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We develop a general framework for generating estimators of a given quantity which are unbiased
to a given order in the difference between the true value of the underlying quantity and the fiducial
position in theory space around which we expand the likelihood. We apply this formalism to rederive
the optimal quadratic estimator and show how the replacement of the second derivative matrix with
the Fisher matrix is a generic way of creating an unbiased estimator (assuming choice of the fiducial
model is independent of data). Next we apply the approach to estimation of shear lensing, closely
following the work of Bernstein and Armstrong (2014). Our first order estimator reduces to their
estimator in the limit of zero shear, but it also naturally allows for the case of non-constant shear
and the easy calculation of correlation functions or power spectra using standard methods. Both
our first-order estimator and Bernstein and Armstrong’s estimator exhibit a bias which is quadratic
in true shear. Our third-order estimator is, at least in the realm of the toy problem of Bernstein
and Armstrong, unbiased to 0.1% in relative shear errors ∆g/g for shears up to |g| = 0.2.

I. INTRODUCTION

Unbiased estimators are recipes for producing an es-
timate of a quantity which, averaged over many realiza-
tions of the data from the same underlying model, will
average towards the true value of the quantity we seek to
measure (assuming the averaging is unweighted, or sym-
metrically weighted).

A typical example of where unbiased estimators might
be useful is the estimation of cosmic shear. One can
write the complete likelihood for the observed galaxy im-
age given the parameters of the galaxy model. Such a
model might include parameters describing the intrinsic
ellipticity of the galaxy, its size, etc. and also the quanti-
ties that one wants to measure, such as shear. In general,
the resulting likelihood will be very non-Gaussian, i.e. it
cannot be usefully described by the position of maximum
likelihood and the second derivative matrix around that
point in parameter space. In order to carry out an analy-
sis in an unbiased manner, one would need to propagate
the full likelihood shape in the subsequent analysis of
the data. This is prohibitive in the limit of millions of
galaxies whose shear one hopes to measure in forthcom-
ing surveys. One could attempt to maximize the likeli-
hood for each individual galaxy, but this typically leads
to wrong answers – since galaxies are round on average, a
given galaxy might be best explained as a result of mas-
sive shearing of an intrinsically round galaxy. But we
know that a model with a shear of say 0.3 does not make
much sense for a typical field galaxy. In [1] (BA14 here-
after), the authors have argued for the expansion of the
marginalized likelihood around zero shear, i.e. compress-
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ing the likelihood to the value of the first and second
derivatives of the log-likelihood expanded around zero
shear. The fact that the likelihood for each individual
galaxy is highly non-Gaussian does not matter. Since
the shear is small, when many log-likelihoods are added
(i.e. likelihoods combined), the resulting likelihood has
to collapse to a Gaussian by the central limit theorem.
For such a collapsed likelihood, one can use a Newton-
Raphson step (using the first and second derivatives of
the combined likelihood) to calculate an estimate of the
underlying shear. In BA14, the authors show that this
method works on a toy example (also employed later in
this paper), and [2] demonstrates that it also performs
as expected in more realistic settings (e.g. working with
real pixelated galaxy images, but still using simulations).

However, one caveat to the method discussed above
is that, in its simplest incarnation presented in BA14, it
only works when the shears of all galaxies are assumed to
be the same - something that is clearly not true in reality.
The method requires the likelihood to be combined for a
sufficiently large number of galaxies so that central limit
theorem ensures we can get a sufficiently Gaussian shear
estimate for the ensemble. Therefore, in order to calcu-
late a correlation function or a power spectrum, one can
either perform shear averaging in cells where the shear
can be roughly assumed constant, or, alternatively, at-
tempt to appropriately weight the estimates using cells
in Fourier space to recover individual Fourier modes of
the shear field (see Section 2.2 in [1]).

In this paper, we develop a related scheme. In con-
trast to the BA14 method, where one does not recover
an estimate of the shear of a single galaxy, the method in
this paper does return an unbiased estimate of the shear
for each galaxy. For each individual galaxy, we make no
guarantee as to the probabilistic distribution for the error
ε = g̃−g (where g̃ is the shear estimate and g is the true
shear), except that 〈ε〉 = 0, where the average is over all
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possible realizations of the data. Again, while the error
properties for a single galaxy are unknown, they must
converge to a normal distribution when many galaxies
are considered by the central limit theorem. An impor-
tant advantage in returning the shear of each galaxy, is
that we are now not limited to the case of constant shear
and can calculate any correlation function using these
estimates, since it is trivial to show, for example, that
〈g̃1g̃2〉 = g1g2, where indices 1 and 2 correspond to two
galaxies, g̃ corresponds to the estimated shear, and g
corresponds to the true shear.

In section II, we develop the formalism used in this
work, which is completely general and independent of
any particular inference problem. It will turn out that
in general, an estimator can be constructed that is un-
biased to a certain order in the difference between the
true and assumed fiducial values for the theory parame-
ters. In Section III, we re-derive the optimal quadratic
estimator in our formalism, and in Section IV, we apply
our formalism to the toy problem of BA14.

II. FORMALISM

Consider a general likelihood function L(D;θ), which
is a function of a vector of N theory parameters θ and
a vector of M observable data values D.1 We will de-
note the log likelihood as L = logL. The likelihood is
normalized as ∫

LdMD =

∫
eLdMD = 1. (1)

The above is true for any set of theory parameters θ. We
will write the average of any quantity over the likelihood
at theory parameter θ as

〈X(D;θ′)〉θ =

∫
X(D;θ′)eL(D;θ)dMD (2)

Note that the function X can in general be a function of
both data and the theory parameters, but the resultant
average 〈X(D;θ′)〉θ is a function of θ and θ′, but not D.
Let us denote the derivative with respect to the theory
parameters with a comma, i.e. L,i = ∂L

∂θi
. The first

derivative L,i is a vector of size N , the second derivative
L,ij is a symmetric matrix of size N ×N , etc.

Taking n derivatives of Equation (1) with respect to
theory parameters, we find that

〈nU(θ)〉θ = 0 (3)

1 We follow standard notation where vectors and matrices which
are not explicitly indexed are denoted with bold-face italic font
and bold-face roman fonts respectivelly.

where we have introduced the shorthand notation

1Ui =
L,i
L

= L,i (4)

2Uij =
L,ij
L

= L,ij + L,iL,j (5)

3Uijk =
L,ijk
L

= L,ijk + L,ijL,k + cyc + L,iL,jL,k(6)

nU =
1

L

∂nL

∂θn
=

∂

∂θ
n−1U + n−1U1U (7)

Note that Equation 3 only holds when both the θ inside
the brackets and outside the brackets are the same. In
general, however, in Equation 2, the θ′ appearing in X
need not be at the same position in theory space as the
θ appearing in L(D;θ).

The first of the above equations, namely 〈L,i〉 = 0 has
a very clear physical interpretation. It is telling us, that
if one chooses a theoretical model specified by θ(T ), gen-
erates a set of observed data points D given that model,
calculates the first derivative of the log-likelihood at the
true model value L,i(D;θ(T )), and then averages this
quantity over all possible realizations of the data, then
the result will be zero. In fact, this must intuitively be
so: if one has access to many realizations of the data
from the same theory available, multiplying likelihoods
(or equivalently adding log-likelihoods) will result in a
Gaussian likelihood that will become increasingly tightly
centered on the true value. In the limit of the infinite
number of data realizations, it becomes a delta function
at the true value.

Of course, this is not very helpful, since if we knew
the true value, we would not need to measure it. So, let
us assume that the true value is at some nearby position
θ(T ) = θ + ∆θ. If we expand the likelihood around θ
(note that we are not expanding around the true model,
but around a chosen fiducial model), we find

eL(θ(T )) = eL(θ)

(
1 +

∞∑
n=1

1

n!
nU(θ)∆θn

)
. (8)

Note that the n-th term in the Taylor expansion is
a product of nU , which has n indices, with ∆θn =
∆θi∆θj . . .∆θl, which also has n indices.

Substituting the right side of Equation 8 into Equation
2 gives

〈mU(θ)〉θ(T ) =

∞∑
n=1

1

n!
mnW∆θn, (9)

where

mnW = 〈mUnU〉θ (10)

Note that the mnW object has m + n indices and is
only a function of θ, not D. We see that quantities nU
are special. They average to zero, if we are sitting on a
true model (

〈
nU(θ(T ))

〉
θ(T ) = 0 as in Equation 3 since

∆θ = 0 when θ = θT ). However, as the true model
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slips away, those averages analytically respond to the
difference between the true and the fiducial model (as
described by Equation 9).

The motivation for all this may be opaque at this point.
The important thing to recognize is that both mU(D;θ)
and mnW(θ) are things that we can compute, given data
and a choice of fiducial parameters θ, so estimators of θT ,
or equivalently ∆θ = θT − θ, can be constructed out of
them.

A. First-order estimator

Before proceeding, we note that

11Wij = 〈L,iL,j〉 = −〈L,ij〉 = Fij (11)

is the Fisher matrix (where we have used Equation 3 for
n = 2).

Our first-order estimator comes from inspecting Equa-
tion 9 for the case when ∆θ is sufficiently small that the
series can be truncated at the first order. We can write
down the ansatz

E1 = (11W)−1 1U = F−1
ij L,j . (12)

Plugging this solution back into Equation 9 and remem-
bering that mnW is not a function of D gives

〈E1〉θ(T ) = (11W)−1
〈

1U
〉
θ(T ) (13)

= ∆θ1 +
1

2

(
F−1

)
12W∆θ2 + . . . (14)

This estimator is thus unbiased to quadratic order in ∆θ.
Note that since θ is known (i.e. it is the assumed fiducial
model), we can simply add it to E1 to convert an esti-
mator of ∆θ to an estimator of θ(T ). The variance of the
estimator is given by

Var(E1) = F−1 + F−1F−1∆θ
〈

1U1U1U
〉

+ . . . , (15)

where the contraction of indices
goes as

[
F−1F−1∆θ

〈
1U1U1U

〉]
ij

=

F−1
ik F

−1
jl ∆θm

〈
1U1

kU
1
l Um

〉
. Thus, given the Cramer-Rao

bound, we have shown that this estimator is unbiased to
quadratic order in ∆θ and optimal to first order in ∆θ.

B. Higher-order estimators

To construct higher-order estimators, we need to use
higher order Us. A quantity of the form

Eo =

o∑
m=1

(mA)(mU), (16)

where mA is a m+ 1 index object (indices of the param-
eter derivatives, i.e., see Eq. 4, etc.), will have the mean
given by

〈Eo〉θ(T ) =

∞∑
n=1

1

n!

(
o∑

m=1

(mA)(mnW)

)
∆θn (17)

For a given order o, the weights A can be arranged so
that the pre-factor to ∆θ is unity and the prefactor to δθ2

and higher are zero up to order o. For a concrete example
see Section IV and Appendix B. One should note that
higher order estimators, in general, have higher variance
with respect to the first-order estimator, however, they
are less biased.

Finally, we note that while this construction uniquely
specifies one possible estimator unbiased to a given or-
der, it is clearly not unique, since one could imagine con-
structing estimators that are non-linear in U quantities
and which might, in general, perform better or worse
than this one. We leave investigation of these questions
to future work.

C. A note on iterations

Since the first-order estimator is accurate to ∆θ, one
might be tempted to simply iterate: start with a first-
order estimator, move by ∆θ, do another iteration there,
etc. Note, that such a process will in general take you
to the maximum likelihood point, since the first-order
estimator resembles a Newton-Raphson step.

It is known that maximum likelihood is not, in general,
an unbiased estimator (although it often happens to be,
e.g. for mean and variance of a Gaussian likelihood). We
provide a concrete example in Appendix A. So, why does
an iterative process not produce an unbiased estimate?
The subtlety lies in the fact that the above derivation
assumes that the fiducial θ was chosen without knowing
about the data. Any iterative process necessarily breaks
this assumption. Thus, to estimate the mean of an es-
timator after several iterations, one would need to aver-
age not only over possible realizations of the data, but
also over all possible “paths” in the theory space that a
certain iterative process might take. So, in general, one
should use a higher-order estimator to improve on the ac-
curacy of the first-order estimator, instead of iterating.

Of course, we expect that the bias due to iteration will
be small when the signal-to-noise is high, so that this will
not matter in practice in those cases.

III. OPTIMAL QUADRATIC ESTIMATOR

For completeness, we begin by applying the above for-
malism to a common inference problem. To construct an
optimal quadratic estimator [3–5], we start with the data
vector Di, with zero mean (〈D〉 = 0), whose covariance
can be modeled as

C =
〈
DDT

〉
= N + θiSi. (18)

Here θi are some parameters describing the two-point
function of the data, i.e. power spectrum or correlation
function bins, Si is the response of the covariance to a
change in the value of θi, and N is assumed to be a known
“noise” matrix.
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Ignoring constant terms, the log-likelihood can be writ-
ten as

L = −1

2
log det C− 1

2
DTC−1D. (19)

In our notation, we have

1Ui = −1

2
Tr
(
C−1Si

)
+

1

2
Tr
(
DTC−1SiC

−1D
)
. (20)

A brief calculation gives〈
1Ui
〉
θ(T ) =

1

2
Tr
(
C−1SiC

−1Sj
)

∆θj (21)

where we have used C(θT ) =
〈
DDT

〉
θ(T ) = N+θTi Si =

C(θ) + ∆θiSi, and hence〈
Tr
(
DTC(θ)−1SiC(θ)−1D

)〉
θ(T ) = (22)

Tr
(
C(θ)−1SiC(θ)−1(C(θ) + ∆θjSj)

)
. (23)

It follows that

11W = Fij =
1

2
Tr
(
C−1SiC

−1Sj
)

(24)

n1W = 0 for n > 1. (25)

Plugging these into Equation (12), we recover the stan-
dard optimal quadratic estimator

E1 =
1

2

[
F−1

]
ij

[
DTC−1SjC

−1D − bj
]
, (26)

where bi = Tr
(
C−1Si

)
. We have therefore recovered the

standard optimal quadratic estimator and at the same
time shown that it is unbiased at all orders. The fact that
n1W = 0 for n > 1 implies that this estimator is unbi-
ased at all orders. Additionally, it can be shown that this
estimator is unbiased regardless of the assumption of a
Gaussian likelihood by calculating the expectation value
of the above equation. However, this is not directly con-
nected to the framework here. (Again, we note that the
expectation value proving that the standard quadratic
estimator is unbiased assumes that the covariance ma-
trix that appears in it does not depend on the data, but
this assumption is invalidated by iteration.)

These beautiful properties are, of course, crucially de-
pendent on the theory covariance matrix being linear in
theory parameters in Equation (18). Fortunately, this is
the case in the standard for measurement of the power
spectrum and its linear cousins such as correlation func-
tion. If this is not the case, one can always Taylor expand
around fiducial model and the derivation is then the same
with N replaced with N+Cfid., but the estimator is then
only valid within the accuracy of this approximation.

While this result is not new, it is important to put
this into context. Traditionally, quadratic estimators are
often cast as a Newton-Raphson step towards higher like-
lihood (see e.g. [6]), but here one must remember that, if
the goal is simply function maximization, the true second

derivative may not give the best performance. Numeri-
cal work has shown that performing a Newton-Raphson
step with the true second derivative instead of the Fisher
matrix can be an order of magnitude slower in conver-
gence to the maximum (e.g., when starting power spec-
trum parameters are far below the true value). This is
because the true second derivative and the Fisher matrix
are increasingly different as we move away from the true
position in parameter space. Since the Fisher matrix es-
timate is unbiased, one might expect that anything that
deviates from the Fisher estimate must be suboptimal
with slower convergence (strictly speaking, being unbi-
ased does not guarantee faster convergence if the scatter
around the mean is larger but in practice we do not ex-
pect this to happen). We note however, that even though
an estimate is unbiased when starting with a model that
is a very poor match to the true model, the uncertain-
ties based on a Fisher matrix will nevertheless be grossly
misestimated.

IV. SHEAR ESTIMATION

To apply the formalism above to the problem of shear
estimation, we take as a starting point work in [1]. We
describe the likelihood for shear, L(g), through its deriva-
tives at zero shear as:

P = L(D|g = 0) (27)

Q = ∇gL(D|g)|g=0 (28)

R = ∇g∇gL(D|g)|g=0 (29)

S = ∇g∇g∇gL(D|g)|g=0 (30)

BA14 expand to second order, but we generalize to third.
Note that theory parameters here are the two compo-
nents of shear, and we will use g and θ interchangeably
below. Derivatives of log likelihood (at zero shear) are
thus given by

L,i =
Qi
P

(31)

L,ij =
Rij
P
− QiQj

P 2
(32)

L,ijk =
Sijk
P
−
(
RijQk
P 2

+ cyc

)
+ 2

QiQjQk
P 3

, (33)

and the U quantities are given simply by

1Ui =
Qi
P

(34)

2Uij =
Rij
P

(35)

3Uijk =
Sijk
P

. (36)

BA14 advocate calculating the above quantities for
each galaxy. If all galaxies have the same shear, the total
probability can be calculated by summing derivatives of
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FIG. 1: The i-th derivative of the likelihood with respect to g1 for the posterior distribution at zero shear, where i=0,1,2,3 for
the toy model described in the text. The x and y axis are the measured ellipticities for e1 and e2 respectively, and the color
bar saturates positively at red and negatively at blue.
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FIG. 2: The relative biases in the recovered g1 as a function
of the input g1, with input g2 held at zero. For the E1 and
E3 estimators, the error was calculated from the variance in
estimates, while for the EAB estimator, it was assumed to be
given by the inverse of the second derivative of the posterior.

the log likelihood. For a sufficient number of galaxies,
the likelihood collapses to a Gaussian and the shear can
be estimated as

EBA = −
(∑

L,ij
)−1 (∑

L,j
)

(37)

For a sufficiently large number of galaxies Ng, the sum
of second derivatives will approach

Ng∑
1

L,i → Ng 〈L,i〉θ(T ) (38)

Ng∑
1

L,ij → Ng 〈L,ij〉θ(T ) (39)

Summing the first and second derivatives of the log like-
lihood is akin to averaging over the true distribution.
Therefore, in the limit of an infinite number of galaxies,
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FIG. 3: The error of estimators relative to the Fisher matrix
prediction at zero shear. For the E1 and E3 estimators, the
error was calculated from the variance in estimates, while for
the EAB estimator, it was assumed to be given by the inverse
of the second derivative of the posterior.

the estimator will give

〈EBA〉θ(T ) = −
(
〈L,ij(θ)〉θ(T )

)−1 〈L,j〉θ(T ) (40)

Note that this is subtly different from our estimator,
which uses the Fisher matrix, Fij = −〈L,ij(θ)〉θ, which
is the mean of the second derivative of the log likelihood
assuming zero shear :

〈E1〉θ(T ) = −
(
〈L,ij(θ)〉θ

)−1 〈L,j〉θ(T ) (41)

A. Toy model

To test the above ideas, we use the same toy model
that was used in BA14. We draw a source ellipticity
from an isotropic unlensed distribution with probability
distribution given by

P (|ei|) ∝ (1− |ei|2)2 exp

(
−|e

i|2
2σ2

p

)
(42)
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for the magnitude of the ellipticity and a random ori-
entation. The effect of shear is most easily expressed if
we cast the intrinsic ellipticity and shear as complex vec-
tors ei = ei1 + iei2 and g = g1 + ig2. Then the sheared
ellipticity vector is given by

es =
ei − g

1− g∗ei . (43)

Finally, we add random Gaussian noise to obtain the ob-
served ellipticity eo:

eo = es + ε, (44)

where each component of ε is drawn from a truncated
Gaussian with variance σn ensuring that |eo| < 1 (in
practice random realizations of noise are added to es until
|eo| < 1 is satisfied). In this work we limit ourselves to
the example of σp = 0.3 and σn = 0.05.

B. Third-order estimator

It is clear that at least in the case of this particular
problem, symmetry ensures that the second order cor-
rection to the estimator vanishes if one expands around
zero shear. There are several ways to see this. First,
given that shear is a spin-2 quantity, the lowest order
scalar one can make is |g|2 and therefore, one expects
the lowest-order correction to an estimate of g to scale
as g|g2|, which is third order in g. Second, if one only
estimates g1, it is natural to expect that the correction
to g1 must be the same and of opposite sign to the cor-
rection to −g1 – estimation of shear must be symmetric
with respect to mirroring over the origin. Therefore, it
cannot receive a g2

1 correction, and the lowest order cor-
rection to the estimator must scale as g3

1 . Note that in
Equation 14, this means that 12W = 0.

Therefore, we construct a third-order estimator from
quantities 1U and 3U. Again, because of the symmetry
of the problem, we construct it assuming the problem is
one dimensional, i.e. we are attempting to recover the g1

component. In that case all W quantities are scalar.
Starting with the system of equations:

〈
1U
〉

= 11W∆θ +
13W

6
∆θ3 + . . . , (45)〈

3U
〉

= 31W∆θ +
33W

6
∆θ3 + . . . , (46)

it is not difficult to show that, ignoring higher order
terms,

33W
〈

1U
〉
−31 W

〈
3U
〉

11W33W −13 W31W
= ∆θ (47)

Hence, we can write an ansatz:

E3 =
33W1U−31 W3U

11W33W −13 W31W
(48)

Since W quantities do not depend on data, 〈E3〉 = ∆θ
and hence this is our third order estimator. For more
realistic cases, the rotational symmetry might be bro-
ken due to systematic and instrumental effects and for
completeness we show how to build a complete 3rd order
estimator in Appendix B.

C. Results for toy model

For this toy example, we can calculate the likelihood
and its derivatives simply by brute force Monte Carlo -
we can draw a large enough number of samples from the
parent distribution such that the gridded values of sam-
pled e become a good approximation for the probability
distribution. The derivatives are then calculated by fi-
nite difference methods from gridded likelihoods. Note
that this short-cut is unlikely to work in a more realistic
setting due to the higher dimensionality of the problem.

In Figure 1, we plot the i-th derivative of the likelihood
with respect to g1, that is quantities P , Q1, R11, S111,
showing how the posterior distribution of ellipticities re-
sponds to shear at each order.

In Figure 2, we show results for the three estimators
discussed in this text. As expected, the EBA and E1 es-
timators show a quadratic increase in bias as a function
of shear, which is mostly removed by the E3 estimator.
In this particular case, our E1 estimator seems to be
performing somewhat better than the original EBA esti-
mator, although it is not clear whether this will translate
to similar gains in more realistic scenarios. However, the
E3 estimator is designed to be more accurate and per-
forms with a 0.1% relative precision all the way to shears
of 0.2, at which point we are well out of the validity of the
small shear approximation, and flexion effects [7] become
important, which are not captured in this toy model.

In Figure 3, we show the error (square root of variance)
for the three estimators discussed here, normalized to
the Fisher matrix prediction at zero shear. As we can
see, both EBA and E1 converge to the Fisher matrix
prediction at zero shear, but E3 is marginally noisier.
The effect is small, sub 1%, but clearly detectable. For
higher shear, the E1 and E3 estimators begin to become
slightly less noisy than the zero-shear Fisher prediction.
Note that this does not violate the Cramer-Rao bound,
since the bound only holds if the true shear is zero.

Finally, we demonstrate explicitly that our estimator
can measure correlations. To that end, we draw pairs of
galaxies with shear ga and gb, which we randomly choose
to follow

〈
gag

T
a

〉
=
〈
gbg

T
b

〉
=

(
0.052 0

0 0.052

)
(49)

and

〈
gag

T
b

〉
=

(
0.00125 0.00075
0.00075 0.00125

)
. (50)
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These pairs of galaxies are modeled using Equations 42,
43, and 44 with σp = 0.3, σn = 0.05 to obtain observed
values and then with the E3 estimator to obtain an es-
timate. These estimates where then used to obtain the
correlations:

〈
g̃ag̃

T
b

〉
11

= 0.00125319 ± 2.8 × 10−6 and〈
g̃ag̃

T
b

〉
12

= 0.007552 ± 2.8 × 10−6, consistent with the
input values and sub-percent level accurate. Of course,
this exercise had to work, so it is really just a sanity
check.

V. CONCLUSIONS

In this paper, we have derived a general framework for
generating unbiased estimators. The framework is gen-
eral and can be used wherever we are measuring a quan-
tity which is perturbatively close to the assumed model.
We have shown that the inverse of Fisher matrix multi-
plied by the first derivative vector is a general formula
for a first order unbiased estimator. In special cases such
as an optimal quadratic estimator, the estimator is un-
biased at all orders. We have applied our framework to
the problem of estimating weak lensing shear and con-
structed a first and third-order estimator.

In the realm of the toy problem of BA14, our third-
order estimator is unbiased for all relevant shear mag-
nitudes with a negligible increase in the estimator vari-
ance compared to the Fisher prediction at zero shear. In
typical weak-lensing analyses, shears are small enough
that the first-order estimator may be sufficient. How-
ever, there are two cases where third order correction
might matter. First, when measuring the cosmic shear
power spectrum, an error term proportional to g3 will
“renormalize” to give a correction to the measured shear

power spectrum proportional to
〈
|g|2

〉
Pgg, where Pgg is

the true shear power spectrum. This is of the same or-
der of magnitude as the overall LSST error [8]. Second,
in regions of high-shear, such as those around clusters
of galaxies, the third-order estimator will be useful, sim-

ply because shear are large-enough that the third order
correction matters. The formalism presented here can
trivially be extended to the flexion measurement, and
it should correctly account for the correlation between
shear and flexion. We refrain from making more quan-
titative statements since it is not clear how realistic the
toy model is.

More importantly, we have constructed an estimator
which performs as well as the BA14 estimator, but also
returns shear estimates for individual galaxies, which
makes it usable in direct measurements of the n-point
function of the shear field.

We also note that to some extent the main problem
with shear measurements is not the underlying frame-
work, which is the focus of this paper, but the bias arising
from inadequate modeling of the properties of unlensed
galaxies, and it might turn out that these problems are
best solved using very phenomenological approaches as
those discussed in e.g. [9, 10].

Putting this estimator into practice might be more
complicated. In particular, in its current incarnation,
it gives the same weight to all galaxies, while we know
that this will not hold in reality. The correct way to
solve this problem is to separate galaxies into sub-classes
in a way that does not correlate (or negligibly correlates)
with the underlying shear. A separate estimator can be
constructed for each class, and the Fisher matrix is the
appropriate weight. We leave testing of this framework
in more realistic settings for the future work.
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Appendix A: Example of bias of ML estimator

Here we give a concrete example of a likelihood for
which the maximum likelihood estimator is biased. In
general, this happens with asymmetric likelihoods. Con-
sider:

L = xλ2e−λx, (A1)



8

where x > 0 is the “data” and λ > 0 is the theory param-
eter. Given exactly one measurement x, the maximum
likelihood estimator (i.e. the estimator where one would
end up upon iterations of Newton-Raphson steps) is

EML =
2

x
, (A2)

whose expectation value is 2λ, i.e, wrong by a factor of
two. Expanding around λ = l, our first order estimator
is given by

E1 =
l(4− lx)

2
(A3)

which is unbiased up to quadratic order in λ − l. Inter-
estingly,

E =
1

x
(A4)

is unbiased at all orders and is neither ML nor our per-
turbative estimator.

Appendix B: General 3rd order estimator

For completeness we demonstrate how to build a full
third order estimator. This procedure can be trivially

generalized to any order. We write the Equation (9) to
up to third order in an “unrolled” matrix form

〈U〉 = Wg, (B1)

where we have, assuming that there are two theory pa-
rameters that we want to recover (g1 and g2),

U =



〈
1U1

〉〈
1U2

〉〈
2U11

〉〈
2U12

〉〈
2U22

〉〈
3U111

〉〈
3U112

〉〈
3U122

〉〈
3U222

〉


(B2)

and

W =



11W1|1
11W1|2

12W1|11
12W1|12

12W1|22
13W1|111

13W1|112
13W1|122

13W1|222
11W2|1

11W2|2
12W2|11

12W2|12
12W2|22

13W2|111
13W2|112

13W2|122
13W2|222

21W11|1
21W11|2

22W11|11
22W11|12

22W11|22
23W11|111

23W11|112
23W11|122

23W11|222
21W12|1

21W12|2
22W12|11

22W12|12
22W12|22

23W12|111
23W12|112

23W12|122
23W12|222

21W22|1
21W22|2

22W22|11
22W22|12

22W22|22
23W22|111

23W22|112
23W22|122

23W22|222
31W111|1

31W111|2
32W111|11

32W111|12
32W111|22

33W111|111
33W111|112

33W111|122
33W111|222

31W112|1
31W112|2

32W112|11
32W112|12

32W112|22
33W112|111

33W112|112
33W112|122

33W112|222
31W122|1

31W122|2
32W122|11

32W122|12
32W122|22

33W122|111
33W122|112

33W122|122
33W122|222

31W222|1
31W222|2

32W222|11
32W222|12

32W222|22
33W222|111

33W222|112
33W222|122

33W222|222


(B3)

and

g =



g1

g2

g1g1

2× g1g2

g2g2

g1g1g1

3× g1g1g2

3× g1g2g2

g2g2g2


. (B4)

In expression for W , we have used a pipe symbol to sep-
arate indices corresponding to the left and right sides of
the equation. Solving this matrix equation for the vector
g. We have

g = W−1 〈U〉 (B5)

We can now write an ansatz for the estimator:

E = W−1U (B6)

Since W does not depend on data, it trivially follows that

〈E〉 = W−1 〈U〉 = g (B7)

Hence, the first two components of E, namely E1 and E2

are unbiased estimators for the first two components of g,
that is g1 and g2. In other words, the linear algebra has
given us the particular linear combination of U quantities
which average to g1 and g2 without any contribution from
terms quadratic and cubic in g.
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