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END-TO-END 9-D POLARIZED BUNCH TRANSPORT IN eRHIC
ENERGY-RECOVERY RECIRCULATOR, SOME ASPECTS

F. Méot, S. Brooks, V. Ptitsyn, D. Trbojevic, N. Tsoupas
Collider-Accelerator Department, BNL, Upton, NY 11973
Abstract (with the difference tary x 27 corresponding to the contri-
This paper is a brief overview of some of the numerou8ution of the 12 DS); e, from 18 precessions at944 GeV

beam and spin dynamics investigations undertaken in i@ 43 at21.164 GeV. (@ = 0.00116 is the electron anoma-
framework of the design of the FFAG based electron erfoUS magnetic factory the Lorentz relativistic factor).
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A Fixed Field Alternating Gradient (FFAG) doublet-cell | —s8p— S —1 | -
version of the energy recovery recirculator of the eRHICw ———= I et it B p—
electron-ion collider is being investigated [1]. A pair of "= G L e I A e e £ S

such FFAG rings placed along RHIC recirculate the elec-
tron beam through a 1.322 GeV linac (ERL), from respecf'gure 2:Trar_1$verse gxcurs_ion.in the quadrupole frame (hence
tively 1.3 to 6.6 GeV (5 beams) and 7.9 to 21.2 GeV (1frtgfa_ct of t_rajectory dlscontlnuny) (left) and hard-edged mag-
beams), and back down to injection energy. A spreader aHStlc field (right), along the 11 orbits across the arc FFAG cell.

a combiner are placed at the linac ends for proper orbit and 10 Do 1000

6-D matching, including time-of-flight adjustment.
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The second, 11 beam, 21.2 GeV ring is considered in g o f 177
this discussion since it produces the major SR induced par- T T e 1 1 e s oo 0
ticle and spin dynamics perturbations. The cell is shown in E (GeV)
Fig. 1, there are 138 such cells in each one of the 6 eRHIC e S L
arcs. The 6 long straight sections (LSS) use that very cell, 0.35 | {015
with quadrupole axes aligned. In the twelve, 17-cell, dis- 0.3 =] N I 1005
persion suppressors (DS) the quadrupole axes slowly shift & -2 X i BSiig
from their distance in the arc, to zero at the LSS. & o5l - \4;;;- 0.4 WF
Fig. 2 shows the transverse excursion and magnetic field 0.1 —/ ]| 100
along orbits across the arc cell. Fig. 3 shows the energy 0-05 1 , LT s
dependence of the deviation angle and curvature radius in T2 25 30 3 40 a5

the two quadrupoles, and the energy dependent tunes afﬂgure 3: Top : energy deper?d\énce of deviation and curvature

chromaticities. radius in arc cell quads. Bottom : cell tunes and chromaticities;

the vertical bars materialize the 11 design energies.
Basic Cell #1(138 cells per arc):7.944 — 21.164 GeV
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with A6 the arc length and A/the curvature, assumed
constant. Taking for average radius, in the QF (focus-
Figure 1:Arc cell in the 7.944-21.16 GeV recirculating ring.  ing quad) and BD (defocusing quad) magnets respectively,
PBD R AFE=, poF A Asgsp (with sgp and sqr the arc
The y-precession of the spin over the six 138-cell arc¢engths) and considering in addition, witRp, lqr the
amounts t@® x 138 x ayfeen = ay x (2 —0.688734) rad  magnet lengthssgp ~ Igp, sqr ~ lqr, then one gets,
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Taking in addition< (1/p)? >~ 1/ < p? >, an estimate

of the energy spread is Figure 5: Left : stochastic energy decrease of a few particles

over the first 3 arcs at.ef = 21.164 GeV. Middle : final energy
spread a 5000 particle bunch after the 21.164 GeV pgéfs,:

1.9 x 107* around% = —4.7 x 1073 average energy loss
(Eqg. 1). Right : longitudinal bunch distribution (Eq. 4).
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This is illustrated for a complete eRHIC turn (including

LSS and DS sections) in Fig. 4, where it is also compared . x (0 _vs. s [(n Egiwziﬁf (g vs. xf (M
with Monte Carlo tracking, the agreement is at % level. The‘;wj% i ] o J
energy loss shows a local minimum in thg = 30—35re- & omﬁ“‘m &3 ‘
gion, a different behavior from the classiedl dependence ; e;
in an isomagnetic lattice. 0 0
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.8 fo L2 }4 16 18 fo 22 Figure 6: Left : SR loss induced x-drift along the 6 arcs, com-
100 Rg;itrtgggrg - 1 pletering,E = 21.164 GgV, (§hown are fafew partilees in abqnch
o eor O, theor. 1.z launched on the LSS axis YVIth zero initial 6-D emittance). Right :
3 60 - Ray-tracing v 1.2 a 5000 particle bunch, horizontal phase space after that complete
; 40 1, : turn, featuringry = —15 um, oo, = 4.3 pm, 2, = —1.1. prad,
< o0 T/T-M—’V—V;VJ 1. S} Uz’f =1.8 ,LLrad.
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Figure 4: Energy loss and energy spread. Solid lines : theory - . .
(Egs. 2 and 3) for a 6-arc ring. Markers : Monte Carlo, for a The natural chromaticity combined with energy spread

complete eRHIC ring (see sample tracking outcomes in Fig. 5).Cause a betatron phase e)ftem of the bunch and thus emit-
tance growth. Off-centering of the bunch causes even

The bunch lengthening over|a, s;] distance, resulting greater apparent emittance increase. This effect of tlee chr

from the stochastic energy loss, can be written [2], maticity constrains the tolerances on magnet alignment and
field defects [5].
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E J | Loend Acceptance
1/2 . .
DL (s)Tsa(sy + ) — T56)2 ds} The na?urallyllarge dynamlcal acceptaqce of the Ilnegr
lattice shrinks with magnet alignment and field defects, thi

with the integral being taken over the bends, and D/, is illustrated in Fig. 8. SR is off in these DA computations,
the dispersion function and its derivativés; the trajec- SR causes emittance growth thus reducing the space avail-
tory |engthening coefficient of the first order mappm]g:( able for the beam at injeCtion into a recirculation.
1,5, 6 stand for respectively, Jl, ép/p coordinates). .
The energy loss causes a drift/ of the bunch centroi(!i\/lur['pc’ledefec’[S
as well as an horizontal emittance increase, both can beFig. 9 illustrates a different way of looking at toler-
computed from the lattice parameters in the linear approxnces, e.g. here in the presence of a dodecapole de-
imation [2, 3, 4]. Fig. 6 illustrates these effects over dect in all quadrupoles of the ring.€., same working
21.164 GeV recirculation (with bunch re-centering on théaypotheses as for the bottom Fig. 8) : a 5000-particle
reference optical axis at each of the six LSS). bunch is launched with, =~ ¢, ~ 507um and10~*
Cumulative effect of SR, over a compltermsenergy spread, for 21 circulations in a complete ring
7.94-21.2-57.94 GeV cycle, is illustrated in Fig. 7 : (6 x [3LSS — DS — ARC — DS — 3LSS] + Linac).
(i) energy spreadyp/E = 2.6 x 10~* at 21.1 GeV and SR loss is summarily compensated at the linac, bunch po-
op/E = 8.4 x 10~* back at 7.944 GeV ; (ii) bunch sition is assumed perfectly corrected at each LSS. Fig. 9
lengthening,o; = 2 mm at 21.1 GeV and; = 2.5 mm shows the emittance evolution, pass after pass, from 7.94
back down to 7.944 GeV ; (iii) normalized horizontalto 21.16 and back to 7.94 GeV. This gives an indication
emittance (from zero starting value), namely,= 20 um  of the maximum tolerable defect, depending on criteria of
at 21.1 GeV (with strong contribution from uncompensatethaximum tolerable emittance.g. at collision (pass 11)
chromatic effects), anel, = 8 um back at 7.944 GeV. and/or extraction (pass 21).
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Ei 7. . L Figure 9: Pass-by-pass evolution of the emittances of a re-
Igure 7: Cumulated effects of SR, in longitudinal (1eft) and cyc\jated bunch, for various dodecapole defect strengths (from 0,

radial (right) phase space, over 21 passes in eRHIC (froR 15 Gauss at 1 cm). Left axis and markers : defect cases. Right
7.944 GeV to 21.164 GeV, and back down to 7.944 GeV). Leflyiq anq red curve : defect-free ring. Top : horizontal, bottom :

plots : energy spread and bunch lengthening. Right plots : horjz, tical emittances.
zontal emittance growth.
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Figure 8: Available injection window into the ring at mid- 12 A o g
LSS, for each of the 11 beams, observed at the center of an ~owop A Ej‘
LSS. Top : defect-free lattice. Bottom : in the presence of g oo o 8
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Polarized electron bunch production is based on gigure 11:Polarization (right vertical axis) and spin angle spread
Gatling gun, with a polarization of 85-90%. The electror(|eft axis) in the presence of dodecapole errors.
bunch is re-circulated in eRHIC with longitudinal polariza
tion. Spins precess at a rate per turn, with an increment

of aAy = 3 at each 1.322 GeV linac boost, so ensuring the REFERENCES
requested longitudinal spin orientation at the two IPs. [1] E.C. Aschenauer et als., “eRHIC Design Study, Electron-
Depolarization mainly stems from energy spreadg( a lon Collider at BNL”, arXiv:1409.1633, Sept. 2014.

cumulated?.5 10_74 at21.2 GeV from SR contribution, see [2] G. Leleux et al., Synchrotron radiation perturbation in trans-
Fig. 7). Spln_ dlffusmn resulting from stochastic SR also port lines, Part. Acc. Conf., San Francisco, May 6-9, 1991.
causes p_ola}rlzatllon loss, of ab_oult 20/;’ at 21.2 GeV. NON{3} hitps://oraweb.cern.ch/pls/hhh/cadebsite. disprode?codsame=BETA
zero vertica e'mlttance, or yertlga de ECtS.’ C&}use sfans t[4] F. Méot, J. Payet, Simulation of SR loss in high energy trans-
leave the median plane. This is illustrated in Fig. 10. port lines, Rep. CEA DSM DAPNIA/SEA-00-01 (2000)
I_:ig. 11 monitors_the gvolution of_t_he polarization and of [5] F. Méat, C. Liu, Chromatic Effects and Orbit Correction in
spin _angle.sprea_dlng, in the cpndmons_ of dodecapole er= eRHIC FFAG Arcs, these proceedings (TUPWI055),
ror simulations discussed earlier (“Multipole defect” sec 6] . Ptitsyn, Electron Polarization Dynamics in eRHIC, EIC
tion and Fig. 9). Both quantities appear unchanged in thié 1'4 wor)k/sr’m JLab 17_21/03/2013/ '
particular case, compared to the unperturbed optics(cf. b, ' '
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