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Synopsis Methods for numerically evaluating cylindrical absorption corrections which fully utilize 

radial symmetry to simplify distance calculations are presented.  An analysis of the resulting data 

suggests that the best quality transmission diffraction data will generally be obtained when strongly 

absorbing samples are diluted by a factor of F = (4/3)µR in a maximal radius capillary. 

Abstract The problem of numerically evaluating absorption correction factors for cylindrical 

samples has been revisited using a treatment that fully takes advantage of the sample symmetry.  It is 

shown that the path lengths for all points within the sample at all possible diffraction angles can be 

trivially determined once the angle-dependent distance distribution for a single line of points is 

calculated.  This provides advantages in both computational efficiency and in gaining an intuitive 

understanding of the effects of absorption on diffraction data.  A matrix of absorption coefficients 

calculated for µR products between 0 and 20 for diffraction angles θD of 0° to 90° were used to 

examine the influence of (1) capillary diameter and of (2) sample density on the overall scattered 

intensity as a function of diffraction angle, where µ is the linear absorption coefficient for the sample 

and R is the capillary radius.  Based on this analysis, the optimal sample loading for a capillary 

experiment to maximize diffraction at angles of 0 – 50° is in general expected to be achieved when 

the maximum radius capillary compatible with the beam is used, and when the sample density is 

adjusted to be 3/(4µR) of its original density. 

1. Introduction

Powder diffraction is the primary analytical experimental tool for the study of crystalline 

materials.  While the major role of powder diffraction has traditionally been phase identification 

through pattern matching, the use of powder diffraction data for structure refinement by Rietveld 

methods and even the use of powder diffraction data for ab initio structure solution has become 

widespread in present times.  This is due to both the advent of modern instrumentation (allowing the 

collection of very high quality diffraction data with narrow peak widths and good counting statistics 
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over an extended range of d-spacings) and the development of improved computing tools (hardware, 

software, and methods) for data analysis.  In all cases, the determination of crystallographic structures 

from diffraction data requires accurate knowledge about the amplitude of reflection structure factors, 

which are inferred from experimentally measured diffraction peak intensities.   

Sample absorption has the potential to strongly modify observed diffraction peak intensities.  

If this absorption is not treated properly, it will result in incorrectly determined displacement 

parameters (Hewat, 1979), and potentially also give rise to incorrect site occupancies or phase 

fractions since these parameters are often closely correlated with displacement parameters.  Since the 

determination of these crystallographic parameters is typically the central goal of powder diffraction 

structural studies, it is very important to appropriately correct for absorption effects in powder 

diffraction experiments.  In the flat-plate Bragg-Bretano geometry that is routinely used in laboratory 

powder diffraction studies, absorption generally occurs in an angle-independent manner and can be 

safely neglected in most cases.  However, many of the advanced diffraction beamlines at national 

facilities operate almost exclusively in a Debye-Scherer geometry, with samples typically loaded into 

a cylindrical capillary or can with a diameter ranging from 0.1 – 10 mm, depending on the nature of 

the synchrotron or neutron beamline. For example, the 11-BM beamline at the Advanced Photon 

Source synchrotron utilizes a robotic autoloader for samples mounted inside 0.8 mm diameter plastic 

capillaries, allowing data to be collected on hundreds of samples yearly (Wang et al., 2008).  

Similarly, the POWGEN beamline (Huq et al., 2011) at the Spallation Neutron Source has a 24-

sample changer which allows for a large throughput of samples mounted in 6 mm or 8 mm diameter 

vanadium cans.  Since data on these and comparable beamlines are collected in transmission mode, 

absorption effects can only rarely be safely neglected. 

A cylindrical absorption correction is the appropriate method for treating sample absorption 

effects in the Debye-Scherer data collection geometry.  A diffraction sample is assumed to be 

homogenous, and to therefore absorb X-rays according to the functional form of Equation 1. 

𝑇𝑇 = 𝐼𝐼 𝐼𝐼0⁄ = 𝑒𝑒−𝜇𝜇∙𝐿𝐿  (1) 

The diffracted beam intensity (I) is attenuated relative to the incident beam intensity (I0) in an 

exponential manner which is proportional to the total path length travelled through the sample (L) 

with a proportionally constant of µ that is the linear absorption coefficient and which therefore has 

units of inverse distance.  The ratio of I / I0 is a transmission factor that can adopt values between zero 

and one and is here denoted by the variable T, though it should be noted in some classic work 

transmission has instead been denoted by the variable A representing an attenuation factor (Dwiggins, 

1972, 1975).  Similarly, an absorption factor A* = 1/T = I0 / I has also been classically used, and this 

variable has a value of one in the absence of absorption, and takes larger values when absorption is 

high.  Although the exponential expression for absorption is simple, the overall absorption from a 
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sample is generally complex to calculate since the different volume (V) elements within the sample 

are not constrained to have the same values of L.  For each individual volume element, it is necessary 

to calculate the path lengths traversed by the incident beam (L1) and diffracted beam (L2), with L = 

L1+ L2.  The absorption from the entire sample is thus represented by the volume integral given in 

Equation 2, where the parameters that depend on the diffraction angle (θD) are indicated with a 

subscript θ. This formula holds for any three-dimensional object, and is also relevant to absorption 

correction calculations for single crystal diffraction experiments. 

𝐴𝐴𝜃𝜃 = (1/𝑉𝑉)∫ 𝑒𝑒−𝜇𝜇∙𝐿𝐿𝜃𝜃𝑉𝑉 𝑑𝑑𝑉𝑉 (2) 

In a conventional powder diffraction experiment where the scattering is measured only in a 

single plane of diffraction, the problem is reduced to a two-dimensional (2D) rather than a three-

dimensional (3D) one due to constant circular cross-section of the capillary.  The volume integral can 

therefore be simplified to the area integral given in Equation 3, where the variable A here denotes 

area.  However, the path length to any area element will still depend on the angle of diffraction (θD), 

and must be separately calculated for each diffraction angle over which data are collected (i.e., over a 

2θD range of 5 – 140°).  Equation 3 is universally applicable to the problem of calculating cylindrical 

absorption coefficients when all scattering is in a single plane of diffraction. 

𝑇𝑇𝜃𝜃 = (1/𝐴𝐴)∫ 𝑒𝑒−𝜇𝜇∙𝐿𝐿𝜃𝜃𝐴𝐴 𝑑𝑑𝐴𝐴 (3) 

Analytical expressions for cylindrical absorption have previously been derived.  However, 

they suffer from the two limitations of (1) only describing two specific cases, namely diffraction 

angles θ of 0° or 90°, and (2) having a sufficiently complex functional form involving modified 

Bessel and Struve functions such that numerical evaluation of their values is still required.  Therefore, 

numerical methods provide the only practical method for obtaining precise values for Aθ over a wide 

range of diffraction angles.  Accurate tabulated transmission factors for selected diffraction angles and 

absorption coefficients have been available since the 1970s (Dwiggins, 1972, 1975, Hewat, 1979, 

Rouse et al., 1970), and more modern investigations have explored more complex geometries such as 

annular samples which may require the use of more than one adsorption coefficient (Bowden & Ryan, 

2010, Schmitt & Ouladdiaf, 1998), as in the case of an adsorbing sample in an adsorbing vanadium 

can.  However, the need to separately calculate Aθ by numerically integrating over many points across 

a fine 2D grid for each diffraction angle of interest and the need to recalculate Aθ if the absorption 

coefficient µ is varied together make the direct calculation of absorption factors too slow too 

incorporate into modern software for Rietveld refinement.  Software packages instead typically make 

use of simpler approximate functional forms such as that of Sabine (Sabine et al., 1998) or Lobanov 

and alte da Veiga (Lobanov & alte da Veiga, 1998) in order to simply approximate adsorption effects. 
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In the present work, the numerical calculation of cylindrical absorption corrections has been 

revisited with methods that fully take advantage of the radial symmetry of this problem.  These 

methods allow an intuitive understanding of the influence of sample geometry on absorption to be 

obtained since all the information needed to calculate absorption coefficients can be obtained merely 

using a 1-dimensional line of points within a unit circle.  This method leads to a concise and efficient 

algorithm for calculating overall sample absorption coefficients. Furthermore, absorption coefficients 

obtained in this manner are used to calculate optimal sample loadings for maximizing the diffraction 

intensity at selected diffraction angles. The influence of sample density on diffraction intensity is also 

quantitatively analysed in the context of dilution, and a widely applicable method for judging the 

optimal capillary sample loading procedure is proposed. 

2. Methods 

2.1. Distance calculations using radial coordinates 

In the present calculations of cylindrical absorption coefficients, the numerical area 

integration of Eqn. 3 has been carried out in a grid defined by radial coordinates (r,φ) rather than 

Cartesian coordinates (x,y), as illustrated in Figure 1.  In all cases, it is necessary to calculate the total 

distance (L) that X-rays will travel through the sample when they are diffracted from each area 

element with L = L1 +  L2, where L1 is the distance traversed by the incident beam and L2 is that 

traversed by the diffracted beam.  The two distances L1 and L2 vary from point to point across these 

grids and for any given point will vary as the diffraction angle θD is changed.  This makes the 

calculation of absorption coefficients computationally intensive.   

 

 

Figure 1 Schematic of Cartesian and radial grids for area integration over a circular cross-section. 

Some combinations of incident (L1, green) and diffracted (L2, blue) paths lengths (all vectors drawn 

from grid points to circumference) are indicated for diffraction angles of 2θ = 90°. 
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All possible distances that may occur for any arbitrary grid point P at any diffraction angle 

can be deduced from the behaviour of the points (A) along a single line between the origin (O) and 

the edge (E) of a unit circle, as schematically indicated in Figure 2.  For simplicity, these points are 

taken to lie along the positive x-axis of a Cartesian plane whose origin coincides with that of the unit 

circle, and thus have Cartesian coordinates of (a,0) where 0 ≤ a ≤ 1.  All points along this line also 

have identical radial coordinates of (a,0), since this line corresponds to a radial angle of φ = 0.  For 

each point A along this line, the distance that any arbitrary ray with an angle ω (defined relative to the 

positive x-axis) will have to travel to intersect the circumference of the circle at a point X along the 

line AX can be directly calculated using Equation 4.  

𝑑𝑑(𝑎𝑎,𝜔𝜔) = −𝑎𝑎 cos𝜔𝜔 + √𝑎𝑎2 cos2 𝜔𝜔 + 1 − 𝑎𝑎2 (4) 

This is the positive root of d obtained using the quadratic formula after substituting the relationships x 

= a + d cos 𝜔𝜔 and y = d sin 𝜔𝜔 into the equation of a unit circle (x2 + y2 = 1), and simplifying the result.  

 
 

Figure 2 All distance information needed for the numerical calculation of cylindrical absorption 

corrections can be obtained from a single line of points OE on a unit circle. The distance from each 

point A on this line to the circle circumference (point X) in each direction ω must be calculated.  The 

two distances L1 = PX1 traversed by an incoming X-ray (angle ω1 to positive x-axis) and L2 = PX2 

traversed by an outgoing X-ray (angle ω2) for any arbitrary point P with radial coordinates (a, φ) 

within the circle can always be mapped onto the distance from a point A on the specific line OE with 

radial coordinates (a,0) in the directions of (ω1 – φ) and (ω2 - φ), respectively.  Note that the angles ω1 

and ω2 are calculated based on a common convention (vector from grid point to circumference), 

making the vector associated with L1 aligned opposite to the direction that the incident X-rays travel. 
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It is computationally convenient to calculate the distance from point A to the circle 

circumference for a 1D matrix of angles (i.e., ω = 0, 1, …, 359).  Both the distance an incoming X-ray 

(with angle ω1) will have to travel to reach point A as well as the distance that the outgoing X-ray 

(with angle ω2) will have to travel from A to leave the sample simply can be looked up from this 

matrix of distances, d(a,ω), giving the two results of L1 = d(a,ω1) and L2 = d(a,ω2).  Furthermore, any 

arbitrary point P within the unit circle with radial coordinates of (a,φ) can be mapped back onto a 

point A on this line with radial coordinates of (a, 0) through rotation by the angle –φ.  Thus it is 

generally true that the distance from any arbitrary point P to the circle circumference in directions of 

ω1 and ω2 is exactly equal to the distance from point A to the circle circumference in directions of (ω1 

– φ) and (ω2 – φ), respectively.  This can be written in the form of a mathematical equality between 

two points with equal radial components of their coordinates (r = a). 

dω(a,φ) = d(ω-φ)(a,0) (5) 

Here, the general expression dω(r,φ)  denotes the distance  between a point with radial coordinates of 

(r,φ) and the circumference of the unit circle along a ray which makes an angle ω to the positive x-

axis.  A graphical illustration of this equality is provided in Figure 2.  The 2D matrix (ω x a) of the 

distance distribution dω(a,0) for all points on the line OE contains all distance information necessary 

to calculate transmission factors by area integration over the entire circular cross-section not just for 

one value of the diffraction angle θ but for any value of θ, an advantage will be discussed more later. 

The use of a dimensionless unit circle to describe the geometry of this problem simplifies the 

derivation, and can be considered to describe the specific case where µR = 1, with the capillary radius 

R being equal to half of its diameter.  It is computationally trivial to linearly rescale distances obtained 

in this manner when calculations for other values of µR are needed, though the assignment of 

distances will continue to be described in terms of the unit circle throughout this work in order to 

provide an intuitive understanding of the underlying mathematics.  A polar plot showing the angle-

dependence of the distance to the circumference of the unit circle for different radial coordinates of a 

along the line OE is given in Figure 3 together with a conventional Cartesian plot of the same 

distance distributions.  The maximum distance that an X-ray can traverse to reach a point A is equal to 

(1 + a) in these dimensionless units.  For the point at the origin of the circle (O, red line), the distance 

traversed will be 1 regardless of the angle ω along which the X-ray is travelling.  For a point at the 

edge of the unit circle (E, purple line), an incident X-ray can travel up to a length of 2 (for ω = 0°), 

and the diffracted X-ray can also travel up to a length of 2 (for ω = 180°), though for half of all 

possible angles (0° ≤ ω ≤ 90°; 270° ≤ ω ≤ 360°) the distance from this edge point E to the circle 

circumference will take the opposite extreme value of zero.  
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Figure 3 Polar and Cartesian plots showing the distance d(a,ω) from a point with radial coordinates 

(a,0) to the unit circle circumference in all different directions ω for specific values of a. This distance 

d always falls in the range of 0 – 2, but has a much stronger angle dependence for larger values of a. 

 

2.2. Symmetry in incident/diffracted X-ray path lengths 

While the calculation of distances (d) is first done in a general manner, the calculation of 

absorbances requires knowledge of the separate path lengths traversed by the incident (L1) and 

diffracted beams (L2) to each point in the radial grid illustrated in Figure 1.  This calculation can be 

simplified through the recognition that the distribution of path lengths (L1) traversed by incident X-

rays with one common angle ω1 to the ring of grid points at a radius of a from the center of the unit 

circle with a range of coordinates of (a, 0 ≤ φ < 360°) is exactly identical to the distribution of 

distances for the single point with coordinates of (a,0) over a range of angles of 0 ≤ ω < 360° that is 

plotted in Figure 3, and which follows the relationship previously given in Equation 5. Furthermore, 

the path lengths (L2) traversed by outgoing X-rays at the specific angle ω2 will have exactly the same 

orientation-dependent distance distribution as the incident path lengths (L1) but with a phase shift of 

|ω2 – ω1| (value must be in the range of 0 to 180°). The conventional diffraction angles θD and 2θD can 

be related to this phase shift through Equation 6. 

|ω2 – ω1| = 180° - 2θD (6) 

This is graphically illustrated for the specific case of a points near the edge of the capillary (a = 0.90) 

in Figure 4.  The path lengths of the incident beam (red line) and diffracted beam (dashed blue lines) 

are completely out of phase (shifted by 180°) when 2θD = 0°, but become more and more in phase as 

the diffraction angle increases to 2θD = 180°, an angle for which the distributions must be perfectly in 

phase since the incident and diffracted X-rays follow identical paths through the sample.  This method 
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for calculating the distances L1 and L2 provides a two-fold acceleration relative to the equivalent 

calculations for a Cartesian grid as it explicitly makes use of the equivalence of their distance 

distributions.  The numerical implementation is carried out by creating a 2D (ω x a) matrix with 

distances dω(a,0)  calculated as a function of radial coordinate (0 ≤ a < 1) and ω angle (0 ≤ ω < 360°). 

 

Figure 4 Left: Individual path lengths (L1 and L2) from each point in the ring (0.90, φ) to the 

circumference of the unit circle in the incident beam (solid red) and diffracted beam (dashed blue) 

directions, which are specified by angles of ω1 and ω2, respectively. The phase shift between these 

two distance distributions is given by |ω2 – ω1| = 180 – 2θD, where θD is the conventional diffraction 

angle. Center: The total distance L = L1 + L2 travelled by X-rays scattered from each point (0.90, φ) is 

shown in green, and is limited to values of 0 ≤ d ≤ 4.  Right: Distance distributions for additional rings 

with radial coordinates of (a,φ) with 0 ≤ a ≤ 1 at the same diffraction angles.  

Calculation of the overall transmission factor Tθ requires knowledge of the total path length 

(L = L1 + L2) traversed by X-rays scattered from each grid element of the cylindrical cross-section.  

This distance (green line, Figure 4 center) is simply obtained by summing the phase-shifted incident 

(L1, red) and diffracted beam (L2, blue) distance distributions for each ring of radial distributions, 

where the phase-shift is determined by the diffraction angle, θD, as specified in Eqn. 6.  For the 

example case of a = 0.90, the total path length duplicates the single-peaked distribution of the X-ray 

beams when 2θD = 180°, as an identical path through the sample is traversed by the incident and 

diffracted X-rays.  There is still a singly peaked distribution for medium angles diffraction such as 

2θD = 90°, which further evolves to a doubly-peaked distribution for low angles such as 2θD = 0°.  

Condensed plots showing the angular distribution of distances at different radial coordinates (a = 0, 
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0.1, … 1) for the same diffraction angles of 0°, 90°, and 180° are also provided in Figure 4 (right).  

The range of possible total distances is limited to values of 0 ≤ d ≤ 4 for a unit circle.  As expected, 

the distance distribution at the circle center (a = 0) is independent of angle, while a strong angle 

dependence is found near the edge (a ~ 1). When these unit circle distances are linearly rescaled by 

multiplying by µR (the product of the linear absorption coefficient and the capillary radius), the total 

sample transmission factor Tθ can be simply calculated using Equation 3.  

While the present method provides minor advantages in the calculation of the distance 

distributions for diffraction at a single angle, it presents a major advantage when calculating 

transmission factors over multiple angles since every different diffraction angle evaluated can utilize 

the same distance distribution calculated for a generic unit circle.  The only diffraction-angle 

dependent parameter that needs to be changed for different diffraction angles is the angular offset (ω2 

– ω1) between L1 and L2, and thus for each different angle calculated the only additional work will 

involve a new summation of L1 and L2 and the re-evaluation of the area integral in Equation 3 using 

the grid of distances obtained in this manner.  This is illustrated schematically in Figure 5, where the 

distance distributions for the ring of points at a = 0.90 were obtained for a variety of diffraction angles 

θD from 0° to 180° without recalculating the distance distributions of L1 and L2 used for the first angle 

chosen.  The number of distance calculations need to model a diffraction pattern over an A x B grid 

for C different diffraction angles and D different values of the absorption coefficient is generically 

2ABCD, where the factor of 2 indicates the separate calculations need for the incident (L1) and 

diffracted (L2) beam paths.  In the present method, the number of distance calculations is reduced to 

AB, thus reducing the problem by two dimensions if a range of µR values are being investigated, by 

one dimension if transmission factors are desired for a single µR value (D = 1), and with no reduction 

in dimensionality if the transmission factor calculation is only for a single diffraction angle and a 

single µR value (C = 1 and D = 1).  Although the calculation of distances can be simplified using the 

present methods, it is noted that the evaluation of the exponential terms cannot be simplified and must 

still be done over the full dimensionality of the system.  The computer code for carrying out these 

calculations was written as a macro for the Igor Pro (WaveMetrics) software, and is provided in the 

Supporting Information.  Even without having access to the computational advantages of using a 

formal compiler and a dedicated runtime environment, calculation of absorption coefficients to high 

precision could be done at about twenty per second for each combination of µR and diffraction angle 

using code that was optimized for simplicity rather than speed. 
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Figure 5 Distribution of total distances L = L1 + L2 travelled by scattered X-rays from all points with 

radial coordinates (a,φ) for many different diffraction angles θD can be obtained after only once 

carrying out the calculation of the distance distribution dω(a,0), as was shown in Figures 3 and 4.  This 

same distribution is the repeatedly utilized to calculate L for different diffraction angles by applying 

variable phase shifts (equal to 2θD) to dω(a,0) before summing the distances in this distribution 

associated with L1 [dω(a,0)] and L2 [dω+2θ(a,0)]. The specific case of a = 0.90 is shown in this figure. 

3. Results and Discussion 

3.1. Transmission factors 

 The accuracy of the present algorithm was first verified by comparing calculated values of the 

transmission factor, T, to those calculated analytically by Dwiggins at angles of 2θD = 0° and 180°, as 

shown in Table 1.  In can be seen that the beam attenuation for data collected in a reflection condition 

(0°) is always less than for data collected in the straight-through transmission condition (180°), and 

that this difference becomes more severe as µR increases. Grid dimensions of about 400 x 400 were 

typically sufficient to achieve agreement of 0.1% with the analytical attenuation factors for µR values 

of 5 or less.  The purpose of applying an absorption correction to diffraction data is most typically to 

correct for the relative changes in peak intensity due to the differential absorption for peaks measured 

at different diffraction angles.  A practical goal might be to numerically calculate the ratio between Tθ 

at 0° and 90° with 1% accuracy, as the packed density of a powder sample is expected to fluctuate by 

this amount or more in a typical capillary or can.  This level of accuracy in the T0/T90 ratio can 

typically be achieved with reduced grid dimensions of 50 x 50 over the same range of µR.  The 

graphical and numerical results in this work were calculated using a 360 x 360 radial grid unless 

otherwise specified.  Complete results for the calculation of transmission factors are provided in a text 
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data file in the Supporting Information for values of 0 ≤ µR ≤ 2 (increments of 0.01) and for  0 ≤ µR ≤ 

20 (increments of 0.1) over angles of 0° ≤ θD ≤ 90° (steps of 5°). 

Table 1 Values of Aθ* = 1/Tθ.  

 

µR  

Analytical 

θD = 0°  

Present  

θD = 0° 

Analytical  

θD = 90° 

Present  

θD = 90° 

0 1 1 1 1 

0.5 2.300 2.299 2.050 2.049 

1.0 5.091 5.089 3.389 3.387 

1.5 10.75 10.74 4.863 4.859 

2.0 21.44 21.42 6.389 6.383 

2.5 40.10 40.07 7.936 7.928 

3.0 70.12 70.07 9.492 9.482 

5.0 363.0 363.4 15.75 15.73  

10  3,162  31.41 

20  29,890  62.90 

Analytical results are values from Dwiggins, 1972. 

 

The transmission factors, Tθ, calculated for some selected values of µR between 0 and 20 are 

plotted on a linear scale in Figure 6, and these are shown together with the corresponding attenuation 

factors Aθ* which are shown on a logarithmic scale. It can be seen that both the magnitude and the 

angle dependence of the overall sample absorbance increases with increasing µR. The sample µR 

must be below ~1.5 in order to for the incident beam intensity to not be reduced by more than 10-fold 

at low angles, and below ~3.5 to avoid a 100-fold reduction.  Since peak/noise ratios are typically less 

than 100 in most diffractometers, this degree of attenuation due to absorption can have a strongly 

deleterious effect on the quality of measured diffraction data.  However, the attenuation factor must 

not be considered in isolation when designing the optimum sample configuration for a capillary 

diffraction experiment, as will be discussed in more detail later. 
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Figure 6 (a) Angle-dependence of transmission factors (T) for capillaries with different values of 

µR. (b) Angle-dependence of attenuation factor A* = 1/T for capillaries with different values of µR 

plotted on a logarithmic scale, allowing the responses of highly absorbing samples to be resolved.  

In addition to examining the absolute transmission factors, it is also important to consider the 

relative transmission factors as it is the angle-dependence of the absorption that causes the well-

known problems with the determination of displacement parameters during structural refinements.  At 

higher diffraction angles, the displacement of atoms from their average positions results in a larger 

reduction in the coherent scattering than for lower angles, causing the intensity of high angle peaks to 

be on average reduced relative to the low angle peaks.  Absorption effects have the opposite angular 

dependence, preferentially suppressing the intensity of low angle peaks.  This is perhaps easiest to see 

when the transmission factors for a given value of µR are normalized to their maximum value (Figure 

7), which occurs at θD = 90°.  This intensity at low angles is reduced relative to that at θD = 90° by 

about 10% for µR = 0.5, about 50% for µR = 1.5, and more than 90% for µR = 5.   

(a) (b)  

 

Figure 7 Normalized transmission factors (relative to T90) for different µR values plotted (a) as a 

function of angle and (b) as a function of sin2θD = λ2/d2, highlighting their nearly linear dependence of 

T/T90 on sin2θD (behaviour also exhibited by displacement parameters, Eqn. 7). 
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When structural refinements neglect to correct for absorption effects, the refined values of 

displacement parameters will be reduced relative to their true values, and will even refine to aphysical 

negative values when very strong absorption effects are present.  Isotropic displacement parameters 

(B) depend on the diffraction angle (θD) and radiation wavelength (λ) according to Equation 7. 

𝑓𝑓 = 𝑓𝑓0𝑒𝑒−𝐵𝐵sin
2 𝜃𝜃𝐷𝐷 λ2⁄  (7) 

It has been previously noted that neglecting to correct for modest absorption effects will lead to nearly 

linear offsets in the values of displacement parameters obtained from the refinement of powder 

diffraction data (Hewat, 1979).   This is reflected in the nearly linear behaviour observed when 

normalized transmission factors are plotted against sin2θD (Figure 7).  Such behaviour also justifies 

the fitting of angular dependence of transmission factors to an N term expansion of 𝑇𝑇𝜃𝜃 =

∑ 𝐿𝐿𝑖𝑖𝑁𝑁
𝑖𝑖=0 sin2𝑖𝑖 𝜃𝜃𝐷𝐷, as has been previously proposed (Dwiggins, 1975).  When this was attempted for the 

present data, it was observed that a single term fit works well for values of µR < 1, three terms work 

well up to µR < 5, and more terms are needed to reasonably model the angle dependence of T for 

larger values of µR.  It is generally the most challenging to fit this angular dependence at the highest 

and lowest angles, though in practice these regions are the least likely to have peaks of interest in 

most diffraction experiments.  In the absence of severe absorption effects,  it is very reasonable to 

model transmission factors as having a linear dependence on sin2θD, or equivalently on 1/d2 when the 

Bragg’s law relationship between d-spacing and angle is considered. 

3.2. Optimum capillary radius 

3.2.1. Radius dependence 

Using the transmission factors that have been numerically calculated, the optimum capillary 

radius for a given experiment can be determined. As the capillary radius R is increased, the 

transmission factor T will always decrease, but the volume of the sample will also increase 

proportionally to the sample cross-sectional area of πR2 so long as the sample can fully fit within the 

beam.  The total diffracted beam intensity will therefore scale as R2T, though it should be noted that T 

will depend on both the µR product and the diffraction angle, θD.  It is chosen to denote these 

dependences as Tθ(µR) in the present treatment, where both the subscript and the parenthesis indicate 

variables on which the function T depends.  The relationship for the total diffracted beam intensity, I, 

can therefore be written as follows: 

I ∝  R2 Tθ(µR) =  (1 / µ2) (µR)2 Tθ(µR)  (8) 

µ2I ∝ (µR)2 Tθ(µR)    (9) 
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A plot of the function µ2I for different values of θD is given in Figure 8, with this function arbitrarily 

multiplied by π to give convenient values since it was noted that T90(µR) = 1/(πµR) for large values of 

µR.  This presumably reflects a simplification of the 2D cylindrical absorbance calculation to a 

unidirectional problem for the special case of 2θD = 180° in which the cylindrical sample behaves like 

a thin plate (where A* scales as 1/2µ) or very thin annulus (i.e. curved plate) due to the limited 

penetration of radiation when µR is large, though the author is not aware of an existing geometrical 

proof of this proposed relationship.  It therefore follows that the diffracted intensity will increase 

linearly with R for θD = 90°.  A larger capillary radius is always desirable for maximizing the intensity 

of diffraction peaks at θD = 90°, a trend which persists for angles as low as θD ~ 25°.  This is 

particularly relevant for experiments which aim to maximize the scattering of peaks with a low d-

spacing (which typically occur at high angles) and thereby the total information content for structural 

refinement, in analogy to the use of variable counting times to enable longer collection times at higher 

angles (Madsen & Hill, 1994).  At angles below θD ~ 25°, a maximum in the diffraction intensity will 

occur for µR ~ 1.4 as has been noted previously (Schmitt & Ouladdiaf, 1998), and the drop off in 

intensity beyond this maximum is more rapid for lower diffraction angles.  For the limiting case of θD 

= 0°, intensities within ~80% of the peak value will be obtained for 0.8 < µR < 2.2. 

 

Figure 8 Dependence of relative diffraction peak intensity on µ and R for different diffraction 

angles, θD, where µ2I = (µR)2Tθ(µR).  For a constant value of µ, the net intensity may decrease for 

larger values of µR when θD < 25°, but will always increase with increasing R for higher diffraction 

angles.  An expanded view of the behaviour at low values of µR is provided in Figure S1.  

 

The results of the present analysis substantially differ from the simpler conventional model of 

assuming that the absorption of a single point at the center of the capillary is representative of the 

entire sample (leading to T = e-2µR and I ∝ R2 e-2µR).  This single-point approximation completely 

misses the strong angular dependence of the diffraction intensity caused by absorption effects and 

predicts a significantly different intensity maximum at µR = 1, as is shown in Fig. S1.  While the 
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present treatment allows the dependence of diffracted beam intensity on µR to be predicted in a very 

universal manner which depends only on the product of µ and R, it should be noted that the prefactor 

of the vertical axis contains a factor of µ2 which will depends on µ alone and which will clearly 

impact the quality of experimental data.  For two samples with µR = 1, a sample with µ = 10 and R = 

0.1 will give diffraction peaks that are 25 times weaker than those for a sample with µ = 2 and R = 

0.5, assuming all else is equal.  This simple calculation highlights the important conclusion that 

knowledge of the µR product alone is not enough for making good predictions about the optimal 

sample loading for diffraction experiments.   

It is emphasized that the present results apply for the ideal diffraction geometry only, and 

neglect potential experimental issues such as an inhomogeneous beam intensity distributions, 

inhomogeneous sample packing, and absorption by the cylindrical capillary or can.  Furthermore, the 

best data will be collected when the signal/noise ratio is maximized, and the present treatment 

implicitly assumes that the background noise will scale linearly with the sample volume.  For samples 

that fluoresce, this is likely a poor assumption.  It should be noted that the angle-dependence of the 

transmission factor is always less for lower values of µR, and as a consequence, structural models will 

be more robust against imperfections in the modelled absorption when samples with smaller µR 

values are used.  This potentially enables a more accurate determination of the structural model using 

data sets which have a worse overall signal/noise ratio relative to samples with larger µR products, 

and is especially advantageous when the determination of accurate absolute values of displacement 

parameters is the experimental goal.  While the present treatment provides a rational theoretical basis 

for designing diffraction experiments, both beamline-specific and sample-specific experimental 

validation of these predictions are still recommended. 

3.2.2. Density dependence 

The overall intensity of diffraction can alternatively be optimized by modifying the density of 

the sample, a goal which is typically accomplished by carrying out sample dilution with a material 

that has a negligible absorbance.  The choice of diluent may vary depending on the nature of the 

diffraction experiment, but might involve materials such as powdered glass, cork, solid or hollow 

polymeric microspheres, aerogels, or amorphous boron.  We define a density reduction factor, F, 

which describes the reduction in sample density (ρ) relative to the original value prior to modification 

(ρ0) through the relationship ρ = ρ0 / F, where values of 1 < F < ∞ correspond to physically plausible 

dilution conditions, and values of 0 < F < 1 correspond to an increased sample density achieved by 

compaction.  If a constant value of µR is maintained throughout dilution, the capillary radius will need 

to increase from R to FR to achieve this. As a result, the capillary volume will increase by a factor of 

F2 while the amount of material in the beam per unit volume will decrease by a factor of F relative to 

a sample of the same diameter which was not diluted, as expressed below in Equation  10.  
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I ∝  (1/F) (FR)2 Tθ(µR)   (10) 

IF/I1 = F    (11) 

Thus the intensity of the diffracted beam will vary linearly with F in the absence of other volume-

dependent effects when dilution is carried out in a manner that preserves µR (Eqn. 11), and dilution 

will thus always increase the measured diffraction intensity when the capillary radius can be increased 

in a proportional manner. 

It is of course also possible to carry out dilution while allowing the overall µR value for the 

sample to change.  For the dilution of a given sample, both the argument of the transmission function 

Tθ and the amount of diffracting sample will be rescaled by a factor F, leading to Equations 12 and 13. 

I ∝  (1/F) Tθ(µR/F)   (12) 

(µR)I ∝ (µR/F) Tθ(µR/F)  (13) 

In this approach, it makes sense to discuss the transmission factor as a function of µR/F rather than as 

a function of µR (as was done when examining the radius dependence of diffraction intensity).  A plot 

of the function (µR)I for different values of θD is given in Figure 9, with this function again arbitrarily 

multiplied by π to give convenient values.    It should be noted that unlike the previous transformation 

(Eqn. 8), a factor of R remains on the left side of Eqn. 13 and this must be explicitly considered when 

determining the most appropriate dilution factor, in contrast to the prefactor of µ which is constant for 

a given material.  For a constant capillary radius (fixed values of µ and R), the dilution of samples 

with values of µR larger than the peak value of these graphs (which occur for 0.6 < µR/F < 0.9 for 

diffraction angles of 0 – 50°) should lead to an increase in the diffracted beam intensity.  It should be 

noted that concentrating samples with values of µR/F less than the peak value (for example, by 

increasing their packing density if a density less than the theoretical one is taken to be the reference 

density, ρ0) leads to values of F < 1 and will enhance the measured diffraction intensity.  It should be 

noted that the diffraction intensity at 90° can never be increased by dilution since T90(x) = 1/(πx) for 

large values of x. Therefore, T90(µR/F) will never fall off quickly enough with increasing F to exceed 

for the 1/F loss of intensity resulting from the reduced amount of sample in the beam.  This weaker x 

dependence of the transmission factor Tθ(x) at high angles is responsible for the peak maximum 

shifting to higher values of µR/F for large diffraction angles θ in Figure 9. 
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Figure 9 Effect of dilution on relative diffraction peak intensity, where µRIθ = (µR/F) Tθ(µR/F) for 

different diffraction angles, θD.  The maximum intensity will generally occur when µR/F ~ 0.75, 

where the factor F represents a reduction in sample density such that ρ = ρ0/F. 

 

Based on this analysis, the optimization of the diffracted beam intensity can be achieved by 

first choosing the maximum diameter capillary compatible with the incident beam, since Eqns. 10 and 

11 suggests that a smaller diameter capillary will never be optimal for the best value of the µR 

product.  Next, Figure 9 can be used to determine the optimal density reduction factor F for the angles 

of interest, which will typically occur for µR/F ~ 0.75.  The data in Figure 9 are also provided 

electronically as Supporting Information.  Thus the optimal value of F can be estimated by Equation 

14 for a given capillary radius, R, and a linear absorption coefficient µ for the material of interest. 

Foptimal ~ (4/3)µR  (14) 

3.2.3. Sample calculation 

An example of this procedure is given for the perovskite compound PbZrO3, which is a 

strongly absorbing material due to the presence of both Pb (Z = 82) and Zr (Z = 40).  The room 

temperature density of this compound is 8.1 g / cm3, and the linear absorption coefficient of this 

compound at the typical wavelength of the 11-BM synchrotron beamline at the APS (λ = 0.41 Å) is µ 

= 18.6 mm-1.  For a capillary with a radius of R = 0.40 mm, it is calculated that µR = 7.44.  When 

multiplied by 4/3, the dimensionless optimal dilution factor is predicted to be F = 9.9. The optimal 

scattering will be achieved when the volumetric density of PbZrO3 in the capillary is reduced to about 

10% of that of a fully dense single crystal.  If the non-adsorbing diluent powder packs to ~50% of its 

theoretical density, then a 1:4 dilution by volume would be appropriate.  The expected improvements 

in intensity are estimated to be 36x at 2θD = 0°, 13x at 20°, 5.3x at 40°, 3.0x at 60°,1.2x at 120°, and 

peaks will be reduced in intensity to 0.89x of the undiluted value at 2θD = 180°.  If the same µR/F 

factor of 0.75 is achieved without adding a non-absorbing diluent by packing PbZrO3 into an R = 0.08 
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mm capillary with a 50%  packing efficiency, the diffraction intensity would be expected to be 5x 

lower than achieved by optimal dilution in an 0.4 mm capillary.  It is also noted that the transmittance 

factor estimated by the simplistic point model of e-2µR is 6 x 10-4, which is not far from the numerically 

integrated values of T0 = 8 x10-4, but substantially differs from T10 = 22 x 10-4, T30 = 100 x 10-4, and 

T90 = 430 x 10-4, reflecting the fact that most of the diffracted intensity from this strongly absorbing 

sample is coming from the perimeter and not the center of the capillary at higher diffraction angles. 

A sample prepared with µR/F = 0.75 should generally give the highest achievable diffraction 

peak intensities so long as the assumptions made in these derivations are valid. There are of course 

many good experimental reasons for choosing not to follow this suggested optimization procedure 

(choice of a smaller capillary to reduce diffraction peak widths when a diffracted beam 

monochromator is not used in a parallel beam experiment; choice not to use a diluent when the sample 

must be fully recovered after the experiment; limited sample availability making it impossible to fill a 

large diameter capillary; strong sample fluorescence or extinction invalidating the derivation 

assumptions).  In these cases, other figures in this paper will still provide useful guidance in choosing 

a sample loading procedure that is likely to give the highest quality diffraction data under a different 

set of experimental constraints.  We also note that this method can be easily adapted to calculations of 

absorption coefficients for out-of-plane scattering or for annular sample shapes, and will present those 

results in another manuscript. 
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Supporting information  

 

Figure S1 Dependence of relative intensity of diffraction π(µR)2 Tθ(µR) = πµ2I compared at 

different diffraction angles of 0° ≤ θD ≤ 90° against the estimate made by only considering absorption 

for a point at the center of the capillary (black line). 
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