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Modeling Electron Emission and Surface Effects from Diamond Cathodes
D. A. Dimitrov,1 D. Smithe,1 J. R. Cary,1 I. Ben-Zvi,2 T. Rao,2 J. Smedley,2 and E. Wang2
1)Tech-X Corporation, Boulder, CO 80303
2)Brookhaven National Laboratory, Upton, NY 11973

We developed modeling capabilities, within the Vorpal particle-in-cell code, for three-dimensional (3D) simu-
lations of surface effects and electron emission from semiconductor photocathodes. They include calculation of
emission probabilities using general, piece-wise continuous, space-time dependent surface potentials, effective
mass and band bending field effects. We applied these models, in combination with previously implemented
capabilities for modeling charge generation and transport in diamond, to investigate the emission dependence
on applied electric field in the range from approximately 2 MV/m to 17 MV/m along the [100] direction. The
simulation results were compared to experimental data. For the considered parameter regime, conservation
of transverse electron momentum (in the plane of the emission surface) allows direct emission from only two
(parallel to [100]) of the six equivalent lowest conduction band valleys. When the electron affinity χ is the
only parameter varied in the simulations, the value χ = 0.31 eV leads to overall qualitative agreement with
the probability of emission deduced from experiments. Including band bending in the simulations improves
the agreement with the experimental data, particularly at low applied fields, but not significantly. Using
surface potentials with different profiles further allows us to investigate the emission as a function of potential
barrier height, width, and vacuum level position. However, adding surface patches with different levels of
hydrogenation, modeled with position-dependent electron affinity, leads to the closest agreement with the
experimental data.

I. INTRODUCTION

High-average current and high-brightness electron
beams are needed in advance applications such as ultra-
high power Free-Electron Lasers1 (FELs), electron cool-
ing of hadron accelerators2, Energy-Recovery Linac
(ERL) light sources3, and lasertron high-efficiency radio-
frequency (RF) sources4. To address the high brightness
requirements for these applications, a new design for a
photoinjector with a diamond amplifier was proposed5
and is currently being investigated6–11.

The technologically important material properties of
diamond have been researched for emission12,13 and de-
tector applications. Moreover, diamond is also consid-
ered for development of high-flux x-ray monitors in syn-
chrotron beam lines14–17.

The new photoinjector concept has important
advantages5 (such as the ability to generate high-average
current, high-brightness electron beams while providing
a very long lifetime) compared to existing metallic and
semiconductor photocathodes. The idea of its operation
is to first generate a primary beam of electrons (accel-
erated to about 10 keV) using a conventional photo-
cathode and inject them into diamond. The energetic
primary electrons scatter inelastically in diamond, gen-
erating secondary electrons. These electrons, and their
related holes, relax their energies initially by producing
more electron-hole pairs. When the energy of these free
charge carriers decreases to values close to the energy gap
of diamond, further relaxation of their energy is domi-
nated by scattering with phonons.

In applied electric field, the generated electrons and
holes drift in opposite directions and are separated. The
secondary electrons are transported towards a diamond
surface with a negative electron affinity (NEA). Part
of these electrons are then emitted into the accelerat-

ing cavity of an electron gun. The NEA is used to
enhance the emission18 of electrons. Hydrogenation of
diamond produces surfaces with NEA. Over two orders
of magnitude charge amplification (number of generated
secondary electrons emitted relative to the number of
primary electrons used as input) could potentially be
achieved6 using this approach with the design goal to
emit ∼ 1 nC electron bunches. Recently, O’Donnell et
al.19 have also demonstrated electron yield enhancement
factor of 200 from NEA lithium-covered diamond surfaces
that are air-stable.

Investigation of the phenomena involved in using di-
amond for generation of amplified electron beams via
simulations requires modeling of secondary electron gen-
eration, charge transport, and electron emission. Ini-
tially, we implemented20–22 unified modeling, within
the Vorpal23 computational framework, for the first
two types of these processes. Our implementation
of secondary electron generation is based on optical
models24–29 and the charge transport on models for scat-
tering of electrons and holes with phonons30. These ca-
pabilities already allow us to investigate charge gain and
collection efficiency related to specific experiments.

We have now implemented in Vorpal several models
for simulation of electron emission from one 3D domain
into another separated by a planar surface. The most
general one is the model based on the transfer matrix
(TM) method since it allows the calculation of emission
probabilities for arbitrary, piece-wise continuous surface
potentials. Moreover, it gives us the ability to directly
include the effects of transverse momentum conservation
and electron effective mass variation when calculating
emission probabilities.

To support efficient use of the developed emission mod-
els, we have also implemented a general way to spec-
ify piece-wise continuous emission surface potentials in
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Vorpal input files. The supported syntax allows users
of the code to provide space-time varying potentials for
the calculation of emission probabilities. This provides
the functionality to investigate position-dependent emis-
sion behavior and non-uniform emission-surface proper-
ties. Time-dependent potentials can be used to study
performance evolution of cathodes.

Similarly to the approach implemented to input a sur-
face potential, we implemented the capability to pro-
vide a function for modeling the effect of band bend-
ing near semiconductor interfaces. The function for the
band bending field is parsed and used to calculate the
field that charge carriers interact with in the band bend-
ing region. We used the newly implemented modeling
capabilities to design and run end-to-end simulations to
compare with experimental data on emission. The results
indicate what surface effects and potential parameters
could lead to better agreement with the experiments.

The rest of the paper is organized as follows. First, in
Section II, we describe the approach we have developed
for end-to-end simulations of charge generation, trans-
port, and emission from diamond. The new emission
modeling capabilities are covered in detail. Then, in Sec-
tion III, we discuss comparison of simulation results with
data from experiments10 designed to deduce the probabil-
ity of emission as a function of applied field. We provide a
summary of the current work and some future directions
we are considering in Section IV.

II. MODELING AND SIMULATIONS

In this section, we shortly cover the Vorpal compu-
tational framework and then describe the approach we
have developed for end-to-end simulations of diamond-
amplified electron sources. We discuss in detail the new
emission models we implemented and used for the simu-
lations described in the next section.

A. The Vorpal computational framework

The Vorpal23 computational framework has an ex-
tended set of capabilities for simulating electro-magnetics
with or without the inclusion of charged particles. Vorpal
can currently be used to model the interaction of elec-
tromagnetic fields with conducting boundaries, charged
particles (of both constant and variable weight), charged
fluids, and systems consisting of dielectrics and vacuum
regions. The Vorpal framework also has electro-static
(ES) solvers that can be used in parallel simulations in
combination with pushing particles. In addition, field
ionization production of particles and Direct Simulation
Monte Carlo treatment of neutral and charged fluids, i.e.,
self collisions for the particle representations. Vorpal was
designed from the beginning for massively parallel runs.

Multiple electromagnetic (EM) algorithms are im-
plemented in Vorpal. The code provides perfectly

matched layer (PML) absorbing31 and 2nd order accurate
conformal32,33 boundary conditions (BC). The PML BCs
are effective to reduce numerical errors from reflected
waves at boundaries. The conformal BCs can be used to
accurately model complex EM structures32,33 and also do
relativistic particle-in-cell for intense beams. Both, stair
step and Dey-Mittra32 boundary algorithms are avail-
able. In most finite-difference codes, a curved surface is
represented with stair-stepped boundaries, causing first-
order errors in the calculation. Furthermore, Vorpal pro-
vides a stable finite-difference time-domain algorithm34

for simulations of non-diagonal, anisotropic dielectrics.
The 3D ES particle-in-cell computational capabilities

together with the ability to efficiently model domains
with multiple dielectrics in parallel have been of partic-
ular importance to enable the diamond-amplifier simu-
lations reported here. These algorithms are needed to
move particles between scattering events, to specify and
maintain fields as in the two types of experiments10 we
simulated.

B. Three-step model for electron emission

The overall approach to model charge generation,
transport, and emission that we have implemented cor-
responds to Spicer’s 3-step35,36 emission model. A sim-
plified diagram for this model, specialized for diamond,
is shown in Fig. 1 together with a representation of the
processes involved.

First, creation of (secondary) electrons in the conduc-
tion band and holes in the valence band is started by
inelastic scattering with highly energetic primary elec-
trons. Next, the free electrons and holes relax their ener-
gies via inelastic scattering (creating more electron-hole
pairs and/or emission/absorption of phonons). Thus, the
electrons drift towards the band bending region (BBR)
that ends with a hydrogenated negative electron affinity
surface. In the final step, the electrons are emitted or
reflected when they attempt to cross the surface.

The surface potential barrier (e.g., the shape shown in
Fig. 1) we have considered in the simulations has a simi-
lar type as the in the ab initio band structure calculations
by Sque et al.37. Their results for hydrogen-terminated
diamond show large (effective) NEA relative to the con-
duction band minimum (CBM) in bulk36,38 and a positive
electron affinity relative to the CBM at the surface.

For the results presented here, we used our
implementation39 of the Tanuma—Powell—Penn
(TPP)24 (see also28 and the references therein) optical
model for inelastic scattering leading to secondary
electron generation (impact ionization) at 300 K. This
corresponds to the first step and represents the first
phase of the simulations.

For the low-energy inelastic scattering with phonons
we implemented Monte Carlo algorithms based on the
models given by Jacoboni and Reggiani30. We have val-
idated that the electron-phonon scattering implementa-
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Figure 1. Schematic diagram of the three main processes
that should be modeled: (1) generation of electrons in the
conduction band, (2) charge transport, and (3) electron emis-
sion/reflection at the vacuum interface. One possible shape of
the interface potential and a downward band bending region
are indicated as well.

tion leads to electron drift velocities that are in agreement
with band structure calculations and with experimental
data40. This low-energy (relative to the secondary elec-
tron generation in the first step) electron transport and
the emission represent the second phase of the simula-
tions. The particle and field data from the end of the
first phase of the simulations represents the input state
for the second phase.

C. Modeling electron emission

In Monte Carlo simulations of electron transport, when
an electron in a photocathode material attempts to cross
its emission surface to move into vacuum, a probability of
emission is calculated using the surface potential at the
location where the electron hits the surface. Once this
probability is known, the electron is emitted or reflected
back according to its value (the electron is emitted if the
emission probability is higher than the value of a (pseudo)
random number generated from a uniform distribution).

The calculation of the emission probability simplifies
significantly if the potential is translationally invariant in
the emission surface plane. For this case, the potential is
a function only of the coordinate along an axis normal to
the emission surface. In this study, we use the conven-
tion that the x axis is normal to the diamond emission
surface. The translational invariance also requires that
the transverse electron momentum (in the emission sur-
face plane) is conserved in the emission process (see, e.g.,
R. L. Bell38). This requirement significantly affects the
emission of conduction band electrons from diamond.

We have implemented two different approaches to cal-
culate electron emission probabilities in Vorpal. The first

approach was developed by K. Jensen41,42 while the sec-
ond is based on transfer matrix calculations. In this Sub-
section, we describe how the probability of emission is
calculated in both of these approaches as implemented
in Vorpal.

The approach developed by K. Jensen41,42 approx-
imates the emission process as an effectively a one-
dimensional problem. The one-dimensional approxima-
tion works reasonably well for metals. It has been
used for a long time43. Furthermore, the electron ef-
fective mass is reduced to a scalar value. Neglecting
the anisotropy in the effective mass tensor has impor-
tant implications when modeling electron emission from
diamond in 3D simulations.

We implemented code in Vorpal to calculate the emis-
sion probability using K. Jensen’s approach41 for two sur-
face potentials. The first is a triangular barrier, extend-
ing into vacuum (x ≥ 0):

V (x) = χ− Fx, (1)

(and set to zero inside the emitting material), where χ is
the true electron affinity (relative to the conduction band
minimum at the surface) and F is the product of the
applied field and the fundamental charge (similar to the
notation used in K. Jensen44). The representation in Eq.
(1) is in terms of an electron potential energy. Electron
emission using this potential was initially investigated by
Fowler and Nordheim45. The second potential includes
the effect of the image charge:

V (x) = χ− Fx− Q

x
, (2)

where

Q = Q0 (Ks − 1) / (Ks + 1) , (3)

with Ks the static dielectric constant of the emitter
(Ks = 5.7 for diamond), and Q0 = q2/ (16πε0) with q
the fundamental charge and ε0 the permittivity of vac-
uum.

The emission probability for the triangular poten-
tial, Eq. (1), in the approximation developed by K.
Jensen41,42 is given by

T4
(
E‖
)

=
2f
(
E‖, χ

)

f
(
E‖, χ

)
+ g

(
E‖, χ

)
h
(
E‖
) , (4)

where E‖ is the electron kinetic energy normal to the
emission surface, h

(
E‖
)

= eθ(E‖) −
(
1− e−θ(E‖)

)
/4,

θ(E‖) = 2

√
2m
(
χ− E‖

)3 for E‖ < χ (with m the
scalar electron effective mass) and θ(E‖) = 0 for

E‖ > χ, f
(
E‖, χ

)
= 2

√
E‖
∣∣E‖ − χ

∣∣
+
, g
(
E‖, χ

)
=

(
E‖ +

∣∣E‖ − χ
∣∣
+

)
,
∣∣E‖ − χ

∣∣
+

=

√(
E‖ − χ

)2
+ γF ,

γF =
(
p2

0~2F 2/2m
)2/3, and p0 = 0.51697. Note that

the term transmission coefficient T (E) is often used for
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the probability of emission with E denoting the normal
energy. Here, we use T (x) and P (x) interchangeably to
denote the probability of emission and will use E for the
total energy. Thus, we will explicitly indicate what ar-
gument x is used for the evaluation of T (x).

The emission probability given by Eq. (4) can be
used when the surface potential barrier has a shape
close to the triangular one given by Eq. (1). However,
since the triangular potential does not vary smoothly,
the emission probability T4

(
E‖
)
from Eq. (4) shows

a similar behavior at the top of the potential barrier.
Thus, T4

(
E‖
)
is a good approximation to a triangu-

lar barrier, but is an increasingly poor approximation to
T
(
E‖
)
when the barrier top is rounded as for the im-

age charge potential. These issues were addressed in the
second method that considers the image charge poten-
tial (within the one-dimensional treatment of the emis-
sion problem) leading to the following expression for the
emission probability41,42,44

Tq
(
E‖
)

=
C(E‖)

1 + exp
(
2θ
(
E‖
)) , (5)

where

C
(
E‖
)
≈

E3
‖

E3
‖ + 1

2m

{
~F
8

[(
xo

x−

)2

− 1

]}2 ,

with xo =
√
Q/F and x−

(
E‖
)
is the smaller root of

the equation V (x) − E‖ = 0, where V (x) is the image
charge potential, Eq. (2). Two cases are considered for
the evaluation of the function θ

(
E‖
)
that enters in Eq.

(5). For the case of electrons attempting emission with
energy lower than the energy Eo = χ− 0.5

√
FQ, smaller

than the maximum of the surface potential, the function
is given by:

θ
(
E‖
)

=
2

~
√

2mFL3G

(
x−
(
E‖
)

L

)
, (6)

where

G (s) =

ˆ ∞
0

cos2 (φ) sin2 (φ)√
s+ sin2 (φ)

dφ, (7)

and L
(
E‖
)

= x+

(
E‖
)
− x−

(
E‖
)
. For the other case of

electrons attempting emission with E‖ > Eo, the θ
(
E‖
)

is expanded to a first order polynomial of E‖−Eo in the
form

θ
(
E‖
)

= θo +

(
∂θ

∂E‖
(Eo)

)(
E‖ − Eo

)
,

in order to have both θ
(
E‖
)
and ∂θ/∂E‖ smooth for

E‖ > Eo (including the maximum of the potential bar-
rier). Expressions for the calculation of θo and ∂θ

∂E‖
(Eo)

are given elsewhere41.
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Figure 2. Emission probabilities for diamond parameters with
electron affinity χ = 300 meV calculated with the two reduced
models (Eqs. (4) and (5)) demonstrate the strong dependence
on the external field.

Results obtained by K. Jensen41 indicate that the
model with the triangular potential works well for ma-
terials with static dielectric constants Ks < 2 while the
probability of emission given by the second model with
the image charge effect included in the potential provides
superior performance when Ks & 2.

Emission probabilities vs electron energy (the value
of Ks = 5.7 for diamond was used) and for three dif-
ferent applied fields are shown in Fig. 2. In Fig. 2,
the transmission probability T4

(
E‖
)
obtained from Eq.

(4), shows a kink when the energy is equal to the top
of the potential barrier. This is due to a discontinuity
in the first derivative of T4

(
E‖
)
at the top of the bar-

rier; T4
(
E‖
)
is continuous there. The first derivative of

Tq(E‖) for the second model is continuous for all energies.
The reduced emission models considered so far are

computationally efficient — once the initialization is
done, the evaluation of the emission probabilities is fast.
However, the calculation of the emission probability has
to be generalized if the electron effective mass tensor
is anisotropic, the change of the electron mass has to
be taken into account, surface potentials with different
shapes than the ones given by Eqs. (4) and (5) are to
be investigated, and the transverse momentum during
emission has to be explicitly conserved.

All of these effects are of importance for diamond. In
particular, since these two emission models do not ex-
plicitly take into account the conservation of transverse
momentum in the calculation of the emission probability,
we introduced it in an ad hoc way in the first algorithm
we implemented to simulate electron emission from dia-
mond with them.

To understand why the conservation of transverse mo-
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mentum in diamond is important when calculating emis-
sion probabilities, consider again the data from the two
reduced models in Fig. 2. For the specific case of 10
MV/m external field, the calculated probabilities indi-
cate that if an electron in diamond impacts the vacuum
interface with an energy E‖ & 175 meV, it will have a
non-negligible probability to be emitted that quickly in-
creases towards unity when increasing its energy (for the
Tq model, the probability approaches unity for E‖ close
to 230 meV). A histogram of an electron energy distri-
bution from simulations with external field of 10 MV/m
indicates that there are a number of electrons with total
energies higher than 175 meV and even 230 meV. If only
the Tq

(
E‖
)
probability is used to decide which electrons

are to be emitted without separately checking if trans-
verse momentum is conserved, all electrons with energies
E‖ > 230 meV will be emitted. However, a large number
of these electrons cannot be emitted since their transverse
momentum cannot be conserved during the emission pro-
cess.

For a specific case of this limitation, consider again
emission of electrons from a (100) diamond surface. Con-
duction band electrons that are transported in bulk dia-
mond are distributed among six equivalent energy valleys
in reciprocal space (two valleys along each of the three
coordinate axes in k space). For example, the energies
of electrons in the two valleys along the [010] axis in k
space are approximately given by

E(010) (k) =
~2

2mT

(
k2
x + k2

z

)
+

~2

2mL
(ky − ky0)

2
,

where mL and mT are the electron’s longitudinal and
transverse effective masses and ky0 is the position of the
minimum of the energy valley along the the [010] direc-
tion. For diamond, |kα0| ≈ 0.73× (2π/a) where a = 3.57
Å is the lattice constant (α denotes any of the coordinate
axes). For emission from a (100) surface, electrons in the
four conduction band valleys along the y and z directions
in k space will have a large transverse momentum that
will have to be conserved during emission. Consider again
an electron in one of the [010] valleys with a wave vector
very close to the conduction band minimum. Its momen-
tum is p = ~k ≈ ~ (0, ky0, 0). Since it is parallel to the
emission surface, it must be conserved during the emis-
sion process. However, if we assume that this electron
is emitted in vacuum with momentum pvac = ~ky0 only
parallel to the emission surface and equal to the trans-
verse momentum in diamond before emission (in order to
satisfy conservation of transverse momentum), then the
energy with which this electron must be emitted is

Evac =
(~ky0)

2

2me
,

where me is now the electron mass in vacuum. For the
given diamond parameters, this energy is at least ≈ 6.3
eV. However, the energy with which an electron reaches
the emission surface is of the order of 0.1 eV (for exter-
nal fields of interest not greater than around 30 MV/m

so the applied fields in diamond do not exceed 6 MV/m).
For the maximum true NEA measured in experiments
on emission from (100) surfaces, an emitted electron can
gain an additional energy of 1.7 eV. Thus, for electrons in
the four conduction band valleys along the y and z direc-
tions in k space, we cannot satisfy both conservation of
energy and transverse momentum during emission. How-
ever, electrons in the two valleys along the x direction
have a much smaller transverse momentum, since the
wave vectors of their valley minima, k0 = (±kx0, 0, 0),
have zero components in the transverse directions. This
leads to non negligible probabilities of emission for elec-
trons with energies of the order of 0.1 eV in one of these
two valleys.

0 50 100 150 200

x (Å)

0

50

100

150

V
(x
)

(m
eV

)

χ = 300 meV, F = 15 MV/m
V (x)

V stair step

Figure 3. The surface potential is approximated as a stair-step
discretized shape in the transfer matrix method for calcula-
tion of the transmission probability. The shown discretization
consists of 40 intervals - more than an order of magnitude
smaller number than used in the simulations.

In order to explicitly include the conservation of
transverse momentum in the calculation of emission
probabilities, we also implemented the transfer matrix
method46–48. We recently used the TM method in emis-
sion studies from GaAs49. Moreover, this method allows
us to use general, piece-wise continuous surface potentials
and the change of the electron mass in the transition from
diamond to vacuum. This is done by using a stair-step
discretized representation of any surface potential and
then solving Schrödinger’s equation in each interval. For
example, the stair-step discretized representation of the
potential energy V (x) across the interface given by Eq.
(2) is shown in Fig. 3.

In the transfer matrix approach, the transmission
probability is given by

T =

(
ktr,‖minc

kinc,‖mtr

)
/ |P11|2 , (8)
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where P =
∏n−1
i=0 pi with pi (ki, mi, ki+1, mi+1, ∆x) be-

ing 2× 2 matrices calculated from the Schrödinger equa-
tion in each slice with length ∆x, kinc,‖ and ktr,‖ are
the initial and final electron wave vectors, respectively,
along the emission surface normal; similarly minc and
mtr are the initial and final electron masses. We incorpo-
rate the effect of the electron mass change in the emission
probability calculation using the approximation that the
change happens when the emission surface is crossed. For
the TM calculation, this leads to the initial k0, m0 set to
the values in diamond with which an electron attempts to
cross the emission surface located at x0. All subsequent
ki, mi, for i > 0, are considered to be in vacuum. Thus,
minc is the electron effective mass in diamond along the
emission surface normal (the x axis for the case here).
Depending on which one of the six equivalent conduction
band valleys an electron is when it impacts the vacuum
interface,minc will be equal to eithermL ormT . For elec-
trons on the [100] valleys in diamond, minc = mL and
for the other four valleys minc = mT . The TM approach
from Eq. (8) has been applied to calculate transmission
probabilities in semiconductor heterojunctions47 in order
to include the effect of changing the electron mass across
subdomains with different effective masses.

Conservation of the electron’s transverse crystal mo-
mentum and its total energy is explicitly accounted for
in the TM method since the values of the (longitudinal)
wave vector in each of the slices for i > 0 are calculated
from

ki =
1

~

√
2mi (E − V (xi))− (~k⊥)

2
, (9)

where E, k‖, and k⊥ are the electron’s total energy, longi-
tudinal and transverse wave vector magnitudes, respec-
tively, in diamond with which it attempts to cross the
emission surface. The value of k‖ is used to initialize k0.
For k2

⊥ > 2mi (E − V (xi)) /~2 (when transverse momen-
tum cannot be conserved) the wave vector ki is purely
imaginary leading to exponentially small values when cal-
culating the transmission probability (similar to the case
of tunneling). Note that the electron total energy is gen-
erally given by

E = ε (k) + EV ,

where ε (k) is the electron energy relative to the bottom
of the valley (at energy EV ) it is in. Since for diamond
we consider only the lowest conduction band, we can set
EV = 0. However, when more conduction bands are
considered (or different valleys, non symmetry related,
from the same band as in GaAs49), EV can be set to
zero only for the lowest conduction band valley.

Since the two reduced 1D models do not generally in-
clude conservation of transverse electron momentum, we
can directly compare the emission probabilities from the
TM method with them only for electrons in diamond on
valleys along the [100] axis which is also the direction nor-
mal to the emission surface. In this case, the wave vectors

k0 = (±k0x, 0, 0) of the valley minima have zero trans-
verse components. The electron transverse momentum
on these valleys is determined only by their transverse
momentum relative to the valley minima. We compare
emission probabilities for electrons in [100] valleys calcu-
lated with the TM method and with the Tq model, from
Eq. (5), in Fig. 4.

However, to better understand how the electron effec-
tive mass anisotropy and its change to the isotropic scalar
mass in vacuum affect emission probabilities, we consider
two cases (in both, the conduction electrons in the emit-
ting material are modeled with a single parabolic band
with a minimum at EV = 0). The first case focuses only
on the effect of changing the electron effective mass from
its value in the emitting material to its different value
in vacuum assuming that the emitting material has an
isotropic effective mass. Note that an isotropic effective
mass is one of the assumptions made in the Tq model,
Eq. (5), while the change of the electron mass to its
value in vacuum is not included. This leads to the prob-
ability of emission given by Eq. (5) to depend only on a
single scalar effective mass and the electron normal en-
ergy E‖, i.e. Eq. (5) has no dependence on the electron’s
transverse momentum. For the purpose of comparing
the emission probabilities with the second case (when
the electron effective mass anisotropy for diamond is in-
cluded), we will assume that the isotropic effective mass
in the first case is equal to mL. Given these assumptions
for this first case, we have E =

((
~k‖
)2

+ (~k⊥)
2
)
/2mL,

E‖ =
(
~k‖
)2
/2mL, mvac = me 6= mL, and the longitu-

dinal wave vectors used in the TM method (for a given
k⊥) can be determined from the expression:

~ki =
√

2mi

(
E‖,eff − V (xi)

)
, (10)

where

E‖,eff ≡
(
~k‖
)2

2mL
+

(~k⊥)
2

2m∗
, (11)

with

1

m∗
≡ 1

mL
− 1

mi
, (12)

m0 = mL, and mi = me for i > 0. Since we consider
the potential in vacuum, V (x > x0), when calculating
the emission probabilities in the TM method, we always
use the initialization k0 = k‖ and V (x0) = 0. Thus,
for the isotropic effective mass, Eq. (10) holds even for
i = 0. For the first case, the emission probabilities from
the TM method and the Tq model of Eq. (5) are shown
in Fig. 4 (a). Each of the four data sets corresponds to
a given value of k⊥ with the probabilities calculated over
an interval of E‖ =

(
~k‖
)2
/2mL values (as indicated

on the x axis of the plot). Since, the Tq model does
not take into account the change of the electron mass, it
depends only on E‖ and leads to a single data set shown



7

0 100 200 300 400 500 600 700

E‖ (meV)

0.0

0.2

0.4

0.6

0.8

1.0

T
( E

‖,
k
⊥
)

(a)

electrons in [100] valleys

k⊥ = 0.25 Å−1
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Figure 4. Comparison of electron emission probabilities from
diamond calculated from Eq. (5) evaluated at E‖,eff

(
E‖, k⊥

)
(dashed lines), and from the TM model (solid lines). Each
data set shown is for a given value of k⊥ and then the prob-
abilities are evaluated for the same range of E‖ values. The
(a) plot is for a “diamond” modeled with an isotropic effective
mass. The (b) plot is for the case with the anisotropy of the
diamond effective mass included.

with the dashed line for k⊥ = 0 in Fig. 4 (a). It is
in excellent agreement with the corresponding data from
the TM calculation, as expected, since for k⊥ = 0 and an
isotropic band, the emission probability calculations in
the two models depend only on a scalar effective electron
mass and E‖.

Eq. (10), however, indicates that for a constant k⊥, the
ki in the TM method depend on a single, effective, lon-
gitudinal energy E‖,eff . Since we had an excellent agree-
ment between the two models when k⊥ = 0, we could
expect that if the same effective normal energy is used in
the two models, the agreement between them should re-
main effectively the same. This is indeed the case as seen
in Fig. 4 (a) if we use Eq. (5) to evaluate Tq

(
E‖,eff

)
when

k⊥ 6= 0. This agreement indicates that we can extend the
Tq model to include the change of the electron effective
mass during emission (using the same approximation as
in the TM method), provided we use Eq. (5) to calcu-
late the emission probability with an argument given by
E‖,eff . Moreover, the extension preserves conservation of
transverse momentum and total energy since these are
built in the TM method and will carry over when us-
ing E‖,eff . This will hold not only for the specific case
we considered here when electrons are emitted from the
[100] valleys of a “diamond” with an assumed isotropic
effective mass but also in the more general case of elec-
trons emitted from a material with cubic symmetry and
a parabolic band with its minimum at the Γ point.

The representation given by Eqs. (10) and (11) allows
us to better understand the behavior of the calculated
emission probabilities shown in Fig. 4 (a) when k⊥ in-
creases. Fig. 4 (a) indicates that the onset of essentially
non zero emission probabilities occurs at increasing val-
ues of E‖ when k⊥ increases. This is due tom∗ < 0, given
by Eq. (12) in the first case when mi>0 = me < mL and
E‖,eff < E‖ for k⊥ > 0 and i > 0. This requires an
increasingly larger value of the initial E‖ to reach the
threshold of essentially non zero emission probabilities
when increasing k⊥. This effect is present because we
included the change of the electron mass in the calcula-
tion of the emission probability and the change is from a
larger value in the emitting material to a smaller one in
vacuum leading to m∗ < 0.

For the second case, we include the effect of anisotropy
in the electron effective mass in diamond. In the case
of emission from [100] valleys again, we now have E =(
~k‖
)2
/2mL+(~k⊥)

2
/2mT , E‖ =

(
~k‖
)2
/2mL, mvac =

me 6= mL 6= mT . The longitudinal wave vectors used in
the TM method (for a given k⊥) can again be determined
from Eq. (10) for i > 0. However, in this case the m∗ in
the effective longitudinal energy, Eq. (11), is given by

1

m∗
≡ 1

mT
− 1

me
, (13)

for all i > 0. We now have m∗ > 0 since mT = 0.36me.
For i = 0, we again initialize k0 = k‖ and m0 = mL with
their values in diamond at the emission surface, x = x0.
Due to the anisotropy in the electron effective mass, Eq.
(10) now holds only for the slices in vacuum (i > 0).

The emission probabilities from the Tq model and the
TM approach (which now includes the electron mass
anisotropy) are compared in Fig. 4 (b). The Tq(x) model
evaluated with E‖ as its argument corresponds to the
data set given for it with k⊥ = 0 (same as the corre-
sponding data set in Fig. 4 (a)). The data from the TM
calculation is also the same as in 4 (a) for k⊥ = 0 since
the effective mass anisotropy is not present when the elec-
tron has zero transverse momentum. For k⊥ > 0 and due
to the change of the electron mass effect included in the
TM calculation, we use the insight from the first case
and evaluate Tq

(
E‖,eff

)
to compare to the TM results.

The agreement between the two models is still very good
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for k⊥ = 0.1 Å−1 but starts to show deviations when in-
creasing k⊥ further. In this case, the differences between
the two approaches to calculate emission probabilities is
due to the presence of anisotropy in the electron effective
mass. This effect is included in the TM calculation using
the approach we described. However, this approach can-
not be directly transferred to the Tq model even when we
use E‖,eff for the normal energy in Eq. (5).

For the effective mass anisotropy in diamond, the data
in Fig. 4 (b) indicates that the onset of essentially non
zero emission probabilities starts at decreasing E‖ when
increasing k⊥. This is the opposite behavior relative to
the first case shown in Fig. 4 (a). It is readily un-
derstood following the same argument: for the specific
mass anisotropy, we have m∗ > 0 leading to an in-
crease of the effective normal energy E‖,eff when increas-
ing k⊥ for a fixed E‖. In the TM approach, crossing the
diamond-vacuum interfaces leads to redistribution of the
electron total energy with the electron effectively gaining
normal energy when its transverse mass mT transitions
to the mass in vacuum me. A transmission probabil-
ity that depends both on normal kinetic energy E‖ and
the transverse momentum, T

(
E‖, k⊥

)
, has been inves-

tigated previously50 in the context of Schottky barrier
metal-semiconductor contacts.

Our ad hoc implementation of the Tq model in Vorpal
does an explicit check to determine if the electron trans-
verse momentum can be conserved during emission. If
it can, it then uses the emission probability calculated
from Tq to decide if the electron should be emitted or
reflected. Otherwise, it directly reflects the electron. In
this ad hoc treatment, electrons on non [100] valleys are
directly reflected since they never have enough energy to
conserve full crystalline momentum during emission. For
the TM method, the emission probability is always cal-
culated and used to decide if an electron is emitted or
reflected. While all simulation result reported are done
with the TM method, the ad hoc algorithm with the Tq
probabilities appear to work well for diamond too. This
is likely due to the energies with which electrons reach
the emission surface (discussed later) that are around 100
meV and the small transverse momentum they have on
the two [100] valleys. Under these conditions (approxi-
mately k⊥ < 0.1 Å−1), the probabilities from the TM and
the Tq calculations do not show significant differences.

The effective mass change represents a stronger effect
on the probability of emission when the relative differ-
ence between the effective mass in the photocathode ma-
terial and in vacuum increases. For example, emission
of electrons from the Γ valley of GaAs includes change
of the electron mass from mΓ = 0.067me to the me in
vacuum49.

Note that the TM method allows us to include a more
smooth transition for the effective mass from the emitting
material to vacuum over a more extended spatial region,
similar to the gradual interface for the dielectric constant
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Figure 5. The TM allowed us to readily explore a different
surface potential (a) and how it affects the emission proba-
bilities (b). The results are for the two limiting values of the
external field we considered and for normal incidence.

considered by F. Stern51. We have considered only a
single slice change in the effective mass here, however.

In addition to the surface potential given by Eq. (2),
we also investigated electron emission when using another
potential function

V (x) = V0 − V1θ (x− d)− Fx, x > 0, (14)

where θ (x) is the Heaviside step function, V (x) = 0 for
x ≤ 0 and the emission surface is at x = 0. This potential
represents a stair-step barrier of hight V0 (relative to the
conduction band minimum at the surface) and width d.
In absence of applied field F , the vacuum level is at V1.

This potential, with no applied field, was proposed by
Fisher et al.52 as an approximation of the surface po-
tential for a GaAs cathode with a Cs-O activation layer.
Recent simulations49 have shown that using this stair-
step potential leads to good agreement with some of the
experimental data on electron emission from GaAs. Since
the TM method allows us to use any piece-wise contin-
uous function for the potential, we considered how the
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emission is affected by the shape and parameters of the
surface potential.

A representative stair-step potential is shown in Fig. 5
(a) and its related emission probabilities calculated with
the TM method are shown in Fig. 5 (b) for the limit-
ing values of applied fields simulated and normal inci-
dence. The stair-step potential shown in Fig. 5 (a) has
parameters V0 = 0.35 eV, V1 = 0.18 eV, and d = 8 Å.
The emission probabilities calculated with this potential
(Fig. 5 (b)) show an onset of emission at lower ener-
gies for higher applied field magnitude as expected. For
electron energies E & 250 meV, the emission probabili-
ties at the two different field values are close indicating
that the hight and with of the stair step potential are the
main parameters affecting their values and not the field.
In comparison with the emission probabilities calculated
with the potential from Eq. (2), the data set with k⊥ = 0
shown in Fig. 4, the rise is more gradual (unity is reached
over a wider range of energies) while in Fig. 4, the emis-
sion probability rises over a narrower range in electron
energies.

III. RESULTS

Here, we explain first the simulation set up to model
the dependence of the electron emission probability on
applied field measured in the experiments done by Wang
et al.10. Then, we describe results from the simulations
and compare them to the experimental data.

A. Emission probability deduced from experiments

Erdong Wang et al.10 reported an approach to obtain
probability of emission vs applied field from experimen-
tal data. In the simulations, we varied the external field
from 2.1 MV/m to 17.1 MV/m to approximately cover
the same range as in the experiments. Each field value
corresponds to a separate Vorpal simulation. In all of
the results described here, we used the electrostatic (ES)
modeling capabilities in Vorpal. In ES-mode simulations,
one sets the potential difference across the overall dia-
mond vacuum simulation domain. The values of the fields
specified, thus, correspond to the fields established by
the ES solver when the charge introduced in the simula-
tions effectively does not lead to screening of the external
field. In this case, the values for the field applied in dia-
mond are the corresponding external field values divided
by 5.7 (the dielectric constant of diamond). Moreover,
the ES solver allows to maintain the potential difference
across the simulation domain, similarly to the way the
experiments10 were done.

In these experiments, a probability of emission is de-
duced from two different types of measurements. In the
first type, a transmission-mode experiment, a diamond
sample has metal contacts applied to two of its opposite
sides and a voltage difference is applied to them. This ef-

fectively represents a capacitor with diamond being the
medium between the capacitor plates. A beam of pri-
mary electrons with energies of the order of 1 keV are
impinging on one of the diamond sides (moving through
the metal contacts there), scatter inelastically creating
secondary electrons and holes. Part of the the generated
electrons are transported to the anode on the opposite
side of the diamond slab and collected there. This repre-
sents the total transmitted charge Qtr (F ).

Electron emission is measured in the second type of ex-
periments when the anode is placed in vacuum, in front
of the diamond side where electrons are transported to.
The cathode is still a metal contact applied at the oppo-
site side of the diamond sample. In this, emission-mode
experiment, not all electrons that are transported to the
diamond emission surface have enough energy to be emit-
ted. Thus, the total collected charge, Qem, measured
at the anode due to emitted electrons collected there is
smaller than the total change Qtr collected in the trans-
mission mode experiments. These two quantities mea-
sured in the two types of experiments are used to deduce
a probability of emission at the given applied field F :

Pexp (F ) =
Qem (F )

Qtr (F )
. (15)

The total charge collected in the emission experiments is
also over a short collection time so any charge accumu-
lation at the emission surface due to reflected electrons
does not significantly affect the field applied in diamond.

B. Simulations approach to model experimental data on
emission probability

By analogy with the approach to deduce emission prob-
ability from the transmission and emission mode exper-
iments, we define a probability of emission from simula-
tions data using the ratio:

Psim (F ) =
Nem (F )

Ntr (F )
, (16)

where Nem (F ) is the number of emitted electrons at the
given external field magnitude F and Ntr (F ) is the num-
ber of electrons transported successfully to the emission
surface. A typical simulation domain used had lengths of
8×20×20 µm with 40×30×30 cells along the x, y, and
z axes, respectively. The diamond region had a length
of 6.5 µm and the vacuum length was 1.5 µm (some of
the simulations were with diamond length of 6.6 µm and
vacuum of 1.4 µm).

Each simulation proceeds in two parts. The first part
consists of secondary electron and hole generation due
to inelastic scattering initiated by primary electrons that
impact the diamond on the cathode metal-diamond con-
tact side. In the simulations, we always used 10 primary
electrons each with energy of 9 keV. This leads to approx-
imately 6000 secondary electrons that are transported to
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the emission surface. We have previously provided39 ex-
tensive details of the secondary electron generation phase
of the simulations and have also described in detail the
charge transport models for diamond we have imple-
mented in Vorpal. Note that not all electrons generated
are transported to the emission side of diamond. Some of
them are lost to the metal contact at the primary electron
impact side due to diffusive expansion39.

The secondary electron generation phase requires a
small time step to resolve the inelastic scattering rate.
We used dt ≈ 8.3×10−17 s. However, it completes within
several hundred femto seconds. We ran the first phase for
250 fs. The simulation data generated from this phase
is used as input to the second, drift-diffusion, simulation
phase in which a much larger time step is used. Visual-
ization of the created electrons and holes at the end of
the first phase is shown in Fig. 6 (a). Only part of the
simulation domain in the transverse directions is shown
to focus on the subregion that particles occupy at this
stage of their evolution. Each primary electron produces
a cascade of secondary electrons and holes. The primary
electrons are in red (difficult to see since they are sur-
rounded by the secondary electrons and holes they create
via impact ionization), the secondary electrons in yellow,
and the holes in blue. Under the applied electric field
along the negative x axis, holes are moving to the left
side of the simulation domain and collected there. This is
the location of the metal contact at the diamond surface.
It is at the side of the diamond sample where primary
electrons impinge on.

The applied field leads to drift diffusion transport of
the electrons towards the emission surface. A distribu-
tion at a given time for this state (before emission has
started) is shown in Fig. 6 (b). The full size of the simu-
lation domain is shown on all plots of Fig. 6 except in (a).
The observer point of view in 6 (b) is similar to the one
in the (a) plot and is chosen to clearly display the separa-
tion of the holes from the electrons that drift in opposite
directions. The (b) plot is from the second stage of the
simulations. This stage is dominated by elastic and low-
energy (relative to the impact ionization stage) electron
scattering processes39 (different types of electron-phonon
and charge impurity scattering).

Since the scattering rate of the drift-diffusion phase is
several orders of magnitude smaller than in the first (sec-
ondary electron generation) phase, we have used a time
step of the order of 10−15 s in the second phase of the
simulations. The particle push algorithm allows for mul-
tiple scattering events in a time step. Scattering times are
sampled from an exponential distribution. Charged car-
riers are pushed ballistically between scattering events.

Figure 6. Different phases of particle evolution confirm ex-
pected behavior (see text for further details).
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We collected emitted electrons over a time interval of
approximately 200 ps to obtain Nem (F ) from the simula-
tions data. The number of transported electrons Ntr (F )
was estimated by counting the number of electrons in the
simulations at a time close to but earlier than the time
when emission starts. All of these electrons are trans-
ported to the emission surface. When electrons reach
the emission surface, the ones with sufficiently high en-
ergy (and in the valleys along the [100] direction to allow
conservation of transverse momentum) are emitted ac-
cording to their emission probability.

Visualization of electron emission in the simulations is
shown in Fig. 6 (c) with the observer placed in front of
the emission surface (on the vacuum side) and looking
towards it. The vacuum electrons are in green. This
plot is from a simulation with surface-dependent electron
affinity χ (x = Const, y, z), where the emission surface
is at a given constant value of x. Note that the vacuum
electrons appear in a relatively small stripe for −y0 .
y . y0.

This is due to the different values of the electron affin-
ity used in a central stripe region (χ = 0.17 eV) compared
to the rest of the emission surface (χ = 0.55 eV). By vary-
ing the magnitude of y0, we can explore emission from
surfaces with different electron affinity coverage, e.g. due
to inhomogenous hydrogen coverage. When all the elec-
trons have reached the emission surface and most of them
with sufficiently high energy have been emitted, the re-
maining ones have accumulated at the emission surface
as shown in Fig. 6 (d). The observer’s point a view is
again similar to the one in the (a) and (b) plots. In Fig.
6 (d), the electrons appear as a thin yellow strip per-
pendicular to the x axis approximately at the location of
the emission surface. Due to accumulation of such elec-
trons, the field in diamond will eventually be screened.
Then, it will not be possible to transport more electrons
to the emission surface unless a sufficient number of the
electrons accumulated there are removed.

Over the 200 ps emission time interval simulated and
for the surface potentials we have used, almost all of the
electrons that have reached the emission surface with suf-
ficiently high energy for emission have been emitted. The
remaining electrons have low energies that lead to very
small emission probabilities when they hit the emission
surface. These electrons accumulate at the surface since
the applied electric field pushes them towards the emis-
sion surface where they are reflected back most of the
time.

C. Electron emission dependence on transverse momentum
conservation

To better understand the effect of transverse momen-
tum conservation on electron emission, we consider sev-
eral dynamic properties of the electrons. Specifically, it
is of interest to understand how the number of emitted
electrons varies with time, the evolution of electron valley

populations and of the average electron energy.
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Figure 7. Time evolution of the number of emitted electrons,
valley populations, and the average electron energy for 10.43
MV/m external field confirms emission is from the valleys
along the [100] direction only and when the electrons have
sufficiently high energy.
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Sample results on these quantities are shown in Fig.
7 with data from ES simulations with the TM emission
model. The probability of emission was calculated using
the surface potential with the image charge given by Eq.
(2). Fig. 7 (a) indicates how the total number of emitted
electrons increases over time. The fraction of electrons n‖
on the two [100] valleys and the fraction n⊥ of electrons
on the four perpendicular valleys are shown in in Fig. 7
(b). Emission is effectively allowed for electrons on the
[100] valleys since they have small transverse momentum.

These are the two valleys along the direction normal
to the emission surface. Electrons on the perpendicular
valleys have large transverse crystalline momentum and
cannot be directly emitted given the range of energies
with which they reach the emission surface.

The (a) and (b) plots of Fig. 7 confirm the expected
behavior. They demonstrate that electrons reaching the
emission surface on [100] valleys with sufficient energies
are the ones that are emitted first.

This is indicated in Fig. 7 (a) by the fast rise of the
number of emitted electrons when emission starts and in
Fig. 7 (b) by the fast decrease of the fraction of electrons
n‖ on the two [100] valleys. Note also that Fig. 7 (b)
shows the fraction of electrons n⊥ on the four perpendic-
ular valleys. This number is effectively unchanged dur-
ing the time interval of the initial fast rise of the electron
emission when the fraction of electrons n‖ on the [100]
valleys rapidly decreases. The electrons on the perpen-
dicular valleys do not have enough energy to be emitted
while also conserving their large transverse momentum
(in the plane of the emission surface).

After the fast rise of the number of emitted electrons,
emission still continues but at a lower rate. This is now
due to energetic electrons from the four perpendicular
valleys that first experience inter-valley electron-phonon
scattering ending in one of the two [100] valleys. Once
there, if they still have sufficiently high energies, they
can be emitted. This causes the slow decrease of elec-
trons on the four perpendicular valleys as seen in Fig. 7
(b). Finally, Fig. 7 (c) shows the evolution of the aver-
age energy of electrons in diamond. Initially, the average
energy is around 100 meV. Once emission starts, the elec-
trons with sufficiently high energy on the two [100] are
emitted first leading to the fast decrease of the average
energy of the remaining electrons in diamond. Then, in
the regime of electrons transitioning from the perpendic-
ular valleys to the [100] valleys due to electron-phonon
scattering followed by emission, the average energy de-
creases but again at a lower rate.

Once the electrons remaining in diamond have lowered
their average energy close to 40 meV, emission has effec-
tively stopped.

D. Comparison to experimental data

In this subsection, we consider how results from simula-
tions with different modeling approaches compare to ex-

perimental data on the dependence of the probability of
emission on applied field. We run simulations with differ-
ent surface potentials and parameters to understand how
they affect the agreement with the experimental data.
We also run simulations to investigate band bending and
specific inhomogeneous surface effects on the emission
probability.

1. Surface potential with the image charge

In the experiments done by Ergong et al.10, four single-
crystal, high-purity chemical vapor-deposition diamond
samples were prepared with the emission surface hydro-
genated to lower the electron affinity. It is expected that
the hydrogenation will give effective negative electron
affinity. The dependence of the probability of emission
on the applied field obtained from the experiments on the
four diamond samples is shown in Fig. 8.
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Figure 8. Simulation results with the TM emission model us-
ing the surface potential with the image charge and constant
electron affinities are in qualitative agreement with experi-
mental data from four diamond samples.

Only two of the four similarly prepared diamonds show
emission probabilities vs applied field that are close. One
of the other diamonds shows higher values while the last
one gives lower emission probabilities for each of the ap-
plied field values, respectively. This behavior likely in-
dicates that only two of the four diamonds had approxi-
mately the same hydrogen coverage while the other two
were effectively prepared with different levels of hydro-
genation. Furthermore, it is possible that the hydrogen
coverage is not uniform across the emission surface - an
effect we have started to explore with some of the simu-
lations presented here as well.

However, we start with simulations assuming the di-
amond emission surface is uniformly hydrogenated (i.e.
constant electron affinity for any point on the surface),
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the surface potential is given by Eq. (2), and use the
TM emission model since it explicitly takes into account
conservation of transverse momentum when calculating
the probability of emission.

We ran a set of simulations, with results from them
also shown in Fig. 8, to determine the electron affinity
χ that gives the closest agreement with the experimental
data10. In the simulations, χ is only parameter that is
varied. All other parameters are considered to be known.

The set of electron affinities used leads to probabilities
of emission from the simulations that span the measured
values. For χ = 0.35 eV, all emission probabilities (except
one) from the simulations are lower than the experimen-
tal data. For χ = 0.25 eV and external field magnitude
higher than 8 MV/m, the simulation probabilities exceed
all observed ones.

While the simulation probabilities for χ ≈ 0.3 eV cover
the range of values measured from the four diamonds, the
agreement is qualitative. The slope of the probability of
emission vs field in the simulations is different than in
the experiments. For low field magnitudes, the emission
probabilities from the simulations approach zero faster
than in the experiments. For high applied fields, the
simulations give probabilities that grow faster than in
the experiments.

Even within this level of agreement, the electron
affinity χ = 0.31 eV from the simulations that leads
to emission probabilities closest to the experimental
data is in the range of previously deduced from other
experiments53,54.

Before proceeding to consider additional effects on
emission, we note that the simulation results in Fig. 8
obtained with the TM model are approximately the same
as results with electron emission probabilities calculated
from K. Jensen’s model given by Eq. (5) provided we
add an ad-hoc designed algorithm in the code to conserve
transverse momentum. This algorithm checks explicitly
if transverse momentum can be conserved when an elec-
tron is selected for emission with probability calculated
from Eq. (5). If its transverse momentum cannot be
conserved, it is reflected even though the Monte Carlo
approach in the code has used the emission probability
value from Eq. (5) to indicate that it should be emitted.
For the energies in the simulations, this ad-hoc algorithm
effectively sets to zero the emission probabilities of elec-
trons on perpendicular valleys (while in the TM model
these electrons have exponentially small probabilities of
emission and in practice none of them are emitted). This
indicates that the ad-hoc algorithm can be used when
electron band valley anisotropy is of importance (as in
the case of diamond) together with the reduced model
leading to Eq. (5). This is particularly valuable when fast
execution is required, e.g. for sufficiently large scale sim-
ulations in 3D. For the simulation sizes described here,
using the TM model to calculate emission probabilities
and running in parallel on 8 or 16 processor Linux clus-
ter (8/16 GB of memory) was sufficient (even when the
surface potential had to be recalculated for each electron

emission attempted).

2. Band bending effects

The results presented in the previous subsection did
not include energy band bending that develops in semi-
conductor interface regions. These results give us basis
for comparison with simulations that include band bend-
ing effects. Moreover, the diamond samples measured in
the experiments10 were high-purity synthetic CVD dia-
monds produced by Element Six that typically have less
than one carbon atom in 200 million replaced by an im-
purity atom. Thus, at impurity density of the order of
1015 cm−3 or less and with different hydrogenation levels
applied to diamond emission surfaces, the band bending
region that develops is still to be determined accurately.

Next, we briefly examine the origin for the develop-
ment of surface band bending and then consider simu-
lations to explore how given band bending parameters
affect electron emission. In these simulations, we treat
the band bending region within specific approximations.

In the absence of current flow, band bending near a
diamond-vacuum interface in thermal equilibrium devel-
ops due to charging of surface states leading to formation
of a space-change layer55 beneath the diamond surface.
The band bending potential φS at the diamond-vacuum
interface can then be determined from the charge neu-
trality of the diamond surface solved as an electrostatic
problem. The value φS of the band potential at the sur-
face is needed since it represents one of the two required
boundary conditions to solve for the band bending po-
tential φ in the BBR. This potential is determined from
solving a non-linear Poisson’s equation generally given by

∇ · (ε∇φ) = q
(
n [φ]− p [φ] +N−A [φ]−N+

D [φ]
)
, (17)

where ε (r) is the dielectric constant, n and p are the
electron and hole densities in the conduction and va-
lence band, respectively, N−A and N+

D are the densities
of ionized acceptor and donor impurities when present.
When periodicity is preserved in the emission surface, the
resulting non-linear Poisson equation is effectively one-
dimensional. It is then solved with a Neumann boundary
condition (bc) in bulk diamond, φ′ (x→∞) = 0, and
a Dirichlet bc at the diamond surface φ (x = 0) = φS .
Once φ (x) is determined, then the effect of band bend-
ing on electrons in the conduction band approaching the
emission surface can be approximated by applying the
additional field Fbb (x) = −∇φ (x) when their longitudi-
nal position x is in the BBR.

Emission of electrons in diamond will be enhanced if
we could achieve downward band bending as shown on
the diagram in Fig. 1. Downward band bending will in-
crease the number of emitted electrons due to two effects.
First, it will lower the surface potential barrier relative
to the conduction band minimum in bulk diamond and,
second, electrons in the BBR will be accelerated towards
the emission surface when interacting with the Fbb field.



14

The non-linear Poisson Eq. (17) simplifies when there
is only one type of fully ionized impurities, e.g. acceptors,
and for a periodic surface the corresponding 1D version
becomes:

d2U (x)

dx2
=

q2

εkBT

(
NA −

2NV√
π
F1/2 (ηV − U(x))

)
,

(18)
where ηV = (EV − EF ) /kBT (with EV the valence
band maximum in bulk and EF the Fermi level, kB
the Boltzmann constant and T the lattice temperature),
U(x) = qφ(x)/kBT , NV = 2

(
mdhkBT

2π~2

)3/2
with mdh a

hole-related effective mass, and F1/2 (x) =
´∞

0

√
u

1+eu−x du.
If the semiconductor is non-degenerate EV + 3kBT ≤

EF ≤ EC − 3kBT (as the high purity CVD diamonds
used in the emission experiments), where EC is the min-
imum of the conduction band in bulk, the solution of the
1D non-linear Poisson Eq. (18) can be represented in
analytic form

sgn (US)

ˆ US

U(x)

du

F (u, UF )
=

x

LD
, (19)

where

F (x, y) =
√
ey (e−x + x− 1) + e−y (ex − x− 1),

UF = (Ei − EF ) /kBT with Ei the Fermi level for the
intrinsic semiconductor, US ≡ U(x = 0) = qφS/kBT ,
and LD =

√
εkBT
2q2ni

with ni the conduction band electron
density in the intrinsic case.

Since UF is calculated from bulk properties as a func-
tion of temperature and bulk doping density, we can de-
termine the band bending potential φ(x) by numerically
solving Eq. (19), e.g. by using a bisection algorithm,
provided φS is known.

If the semiconductor is degenerate, as in highly doped
GaAs photocathodes, one has to directly solve the 1D
non-linear Poisson Eq. (18). It can be solved numeri-
cally by a finite difference discretization and then using
a Newton-Ralphson algorithm to find the roots of the
resulting matrix equation.

The value of φS is determined from the surface charge
neutrality condition

Qss (φS) +Qsc (φS) = 0, (20)

where Qss (φS) is the total charge density on surface
states and Qsc (φS) is the space-charge density with mag-
nitude determined from |Qsc (φS)| = |ε (dφ/dx) (x = 0)|
where φ (x) is the solution of the 1D non-linear Pois-
son equation. In the simplest case of only one type of
surface states, e.g. donors with density Nsd and energy
Esd, the total charge density on surface states is given by
Qss (φS) = qNsd (1− 1/ (exp (β (Esd − EF )) + 1)). Note
that for a p-doped semiconductor and downward band
bending φS > 0 at the surface, with φ (x→∞)→ +0 in
bulk, the space-charge region is negatively charged since

near the surface: p (x)−NA = p (x)− pbulk < 0. For this
case, charge neutrality at the surface can be satisfied if
there are surface donor states that are positively charged.

The energy of electrons on surface states relative to the
valence (or conduction) band at the surface EV (x = 0) is
determined from atomic properties and remains fixed55.
For the case of donor surface states and provided Esd −
EV (x = 0) is known from atomic properties, then Esd −
EF = Esd − EV (x = 0) − qφS + EV − EF (with EV −
EF determined from bulk parameters) which allows us to
evaluate Qss (φS) for any given value of φS and density
of surface donors Nsd. Then, the band bending potential
φS at the surface can be determined self-consistently by
numerically solving for the root of Eq. (20).

We have prototyped code to carry out this approach
by numerically solving Eq. (18) for φ (x) and Eq.
(20) for φS . Results from this code56 recover previous
calculations55 for φ (x) and the Fermi pinning regime
when increasing Nsd for the case of GaAs. We are cur-
rently considering to add this capability into Vorpal.
However, for high purity diamonds, we can further ap-
proximate the bend bending potential with the quadratic
form

φ (x) = φS

(x
d

+ 1
)2

, (21)

where the BBR is defined for the interval −d < x ≤ 0
with length d, the emission surface at x = 0, and the
vacuum region for x > 0. The approximation for the
BBR potential from Eq. (21) is straightforward to use in
Vorpal since the electric field due to it is expressible as a
linear function in a given spatial region. This field can be
introduced in the simulations using Vorpal’s multi-field
functionality. Vorpal allows simulations with multiple
fields specified by space-time expressions that could con-
sist of elementary and special functions. These expres-
sions are provided in a Vorpal input file. Vorpal’s parser
builds abstract syntax trees for all such expressions that
can then be evaluated efficiently at each time step and
added to requested fields within a given space-time do-
main.

For the simulations we did with band bending, we
specifically considered how the magnitude of the band
bending potential energy W = qφS affects the probabil-
ity of emission. A large range (over a few eV) of values
for W have been reported from experiments53,54 possi-
bly indicating that W strongly depends on surface cov-
erage preparation. We ran simulations with several val-
ues of W and kept d = 0.1 µm constant (such a value
for the BBR length was also reported previously from
experiments53,54). Generally, d changes when changing
φS as the solution of Eq. (19) for non-degenerate semi-
conductors indicates. However, we wanted to isolate the
effect of Won emission. Moreover, for quadratic band
bending, Eq. (21), d ∝

√
|φS |, as discussed by Sze and

Ng57, leading to relatively small variation of d over the
range ofW simulated, particularly near the emission sur-
face where the electric field due to the band bending po-



15

0 2 4 6 8 10 12 14 16 18

F (MV/m)

0.0

0.2

0.4

0.6

0.8

1.0

1.2
P
(χ

,F
)

Diamond 1
Diamond 2
Diamond 3
Diamond 4
χ = 0.35 eV, W = 0

W = 0.32 eV
W = 0.50 eV
W = 0.96 eV

Figure 9. Increasing the band bending magnitude W , while
keeping the band bending region length constant at d = 0.1
µm, increases the probability of emission (as expected) across
the range of external fields. The experimental data and the
simulation result without band bending are shown for com-
parison.

tential is the strongest.

In Fig. 9, we compare results on the probability of
emission with different values of the band bending poten-
tial magnitude W with a simulation result without band
bending and with the experimental data10 from the four
diamond samples.

The simulation without band bending indicate emis-
sion probabilities below the measured values (except at
the highest applied field); this is the same data set as
previously shown in Fig. 8 for χ = 0.35 eV. Increasing
W leads to increase in the emission probability. This
is expected since electrons are accelerated in the BBR
and reach the emission surface with higher energies (com-
pared to the no BBR case). In this case, more electrons
have sufficiently high energies for emission. The data in
Fig. 9 shows that when increasing W from 0.32 eV to
0.96 eV (these are values in the range reported from ex-
perimental measurements53,54), the probability of emis-
sion moves from below the experimental data to approx-
imately above it. For W = 0.5 eV, the simulations are
within the range of values from the four separate dia-
mond samples measured. Thus, adding band bending
in the simulations improves the agreement with experi-
ments. However, the slope of the simulation values still
differs from the slope of any of the separate diamond
samples. These results indicate that the band bending
region effect is important to include in the simulations
but other effects are to be considered in the modeling as
well before quantitative agreement with the experimental
data is achieved.

3. Stair step surface barrier

The simulation results discussed so far in this section
used the surface potential with the image charge term
given by Eq. (2). The electron affinity is the only pa-
rameter of the potential that is varied in the simulations.
Values for it can be selected leading to results in the
same range as in the experiments. Including downward
band bending in the modeling, increases the probabil-
ity of emission but the agreement with the experimental
data remains qualitative.

In Section II, we discussed that a stair step potential
was also proposed52 and used to study emission from
semiconductor photocathodes (GaAs) leading to results
in agreement with some of the observed experimental
data49. Moreover, the TM approach readily allows us to
calculate the probability of emission for any piece-wise
continuous potential.

Emission probabilities calculated with specific param-
eters of the stair step potential given by Eq. (14) and
two applied fields in the range we study here are shown
in Fig. 5. As discussed in Section II, in comparison
with the emission probabilities calculated with the image
charge potential shown in Fig. 4, the stair step potential
leads to probabilities that rise more gradually (unity is
reached over a wider range of energies) while in Fig. 2,
the emission probability rises from approximately zero to
unity over a narrow range in electron energies.

In order to explore how differences in the surface poten-
tial affect the comparison with the experimental data, we
also run simulations with the stair step potential given by
Eq. (14) and parameters in the range considered in Sec-
tion II. While for the surface barrier with image charge
the electron affinity is the only parameter we vary in
the simulations, there are three parameters that can be
changed when using the stair step potential: the height
V0 of the step relative to the conduction band minimum
at the diamond surface, the width of the step, and the
position V1 of the vacuum level. We ran simulations vary-
ing all three of these parameters to again consider how
the results compare with the experimental data on the
probability of emission vs applied field.

A typical set of results from the simulations with the
stair step potential is shown in Fig. 10. For comparison,
we have also plotted the experimental data from the four
diamond samples and one of the simulations with the
image charge potential with χ = 0.31 eV (that was shown
previously in Fig. 8). To focus only on how the surface
barrier type affects emission, all simulation results in Fig.
10 are done without band bending.

We kept the height V0 = 0.35 eV and the width of the
potential step at 8 Å for the simulation results shown
in Fig. 10. We varied only the position of the vacuum
level V1. Note that V0 is similar to the electron affinity
parameter in the image charge potential.

The results in Fig. 10 indicate that we can again
bracket the experimental data when using the stair step
barrier and changing only the vacuum level V1 in the in-
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Figure 10. A stair step surface potential with specific param-
eters could also be used in the simulations to obtain probabil-
ities of emission in the range of observed experimental data.

terval from 0.08 eV to 0.18 eV. The slope of the emission
probability vs applied field dependence has changed in
comparison with the image charge potential simulations
(results for χ = 0.31 eV shown in Fig. 10 to compare
with the stair step potential results). However, the level
of agreement with the experiments is again qualitative.
Simulations with the stair step barrier when varying V0

and the width of the step do not lead to quantitative
agreement with the data from the four diamonds.

4. Effects of electron affinity variation across the emission
surface

Given the current level of agreement with the exper-
imental data, it is of interest to understand what other
effects could further improve it. The four diamond sam-
ples measured also show variation in the probability of
emission vs applied field. This variation is likely due to
inhomogeneous hydrogen coverage during the emission
surface preparation and to surface roughness. Previously,
Cui et al.18 considered electron emission from diamond
with surfaces with different level of hydrogenation. They
interpreted their emission data using graphitic patches
that cover a small fraction of the surface. To explore the
effect of inhomogeneous surface hydrogenation, we re-
cently prototyped an implementation to model electron
emission with surface varying potentials. The initial set
of simulation results with this new modeling capability
is shown in Fig. 11.

The potential with the image charge given by Eq. (2)
is defined to vary across the emission surface through
its electron affinity term χ (x = Const, y, z) using the
form discussed in relation to the simulation visualization
shown in Fig. 6. The parameter y0 was varied in the
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Figure 11. Simulation results with surface-dependent elec-
tron affinity with the potential from Eq. (2) show the closest
agreement with experimental data. The results are from runs
with surface patches with different area coverage (apart from
the simulation result with constant electron affinity, blue tri-
angles, shown for comparison). The patches are with electron
affinities of 0.17 eV (central stripe with given area) and the
rest of the emission surface with 0.55 eV.

simulations to select the surface area fraction with the
smaller electron affinity of 0.17 eV in the region −y0 <
y < y0 while the rest of the emission surface had a higher
electron affinity of 0.55 eV.

Including patches with different electron affinities in
the simulations gives the best agreement with the exper-
imental data over the whole range of applied fields so far
as the data in Fig. 11 indicate. Area fraction of 0.1 with
the lower electron affinity shows results closest to the
data from two of the diamond samples measured while
the data with area fraction of 0.05 is close to the val-
ues from the diamond sample giving the lowest observed
emission probabilities.

The results shown in Fig. 11 are representative for the
level of agreement with the experimental data that can be
reached when using the two electron affinity patch model
in the simulations. We are still to perform a systematic
study to optimize the parameters of the patch model that
lead to the best agreement with the experiments.

Note that the results with the non uniform surface
potential described in this subsection are based on the
approximation that emission with conservation of trans-
verse momentum is the most dominant process and holds
at least locally (the probability of emission is calculated
with the potential evaluated at the location on the surface
where an electron impacts it). Generally, once the sur-
face potential is not translationally invariant in the emis-
sion plane, electrons have non zero probability of emis-
sion with a change in their transverse momentum. Quan-
tum mechanical approaches have been developed58–61 to
study these effects and to model transmission probabil-
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ities in the presence of rough surfaces. Periodic vari-
ation of the surface potential in the emission plane do
indicate58 that the dominant emission process (the one
with the highest probability) is with conservation of
transverse momentum. We are currently investigating
these approaches.

We expect that including band bending and surface
roughness in the modeling will further improve the agree-
ment with the experimental data although this will in-
crease the parameter space to be explored in the simula-
tions.

IV. SUMMARY

We applied recently implemented electron emission
and bend bending models, in combination with previ-
ously developed capabilities to model secondary electron
generation and charge transport in diamond, to per-
form end-to-end simulations of two types of experiments,
transmission and emission, on the diamond-amplifier
cathode concept10. We compared the probability of emis-
sion vs applied field from the simulations with the corre-
sponding data from these experiments for electric fields
in vacuum in the range from 2.1 MV/m to 17.1 MV/m.

The simulation results indicate a strong dependence
of the probability of emission on conservation of trans-
verse momentum. In both, simulations and experiments,
the field was applied along the [100] axis. In this setup,
electrons have energies that allow emission only from the
two lowest conduction energy band valleys parallel to the
[100] axis. Electrons on the four perpendicular valleys
cannot be emitted directly since they do not have high-
enough energies to conserve transverse momentum dur-
ing emission. However, electrons on perpendicular valleys
can transition to parallel valleys due to inelastic electron-
phonon inter-valley scattering. Once on parallel valleys,
they could be emitted provided they still have sufficiently
high energy left. Thus, the emission of electrons that
reach the emission surface on perpendicular valleys is de-
layed relative to the emission of electrons reaching the
surface on parallel valleys. The latter could also be emit-
ted with higher energies since they do not lose energy
to emit phonons in electron-phonon inter valley scatter-
ing transitions. The resulting longer temporal width and
larger energy spread of emitted electrons can be reduced
either by appropriately tailoring the emission surface or
by filtering them where application necessitates.

We used the implemented models to run simulations to
compare with results on the probability of emission vs ap-
plied field derived from transmission and emission-mode
experiments10. We designed the simulations to explore
how two different types of surface potentials (previously
considered to model electron emission) affect the com-
parison with the measured data.

In simulations with the image charge potential, the
electron affinity χ is the only free parameter that was
varied. Comparison with the experimental data indicates

that χ = 0.31 eV leads to simulation results in the same
range. However, the agreement is qualitative. The de-
pendence of the probability of emission on applied field
has a different slope in the simulations compared to the
experiments.

Using a stair step potential that had three different pa-
rameters that can be varied changes the slope of this de-
pendence but the agreement with the experimental data
remains qualitative. We can again find parameters for the
stair step potential that give results in the same range as
in the experiments.

The addition of downward band bending in the model-
ing using a quadratic approximation increases the prob-
abilities of emission, as expected, but showed small
changes in the slope of the probability curves.

The closest agreement with the experimental data was
reached when using emission surfaces with a non-uniform
surface potential: part of the emission surface had one
electron affinity value while the rest was given a different
one. We used this as an approach to model non-uniform
hydrogen surface coverage since the four diamonds mea-
sured showed variation in the probability of emission and
their level of hydrogenation is not well understood.

The implemented models already allow us to simulate
specific experiments and determine surface properties of
interest (e.g. the electron affinity) that lead to agreement
(currently qualitative) with the measured data. There
are several approaches that we are considering for fu-
ture development in order to improve the currently im-
plemented modeling capabilities.

The approach we implemented to include the electron
mass change when calculating emission probabilities in
the TM method can be modified to allow the mass to
change over a more extended region rather than the sharp
change when the electrons cross the diamond-vacuum in-
terface. This can be done by introducing a smoothly
varying function for he electron mass across the inter-
face similar to the approach previously investigated by
F. Stern51 in the context of a gradual dielectric constant
change. This approach is more complex to implement
since we have to also include the effects of a changing
mass (and dielectric constant) in the ES algorithms for
pushing electrons and updating the electric field across
the extended domain where the mass and the dielectric
constant vary.

The band bending potential in thermal equilibrium
should be calculated directly by solving the non-linear
Poisson equation with the magnitude determined from
the charge neutrality of the surface space-charge region as
discussed in subsection IIID 2. This will allow more accu-
rate treatment of the band bending for degenerate semi-
conductor photocathodes (e.g., for highly doped GaAs
photocathodes) compared to the currently implemented
quadratic approximation. Furthermore, it is of interest to
include modeling of surface space-charge regions in non-
equilibrium55 since flow of electrons into the surface layer
alters the charge distribution and potential there. It is of
importance to add modeling of surface roughness and a
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general approach for calculation of emission probabilities
with non-uniform surface potentials (including emission
with non-conservation of transverse momentum) due to
different types of surface coverage19. Finally, we con-
sidered here only direct emission from lowest conduction
band valleys. There are other emission processes, such as
phonon62 and exciton63 assisted ones and emission from
localized states64,65 that have been used to interpret ex-
perimental data. It is of interest to add modeling of these
processes as well.

We expect that simulation results with these additional
models will allow us to further improve our understand-
ing of the experimental data.
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