electronics connected to neutron
detectors such as the High Level Neutron Coincidence Counter (HLNC) and the Active Well
Coincidence Counter (AWCC). INCC was developed by Los Alamos National Laboratory (LANL).
The Agency has used INCC as the standard platform for neutron measurement applications for
several decades.

To support changes in hardware (i.e., counting system and electronics upgrades) and new
applications (e.g., higher counting rate applications), LANL has provided the Agency with
technical support for upgrading and maintaining the INCC program through funding from the
U.S. Support Program. Recently, a new update for INCC is underway by LANL to allow it to work
with the IAEA’s CRISP system (see Case Study 3). This effort required adding support for
operation in unattended mode and for neutron data acquisition electronics such as the JSR-15
(manufactured by Canberra), and List Mode modules [including the LANL-developed List Mode
Multiplicity Module (LMMM) and the Hungarian Institute of Isotopes’ Pulse Train Recorder
(PTR-32)] for attended applications. These new user demands, plus the elimination of bugs in
INCC, will be fulfilled through its new update.

The knowledge base for this code exists at LANL. The IAEA is very dependent upon this code;
hence the USSP is funding LANL to complete required upgrades and/or bug fixes. This current
approach for INCC maintenance, wherein the United States provides funding for piecemeal
development for multiple users, is expensive and inefficient and, in the end, is not sustainable
by the USSP.25,26

25

 At the time of this report, the USSP is funding a cost-free expert and two other projects to assist with an update
of the INCC code. The first project involves the upgrade of INCC to make it compatible with the Pulse Train
Recorder and to provide enhanced functionality with the List Mode Multiplicity Module (LMMM). There are other
plans to update INCC in support of the Uranium Neutron Coincidence Counter (UNCC). The second project
involves modernizing INCC interfaces and databases to work with Microsoft SQL Server technology and the CRISP
interface specifications.
26 INCC is supported by laboratory program funding; use and distribution is limited by export control requirements.

Appendix 3: Case Studies

C-21 | P a g e

Summary of Breakout Group Discussions:

INCC was presented to the breakout groups as an example of a legacy code that is difficult and
expensive to maintain. INCC was developed by a U.S. national laboratory; this is advantageous
because the U.S. government will keep software active. But national laboratory staff can only
work on those projects for which they are funded and are reassigned when funding ends. INCC
does not have and never had a lifecycle plan. There are multiple versions of INCC that were
developed for different users with funding from multiple organizations. The IP rights are
convoluted and prevent efficient code modification. The lack of collaboration with the private
sector is detrimental. The participants suggested an audit of codes used by the IAEA for
safeguards instrumentation as a baseline for addressing software management. The
participants listed best practices for software management and advocated the creation of a
user group to encourage collaboration and knowledge sharing. Strong knowledge management
is particularly important when working with legacy codes.

Benefits of the INCC model:

 Developers feel sense of pride/ownership

 National labs sometime keep codes alive for a national interest, not for a profit since they are
not working for profit, but even at national laboratory they have to justify to Government (e.g.
US DOE)

Problems associated with the INCC model and sustaining legacy software:

 INCC

o Needs a comprehensive review and redesign

o Has no lifecycle plan

o Does not produce data in the correct format to interface with data reporting and

analysis codes

 USSP Issues

o It is expensive to pay a national laboratory to maintain software

 There are multiple versions of INCC (“Forks”)

o It can be difficult to understand the differences between the versions

o Add-ons by other researchers as LANL improves it

o Decreases efficiency but shares burden

o A reduction in the number of codes and versions of codes (forks) could save

money that could be directed towards the reimplementation of legacy codes

that are needed.

 There is no collaboration between private vendors and national laboratories on INCC

o There is no incentive to share bug fixes

o Stakeholders work independently

Appendix 3: Case Studies

C-22 | P a g e

o Version control is difficult with one developer; with multiple developers it

requires a coordinator

o The intellectual property is distributed among stakeholders

o Software needs a champion as there is no economy of scale (The IAEA did not

agree with this point)

 Champions are needed both for research and development. The

champion for the research and development could be the national lab

and company, respectively (related to the modularity issue). A technical

champion is one who has technical authority. A user champion sets

priorities. Funding and leadership champions may also be useful.

Lessons Learned/Best Practices:

 Management of IAEA codes

o Perform an audit of codes used by the IAEA

o IAEA, as user/customer, should set priorities

 Reevaluate priorities every year in consultation with stakeholders (similar

to Environmental Sampling working groups)

o Make sustainability part of the culture

 Develop roadmap

 Develop lifecycle plans

o Develop sustainability plans for critical codes

 Options and best practices for software development:

o Build upon the experience of CRISP

o Use open source software

o Establish software escrow

o Share codes under license agreements

o Backward compatibility is important

o Fully document codes and algorithms and adhere to recognized programming

standards to enable universal use of the code

o Segregate the physics package (algorithms) from acquisition other portions of

the code and assign responsibilities accordingly

o Consider transferring the development and maintenance to a vendor

 Vendors do not have access to nuclear facilities and material that are

necessary to test codes during development and maintenance

o Replace INCC with a customized version of Canberra’s NDA2000

 Must compare NDA2000 and INCC to determine what functionality is

missing in NDA2000

Appendix 3: Case Studies

C-23 | P a g e

 Knowledge management

o Document and share information about codes with others to increase knowledge

of code and to support new users/maintainers

o Assign responsibility for knowledge management

o Make use of knowledge retained in by commercial entities, whose KM is more

mature

 Increase collaboration between the users and developers

o Create user groups

 Benchmark what others do to maintain code (learn from the others’

experience)

o Combine the Canberra and LANL libraries

 Coordinate development with Canberra (and other relevant vendors)

o Use a repository such as GitHub27

 User community is involved

 Elect lead and steering committee

 Determine the ownership of codes used for safeguards instruments, and investigate the

legitimacy of copyright claims and intellectual property ownership (should be part of

software audit).

 Options for increased efficiency

o Separate expert knowledge from other knowledge

o Understand what maintenance is really required and what role the MSSP must

play.

o Likewise for upgrades. Establish who will use the produce and at what cost.

Perhaps distribute though RSICC (or other way) to collect fee? Establish

maintenance contracts for codes associated with MSSP to improve efficiency

27

 GitHub is a web-based Git repository hosting service, which offers all of the distributed revision control and
source code management functionality of Git as well as adding its own features. Unlike Git, which is strictly a
command-line tool, GitHub provides a web-based graphical interface and desktop as well as mobile integration. It
also provides access control and several collaboration features such as wikis, task management, and bug tracking
and feature requests for every project. (http://en.wikipedia.org/wiki/GitHub)

Appendix 3: Case Studies

C-24 | P a g e

Case Study 7: Universal NDA Data Acquisition Platform and DCView Software – Portable
Nondestructive Analysis

Theme: Knowledge Management with a Limited Developer Community

Here, we presented two case studies that capture issues pertaining to software development
projects in the unique environment of safeguards. Issues include ensuring sustained support for
software provided by small companies, sustaining and capturing knowledge of legacy codes,
and ensuring ongoing support for legacy codes themselves. The first case study is based on the
UNAP, a recently completed development project, and the second case study addresses the
DCView software, which has been developed over a long period of time and has been in use by
the Agency.

Situation Analysis 1:

The UNAP development was completed in February 2014, following a lengthy development and
extensive hardware and software testing by the IAEA. The original software developer was
selected based on years of experience and knowledge developing software for international
safeguards. However, the developer retired before the project was completed, and
responsibility for the software was transferred to a one-employee, affiliated company. The
affiliate completed the software, responded to test failures, and agreed to provide a one-year
warranty on the software following the completion of testing.

The affiliate has acted with professionalism and commitment and assumed all responsibilities
from the original developer. However, following the completion of the software development,
the affiliate’s employee found other work at a large software house and his availability to
support the product is limited.

Many of the companies and consultants who engage in software development for the IAEA are
small and have limited resources for supporting IAEA needs. In addition, the IAEA typically has
very specific and unique requirements for their products that others in the commercial nuclear
industry do not need; as a result the IAEA must rely on a very limited and many times small
developer and vendor community.

Situation Analysis 2:

The development of the Digital Cherenkov Viewing Device (DCVD) has been supported by both
the Swedish and Canadian support programs. The DCVD is commercially available through
Channel System Inc., which also provides the associated DCView software to the IAEA. DCView
was developed over a ten year period under the auspices of the Swedish Support Program (SWE
SP). DCView is now maintained by a small company while SWE SP owns the intellectual
property.

Appendix 3: Case Studies

C-25 | P a g e

The DCView software requires reengineering for the following reasons:

1. Features have been progressively added over a long period of time and the software
structure is not maintainable and upgradable to ensure long term sustainability.

2. The addition of new features has become increasingly difficult
3. DCView should be further developed to support off-line data evaluation features and

other advanced visualization features that are not worth it to be developed under the
current architecture.

Summary of Breakout Group Discussions:

The software for the UNAP and DCVD instruments discussed in the case study were developed
by small companies. The participants acknowledged that there are benefits and disadvantages
associated with software development by small companies. The IAEA cannot avoid working
with small companies because small companies are not discouraged by the size of the
international safeguards market, are more agile to respond to the IAEA’s needs, and enable the
IAEA to work directly with the technical staff. The unique risks associated with small companies
are that they are more likely to be unavailable to maintain and upgrade software and they may
be less likely to use standard software practices. These risks can be avoided through adherence
to recognized software best practices,28 good project planning and management, due diligence
during contractor selection, standardization, establishing a clear understanding of stakeholders’
expectations, and strong contracts.

Similarities between the two case studies:

 Both the UNAP and DCVD software were developed by a small company with one

employee

 The intellectual property for the components of the UNAP and DCVD systems are owned

by multiple parties

 The UNAP and DCVD software were each developed by one individual

 The use of a small company to develop the software for the UNAP and DCVD was a

conscious decision and was considered the only logical choice

Difference between the two case studies

 The company that developed UNAP was set up for that purpose while the company that

developed the software for the DCVD was an existing company identified by the

Swedish Support Program and it has other clients and projects

28

 The UK Software Sustainability Institute is a good source of information regarding best practices for software
development. See http://www.software.ac.uk/software-evaluation-guide.

http://www.software.ac.uk/software-evaluation-guide

Appendix 3: Case Studies

C-26 | P a g e

Advantages of the UNAP and DCVD models:

 Small developers can offer advantages such as greater enthusiasm, lower costs and

overhead, greater IAEA leverage in the relationship, better customer service, prompt

response time, and greater willingness to provide source code.

 Small companies encourage more personal interaction between the client and the

technical staff (with larger companies the client works more closely with sales and

marketing staff)

 Small companies are not discouraged by the small market associated with international

safeguards

Problems associated with the UNAP and DCVD models:

 Problems encountered in the UNAP and/or the DCVD projects

o The contract for the development was complex and complicated

o The MSSP decided to retain the intellectual property

o There were separate contractors for the hardware and software development

o The user requirements were incomplete or nonexistent

o The development champion designed the instrument to replace many other

instruments and to perform many functions. It was too ambitious and the

software had to be too complicated

o There were too many development partners and the partnerships were poorly

structured. It was difficult to determine who was responsible.

o There was no lifecycle planning

 Risks associated with small companies

o Small developers can offer advantages (see above)

o The primary risk is potential loss of developer due to change in work status,

illness, or death.

o In addition, a small developer may make nonstandard architectural choices that

lead to a source code product that is difficult for another developer to

understand.

 Development projects that are split up and separated between multiple contractors face

higher risks of failure and higher costs for project coordination

 For legacy codes that were supplied by small developers, incremental improvements

may no longer be sustainable or appropriate, and reengineering may be necessary.

Appendix 3: Case Studies

C-27 | P a g e

Additional Factors/Outstanding Questions:

 The Agency cannot avoid using software developed by small companies

 A good relationship with a commercial company matters a great deal

 Who should assume lifecycle risks? Can (or should) these be passed to the MSSP?

 Who assumes the lifecycle costs of software and why?

 Fractional outsourcing can be resource intensive and place the burden for integration on

the IAEA

o Project Management can be contracted to another entity

Lessons Learned /Recommendations:

 There are unique risks associated with doing business with small companies (see above),

but they can be overcome with proper project management techniques, such as using

software escrows (e.g., Iron Mountain)

 Development approaches

 Modular, phased approach

 Reduces risk and avoids rework

o Subdivide the work between multiple companies

o Have one lead developer responsible for coordinating and integrating all work

o Use short development cycles

o Ensure strong project management

o Leverage COTS software and hardware whenever possible

o Avoid customization where possible

 Intellectual Property (IP)

o Consider all IP options

o Allow the IAEA to hold the IP of the project results

o Include IP provisions/plans in contracts

o If the IAEA is contracting with a small company, obtain the source code/IP

 This is only useful if provisions are made for another entity to assume

responsibility

 Project planning

o Identify risks and mitigation strategies at the beginning of the project

o Define the deliverables that should be in the contract with the developer (see

legal remedies, below)

o Practice due diligence with the contractor with respect to long term availability

for maintenance

Appendix 3: Case Studies

C-28 | P a g e

o Reduce risk by asking the right questions, performing a risk analysis, and rolling

out the software in phases

o Plan for the lifecycle of the software

 Project Management

o With small companies, that may not have expertise in all subjects associated

with the project or an overall depth of knowledge, the IAEA has to be more

involved to mentor the technical staff. There must be dedicated IAEA project

support at the technical level

o Dedicated IAEA involvement is important to all projects

 Projects Sponsored by Member State Support Programs (MSSPs)

o Ensure a mutual understanding between the IAEA and MSSP(s) of the desired

project outcome and development process

o Research and learn from other organizations that are the beneficiaries of

contributions and are not direct parties to contracts that provide the

contributions

o Ensure a mutual understanding of the project by the IAEA and MSSP(s) (or other

benefactor)

 Establish a set of standards for software development

o e.g., RAINSTORM may mitigate many of these risks (via standardization of

requirements)

o This will help to avoid “quirky architectural choices” by the developer

o Requirements and/or specifications should be routinely included in SP-1s

o Avoid over-specification

 Contracting issues

o IAEA should specify the scope of the contract and the expected deliverables the

IAEA will get at the end of the project

o MSSP could transfer money to the IAEA with conditions attached (e.g. the IAEA

may only contract with a select set of companies)

o Write contracts that include long-term support

 This can be difficult - either impractical or cost prohibitive

o Determine what proper terms and conditions should apply to the contract and

ensure they are included

 Lifecycle Planning

o The total lifecycle costs need to be considered and understood from the

beginning of the project

o Could consider maintenance, life span, knowledge management and transfer

o Should include risk considerations and any associated cost implications (these

need to be taken into account somehow)

Appendix 3: Case Studies

C-29 | P a g e

 Identify core capabilities in the code and determine whether those can be pulled out,

preserved, and/or maintained separately

 Contractor Selection

o Establish requirements for selecting vendors for IAEA instrumentation software

projects

o Consider company staffing profile and capabilities

o The risks associated with small companies (e.g., bus factor, imminent retirement,

competing projects) must be recognized and mitigated

o Use a larger software house that is less likely to have such problems

o Request that a small, one-person company contract through a larger company

that could alleviate some of the risk (this would increase cost)

Appendix 3: Case Studies

C-30 | P a g e

Case Study 8: Instrumentation Software Development – LabVIEW as a platform for
maintaining systems

Theme: Best Practices for Sustaining Software & Ways to Implement Sustainable Practices for
New Software Developments

Problem Statement:

Historically, the software development approach for instrumentation software/firmware has
been almost entirely left to the discretion of the developer. This includes the selection of the
programming language, the design of the hardware supported by the code, the implementation
of embedded algorithms, and the display and format of acquired data. The IAEA Division of
Safeguards Technical and Scientific Services (SGTS) is increasingly assuming responsibility for
the maintenance of these codes and is interested in exploring this part of the software
development process.

The development of dedicated hardware for data acquisition has seen dramatic increases in the
cost of development and difficulties in long-term maintenance. In many cases, instrumentation
is nearly commercially obsolete by the time it is deployed and maintaining the requisite skills
and knowledge base to service these instruments is a significant drain on Agency resources.
More significantly, the need to maintain unique, single-use instrumentation reduces flexibility
and is an impediment to enhancing the efficiency and effectiveness of safeguards
instrumentation. For this case study we will explore the advantages and disadvantages of
using LabVIEW (virtual instruments) as software replacement for data acquisition
instrumentation.

Summary of Breakout Group Discussions:

One breakout group was in universal agreement that there were no advantages of LabVIEW for
safeguards instrument applications, but the other two groups were able to identify advantages.
LabVIEW is intended for use in laboratories for experimental software. Use by the IAEA for
safeguards instrumentation would require the development and support of new modules, and
a LabVIEW capability within the Department of Safeguards would have to be established and
maintained. LabVIEW is not be the answer to every programming need and will present some
licensing challenges. LabVIEW provides no sustainability benefits. Conventional codes can do
everything that LabVIEW can do, but with more effort.

Advantages of LabVIEW:

 LabVIEW is a potential option for standardization

o Follows standards

o LabVIEW is not application specific

Appendix 3: Case Studies

C-31 | P a g e

o LabVIEW is hardware independent

 LabVIEW is already used by inspectors for in-field review

o A strategy is needed for continued, systematic use

 LabVIEW has a large, established community of users

o Knowledge already exists and could be leveraged

o The use of LabVIEW in processing industries suggests a level of reliability/utility

 LabVIEW can do everything conventional codes can do

 Ease of Use

o LabVIEW field programmable gate arrays (FPGAs) can simplify the development

process for certain instrumentation

 Another group said LabVIEW should not be used to create firmware

o LabVIEW simplifies the creation of graphical user interfaces

 LabVIEW promotes standardization of user interfaces for a variety of

different instruments

o LabVIEW simplifies coding because it comes with many built in drivers,

standardization interfaces, etc.

o Allows for codes to be written in C

 Maintainability

o Virtual instruments are sustained; bugs addressed by National Instruments29

 LabVIEW is flexible (also a problem – could compromise data)

 Reduced cost for potential applications

 National Instruments

o has a suite of supported instruments in multiple of categories

o provides instrument simulations

 LabVIEW obviates the need for software architecture

 LabVIEW can serve as a prototype and testing environment

 LabVIEW could be used to develop simple instruments

Problems associated with LabVIEW:

 Name “LabVIEW” may be a nonstarter for some

o Negative reputation

o Name implies different use

 General

o The LabVIEW compiler function is more complex than other compilers

o LabVIEW provides too many options

29

 Can we rely on National Instruments to address bugs?

Appendix 3: Case Studies

C-32 | P a g e

o LabVIEW is probably too complicated

o LabVIEW results are not reproducible

o LabVIEW is not the answer to all software development needs

 IAEA’s one experience with LabVIEW was not very successful

 LabVIEW is not a particularly reliable way to put systems in the field

 Budget considerations

o LabVIEW requires a user license

o Reliance on LabVIEW will require periodic training to keep current with the

software, the retention of trained staff, and/or excellent KM

 Updates

o National Instruments cannot be expected to update software for each individual

instrument

o Frequent updates create problems for maintainability in remote monitoring

scenarios

 It is inefficient to add new modules

 For the IAEA to use LabVIEW for instrumentation software, new applications would have

to be developed and supported

 Compatibility with Safeguards mission

o Use of LabVIEW by the IAEA would be challenging because the IAEA’s needs are

highly specialized

 The Virtual Instruments provided through LabVIEW are not specific

enough for Safeguards applications

o LabVIEW was built for laboratory experiments

o LabVIEW was written for non-programmers; the actual code writing is poor

o LabVIEW is an exploratory tool

o LabVIEW does not effectively support data analysis applications

o To access a module (e.g., a small driver), National Instruments’ protocol

necessitates the download of an entire library

o The IAEA would need to obtain documentation of the LabVIEW components that

are needed

 Sustainability

o There is no sustainability benefit from LabVIEW

o LabVIEW code is not maintainable in the long term

 System hardware is not maintained

 LabVIEW itself may have a limited lifetime

 LabVIEW development times are too long

Appendix 3: Case Studies

C-33 | P a g e

Solutions/Recommendations:

 Conduct a study to identify those projects for which LabVIEW would be useful

o LabVIEW may be useful in specific cases

 In-field attended gamma measurements where the integration actually

helps

 As a test platform to compare different approaches

 LabVIEW plug ins could be used for research scenarios

o Consider the costs and benefits of a software development project using

LabVIEW

o Use Build VI (Build Virtual Instrument) driver for existing systems as an example

to compare software developed through a traditional approach to software that

can be developed using LabVIEW

 Compare project schedule, project complexity, savings

o Conduct a study to determine where LabVIEW is used, where it is not used, the

experience users have, etc.

o Use results of study as benchmark for IAEA software strategy, guidelines and

policy, and develop a Department-wide policy for the use of LabVIEW for

safeguards.

 Alternatives to LabVIEW

o CRISP is a model for alternatives to LabVIEW in that it demonstrates another

software development approach

o Software architecture should support future changes

 Do not consider LabVIEW to be a cure-all solution; do not require the use of LabVIEW

for all IAEA instrumentation software as proposed in the case study

Appendix 3: Case Studies

C-34 | P a g e

Case Study 9: Open Source Software

Theme: Best Practices for Sustaining Software & Ways to Implement Sustainable Practices for
New Software Developments

Situation Analysis:

One of the proposed solutions for IAEA software development and implementation is the use of
open source software. The obvious benefit is that the IAEA has access to the source code with
all the many benefits this entails (e.g., a potentially cost-free developer community,30 the ability
to fix bugs and/or add features without being locked to a certain vendor, the ability to make
modifications in-house, and easier vulnerability assessment (VA) via access to the source code
and the ability to compile the source code).

Despite the benefits, open source may not be a panacea. The “guardian(s)” of open source code
may not accept new features developed by/for the IAEA or, in some cases, may not even accept
bug fixes. This can happen for many reasons. For example, the “guardian(s)” may not want the
new features, may not recognize the IAEA as a legitimate user/developer, may not like the
coding style, may not agree that something is a bug, and/or may just not care that changes
were made. In this case the IAEA can either pay for an entirely new product to be developed or
create a “fork” of the open-source software.

A project fork happens when developers take a copy of source code from one software
package and start independent development on it, creating a distinct new piece of
software.

Forking has the advantage that the IAEA can be the “guardian” of the fork. In this way all of the
aforementioned disadvantages go away. Additionally, it may be easier to VA a fork because the
IAEA can control how often a new version of the fork is released. However, forking requires the
IAEA or its stakeholders to maintain the fork, which includes carefully attempting to integrate
pertinent changes from the source of the fork.

Summary of Breakout Group Discussions:

The use of open source software will solve some problems (e.g., it provides greater accessibility
to the code and increases the number of cognizant developers) but will introduce other
problems (e.g., it will require careful oversight to ensure quality standards are met). Open
source software is not necessarily cost free and can have some licensing requirements.
Algorithms used in safeguards applications are the intellectual property of their inventors and
may not be available for inclusion in open source software. The development and/or use of
open source software could include contributions from individuals and national laboratories but

30

 As a result of the workshop and ensuing discussions, the authors learned that some assumptions about open
source software in this case study are not realistic.

Appendix 3: Case Studies

C-35 | P a g e

would likely discourage the private sector from participating due to the noncommercial nature
of the products. Configuration control of open source software can be problematic and a
guardian would be needed. Many of the advantages and disadvantages discussed in the break
out groups were not specific to open source software.

Discussion Points:

 Open Source is one mechanism to allow the IAEA access to source code

o may be particularly palatable for US national laboratories, since they have

experience with it

 The use of open source requires a cost-benefit analysis

 Open source vs. IAEA possession of source code

o Who should have/needs access?

 National Laboratory issues

o National labs can do open source developments; IAEA would just have to ask or

require that approach

o A U.S. national laboratory developer may not have control over whether a

development ends up as open source software

 Lab may seek to make it proprietary

 Sponsor (e.g., DOE) can determine with it will be open source or

proprietary

o National laboratories have experience with open source developments for

various end-users (e.g., security applications)

 Used often to facilitate collaboration among researchers

 Need for trust in the product remains

 Turn-over within the IAEA increases the need to identify a sustainable maintenance plan

 Examples of proprietary software that could become open source:

o IMCA: if everyone had access, changes could be made and the functionality of

the code would improve. Right now, this is not happening. Requires a gate-

keeper, however.

o INCC: if INCC became open source, the IAEA would be able to modify the code

internally without assistance from the USSP.

o Provide crypto-middleware for token: had to cope with evolving requirements

and minimal communication was a serious problem; influenced decision-making

 Member States trust the IAEA to handle confidential information in certain

circumstances; why would the member states not trust the IAEA to handle software

obtained through a license agreement responsibly?

 MSSPs can contribute to sustainability of open source software by ensuring that there

continue to be subject matter experts (human capital development)

Appendix 3: Case Studies

C-36 | P a g e

 Could open-source software be compatible with MSSP developments? A study could be
performed to compare the requirements of open-source software development with
the practices and constraints of MSSP software development to support.

Advantages of open source software:

 Allows greater accessibility to the code

o The IAEA can view the software and compile it themselves

o Having this access closes a security gap because the IAEA can read the code to

see if any malware is embedded

o The quality of the code can be examined

 Facilitates sustainability if funding is not required for maintenance

 Allows for collaborative environments (e.g., GitHub)

 Facilitates modifications because the IAEA can either do the modifications in house or

contract out for support

 Less likely than proprietary code to disappear

 Often more successful for development

 Bug fixes can be done more easily and quickly

 Bug reports can be provided with more detail and quality

 Development and maintenance is not a burden on any one entity

 Gets more scrutiny from a wider pool of developers and users

 Documentation may be completed in a more timely manner

 Could be immune to staff turnover in the IAEA if it is supported by an external

community of users

 Eliminates or reduces bureaucratic barriers

 IP issues can be resolved through licensing

 Open source contributors can supplement IAEA human resources

o Talent can be identified through open source collaboration

 Independent development towards objective is possible; can pursue work in parallel

paths

 There is a great deal of available open-source software related to image

detection/surveillance

 Open Source Culture

o abandoning less useful branches of programs often results in better quality tools

o Stimulates creation and consideration of new ideas from different sources

 Cost-free nature of the software facilitates this behavior

Appendix 3: Case Studies

C-37 | P a g e

Problems associated with open source software:

 Open source does not always mean accessible to everyone; it sometimes is

implemented where only a designated community of individuals have the ability to view

and/or modify the code

 Open source options would require the IAEA to have a robust software QA program

 Resource impact

o Open Source does not mean cost free

 licenses are still needed in most cases

 some requirements may be difficult for the IAEA to adhere to due

to national laws, etc.

 What does “free” mean in this case? May be cost free but not free of

restrictions

o Maintaining source code at the IAEA can be expensive

 The IAEA would create and have to maintain forks

o Open source development does not reduce resource requirements or

administrative burden – it just shifts them elsewhere

 From lab/support program to IAEA staff or a developer

 From developer to ‘gate-keeper’

o Oversight/guardianship requires time and financial resources (guardian needed

in both closed and open source environments?)

 There is no standard quality control process for open source codes

 Software guardians

o Open source developments require an engaged, reliable gate-keeper (can

contract this out, change gate-keepers, etc.)

o A single guardian is similar to a bus factor of 1 with respect to developers

o Guardian must look after quality control

 the larger the community, the less quality control

 Open-source products can be difficult to combine or integrate (either logistically or due

to IP issues)

 Open source codes are continually changing and version control for open source

software can be problematic unless the IAEA can maintain its own fork and ensure that

all changes within that fork are tested and evaluated for vulnerabilities and

performance.

 Open source development may cause reliance on skills of IAEA staff subject to rotation

 Algorithms do not exist as open source code and are not expected to become open

source soon

Appendix 3: Case Studies

C-38 | P a g e

 The limited community for safeguards specific applications reduces the incentives to

open source developers who would be willing to fix bugs or otherwise contribute

o It would be difficult to maintain documentation with smaller, less dedicated

communities

 While having access to the source code can give the IAEA confidence that there is no

malware embedded, security issues arise due to the number of people who have access

to the code and the difficulty of reviewing software that may have tens of thousands of

lines of code

 Legal complexity may increase, e.g., if the base code is owned by one entity and the

IAEA develops a fork based on the base code, there may be disagreements over who

owns the fork.

 Open source developments may require:

o particular attention to knowledge management and version control.

o an active user base (not necessarily large) to make this work; often challenging in

the field of international safeguards.

Proposed Solutions/Recommendations

 Conduct a proof of principle open source software development to demonstrate

effectiveness

 Develop standards for IAEA open source development

o Include them in SP-1s or requirements for software development projects

o Advertise them on the IAEA website

o Include documentation requirements

 Documentation should be completed by programmer

 Analysis

o Open source options should be evaluated by the IAEA on a case-by-case basis to

determine if the cost of ownership can be supported and if it represents a

sustainable approach.

o Perform a cost benefit analysis to determine whether open source development

would save resources for particular cases or categories of software.

 In some cases, it may just shift the resource burden elsewhere

o IAEA could categorize software according to certain criteria (e.g., security

requirements, mission requirements, usage, and user base) and decide whether

certain categories of software might benefit from an open-source approach

 Identify well-managed and well run open source projects to use as models

 Plan for the lifecycle of software

 Investigate licensing options/requirements for open source software

Appendix 3: Case Studies

C-39 | P a g e

o Determine what is possible

o Write an ‘ideal’ license and see if developers will accept it (IAEA)

 Establish an open source community to stimulate collaboration for safeguards

instrumentation software

o Establish guardians/change control board (CCB)

 The guardian is usually is the organization that develops the software

 Establish Quality Assurance/Quality Control requirements (reviewed by

CCB)

 Establish responsibilities (e.g., development, documentation,

maintenance)

Appendix 4: Workshop Working Paper

D-1 | P a g e

Appendix 4: Workshop Working Paper

U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation

May 6-8, 2014

Working Paper31

Susan Pepper, Brookhaven National Laboratory
Louise Worrall, Oak Ridge National Laboratory

Workshop Objective:

The United States and the IAEA are convening a workshop on “Software Sustainability for

Safeguards Instrumentation” to identify strategies for improved software development and

maintenance practices for IAEA safeguards instrumentation software.

For the purpose of this workshop, “software sustainability” is defined as ensuring that

safeguards instrument software and algorithm functionality can be maintained efficiently

throughout the instrument lifecycle, without interruption, and providing the ability to continue

to improve that software as needs arise.

The Challenge of Software Sustainability:

Today’s international safeguards instruments are sophisticated tools that require numerous,

complex software applications for instrument control and for acquisition, storage, transfer, and

analysis of data. The IAEA’s vast and diverse inventory of instruments and the associated

software provides a means for the IAEA to apply scientific principles to inspection

measurements and, at the same time, meet international safeguards requirements. These

instrument software applications run on a variety of platforms, are built from unique source

code by developers at multiple public and private organizations, and require development

practices and training of users and stewards that are unique to specific subject matter expertise.

Sustaining IAEA instrumentation software is complicated by the many stakeholders and the

unique environment of international safeguards; software development for international

safeguards is achieved using codes owned by the IAEA, its member states and their national

31 This working paper is adapted from talking points compiled by the International Safeguards Project
Office, Brookhaven National Laboratory (2012) and a follow-on white paper entitled, “Developing a
Technical Needs Analysis for Software Sustainability to Mitigate Long-Term Software Maintenance
Issues & Costs,” by Louise Evans Worrall, Stephen Croft, James R. Younkin, Nathan C. Rowe, and Chris A.
Pickett of the Safeguards & Security Technology Group, Oak Ridge National Laboratory (2012).

Appendix 4: Workshop Working Paper

D-2 | P a g e

laboratories, commercial vendors, and individuals. Before new software can be adopted by the

IAEA, it must be certified through testing. New hardware for safeguards instruments is often

accompanied by new embedded software. Embedded software must be compatible with software

used by the IAEA for data analysis. If compatibility was not preplanned, the IAEA will depend

on the equipment developer to modify the embedded software for its use or middleware must be

developed. Due to the nature of safeguards, the IAEA often has unique software requirements

that are not needed by other users. The situation is compounded by the relatively small size of

the international safeguards software community of users and developers. Technical knowledge

on software operation is often limited to the developers or small communities of expert users.

Further, the relatively small user community does not command the attention of large software

houses and does not have the luxury of widespread or extensive beta testing for pre-service bug

identification. IAEA staff members often find themselves serving as beta testers of new software

products, indirectly increasing the overall resource cost of development.

One example of how IAEA instrument software is developed is through United States Support

Program (USSP) funding for national laboratories, private companies, or consultants to develop

particular instrument hardware and software for IAEA safeguards implementation. In this

example, the USSP has typically assumed the cost of modifying and maintaining software

throughout its lifecycle including extending the software beyond the end of its planned lifecycle,

expanding the capabilities of the software in response to IAEA requests, updating the software

to a new platform when the original software platform becomes obsolete or unsupported, and

fixing bugs as they are identified or become unmanageable. However, given constrained budget

environments and competing demands for limited resources, the USSP may not be able to

continue to assume these costs in the future. This workshop is intended to identify effective,

efficient, and creative solutions to sustaining IAEA instrument software.

Workshop Format:

In light of challenges described above, the U.S. Next Generation Safeguards Initiative (NGSI)

and the IAEA Department of Safeguards are convening a workshop on “Software Sustainability

for Safeguards Instrumentation” to be held May 6-8, 2014, at the Vienna International Centre in

Vienna, Austria. This workshop will assemble international safeguards instrumentation software

stakeholders for informative and constructive discussion of the issues related to software

development and maintenance from a sustainability perspective. The objective of the meeting is

to obtain feedback from software and instrumentation experts and users to guide the U.S. and

other Member State Support Programs to a more effective and efficient process for developing,

modifying, maintaining, and sustaining instrumentation software for the IAEA Department of

Safeguards. Invited workshop participants include representatives from the IAEA, member state

governments and national laboratories, companies, and think tanks. The workshop is designed

with presentations in the mornings to provide background information on the issues that face

software development for the international safeguards community, and with breakout sessions

in the afternoons where case studies of specific situations will be discussed and analyzed for the

identification of improved pathways for technical support. Themes have been defined for each

day based on information obtained through interviews with IAEA staff and company

Appendix 4: Workshop Working Paper

D-3 | P a g e

representatives. During the concluding session, time will be reserved to allow the participants

to talk about the overall results of the workshop and to provide input as to the most pertinent

ideas that were discussed and how they might be implemented.

The theme for the first day of the workshop is “Building IAEA Self-Sufficiency and Sharing

Source Code and Intellectual Property.” This theme arises from the IAEA’s desire to increase

their self-sufficiency and their desire to have control of the source code related to their

instrumentation. There is a corresponding need to make the entire process (software delivery

through field implementation) more efficient for all stakeholders. The workshop participants

will be asked to consider the obstacles to the IAEA’s self-sufficiency, the advantages and

disadvantages of giving the IAEA access to source code, and the challenges presented by

intellectual property.

The theme for the second day is “Knowledge Management and Sustaining Legacy Software.”

This theme arises from the reality that the safeguards software user community is relatively

small, that the supporting companies tend to be small, and that the aging of the industry is

causing a shortage of subject matter experts and software developers with this specialization.

Participants will be asked to provide input as to how the community can better support the

IAEA by ensuring the transfer and avoiding the loss of institutional knowledge. We will also

discuss how to ensure that legacy software will be available to support IAEA safeguards until

replacement software is available.

The final theme for the workshop is “Best Practices for Sustaining Software and Ways to

Implement Sustainable Practices for New Software Developments.” Based on the first- and

second-day reviews of the current state of software management and the management of legacy

codes, the participants will explore options and identify sustainable practices for new software

developments and short, medium, and long-term sustainability planning.

At the conclusion of the workshop the facilitators and participants will review the findings of the

breakout sessions and prioritize them. Following the workshop, the organizers will review the

findings, along with the prioritization, in more detail to create an action plan. The action plan

will be presented to the Next Generation Safeguards Initiative and the IAEA as a recommended

roadmap for future work.

Appendix 4: Workshop Working Paper

D-4 | P a g e

Appendix 1: Technical Considerations for Software Sustainability:

IAEA end-user requirements:

 Application-specific requirements

 Requirements for unattended vs. attended vs. remote monitoring equipment

 Usability requirements

 Quality assurance requirements and guidelines

Technical Challenges:

 Software and data authentication

 Verification

 The user is part of the checking process for attended use

 Control inputs/outputs for unattended and remote use

 Quality assurance

 Common language, e.g., C/C++/C#, FORTRAN

 Defining a standard, e.g., documentation, readability, coding conventions

 Performing vulnerability assessments (less expensive at the design phase)

 Qualification

 Data interface, i.e., inputs and outputs

Administrative Challenges:

 Documentation

 Intellectual Property

 Version control

 Control of software modifications

 Access control

 User privileges

 Open source modifications

 Software quality assurance

 Training

Appendix 5: Report to the Workshop Participants

E-1 | P a g e

Appendix 5: Report to the Workshop Participants

Report No. BNL-105966-2014

The U.S./IAEA Workshop on Software

Sustainability for Safeguards Instrumentation

Louise G. Worrall, Chris A. Pickett, Oak Ridge National Laboratory

Susan E. Pepper, Katherine M. Bachner, Al Queirolo, Brookhaven National Laboratory

August 2014

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under

Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the

manuscript for publication acknowledges that the United States Government retains a non-exclusive,

paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript,

or allow others to do so, for United States Government purposes.

Appendix 5: Report to the Workshop Participants

E-2 | P a g e

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States

Government. Neither the United States Government nor any agency thereof, nor any of their

employees, nor any of their contractors, subcontractors, or their employees, makes any warranty,

express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any

third party’s use or the results of such use of any information, apparatus, product, or process disclosed,

or represents that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does

not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States

Government or any agency thereof or its contractors or subcontractors. The views and opinions of

authors expressed herein do not necessarily state or reflect those of the United States Government or

any agency thereof.

Appendix 5: Report to the Workshop Participants

E-3 | P a g e

The U.S./IAEA Workshop on Software Sustainability for Safeguards Instrumentation

Louise G. Worrall, Chris A. Pickett, Oak Ridge National Laboratory

Susan E. Pepper, Katherine M. Bachner, Al Queirolo, Brookhaven National Laboratory

Workshop Objectives

The United States and the International Atomic Energy Agency (IAEA) convened a workshop on Software

Sustainability for Safeguards Instrumentation in Vienna, Austria, May 6-8, 2014. The primary objective of

the workshop was to assemble a cross-section of all safeguards instrumentation software stakeholders

(i.e., users, developers, vendors, and sponsors) to identify strategies for ensuring that critical safeguards

instrumentation software products continue to be available for use by the IAEA as required and that

software functionality does not degrade over time. Safeguards instrumentation software must be

sustained in a changing environment with increasing requirements and limited resources. The

approaches taken in the past may not be the best model for the future and, therefore, the organizers

wanted to evaluate these past approaches.

Workshop Highlights

Neil Chue Hong, Founding Director of the United Kingdom Software Sustainability Institute, presented

the keynote talk on Scientific Software: Sustainability, Skills and Sociology. His presentation highlighted

the fact that scientific software has a lifetime that is considerably longer than the lifetime of the

associated computing hardware. Therefore, lifecycle planning models for software must anticipate

changes in hardware approximately every 2-5 years. Software requires a significant overhaul

approximately every 10 years. In his words, software “rots” over time, and therefore, simply doing

nothing is not a viable approach for sustainability. For example, one common misconception is that the

correct way to preserve source code is to keep it in a repository, but Mr. Chue Hong noted that even in a

repository the software has to be maintained. Further, whether called the “bus factor” (Chue Hong) or

“lottery factor” (Alexey Anichenko, IAEA), the number of software developers devoted to the

sustainment of a key software product should always be greater than one. The points made in this

keynote talk were revisited throughout the breakout sessions, and Mr. Chue Hong was quoted

throughout the workshop.

The workshop provided the opportunity for external software developers to meet with IAEA staff

developers and other external developers. For some external developers, this was the first time that

they had met other external developers working on software for safeguards instrumentation. The

workshop also provided the IAEA with the opportunity to promote their RAINSTORM project32 and its

benefits. One of the stated goals of the RAINSTORM project is to standardize remote data retrieval and

data security for all future IAEA Safeguards Technical and Scientific Services (SGTS) equipment. This is

an important goal that will lead to more uniform and shareable analysis software. Discussion of the On-

32

 RAINSTORM is the IAEA’s user requirements for implementing a remote monitoring interface in new safeguards
instrumentation designs.

Appendix 5: Report to the Workshop Participants

E-4 | P a g e

Line Enrichment Monitor (OLEM) and associated software development highlighted the importance of

early and iterative collaboration among stakeholders. The development of the Central RADAR33

Inspection Support Package (CRISP) jointly by Euratom/DG-ENER and the IAEA was also highlighted by

the IAEA as an exemplary model for sharing development effort and resources, and the resulting source

code. The CRISP software package offers the promise of providing a way to integrate divergent data

sources into a common format, which will enhance the ability of the IAEA to develop data analysis

software that is more readily shareable.

Figure 1 is a graph prepared and presented at the workshop by Alain Lebrun, IAEA, to illustrate the

status of the IAEA safeguards software that is used for portable non-destructive assay (NDA)

instrumentation. The graph characterizes software according to whether the software is safeguards-

specific (indicates there may be other user communities) and whether the software is owned by the

IAEA or another party (indicates the level of access and/or responsibility the IAEA may have to the code

for use and maintenance). The codes that are owned by the IAEA and are safeguards-specific are the

codes for which the IAEA can take responsibility. The codes that are safeguards specific but are

proprietary are of concern to the IAEA because the IAEA does not have the required access to the source

code to perform reviews to ensure the software operates as intended or to make necessary

modifications. This graph gave workshop participants a very useful framework for identifying critical

safeguards software and could also be an important aid for future software sustainability planning.

Summary of Recommendations from the Workshop Breakout Sessions

The workshop was formatted with the delivery of informative presentations each morning and breakout

sessions each afternoon. The workshop breakout sessions were structured around multiple relevant

scenarios and case studies prepared with input from the IAEA, and time for expert discussions was

provided. The resulting discussions among the participants led to numerous recommendations from the

participants for improving the management of safeguards instrumentation software. A summary of the

significant recommendations from the workshop is provided below.

It is important to the IAEA to have the in-house capability to address software sustainability issues. In

particular, the IAEA wants the independence to be able to make minor modifications to software that do

not warrant the time and expense associated with a typical member state support program (MSSP) task.

In addition, the IAEA would like the flexibility to apply resources, including those available through the

MSSPs, as appropriate. For example, in some cases hiring a cost free expert or a junior professional

officer is more appropriate than contracting with a vendor, but not in others.

33

 Remote Acquisition of Data and Review

Appendix 5: Report to the Workshop Participants

E-5 | P a g e

IAEA

COMMERCIALMCAT

COMPUCEA

[field] ISOCS

MGA, MGAU

GENIE

MAESTRO

ECGS

CBVB

IMCA

Problem

Zone

HM5-

Problem

Zone

FRAM

NAIGEM

IGA

[new] IMCA

Concern

Zone

CHEM

DCViEW

INCC

Figure 1: Characterization of the IAEA portable NDA software based on application and ownership

It is widely recognized that the mission to sustain software is a broad and ongoing challenge that

encompasses legacy codes and codes that are not yet written, multiple uses and applications, and

multiple stakeholders; therefore, there is no single “one size fits all” solution. A key finding of the

workshop was the need to develop lifecycle plans for critical safeguards software. For lifecycle planning,

the IAEA must create an inventory of current safeguards instrumentation software. Workshop

participants recognized that sustainability does not just mean keeping software in use, but it also means

knowing when to take certain software out of service or when it is best to re-write or replace the code

(e.g., in the case of legacy software). This recognition led to the recommendation that a code audit be

conducted to identify the software packages required by the IAEA to support safeguards

instrumentation, their relative prioritization, the users and level of use of these codes (including the user

community external to safeguards), the maintenance requirements and who is responsible for

maintenance, the current cost of maintenance (i.e., capture the cost data), the availability of developers

to work on these codes, who owns these codes, and what needs to be done to sustain them. This code

audit should also take into account and capture dependencies between MSSPs. This inventory will

promote efficient investment in safeguards software by identifying critical software packages and

maintenance needs. It will facilitate a gap analysis and will become the basis for software management

and lifecycle planning. It is widely recognized that sustainability will require funding, but allocations

should be targeted to those codes that are both in demand and of high priority to the IAEA. A

Appendix 5: Report to the Workshop Participants

E-6 | P a g e

consolidation and prioritized assessment of the portfolio of codes requiring ongoing support and

maintenance resulting from the code audit and periodic assessment of new options could also increase

the ability of all stakeholders to sustain them. Proper software archiving methods were also discussed

by the keynote speaker and should be considered during the audit.

Human resources are a key consideration of software sustainability and sustainability planning.

Stakeholders need to be committed and involved in order to successfully tackle the software

sustainability challenge. In simple terms, people must be motivated to sustain safeguards

instrumentation software and have good reasons or incentives to do so. Software sustainability and

maintenance culture must be an integral part of institutional culture and become a routine way of doing

business. It was recommended that a “user champion” initiate, lead, and become the proponent for the

code audit and sustaining critical software. Code-focused user groups or working groups were also

recommended to “socialize” the code, share best practices, and improve knowledge management.

Establishment of these groups is a best practice because the groups increase knowledge and

understanding of codes, engage next generation professionals, and thereby enlarge the user

community. A user or working group need not be expensive or require government or extra budgetary

funding. The workshop demonstrated that significant interest and motivation exist among the

stakeholders and that a user or working group(s) for safeguards instrumentation software could be

formed with minimal encouragement by the USSP or other sponsor.

When codes are in use and there is no immediate plan for upgrades, the subject matter experts (SMEs)

and programmers may be reassigned to other tasks and may not be available to address even minor

unplanned modifications. It is necessary for stakeholders to devise a plan for ensuring that these

experts are available when needed. Applying software development best practices reduces the risks

associated with a “bus factor” of one, i.e., a sole developer, and protects users against the unavailability

of the SMEs and programmers. A well-structured and documented computer code with a sole

developer could, if necessary, be assumed by a competent programmer immediately. There are a

number of widely-used, open-source codes that are good examples of this principle.

The participants encouraged investment in sustaining critical safeguards software and supporting

associated training. Funding could come from a single “resource champion” or a number of “resource

champions.” Options for software sustainability will vary depending on the owner of the codes, but may

include planning and providing for a maintenance budget over the lifetime of the software, using

umbrella tasks34 for maintenance, and negotiating technical support contract arrangements with

vendors. Another model is the Radiation Safety Information Computational Center (RSICC) system

(https://rsicc.ornl.gov), which provides and manages licenses and leverages multiple programmatic

support vehicles along with limited user fees to cover the costs associated with software sustainability.

Each of these options would ensure that funds are available to support maintenance activities in the

timely manner desired by the IAEA. Improved lifecycle planning and a proactive approach to project

management would help to ensure maintenance support over the entire software lifecycle. Lifecycle

34

 Umbrella tasks are MSSP activities that consolidate a number of small, related activities.

https://rsicc.ornl.gov/

Appendix 5: Report to the Workshop Participants

E-7 | P a g e

planning should, therefore, take into account the “total cost of ownership” for each software product

akin to how vendors support key software products.

Timeliness of support from MSSPs was identified as an area for improvement. Recognizing that the IAEA

and MSSP processes ensure efficient and effective use of limited financial resources, the approval

processes within both the IAEA and the MSSPs can result in delayed access to technical support from the

MSSPs.

Discussions regarding intellectual property (IP) led to a recommendation to assess licensing possibilities.

The stakeholders need to understand who owns the IP for each of the safeguards software packages and

whether the packages can be shared. While some software codes may not be made available to the

IAEA, there may be ways to creatively license the software to meet the needs of the IAEA while

addressing the concerns of all stakeholders, including those who own the various pieces of IP. Some IP

issues could also be mitigated by determining at the start of development who will hold the software IP

at the end of development. Again, this dialogue should happen early in the development process and

should become a routine part of any development project.

The IAEA believes the noncommercial nature and the small market impact of IAEA activities obviate or

lessen the need for IP protection, and the need for IP protection on safeguards-specific software is not

justified (see Figure 1). IAEA representatives proposed the concepts of non-exclusive licenses for

noncommercial use and partial IP sharing, which would protect proprietary algorithms while open-

sourcing architecture and interfaces.

A software escrow can simplify IP issues when agreed to in the planning phase of a software

development project. A software escrow is a legal contract which gives the client access to the software

developer’s source code and other proprietary materials if the developer becomes incapable of

supporting the software. A neutral third party serves as the escrow agent and provides such services as

checking that deposited assets are readable and virus free, confirming that decryption keys for

encrypted files are on deposit, providing a complete audit and inventory of your deposit, validating that

the development environment can be recreated, testing the functionality of the compiled deposit

materials, and confirming functionality of released software.

A phased approach to software development could mitigate some of the challenges, such as lengthy

development times (interim software products could be implemented earlier) or a product that does not

match the IAEA needs (there would be chances to review the project and make corrections at midpoints

in the development). Active participation by the IAEA in software development projects should also be

part of the phased approach. Software requirements and applicable standards should be defined at the

beginning of the project to avoid changes in scope.

The IAEA, as the end-user, must be an active participant in the software development process. It is not

acceptable for the IAEA to contract with a developer and remain uninvolved during development. The

IAEA must also be actively involved in developments where the contract is between an MSSP and the

Appendix 5: Report to the Workshop Participants

E-8 | P a g e

developer. Similarly, there should be IAEA champions to promote sustainability of the different

instrumentation software programs. This is a challenge due to the IAEA’s “rotation policy,” which results

in many professional staff members leaving the IAEA after seven years. Thus, there should be an

institutional commitment to software to ensure that software sustainability can span the rotation of the

sustainability champions.

Other recommendations encouraged better software documentation and more complete

documentation of software algorithms, which would address a variety of problems, including knowledge

management and the ability for software to survive unavailability of the software developer. It was

recommended that teams of SMEs and software developers consult with technical writers to produce

high quality documentation. In particular, the IAEA could prepare software requirements to document

the required functionality for vendors to use in preparing software. The requirements can be updated

as new measurement approaches emerge. This approach addresses both the “rot” problem and the

IAEA’s desire to have source code and allows the IAEA to define the requirements for the software

without having to own it. A system that does not meet the requirements would not be saleable to the

IAEA.

Innovative and promising approaches, such as the CRISP joint development and the OLEM

instrumentation project, should be benchmarked. It was recommended that more experience should be

gleaned from development partnerships or the use of RAINSTORM. Furthermore, success indicators or

metrics of future software development projects should be clearly defined for future projects. The

safeguards community should learn from other scientific communities that have previously faced and

addressed the software sustainability issue.

Specific technical recommendations include the use or improved implementation of modular

programming methods, which was regarded by the participants as an essential component of

programming. Modules of safeguards software would include data acquisition, data management, and

data analysis. This would keep the functional elements, which may be proprietary, separate from the

interfaces, which may be customized for the IAEA’s use, and facilitate desired access to the code for the

IAEA. Standardization of software features, such as basic modules and input/output formats, was also

recommended for the future.

Workshop participants agreed that the IAEA should seek feedback on RAINSTORM. The IAEA has

implemented RAINSTORM in several systems including the Universal NDA Data Acquisition Platform

(UNAP), the Laser Mapping System for Containment Verification (LMCV), the Next Generation

Autonomous Data Acquisition Module (NGAM), OLEM, and other instruments and sees it as a standard

for the future. However, because workshop participants were not widely familiar with RAINSTORM prior

to the workshop and were only familiar with it through its application in OLEM, they recommended

more review. This recommendation supports the establishment of a user group that includes people

who are knowledgeable in all aspects of developing and sustaining software. While RAINSTORM is not

yet a standard, the workshop participants applauded the IAEA’s initiative in developing this product

Appendix 5: Report to the Workshop Participants

E-9 | P a g e

which will one day serve that role and encouraged the community to develop other such standards and

associated requirements.

Acknowledgements

This project was funded by the National Nuclear Security Administration’s Next Generation Safeguards

Initiative’s Safeguards Technology subelement. The Department of State’s High Priority Safeguards

Program provided funding to cover the expenses of many of the private sector attendees. The

workshop team would like to give special acknowledgement and thanks to Jim Regula (IAEA) who

worked closely with the workshop team to plan for, develop, and make arrangements for the workshop,

Emil Farkas (IAEA) and Chris Orton (NNSA) for facilitating workshop breakout sessions, David Peranteau

(IAEA) and Hilary Lane (NNSA) for taking notes in the breakout sessions, Inna Cherkasskaya (IAEA) for

taking care of many of the logistical aspects in Vienna, Barbara Hoffheins and Ben Deering (U.S. Mission

to International Organizations in Vienna) for providing on-site assistance in Vienna, and Laura

MacArthur and Michele Rabatin (BNL) for providing administrative assistance to the workshop team.

Finally, the workshop team appreciates the participation and contributions of the many software,

hardware, and international safeguards experts who attended the workshop.

