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The form factor that yields the light-by-light scattering contribution to the muon anomalous
magnetic moment is computed in lattice QCD+QED and QED. A non-perturbative treatment of
QED is used and is checked against perturbation theory. The hadronic contribution is calculated
for unphysical quark and muon masses, and only the diagram with a single quark loop is computed.
Statistically significant signals are obtained. Initial results appear promising, and the prospect for
a complete calculation with physical masses and controlled errors is discussed.

INTRODUCTION

The muon anomaly aµ provides one of the most strin-
gent tests of the standard model because it has been
measured to great accuracy (0.54 ppm) [1], and calcu-
lated to even better precision [2–4]. At present, the dif-
ference observed between the experimentally measured
value and the standard model prediction ranges between
249 (87) × 10−11 and 287 (80) × 10−11, or about 2.9 to
3.6 standard deviations [2–4]. In order to confirm such
a difference, which then ought to be accounted for by
new physics, new experiments are under preparation at
Fermilab (E989) and J-PARC (E34), aiming for an accu-
racy of 0.14 ppm. This improvement in the experiments,
however, will not be useful unless the uncertainty in the
theory is also reduced.

Table I summarizes the contributions to aµ from
QED [2], electroweak (EW) [5], and QCD sectors of the
standard model. The uncertainty in the QCD contri-
bution saturates the theory error. The precision of the
leading-order (LO) hadronic vacuum polarization (HVP)
contribution requires sub-percent precision on QCD dy-
namics, reached using a dispersion relation and either
the experimental production cross section for hadrons
(+γ) in e+e− collisions at low energy, or the experimental
hadronic decay rate of the τ -lepton with isospin breaking
taken into account. Meanwhile lattice QCD calculations
of this quantity are improving rapidly [6], and will pro-
vide an important crosscheck.

Unlike the case for the HVP, it is difficult, if not im-
possible, to determine the hadronic light-by-light scat-
tering (HLbL) contribution (Fig. 1), aµ(HLbL), from ex-
perimental data and a dispersion relation [7]. So far,
only model calculations have been done. The uncertainty
quoted in Table I was estimated by the “Glasgow consen-
sus” [8]. Note that the size of aµ(HLbL) is the same order
as the current discrepancy between theory and experi-
ment. Thus, a first principles calculation, which is sys-

TABLE I. The standard model contributions to the muon
g−2, scaled by 1010; the QED contribution up to O(α5), EW
up to O(α2), and QCD up to O(α3), consisting of the leading-
order (LO) HVP, the next-to-leading-order (NLO) HVP, and
HLbL. For the LO HVP three results obtained without (the
first two) and with (the last) τ → hadrons are shown.

QED 116 584 71.8 951 (9)(19)(7)(77) [2]
EW 15.4 (2) [5]

QCD LO HVP 692.3 (4.2) [3]
694.91 (3.72) (2.10) [4]
701.5 (4.7) [3]

NLO HVP −9.79 (9) [9]
HLbL 10.5 (2.6) [8]

tematically improvable, is strongly desired for aµ(HLbL).
In this paper, we present the first result for the magnetic
form factor yielding aµ(HLbL) using lattice QCD.

FIG. 1. Hadronic light-by-light scattering contribution to
the muon g − 2, where the grey part consists of quarks and
gluons. The wavy lines denote photons, and the dashed arrow
line represents the muon.
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NON-PERTURBATIVE QED METHOD

We start by observing the difficulty computing
aµ(HLbL) using lattice QCD, and then explain our strat-
egy to overcome it. Fig. 2 shows two (of seven) types
of diagrams, classified according to how photons are at-
tached to the quark loop(s). In the lattice calculation, the
computation of the vacuum expectation value of an op-
erator involving quark fields requires the inversion of the
quark Dirac operator Dmq

[
UQCD

]
for each gluon field

(QCD configuration), UQCD. The cost of inversion of
this operator for every pair of source and sink points on
the lattice is prohibitive since it requires solving the lin-
ear equation Dmq

[
UQCD

]
xr = br for Nsites number of

sources, br, where Nsites is the total number of lattice
points. In most problems, such as hadron spectroscopy,
all of these inversions are not necessary. For our problem,
the correlation of four electromagnetic currents must be
computed for all possible values of two independent four-
momenta. This implies (3 × 4 × Nsites)

2 separate inver-
sions, per QCD configuration, quark species, and four-
momentum of the external photon to calculate the con-
nected diagram in Fig. 2, which is astronomical. There-
fore, a practical method with substantially less compu-
tational cost is indispensable.

FIG. 2. Two classes of diagrams contributing to aµ(HLbL).
On the left, all QED vertices lie on a single quark loop, The
right diagram is one of six diagrams where QED vertices are
distributed over two (or three) quark loops. We refer to
these as (quark) connected and disconnected diagrams, re-
spectively.

A non-perturbative QCD+QED method which treats
the photons and muon on the lattice along with the
quarks and gluons has been proposed as such a candi-
date by us. To obtain the result for the diagram in Fig. 2
the following quantity is computed [10],

〈ψ(t′,p′) jµ(top,q)ψ(0,p)〉HLbL =

−
∑

q=u,d,s

(Qqe)
2
∑
y

e−iq·y
1

L3T

∑
k

∑
x

e−ik·x
∑
z

eik·z

×
{〈

Tr{γµ Sq(top, y; z) γν Sq(z; top, y)}

×δνρ
k̂ 2

G(t′, p′; x)γρG(x; 0, −p)

〉
QCD+QED

− 〈Tr{γµ Sq(top, y; z) γν Sq(z; top, y)}〉QCD+QED

×δνρ
k̂ 2
〈G(t′, p′; x)γρG(x; 0, −p)〉QED

}
. (1)

FIG. 3. Perturbative expansion of the first term in
Eq. (1) with respect to QED. The symbols 〈, 〉QCD+q-QED

and 〈, 〉q-QED represent the average over QCD+QED con-

figurations (UQCD, AQED) and that over AQED, respectively.
Terms represented by the ellipsis contain four or more internal
photons and so their orders are higher than α3.

where ψ annihilates the state with muon quantum num-
bers, and jµ is the electromagnetic current 1. k is a Eu-
clidean four-momentum, p is a three-momentum, each
quantized in units of 2π/L. δµν/k̂

2 (k̂µ ≡ 2 sin(kµ/2)) is
the momentum space lattice photon propagator in Feyn-
man gauge. L3T is the space-time size of the lattice, Sq
and G are quark and muon propagators, respectively, and
spin and color indices have been suppressed. One takes
t′ � top � 0 to project onto the muon ground state

lim
t′�top�0

〈ψ(t′,p′) jµ(top,q)ψ(0,p)〉HLbL =

〈0|ψ(0,p′)|p′, s′〉
2E′V

〈p′, s′|jµ|p, s〉
〈p, s|ψ(0,p)|0〉

2EV

×e−E
′(t′−top)e−Etop , (2)

where the matrix element is parametrized, up to muon
wave function renormalization factors, as

〈p′, s′|jµ|p, s〉 ≡ (3)

−ū(p′, s′)

(
F1(q2)γµ + i

F2(q2)

2mµ

[γµ, γν ]

2
qν

)
u(p, s).

u(p, s) is a Dirac spinor, and q = p′ − p is the space-like
four-momentum transferred by the photon. The minus
sign in (4) results from the definition F1(0) = 1 and the
fact that the muon has charge −1 in units of e > 0.
To extract the form factors F1 and F2, Eq. (1) is traced
over spins after multiplication by one of the projectors,
(1 + γt)/4 or i (1 + γt)γjγk/4, where j, k = x, y, z and
k 6= j. The contribution to the anomaly is then found
from aµ ≡ (gµ − 2)/2 = F2(0).

1 The point-split, exactly conserved, lattice current is used for the
internal vertices while the local current is inserted at the external
vertex.
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For now quenched QED (q-QED) is used for the QED
average in (1), implying no fermion-antifermion pair cre-
ation/annihilation via the photon. Note that only the
sea quarks need to be charged under U(1); the lepton
vacuum polarization corresponds to higher order contri-
butions which we ignore. This approximation was cho-
sen to make this first calculation computationally easier,
even though it is incomplete. We can remove it to get
the complete physical result, as discussed at the end of
this letter. The first term, expanded in q-QED, can be
reorganized as in Fig. 3, according to the number of pho-
tons exchanged between the quark loop and the open
muon line. If the second term in Eq. (1) is subtracted,
the connected diagram in Fig. 2, times 3 (the multiplic-
ity arises because two of the three internal photon lines
are generated three ways), emerges as the leading-order
contribution in α.

The main challenge in the non-perturbative method
is the subtraction of the leading, unwanted components
(α for the electric form factor and α2 for the magnetic).
Note that the two terms in Eq. (1) differ only by way of
averaging. For finite statistics, the delicate cancellation
between them is only realized because they are so highly
correlated with respect to the QCD and QED configura-
tions used in the averaging. Notice that all contributions
from one-photon exchange between the lepton (quark)
loop and muon line are canceled by the subtraction. How-
ever, two photon exchange contributions, which vanish by
Furry’s theorem after averaging over gauge fields, cannot
appear in the subtraction term and are a potential source
of large statistical errors. Fortunately these too can be
completely eliminated on each gauge configuration by
switching the sign of the external momentum. This is be-
cause the projected and traced correlation function in (1)
obeys an exact symmetry under simultaneous p → −p
and e → −e, where the latter is done on the muon line
only. If e does not flip sign, then the only change is to
multiply all contributions with an even number of pho-
tons connecting the loop and line by −1.

We first test the non-perturbative subtraction by ask-
ing if the nonperturbative QED method applied to lep-
tons only reproduces the known value of the sixth-order
leptonic light-by-light scattering contribution [11], which
is given exactly by the counterpart of the connected dia-
gram in Fig. 2.

The test calculation was done in quenched 2 non-
compact QED, in the Feynman gauge, using domain wall
fermions (DWF). Non-compact here only refers to the
generation of the photon field configurations; the pho-
tons are coupled to the fermions via the usual exponen-
tiated link variable. The lattice size is 243 × 64 with

2 In the pure QED case, quenching is not an approximation since
the neglected vacuum polarization contributions give higher or-
der corrections to the light-by-light scattering diagram.

Ls = 8 sites in the extra 5th dimension and domain wall
height M5 = 0.99. The muon mass and the lepton mass
are the same, 0.1 in lattice units, and to enhance the
signal the electric charge is set to e = 1.0, which corre-
sponds to α = 1/(4π) instead of 1/137. For simplicity,
we always use kinematics where the incoming muon is
at rest. The form factor F2 was computed only at the
lowest non-trivial momenta, 2π/24, and was not extrap-
olated to zero. The renormalization factor of the local
vector current inserted at the external vertex is not in-
cluded as its effect is O(α) and should be small compared
to other uncertainties.

The results for several values of the time separation
between the muon source and sink, tsep, are shown in
Figure 4 (squares). The results were computed from an
ensemble of 100 uncorrelated configurations and 63 = 216
point source locations for the external photon vertex
which was inserted on time slice top = 5. The form
factor shows a large excited state contamination, pre-
sumably arising from the contribution of muon-photon
states. The value for the largest separation (tsep = 32)
is still somewhat below the continuum result, F2(0) =
0.371(α/π)3 [12]. There may be residual excited state
contamination, or finite volume and lattice spacing ef-
fects. A smaller 163 lattice size result (triangle) is con-
sistent, within errors, with the 243 result, and the lattice
result also must be extrapolated to Q2 = 0 before the
final comparison with continuum perturbation theory.
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tsep

-0.1

0

0.1

0.2

0.3
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F 2((
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QED (mloop=mµ=0.1, 243)

QED, (mloop=mµ=0.1, 163)

QED pert. theory, F2(0)
QCD+QED (mπ=330 MeV)
hadronic models, F2(0)

FIG. 4. The muon’s magnetic form factor in units of (α/π)3

from light-by-light scattering, evaluated at the lowest non-
trivial lattice momentum, 2π/L. Results for several symmet-
ric source-sink separations are shown; the quark loop is the
same for each and corresponds to mπ = 329 MeV (circles).
Also shown is the pure QED result (squares, triangle) where
the mass of the lepton in the loop is equal to the muon mass,
mµ = 0.1. Horizontal lines correspond to continuum QED
perturbation theory (upper) and hadronic models [8] (lower).
A large excited state contamination is evident for both cases.
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QCD CONTRIBUTION

The inclusion of QCD into the light-by-light amplitude
is straightforward: simply construct combined links from
the product of U(1) (QED) gauge links and SU(3) (QCD)
links [15], and follow exactly the same steps, using the
same code, as described in the previous sub-section. We
use one quenched QED configuration per QCD configura-
tion, though different numbers of each could be beneficial
and should be explored.

Our main result is again computed on a lattice of size
243 × 64 (Ls = 16, M5 = 1.8) with spacing a = 0.114
fm (a−1 = 1.73 GeV) and light quark mass 0.005 (mπ =
329 MeV) (an RBC/UKQCD collaboration 2+1 flavor,
DWF+Iwasaki ensemble [13, 14]). The bare muon mass
is again set tomµ = 0.1 (the renormalized mass extracted
from the two-point function is 190 MeV), and e = 1 as
before. The domain wall height M5 for the quark loop
propagators is set to 1.8, the value used to generate the
gluon gauge field ensemble; M5 for the muon line is the
same as in the pure QED case.

The all mode averaging (AMA) technique [16] is used
to achieve large statistics at an affordable cost. In the
AMA procedure the expectation value of an operator is
given by 〈O〉 = 〈Orest〉 + 1

NG

∑
g〈Oapprox,g〉 [16], where

NG is the number of measurements of the approximate
observable, and “rest” refers to the contribution of the
exact observable minus the approximation, evaluated for
the same conditions. The exact part of the AMA calcu-
lation was done using eight point sources on each of 20
configurations, and the approximation was computed us-
ing 400 low-modes of the even-odd preconditioned Dirac
operator and NG = 216 point sources computed with
stopping residual 10−4 on 375 configurations. On a dif-
ferent subset of 190 configurations we tried 125 point
sources and found the 216 sources per configuration to
be more effective at reducing the statistical error. In the
present calculation, the statistical errors are completely
dominated by the second term in the above equation,
(approximately 4:1) and the “rest”, or correction is about
−10± 5%.

The external electromagnetic vertex is inserted on time
slice top = 5 with the muon created and destroyed at
several time separations ranging between 8 and 20. We
also include the vector current renormalization in pure
QCD from [14] for the local vector current at the exter-
nal vertex. We have computed the connected diagram
shown in Fig. 2 for a single quark with charge +1 in the
present exploratory study, so the final result is multiplied
by (2/3)4+(−1/3)4+(−1/3)4 to account for (degenerate)
u, d, and s quark contributions.

In Fig. 4 we show F2((2π/L)2) for hadronic light-by-
light scattering. Again there is a large excited state ef-
fect. For tsep = 20 the ground state appears to dominate,
and the value is roughly consistent with the model esti-

mate [8]. By tsep = 32, the signal has disappeared, but
there is no suggestion of large residual excited state con-
tamination. The unphysical heavy masses used here for
numerical expediency are expected to lead to a some-
what higher value: in hadronic models the increase due
to muon mass overwhelms the decrease due to heavier
pion mass [18].

F2(Q2) is shown in Fig. 5 for several values of Q2 for
tsep = 10. A mild dependence on Q2 is seen. While we
have not computed Q2 values for tsep = 20, a similar
dependence is expected since the quark part computed
in both is the same; only the muon line is different.

As anticipated above, before averaging over equivalent
external momenta, the statistical errors are considerably
larger as the two photon exchange contribution is one
order lower in α. While the combinations ±~p effectively
eliminate the error from this contribution, the light-by-
light contribution is identical, so the statistical error is
only reduced by averaging over independent momenta or
the γµ inserted at the external vertex.

0 0.1 0.2 0.3 0.4
Q2 (GeV2)

-0.1

-0.05

0

0.05

0.1

0.15

F 2(Q
2 )

Models
tsep=0-10 (mπ=330 MeV)

FIG. 5. The muon’s magnetic form factor in units of (α/π)3

from hadronic light-by-light scattering. mπ = 329 MeV. The
time separation between the muon source and sink in this case
is tsep = 10. The model result (burst) is for physical masses.

Early preliminary work [19] was done on another
DWF+Iwasaki ensemble with size 163 × 32 and light
quark mass mq = 0.01 (mπ = 422 MeV). Two muon
masses, mµ = 0.4 and 0.1, were used. The external elec-
tromagnetic vertex is inserted on time slice top = 6 and
the incoming and outing muons are created and destroyed
at t = 0 and 12, respectively. Following the same pro-
cedure as above (except that we did not use AMA), for
mµ = 0.4 (6.5 times the physical muon mass), F2(Q2 =
0.38 GeV2) = (5.8±0.6)×10−5 = (0.79±0.08)× (α/π)3.
The magnitude is roughly 5 times larger than the model
estimates for aµ(HLbL). The smaller muon mass mµ =
0.1 yields F2(Q2 = 0.19 GeV2) = (0.48± 0.18)× 10−5 =
(0.065± 0.024)× (α/π)3.

Finally, the subtraction is shown to be working prop-
erly in the (QCD + QED) case by varying e as follows.
The same non-compact QED configurations are used in
each case; e is varied only when constructing the expo-
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nentiated gauge-link, Uµ(x) = exp (ieAµ(x)). Thus the
ratio of form factors, and hence the α-dependence, can be
determined very accurately. Since one photon is inserted
explicitly, and the charges at the associated vertices are
not included in the lattice calculation, the subtracted am-
plitude should behave like e4 ∝ α2. Using e = 0.84 and
1.19, the changes in the subtracted correlation function
relative to e = 1 should be 0.5 and 2.0, respectively. This
is what is observed numerically.

CONCLUSION

We have presented the first lattice QCD result for the
form factor that yields the hadronic light-by-light con-
tribution to the muon anomaly. The calculation uses a
nonperturbative QED method whose feasibility was first
tested in the pure QED case. We have demonstrated
that a statistically significant signal for the light-by-light
diagram can be computed with modest statistics and
that realistic results are obtained on modest size lat-
tices. Large excited state contamination is visible in both
QED and QED+QCD, likely attributable to the same
muon+photon state. With large enough time separation
between the muon source and sink, results for unphysical
quark and lepton masses emerge that are consistent with
expectations from model calculations and QED perturba-
tion theory. A precise calculation with physical masses,
larger volume, and a controlled extrapolation to Q2 = 0,
is now desirable and appears feasible.

An additional systematic uncertainty in the current
calculation arises from the absence of diagrams with two
or more quark loops coupled to photons like the one
shown on the right in Fig. 2. This is a direct conse-
quence of the numerical expediency of quenched QED
in this first calculation. The disconnected diagram in
Fig. 2 (as well as the five others not shown) is next-to-
leading order in the number of colors and vanishes in
the SU(3)-flavor symmetry limit. We note that all such
diagrams can be included in an analogous calculation to
the one presented here, but using completely unquenched
QED+QCD gauge field configurations [20]. These can be
dynamical QED+QCD configurations [21, 22], or pure
QCD ones, reweighted to non-zero electric charge [23].

ACKNOWLEDGEMENTS

We thank Norman Christ, Luchang Jin, and Christoph
Lehner for useful discussions, and for help checking
our code against independently written code, including
PhySyHCAl[24]. We also thank the USQCD Collabo-
ration and the RIKEN BNL Research Center for com-
puting resources. MH is supported in part by Grants-
in-Aid for Scientific Research 22224003, 25610053, TB
is supported in part by the US Department of Energy

under Grant No. DE-FG02-92ER41989, and TI is sup-
ported in part by Grants-in-Aid for Scientific Research
22540301 and 23105715 and under U.S. DOE grant DE-
AC02-98CH10886.

[1] G. W. Bennett et al. [Muon G-2 Collaboration], Phys.
Rev. D 73, 072003 (2006) [hep-ex/0602035].

[2] T. Aoyama, M. Hayakawa, T. Kinoshita and M. Nio,
Phys. Rev. Lett. 109, 111808 (2012) [arXiv:1205.5370
[hep-ph]].

[3] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Eur.
Phys. J. C 71, 1515 (2011) [Erratum-ibid. C 72, 1874
(2012)] [arXiv:1010.4180 [hep-ph]].

[4] K. Hagiwara, R. Liao, A. D. Martin, D. Nomura
and T. Teubner, J. Phys. G 38, 085003 (2011)
[arXiv:1105.3149 [hep-ph]].

[5] A. Czarnecki, W. J. Marciano and A. Vainshtein, Phys.
Rev. D 67, 073006 (2003) [Erratum-ibid. D 73, 119901
(2006)] [hep-ph/0212229].

[6] T. Blum, M. Hayakawa, T. Izubuchi and , PoS LATTICE
2012, 022 (2012) [arXiv:1301.2607 [hep-lat]].

[7] G. Colangelo, M. Hoferichter, M. Procura and P. Stoffer,
arXiv:1402.7081 [hep-ph].

[8] See J. Prades, E. de Rafael and A. Vainshtein, (Ad-
vanced series on directions in high energy physics. 20)
[arXiv:0901.0306 [hep-ph]], and references therein.

[9] K. Hagiwara, A. D. Martin, D. Nomura and T. Teubner,
Phys. Lett. B 649, 173 (2007) [hep-ph/0611102].

[10] M. Hayakawa, T. Blum, T. Izubuchi and N. Yamada, PoS
LAT 2005, 353 (2006) [hep-lat/0509016].

[11] J. Aldins, T. Kinoshita, S. J. Brodsky and A. J. Dufner,
Phys. Rev. Lett. 23, 441 (1969); Phys. Rev. D 1, 2378
(1970).

[12] S. Laporta and E. Remiddi, Phys. Lett. B 265, 182
(1991).

[13] C. Allton et al. [RBC-UKQCD Collaboration], Phys.
Rev. D 78, 114509 (2008) [arXiv:0804.0473 [hep-lat]].

[14] Y. Aoki et al. [RBC and UKQCD Collaborations], Phys.
Rev. D 83, 074508 (2011) [arXiv:1011.0892 [hep-lat]].

[15] A. Duncan, E. Eichten and H. Thacker, Phys. Rev. Lett.
76 (1996) 3894 [hep-lat/9602005].

[16] T. Blum, T. Izubuchi and E. Shintani, Phys. Rev. D 88,
094503 (2013) [arXiv:1208.4349 [hep-lat]].

[17] K. T. Engel and M. J. Ramsey-Musolf, arXiv:1309.2225
[hep-ph].

[18] Private communication with H. Bijnens.
[19] T. Blum, P. A. Boyle, N. H. Christ, N. Garron, E. Goode,

T. Izubuchi, C. Lehner and Q. Liu et al., Phys. Rev. D
84, 114503 (2011) [arXiv:1106.2714 [hep-lat]].

[20] T. Blum, M. Hayakawa and T. Izubuchi, PoS LATTICE
2013, 439 (2013)

[21] R. Horsley, Y. Nakamura, D. Pleiter, P. E. L. Rakow,
G. Schierholz, H. Stben, R. D. Young and J. M. Zanotti,
PoS Lattice 2013, 499 (2013) [arXiv:1311.4554 [hep-lat]].

[22] S. Borsanyi, S. Durr, Z. Fodor, C. Hoelbling,
S. D. Katz, S. Krieg, L. Lellouch and T. Lippert et al.,
arXiv:1406.4088 [hep-lat].

[23] T. Ishikawa, T. Blum, M. Hayakawa, T. Izubuchi,
C. Jung and R. Zhou, Phys. Rev. Lett. 109, 072002
(2012) [arXiv:1202.6018 [hep-lat]].

http://arxiv.org/abs/hep-ex/0602035
http://arxiv.org/abs/1205.5370
http://arxiv.org/abs/1010.4180
http://arxiv.org/abs/1105.3149
http://arxiv.org/abs/hep-ph/0212229
http://arxiv.org/abs/1301.2607
http://arxiv.org/abs/1402.7081
http://arxiv.org/abs/0901.0306
http://arxiv.org/abs/hep-ph/0611102
http://arxiv.org/abs/hep-lat/0509016
http://arxiv.org/abs/0804.0473
http://arxiv.org/abs/1011.0892
http://arxiv.org/abs/hep-lat/9602005
http://arxiv.org/abs/1208.4349
http://arxiv.org/abs/1309.2225
http://arxiv.org/abs/1106.2714
http://arxiv.org/abs/1311.4554
http://arxiv.org/abs/1406.4088
http://arxiv.org/abs/1202.6018


6

[24] C. Lehner, PoS LATTICE 2012, 126 (2012)
[arXiv:1211.4013 [hep-lat]].

http://arxiv.org/abs/1211.4013

	Hadronic light-by-light scattering contribution to the muon anomalous magnetic moment from lattice QCD
	Abstract
	 Introduction
	 Non-perturbative QED method
	 QCD contribution
	 Conclusion
	 Acknowledgements
	 References


